JP7328474B1 - Numerical controller - Google Patents

Numerical controller Download PDF

Info

Publication number
JP7328474B1
JP7328474B1 JP2023518403A JP2023518403A JP7328474B1 JP 7328474 B1 JP7328474 B1 JP 7328474B1 JP 2023518403 A JP2023518403 A JP 2023518403A JP 2023518403 A JP2023518403 A JP 2023518403A JP 7328474 B1 JP7328474 B1 JP 7328474B1
Authority
JP
Japan
Prior art keywords
specific value
value group
group
machining
execution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023518403A
Other languages
Japanese (ja)
Inventor
大稀 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Application granted granted Critical
Publication of JP7328474B1 publication Critical patent/JP7328474B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Numerical Control (AREA)

Abstract

本開示の一態様に係る数値制御装置は、制御周期毎に、ギャップ検出器の検出値に基づいて、加工点からワークの表面に垂直な方向に所定の設定距離だけオフセットした位置を特定する1または複数の数値からなる特定値群である理想特定値群を算出する理想特定値群算出部と、理想特定値群に基づいて、実際に加工ヘッドを配置する位置を示す特定値群である実行特定値群を算出する実行特定値群算出部と、を備え、実行特定値群算出部は、現在の理想特定値群と1周期前の実行特定値群に対する関係を示す評価値が所定の基準値以下である場合には、現在の実行特定値群を現在の理想特定値群と同じ特定値群とし、現在の理想特定値群の評価値が基準値を超える場合には、現在の実行特定値群を加工点からの距離が設定距離でありかつ評価値が基準値と等しくなる特定値群とする。A numerical control device according to one aspect of the present disclosure specifies a position offset by a predetermined set distance in a direction perpendicular to the surface of a workpiece from a machining point based on a detection value of a gap detector for each control cycle. Alternatively, an ideal specific value group calculation unit that calculates an ideal specific value group that is a specific value group consisting of a plurality of numerical values, and an execution that is a specific value group that indicates the position where the machining head is actually arranged based on the ideal specific value group and an execution specific value group calculation unit for calculating the specific value group, wherein the execution specific value group calculation unit uses the evaluation value indicating the relationship between the current ideal specific value group and the execution specific value group one cycle before as a predetermined criterion. value, the current execution specific value group is set to the same specific value group as the current ideal specific value group, and if the evaluation value of the current ideal specific value group exceeds the reference value, the current execution specific value group Let the value group be a specific value group in which the distance from the machining point is the set distance and the evaluation value is equal to the reference value.

Description

本発明は、数値制御装置に関する。 The present invention relates to numerical controllers.

一般的に、加工ヘッドとワークを相対移動させてワークを加工する際には、ワークから加工ヘッドを一定の距離だけオフセットすることが要求される。例として、レーザ加工では、レーザの焦点距離に対応して、加工ヘッドのオフセット距離を比較的厳密に保持することが望まれる。加工ヘッドのオフセットを精密に一定距離に保つために、加工ヘッドに設けた検出器により加工ヘッドとワークの距離を検出し、加工ヘッドとワークの距離を一定に保つよう加工ヘッドの位置を調整することが提案されている(例えば特許文献1参照)。 In general, when machining a workpiece by relatively moving the machining head and the workpiece, it is required to offset the machining head from the workpiece by a certain distance. As an example, in laser machining, it is desirable to maintain a relatively tight offset distance of the machining head relative to the focal length of the laser. In order to precisely maintain the offset of the processing head at a constant distance, a detector installed in the processing head detects the distance between the processing head and the work, and the position of the processing head is adjusted to keep the distance between the processing head and the work constant. has been proposed (see Patent Literature 1, for example).

特開2017-192970号公報JP 2017-192970 A

加工ヘッドのオフセットは、ワークの表面の加工点における法線方向に行うことが望まれる。ワークの表面形状によっては加工点における法線方向が急峻に変化する可能性があり、加工装置に異常な振動を生じさせるおそれがある。 It is desirable to offset the machining head in the normal direction of the machining point on the surface of the workpiece. Depending on the surface shape of the workpiece, the normal direction at the machining point may change sharply, which may cause abnormal vibrations in the machining apparatus.

本開示の一態様に係る数値制御装置は、ワークを加工する加工ヘッドと、前記ワークと前記加工ヘッドを相対移動させる駆動機構と、前記ワークと前記加工ヘッドの距離を検出するギャップ検出器と、を備える加工装置を制御する数値制御装置であって、前記加工ヘッドにより加工を行う前記ワーク上の加工点の位置を変化させるよう前記ワークと前記加工ヘッドを相対移動させる移動制御部と、制御周期毎に、前記ギャップ検出器の検出値に基づいて、前記加工点から前記ワークの表面に垂直な方向に所定の設定距離だけオフセットした位置を特定する1または複数の数値からなる特定値群である理想特定値群を算出する理想特定値群算出部と、前記理想特定値群に基づいて、実際に前記加工ヘッドを配置する位置を示す特定値群である実行特定値群を算出する実行特定値群算出部と、を備え、前記実行特定値群算出部は、現在の前記理想特定値群と1周期前の前記実行特定値群に対する関係を示す評価値が所定の基準値以下である場合には、現在の実行特定値群を現在の前記理想特定値群と同じ特定値群とし、現在の前記理想特定値群の前記評価値が前記基準値を超える場合には、現在の実行特定値群を前記加工点からの距離が前記設定距離でありかつ前記評価値が前記基準値と等しくなる特定値群とする。 A numerical control device according to an aspect of the present disclosure includes a machining head for machining a workpiece, a drive mechanism for relatively moving the workpiece and the machining head, a gap detector for detecting the distance between the workpiece and the machining head, A movement control unit for relatively moving the work and the processing head so as to change the position of the processing point on the work to be processed by the processing head, and a control cycle A specific value group consisting of one or more numerical values that specifies a position offset by a predetermined set distance in a direction perpendicular to the surface of the workpiece from the machining point based on the detection value of the gap detector for each. An ideal specific value group calculation unit that calculates an ideal specific value group, and an execution specific value that calculates an execution specific value group, which is a specific value group indicating a position where the machining head is actually arranged, based on the ideal specific value group. and a group calculation unit, wherein the execution specific value group calculation unit calculates when an evaluation value indicating a relationship between the current ideal specific value group and the execution specific value group one cycle before is equal to or less than a predetermined reference value. sets the current execution specific value group to the same specific value group as the current ideal specific value group, and if the evaluation value of the current ideal specific value group exceeds the reference value, the current execution specific value group be a specific value group in which the distance from the machining point is the set distance and the evaluation value is equal to the reference value.

本開示の一実施形態に係る数値制御装置を備える加工システムの模式的構成図である。1 is a schematic configuration diagram of a machining system including a numerical controller according to an embodiment of the present disclosure; FIG. 図1の数値制御装置が算出する理想特定値群と実行特定値群の関係を示す模式図である。FIG. 2 is a schematic diagram showing a relationship between an ideal specific value group and an execution specific value group calculated by the numerical controller of FIG. 1;

以下、本開示の実施形態について、図面を参照しながら説明する。図1は、本開示の一実施形態に係る数値制御装置20を備える加工システム1の模式的構成図である。加工システム1は、加工装置10と、加工装置10を制御する数値制御装置20と、を備える。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a machining system 1 including a numerical controller 20 according to an embodiment of the present disclosure. The processing system 1 includes a processing device 10 and a numerical controller 20 that controls the processing device 10 .

加工装置10は、ワークWを加工する加工ヘッド11と、ワークWを保持するワーク保持部12と、ワーク保持部12に保持されるワークWと加工ヘッド11とを相対移動させる駆動機構13と、ワークWと加工ヘッド11の距離を検出するギャップ検出器14と、を備える。 The processing apparatus 10 includes a processing head 11 that processes a work W, a work holding unit 12 that holds the work W, a drive mechanism 13 that relatively moves the work W held by the work holding unit 12 and the processing head 11, and a gap detector 14 for detecting the distance between the workpiece W and the machining head 11 .

加工ヘッド11は、例えばワークWにレーザを照射するレーザヘッド、回転工具を有する切削加工ヘッド等とされ得る。加工ヘッド11の出力、例えばレーザ光の強度、回転工具のトルク等は、数値制御装置20によって調整され得るよう構成されることが好ましい。 The processing head 11 may be, for example, a laser head that irradiates the workpiece W with a laser, a cutting head that has a rotary tool, or the like. It is preferable that the output of the processing head 11 , such as the intensity of the laser beam, the torque of the rotary tool, etc., be adjusted by the numerical controller 20 .

ワーク保持部12は、ワークWを保持することができればよく、例えばテーブル、チャック等を有する構成とされ得る。図示する実施形態において、ワーク保持部12は、ワークWを保持し、駆動機構13により回転させられるチャックを有することが企図される。 The work holding unit 12 only needs to be able to hold the work W, and may be configured to have a table, a chuck, or the like, for example. In the illustrated embodiment, the workpiece holder 12 is contemplated to have a chuck that holds the workpiece W and is rotated by the drive mechanism 13 .

駆動機構13は、加工ヘッド11によりワークWを加工する加工点を移動させるよう加工ヘッド11とワークWを相対移動させ得るよう構成される。本実施形態において、駆動機構13は、ワーク保持部12を回転させることによりワークWを回転させて、加工ヘッド11が対向するワークW上の加工点の位置を変化させる回転駆動機構131を含む。図示する実施形態において、回転駆動機構131は、ワーク保持部12に保持されるワークWを紙面に垂直な軸Cを中心に回転させる。また、駆動機構13は、加工ヘッド11とワークWとの距離を調整可能に構成される。本実施形態では、駆動機構13は、加工ヘッド11の位置および向きを変化させる複数の駆動軸を有する直交座標系駆動機構132を含む。なお、駆動機構13は、これらの構成に限られず、例えば加工ヘッド11またはワーク保持部12を移動させる多関節ロボット等を含むものなど、任意の構成とされ得る。 The drive mechanism 13 is configured to move the machining head 11 and the work W relative to each other so as to move the machining point where the work W is machined by the machining head 11 . In the present embodiment, the drive mechanism 13 includes a rotation drive mechanism 131 that rotates the workpiece W by rotating the workpiece holder 12 to change the position of the machining point on the workpiece W facing the machining head 11 . In the illustrated embodiment, the rotation drive mechanism 131 rotates the work W held by the work holding section 12 around an axis C perpendicular to the plane of the paper. Further, the drive mechanism 13 is configured to be able to adjust the distance between the processing head 11 and the workpiece W. In this embodiment, the drive mechanism 13 includes an orthogonal coordinate system drive mechanism 132 having a plurality of drive axes that change the position and orientation of the machining head 11 . Note that the drive mechanism 13 is not limited to these configurations, and may have any configuration including, for example, an articulated robot or the like that moves the processing head 11 or the workpiece holder 12 .

ギャップ検出器14は、高精度に加工ヘッド11とワークWの距離を測定するために、加工ヘッド11に配設されることが好ましい。ギャップ検出器14としては、例えば静電容量センサ、レーザセンサ、超音波センサ等を用いることができる。 The gap detector 14 is preferably provided on the machining head 11 in order to measure the distance between the machining head 11 and the workpiece W with high accuracy. As the gap detector 14, for example, a capacitance sensor, a laser sensor, an ultrasonic sensor, or the like can be used.

数値制御装置20は、メモリ、プロセッサ(CPU)、入出力インターフェイス等を有し、適切な制御プログラムを実行する1または複数のコンピュータ装置によって実現され得る。以下に説明する数値制御装置20の構成要素は、数値制御装置20の機能(プロセッサの動作)を類別したものであって、物理構成およびプログラム構成において明確に区分できるものでなくてもよい。 Numerical control device 20 may be implemented by one or more computer devices having a memory, a processor (CPU), an input/output interface, etc., and executing an appropriate control program. The components of the numerical control device 20 described below are categorized functions (operations of the processor) of the numerical control device 20, and may not be clearly classified in terms of physical configuration and program configuration.

数値制御装置20は、移動制御部21と、理想特定値群算出部22と、実行特定値群算出部23と、ギャップ制御部24と、出力調整部25と、を備える。 The numerical controller 20 includes a movement control section 21 , an ideal specific value group calculation section 22 , an execution specific value group calculation section 23 , a gap control section 24 and an output adjustment section 25 .

移動制御部21は、加工ヘッド11により加工を行うワークW上の加工点の位置を変化させるようワークWと加工ヘッド11を相対移動させる。本実施形態おいて、移動制御部21は、ワーク保持部12のチャックを回転させることにより、ワークWを軸Cを中心に回転させることで、加工ヘッド11に対向する加工点の位置を移動させることが企図される。しかしながら、移動制御部21は、ワークWおよび加工ヘッド11の少なくとも一方の位置を変化させるよう加工装置10を動作させることによって、加工点を移動させてもよい。 The movement control unit 21 relatively moves the workpiece W and the machining head 11 so as to change the position of the machining point on the workpiece W to be machined by the machining head 11 . In this embodiment, the movement control unit 21 rotates the chuck of the work holding unit 12 to rotate the work W about the axis C, thereby moving the position of the processing point facing the processing head 11. It is contemplated that However, the movement control unit 21 may move the machining point by operating the machining apparatus 10 to change the position of at least one of the workpiece W and the machining head 11 .

理想特定値群算出部22は、制御周期毎に、ギャップ検出器14の検出値に基づいて、加工点からワークWの表面に垂直な方向に所定の設定距離だけオフセットした位置、つまり加工ヘッド11の理想的な位置を特定する1または複数の数値からなる特定値群である理想特定値群を算出する。加工ヘッド11の位置は工具等を除く本体の先端部の位置とされ得る。なお、「特定値群」は、加工ヘッド11の位置を表す1以上の数値の集合であり、加工点の位置を基準とする単一の角度、ベクトル等であってもよく、移動しない座標系における座標等であってもよい。「特定値群」は、制御周期の1周期における加工ヘッド11の移動を把握しやすいよう、加工点の位置を始点とするベクトルであることが好ましい。 The ideal specific value group calculation unit 22 calculates a position offset by a predetermined set distance in a direction perpendicular to the surface of the workpiece W from the machining point, that is, the machining head 11 An ideal specific value group, which is a specific value group consisting of one or a plurality of numerical values that specify the ideal position of , is calculated. The position of the processing head 11 can be the position of the tip of the main body excluding tools and the like. The "specific value group" is a set of one or more numerical values representing the position of the machining head 11, and may be a single angle, vector, or the like based on the position of the machining point, or a non-moving coordinate system. may be coordinates in The "specific value group" is preferably a vector whose starting point is the position of the machining point so that the movement of the machining head 11 in one control cycle can be easily grasped.

理想特定値群算出部22は、加工ヘッド11およびワークWの移動を考慮して、ワークWの表面の加工点における向きを算出する。具体的には、理想特定値群算出部22は、1周期前のギャップ検出器14の検出値と、今回のギャップ検出器14の検出値と、1周期前から現在までの加工ヘッド11およびワークWの移動量と、に基づいて、1周期前の加工点が現在どこにあるかを特定することができる。さらに、理想特定値群算出部22は、1周期前の加工点と現在の加工点とを結ぶ直線の傾きが現在の加工点におけるワークWの面方向として、加工点から所定の設定距離だけ離間した位置を算出することができる。 The ideal specific value group calculator 22 calculates the orientation of the surface of the workpiece W at the machining point in consideration of the movements of the machining head 11 and the workpiece W. Specifically, the ideal specific value group calculation unit 22 calculates the detection value of the gap detector 14 one cycle before, the detection value of the gap detector 14 this time, and the machining head 11 and workpiece from one cycle before. Based on the amount of movement of W and , it is possible to specify where the machining point of one cycle before is currently. Furthermore, the ideal specific value group calculation unit 22 determines that the inclination of the straight line connecting the machining point one cycle before and the current machining point is the surface direction of the workpiece W at the current machining point, and is separated from the machining point by a predetermined set distance. can be calculated.

実行特定値群算出部23は、理想特定値群に基づいて、実際に加工ヘッド11を配置する位置を示す特定値群である実行特定値群を算出する。実行特定値群算出部23は、現在の理想特定値群が示す位置と1周期前の実行特定値群が示す位置とが大きく離間している場合には、現在の理想特定値群が示す位置よりも1周期前の実行特定値群が示す位置に近い位置を特定する実行特定値群を設定する。これにより、加工ヘッド11の急峻な移動を抑制し、加工装置10の異常な振動を防止する。 The execution specific value group calculation unit 23 calculates an execution specific value group, which is a specific value group indicating the position where the machining head 11 is actually arranged, based on the ideal specific value group. When the position indicated by the current ideal specific value group and the position indicated by the execution specific value group one cycle before are far apart, the execution specific value group calculation unit 23 calculates the position indicated by the current ideal specific value group. An execution specific value group that specifies a position closer to the position indicated by the execution specific value group one cycle before is set. As a result, abrupt movement of the machining head 11 is suppressed, and abnormal vibration of the machining device 10 is prevented.

具体的には、実行特定値群算出部23は、現在の理想特定値群と1周期前の実行特定値群に対する関係を示す評価値が所定の基準値以下である場合には、現在の実行特定値群を現在の理想特定値群と同じ特定値群とし、現在の理想特定値群の評価値が基準値を超える場合には、現在の実行特定値群を加工点からの距離が設定距離でありかつ評価値が基準値と等しくなる特定値群とするよう構成される。 Specifically, when the evaluation value indicating the relationship between the current ideal specific value group and the execution specific value group one cycle before is equal to or less than a predetermined If the specified value group is the same specified value group as the current ideal specified value group, and the evaluation value of the current ideal specified value group exceeds the reference value, the current execution specified value group is set at the set distance from the processing point. and the evaluation value is equal to the reference value.

「評価値」は、比較的簡単で理想特定値群のベクトルと実行特定値群のベクトルの角度差、理想特定値群のベクトルと実行特定値群のベクトルの差分ベクトルの大きさ、理想特定値群が示す位置と実行特定値群が示す位置との距離等とされ得る。中でも、評価値としてベクトルの角度差を算出すれば、加工ヘッド11の移動量を比較的容易かつ正確に把握できる。この場合、基準値は、理想特定値群のベクトルと実行特定値群のベクトルの角度差の上限値であるが、ユーザが基準値を設定する際に分かりやすいよう、現在の理想特定値群が示す加工ヘッド11の位置と1周期前の実行特定値群が示す加工ヘッド11の位置との距離の上限値としてユーザにより設定される値から算出されてもよい。 The "evaluation value" is relatively simple, and is the angle difference between the vector of the ideal specific value group and the vector of the execution specific value group, the magnitude of the difference vector between the vector of the ideal specific value group and the vector of the execution specific value group, and the ideal specific value. It can be the distance between the position indicated by the group and the position indicated by the execution specific value group. Among others, the amount of movement of the processing head 11 can be grasped relatively easily and accurately by calculating the angle difference between the vectors as the evaluation value. In this case, the reference value is the upper limit of the angular difference between the vector of the ideal specific value group and the vector of the execution specific value group. It may be calculated from a value set by the user as the upper limit value of the distance between the indicated position of the machining head 11 and the position of the machining head 11 indicated by the execution specific value group one cycle before.

特定値群が加工点から加工ヘッド11を配置する位置までの3次元ベクトルである場合の、実行特定値群算出部23による加工点からの距離が設定距離でありかつ評価値であるベクトルの角度差が基準値と等しくなる特定値群の算出方法の一例について、図2を参照しながらさらに詳しく説明する。図2は、ワークWの回転によって加工点が移動し、ワークWが角部を有することによって加工点におけるワークWの表面の向きおよび加工点の移動速度が変化する例を示す。 When the specific value group is a three-dimensional vector from the processing point to the position where the processing head 11 is arranged, the distance from the processing point by the execution specific value group calculation unit 23 is the set distance and the angle of the vector that is the evaluation value An example of a method of calculating a specific value group in which the difference is equal to the reference value will be described in more detail with reference to FIG. FIG. 2 shows an example in which the rotation of the workpiece W moves the machining point, and the orientation of the surface of the workpiece W at the machining point and the movement speed of the machining point change due to the workpiece W having a corner.

図2は、現在の理想特定値群のベクトルをV1i、1周期前の理想特定値群と一致する実行特定値群のベクトルV0e、新たに設定される実行特定値群のベクトルV1eとし、各ベクトルのX、Y、Z方向の各成分にはx,y,zの添え字を付して区別する。また、ベクトルの角度差の基準値はθとする。 FIG. 2 shows a current ideal specific value group vector V1i, an execution specific value group vector V0e that matches the ideal specific value group one cycle before, a newly set execution specific value group vector V1e, and each vector The X-, Y-, and Z-direction components of are attached with x, y, and z subscripts for distinction. Also, the reference value of the angle difference between the vectors is assumed to be θ.

新たな実行特定値群のベクトルV1eは、1周期前の実行特定値群のベクトルV0eを、このベクトルV0eと現在の理想特定値群のベクトルをV1iの両方に垂直な軸を中心に基準値である角度θだけ回転することにより算出される。このために、先ず、ベクトルV0eを回転するための中心軸となるベクトルverを、次の数式1のように、ベクトルV0eとベクトルをV1iの外積として算出する。 The vector V1e of the new execution specific value group is obtained by dividing the vector V0e of the execution specific value group one cycle before, this vector V0e and the current ideal specific value group vector into V1i with reference values centered on the axis perpendicular to both V1i. It is calculated by rotating by a certain angle θ. For this purpose, first, the vector ver, which is the central axis for rotating the vector V0e, is calculated as the outer product of the vector V0e and the vector V1i, as shown in Equation 1 below.

Figure 0007328474000001
Figure 0007328474000001

続いて、次の数式2のように、ベクトルverの大きさnormを算出し、続く数式3のようにベクトルverの各成分をベクトルの大きさをnormで除することにより単位ベクトルVuに変換する。 Subsequently, the magnitude norm of the vector ver is calculated as in the following formula 2, and each component of the vector ver is converted into a unit vector Vu by dividing the vector magnitude by the norm as in the following formula 3. .

Figure 0007328474000002
Figure 0007328474000002

Figure 0007328474000003
Figure 0007328474000003

この単位ベクトルVuを用いて、次の数式4のように、ベクトルV0eを角度θだけ回転することで、現在の制御周期における実行特定値群のベクトルV1eを算出することができる。 By using this unit vector Vu and rotating the vector V0e by the angle θ as shown in the following Equation 4, the vector V1e of the execution specific value group in the current control cycle can be calculated.

Figure 0007328474000004
Figure 0007328474000004

また、基準値を現在の理想特定値群のベクトルV1iが示す加工ヘッド11の位置(ベクトルV1iの終点)と1周期前の実行特定値群のベクトルV0eが示す前記加工ヘッド11の位置(ベクトルV0eの終点)との距離の上限値Dとして与えられる場合、設定距離をGとすると、ベクトルの角度差θは、次の数式5で表すことができる。 Also, the reference values are the position of the machining head 11 indicated by the vector V1i of the current ideal specific value group (the end point of the vector V1i) and the position of the machining head 11 indicated by the vector V0e of the execution specific value group one cycle before (vector V0e is given as the upper limit value D of the distance to the end point of ( ), and the set distance is G, the angle difference θ of the vectors can be expressed by the following Equation 5.

Figure 0007328474000005
Figure 0007328474000005

ギャップ制御部24は、現在の実行特定値群が示す位置に加工ヘッド11を配置する。より詳しくは、ギャップ制御部24は、現在の実行特定値群が示す位置に加工ヘッド11を配置するために必要な駆動機構13の各軸の駆動量を算出し、駆動機構13を制御する。 The gap control unit 24 arranges the machining head 11 at the position indicated by the current execution specific value group. More specifically, the gap control unit 24 calculates the drive amount of each axis of the drive mechanism 13 necessary for arranging the machining head 11 at the position indicated by the current execution specific value group, and controls the drive mechanism 13 .

出力調整部25は、実行特定値群が示す位置を加工ヘッド11が通過するときの加工点の移動速度の算出、および加工点の移動速度を考慮した加工ヘッドの出力の調整を行う。より詳しくは、出力調整部25は、加工点の移動速度が小さい場合には加工ヘッドの出力、例えばレーザの強度を低下させ、加工点の移動速度が大きい場合には加工ヘッドの出力を増大させる。これによって、加工点におけるワークWの加工度を均等にできる。 The output adjustment unit 25 calculates the moving speed of the machining point when the machining head 11 passes through the position indicated by the execution specific value group, and adjusts the output of the machining head in consideration of the moving speed of the machining point. More specifically, the output adjustment unit 25 reduces the output of the processing head, for example, the intensity of the laser, when the moving speed of the processing point is low, and increases the output of the processing head when the moving speed of the processing point is high. . As a result, the degree of processing of the workpiece W at the processing point can be made uniform.

以上のように、数値制御装置20を備える加工システム1は、1制御周期における加工ヘッド11の移動量を抑制できるので、振動を抑制して正確な加工を行うことができる。 As described above, the machining system 1 including the numerical control device 20 can suppress the amount of movement of the machining head 11 in one control period, so that vibration can be suppressed and accurate machining can be performed.

上記実施形態および変形例に関し、更に以下の付記を開示する。
(付記1)
数値制御装置(20)は、ワーク(W)を加工する加工ヘッド(11)と、ワーク(W)と加工ヘッド(11)を相対移動させる駆動機構(13)と、ワーク(W)と加工ヘッド(11)の距離を検出するギャップ検出器(14)と、を備える加工装置(11)を制御する数値制御装置(20)であって、加工ヘッド(11)により加工を行うワーク上の加工点の位置を変化させるようワーク(W)と加工ヘッド(11)を相対移動させる移動制御部(21)と、制御周期毎に、ギャップ検出器(14)の検出値に基づいて、加工点からワーク(W)の表面に垂直な方向に所定の設定距離だけオフセットした位置を特定する1または複数の数値からなる特定値群である理想特定値群を算出する理想特定値群算出部(22)と、理想特定値群に基づいて、実際に加工ヘッド(11)を配置する位置を示す特定値群である実行特定値群を算出する実行特定値群算出部(23)と、を備え、実行特定値群算出部(23)は、現在の理想特定値群と1周期前の実行特定値群に対する関係を示す評価値が所定の基準値以下である場合には、現在の実行特定値群を現在の理想特定値群と同じ特定値群とし、現在の理想特定値群の評価値が基準値を超える場合には、現在の実行特定値群を加工点からの距離が設定距離でありかつ評価値が基準値と等しくなる特定値群とする。
(付記2)
付記1の数値制御装置(20)において、理想特定値群および実行特定値群は、加工点から加工ヘッド(11)の位置までのベクトルであってもよい。
The following additional remarks will be disclosed with respect to the above embodiment and modifications.
(Appendix 1)
A numerical controller (20) comprises a machining head (11) for machining a workpiece (W), a drive mechanism (13) for relatively moving the workpiece (W) and the machining head (11), and a mechanism for controlling the workpiece (W) and the machining head (11). A gap detector (14) for detecting the distance (11), and a numerical control device (20) for controlling a machining device (11), which is a machining point on a workpiece to be machined by the machining head (11) A movement control unit (21) that relatively moves the work (W) and the processing head (11) so as to change the position of the work (W), and based on the detection value of the gap detector (14) for each control cycle, the work from the processing point to the work an ideal specific value group calculation unit (22) for calculating an ideal specific value group, which is a specific value group consisting of one or more numerical values for specifying a position offset by a predetermined set distance in a direction perpendicular to the surface of (W); an execution specific value group calculating unit (23) for calculating an execution specific value group, which is a specific value group indicating a position where the machining head (11) is actually arranged, based on the ideal specific value group; If the evaluation value indicating the relationship between the current ideal specific value group and the execution specific value group one cycle before is equal to or less than a predetermined reference value, the value group calculation unit (23) calculates the current execution specific value group as the current If the evaluation value of the current ideal specific value group exceeds the reference value, the distance from the processing point is the set distance and the evaluation value is a specific value group in which is equal to the reference value.
(Appendix 2)
In the numerical controller (20) of appendix 1, the ideal specific value group and the execution specific value group may be vectors from the machining point to the position of the machining head (11).

(付記3)
付記2の数値制御装置(20)において、評価値は、理想特定値群のベクトルと実行特定値群のベクトルの角度差であってもよい。
(Appendix 3)
In the numerical controller (20) of Supplementary Note 2, the evaluation value may be an angular difference between the vector of the ideal specific value group and the vector of the execution specific value group.

(付記4)
付記3の数値制御装置(20)において、基準値は、現在の理想特定値群が示す加工ヘッド(11)の位置と1周期前の実行特定値群が示す加工ヘッド(11)の位置との距離の上限値として設定される値から算出されてもよい。
(Appendix 4)
In the numerical controller (20) of Supplementary Note 3, the reference value is the position of the machining head (11) indicated by the current ideal specific value group and the position of the machining head (11) indicated by the execution specific value group one cycle before. It may be calculated from a value set as the upper limit of the distance.

(付記5)
付記1から4のいずれかの数値制御装置(20)は、実行特定値群が示す位置を加工ヘッド(11)が通過するときの加工点の移動速度の算出、および加工点の移動速度を考慮した加工ヘッド(11)の出力の調整を行う出力調整部(25)をさらに備えてもよい。
(Appendix 5)
The numerical controller (20) according to any one of appendices 1 to 4 calculates the movement speed of the machining point when the machining head (11) passes through the position indicated by the execution specific value group, and considers the movement speed of the machining point. An output adjusting section (25) for adjusting the output of the working head (11) may be further provided.

以上、本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値または数式が用いられている場合も同様である。 Although the present disclosure has been described in detail above, the present disclosure is not limited to the individual embodiments described above. These embodiments include various additions, replacements, Modification, partial deletion, etc. are possible. Also, these embodiments can be implemented in combination. For example, in the above-described embodiments, the order of each operation and the order of each process are shown as an example, and are not limited to these. The same applies when numerical values or formulas are used in the description of the above-described embodiments.

1 加工システム
10 加工装置
11 加工ヘッド
12 ワーク保持部
13 駆動機構
14 ギャップ検出器
20 数値制御装置
21 移動制御部
22 理想特定値群算出部
23 実行特定値群算出部
24 ギャップ制御部
25 出力調整部
1 Machining System 10 Machining Device 11 Machining Head 12 Work Holder 13 Drive Mechanism 14 Gap Detector 20 Numerical Control Device 21 Movement Controller 22 Ideal Specific Value Group Calculator 23 Execution Specific Value Group Calculator 24 Gap Controller 25 Output Adjuster

Claims (5)

ワークを加工する加工ヘッドと、前記ワークと前記加工ヘッドを相対移動させる駆動機構と、前記ワークと前記加工ヘッドの距離を検出するギャップ検出器と、を備える加工装置を制御する数値制御装置であって、
前記加工ヘッドにより加工を行う前記ワーク上の加工点の位置を変化させるよう前記ワークと前記加工ヘッドを相対移動させる移動制御部と、
制御周期毎に、前記ギャップ検出器の検出値に基づいて、前記加工点から前記ワークの表面に垂直な方向に所定の設定距離だけオフセットした位置を特定する1または複数の数値からなる特定値群である理想特定値群を算出する理想特定値群算出部と、
前記理想特定値群に基づいて、実際に前記加工ヘッドを配置する位置を示す特定値群である実行特定値群を算出する実行特定値群算出部と、
を備え、
前記実行特定値群算出部は、現在の前記理想特定値群と1周期前の前記実行特定値群に対する関係を示す評価値が所定の基準値以下である場合には、現在の前記実行特定値群を現在の前記理想特定値群と同じ特定値群とし、現在の前記理想特定値群の前記評価値が前記基準値を超える場合には、現在の前記実行特定値群を前記加工点からの距離が前記設定距離でありかつ前記評価値が前記基準値と等しくなる特定値群とする、数値制御装置。
A numerical controller for controlling a machining apparatus comprising a machining head for machining a workpiece, a drive mechanism for relatively moving the workpiece and the machining head, and a gap detector for detecting the distance between the workpiece and the machining head. hand,
a movement control unit that relatively moves the work and the processing head so as to change the position of the processing point on the work to be processed by the processing head;
A specific value group consisting of one or more numerical values for identifying a position offset by a predetermined set distance in a direction perpendicular to the surface of the workpiece from the machining point based on the detection value of the gap detector for each control cycle. An ideal specific value group calculation unit that calculates an ideal specific value group that is
an execution specific value group calculation unit that calculates an execution specific value group, which is a specific value group indicating a position where the machining head is actually arranged, based on the ideal specific value group;
with
The execution specific value group calculation unit calculates the current execution specific value when an evaluation value indicating a relationship between the current ideal specific value group and the execution specific value group one cycle before is equal to or less than a predetermined reference value. The group is the same specific value group as the current ideal specific value group, and when the evaluation value of the current ideal specific value group exceeds the reference value, the current execution specific value group is set from the processing point A numerical controller, wherein the distance is the set distance and the evaluation value is a specific value group equal to the reference value.
前記理想特定値群および前記実行特定値群は、前記加工点から前記加工ヘッドの位置までのベクトルである、請求項1に記載の数値制御装置。 2. The numerical controller according to claim 1, wherein said ideal specific value group and said execution specific value group are vectors from said machining point to a position of said machining head. 前記評価値は、前記理想特定値群のベクトルと前記実行特定値群のベクトルの角度差である、請求項2に記載の数値制御装置。 3. The numerical controller according to claim 2, wherein said evaluation value is an angular difference between a vector of said ideal specific value group and a vector of said execution specific value group. 前記基準値は、現在の前記理想特定値群が示す前記加工ヘッドの位置と1周期前の前記実行特定値群が示す前記加工ヘッドの位置との距離の上限値として設定される値から算出される、請求項3に記載の数値制御装置。 The reference value is calculated from a value set as the upper limit of the distance between the position of the processing head indicated by the current group of ideal specific values and the position of the machining head indicated by the group of execution specific values one cycle before. 4. The numerical controller according to claim 3, wherein 前記実行特定値群が示す位置を前記加工ヘッドが通過するときの前記加工点の移動速度の算出、および前記加工点の移動速度を考慮した前記加工ヘッドの出力の調整を行う出力調整部をさらに備える、請求項1から4のいずれかに記載の数値制御装置。 Further an output adjustment unit that calculates the moving speed of the processing point when the processing head passes through the position indicated by the execution specific value group, and adjusts the output of the processing head in consideration of the moving speed of the processing point. 5. The numerical controller according to any one of claims 1 to 4, comprising:
JP2023518403A 2022-12-16 2022-12-16 Numerical controller Active JP7328474B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046350 WO2024127622A1 (en) 2022-12-16 2022-12-16 Numerical control device

Publications (1)

Publication Number Publication Date
JP7328474B1 true JP7328474B1 (en) 2023-08-16

Family

ID=87562975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023518403A Active JP7328474B1 (en) 2022-12-16 2022-12-16 Numerical controller

Country Status (2)

Country Link
JP (1) JP7328474B1 (en)
WO (1) WO2024127622A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502692A (en) * 1992-08-14 1995-03-23 ルモニクス コーポレーション Robotic movement of objects on the workpiece surface
JP2010125517A (en) * 2008-12-01 2010-06-10 Komatsu Ntc Ltd Laser machining method for pipe
JP2013058035A (en) * 2011-09-07 2013-03-28 Fanuc Ltd Numerical control device for multiple spindle machine tool including workpiece installation error correction section
WO2013140993A1 (en) * 2012-03-23 2013-09-26 三菱電機株式会社 Laser machining device
CN111364039A (en) * 2020-03-26 2020-07-03 陕西天元智能再制造股份有限公司 Laser cladding self-adjusting device and method
CN111487923A (en) * 2020-03-25 2020-08-04 成都飞机工业(集团)有限责任公司 Swing position error detection and identification method for CA double-swing five-axis numerical control machine tool
JP6880335B1 (en) * 2020-03-17 2021-06-02 三菱電機株式会社 Machining condition search device and machining condition search method
JP2022088386A (en) * 2018-01-31 2022-06-14 株式会社ニコン Processing system and processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502692A (en) * 1992-08-14 1995-03-23 ルモニクス コーポレーション Robotic movement of objects on the workpiece surface
JP2010125517A (en) * 2008-12-01 2010-06-10 Komatsu Ntc Ltd Laser machining method for pipe
JP2013058035A (en) * 2011-09-07 2013-03-28 Fanuc Ltd Numerical control device for multiple spindle machine tool including workpiece installation error correction section
WO2013140993A1 (en) * 2012-03-23 2013-09-26 三菱電機株式会社 Laser machining device
JP2022088386A (en) * 2018-01-31 2022-06-14 株式会社ニコン Processing system and processing method
JP6880335B1 (en) * 2020-03-17 2021-06-02 三菱電機株式会社 Machining condition search device and machining condition search method
CN111487923A (en) * 2020-03-25 2020-08-04 成都飞机工业(集团)有限责任公司 Swing position error detection and identification method for CA double-swing five-axis numerical control machine tool
CN111364039A (en) * 2020-03-26 2020-07-03 陕西天元智能再制造股份有限公司 Laser cladding self-adjusting device and method

Also Published As

Publication number Publication date
WO2024127622A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
JP6445070B2 (en) Machine tool control system
JP6295070B2 (en) Geometric error identification method for multi-axis machine tools and multi-axis machine tools
CA2537155C (en) Grinding machine with concentricity correction
JP5236596B2 (en) Processing robot system
JP7403038B2 (en) Vibratory cutting equipment and contact detection program
JP6942577B2 (en) Numerical control device and numerical control method for machine tools
JP5936178B2 (en) Machining control method for machine tools
US20200269458A1 (en) Cutting apparatus and contact position specifying program
JP2016099824A (en) Numerical control equipment that protects tool and workpiece
CN110268345B (en) Motion evaluation method, evaluation device, parameter adjustment method using the evaluation method, workpiece machining method, and machine tool
WO2014196066A1 (en) Numerical control device
JPWO2012101789A1 (en) Numerical controller
JP2005071016A (en) Numerical control device
US6233497B1 (en) Contact detecting method and an apparatus for the same
US20230347463A1 (en) Control device, industrial machine, and control method
JP6168396B2 (en) Machine Tools
JP2007257606A (en) Method for correcting tool alignment error
WO1994009935A1 (en) Controller for crank shaft mirror
JP7328474B1 (en) Numerical controller
JP6474450B2 (en) Machine tool control system
JP2005034934A (en) Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece
JP2003005813A (en) Method for controlling orbit boring
JP2006281338A (en) Machining program generator, machining method, and program
JP7303593B2 (en) POSITIONAL RELATIONSHIP MEASUREMENT METHOD AND PROCESSING DEVICE
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150