TW201616256A - Method and device for the determination of at least one model parameter of a virtual tool model of a tool - Google Patents

Method and device for the determination of at least one model parameter of a virtual tool model of a tool Download PDF

Info

Publication number
TW201616256A
TW201616256A TW104125342A TW104125342A TW201616256A TW 201616256 A TW201616256 A TW 201616256A TW 104125342 A TW104125342 A TW 104125342A TW 104125342 A TW104125342 A TW 104125342A TW 201616256 A TW201616256 A TW 201616256A
Authority
TW
Taiwan
Prior art keywords
machine tool
model
virtual machine
cutting
tool model
Prior art date
Application number
TW104125342A
Other languages
Chinese (zh)
Inventor
安德列斯 梅爾
烏爾里希 布蘭多
奧利弗 文科
哈利 芮恩
Original Assignee
華爾特機械製造公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華爾特機械製造公司 filed Critical 華爾特機械製造公司
Publication of TW201616256A publication Critical patent/TW201616256A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0909Detection of broken tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2457Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of tools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/008Cut plane or projection plane definition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/012Dimensioning, tolerancing

Abstract

The invention relates to a method and a device for determining at least one model parameter (MP) in a virtual tool model (MV). To accomplish this, the virtual tool model (MV) is first loaded, imported or generated. In order to generate the virtual tool model (MV), a 3D scanner (19) is used and, with the use of the scanning data (SD) from a dot cloud (PW), the virtual tool model (MV) is determined. A measuring program (PR) is generated and/or selected. The measuring program (PR) prespecifies at least one cutting plane (ES) through the virtual tool model (MV) as well as at least one model parameter (MP) that is to be determined. With the use of the cutting contour between the virtual tool model (MV) and the at least one cutting plane (ES), the model parameter (MP) is determined. With the use of the method and the device, respectively, it is possible to quickly and simply detect at least one model parameter (MP) by means of which the tool (17) can be represented.

Description

工具機之虛擬工具機模型之至少一模型參數的決定方法及裝置 Method and device for determining at least one model parameter of virtual machine tool model of machine tool

本發明係關於一種用於決定一虛擬工具機模型之至少一模型參數的方法與裝置,其中該模型參數對應一工具機的一特徵,該參數正由該虛擬工具機模型所代表。 The present invention relates to a method and apparatus for determining at least one model parameter of a virtual machine tool model, wherein the model parameter corresponds to a feature of a machine tool that is being represented by the virtual machine tool model.

在工具機的製造上或在所使用工具的加工上,工具機的測量是重要的。例如,為了品質控制,可採用工具機的測量,以便能夠驗證是否說明該工具機或該工具機特徵的工具機參數滿足規格。將被驗證的那些特徵特別取決於將被測量之工具機的型態。一個或多個特徵陳述用於該工具機函數以及用於將以該工具所得到之工作結果的相關參數。例如,參考繞著它們縱軸來轉動的切割工具機,將被考慮的特徵係為斜角、餘隙角、在繞著該縱軸之切線方向中彼此相鄰的切割邊緣之間的有角度節距、工具機長度、核心直徑、螺旋角或螺旋節距。依據具體情況,這些特徵會以任何希望的組合被驗證。 The measurement of the machine tool is important in the manufacture of the machine tool or in the processing of the tools used. For example, for quality control, a measurement of the machine tool can be used in order to be able to verify whether the machine tool parameters of the machine tool or the machine tool feature are specified. Those features to be verified depend in particular on the type of machine tool to be measured. One or more feature statements are used for the machine tool function and related parameters for the work results to be obtained with the tool. For example, with reference to a cutting machine that rotates about their longitudinal axes, the features to be considered are angled, clearance angles, angled between cutting edges adjacent to each other in a tangential direction about the longitudinal axis. Pitch, machine tool length, core diameter, helix angle or spiral pitch. These features will be verified in any desired combination, depending on the circumstances.

在現代的測量機器中,該技術的目前狀態係為借助於透射光照相機及/或入射光照相機及/或測量感測器而來測量工具機以便能夠決定希望的特徵。在目前,這些測量方法非常精巧,且需要用於施行一工具機 之測量的相對應長測量時期。仍然,測量在生產位置上之機器的數目被維持很低。因此,在許多情況中,不可能檢查各與各個生產工具機,而使得能夠施行取樣測量。 In modern measuring machines, the current state of the art is to measure the machine tool by means of a transmitted light camera and/or an incident light camera and/or a measuring sensor in order to be able to determine the desired features. At present, these measurement methods are very delicate and need to be used to implement a machine tool. The corresponding measurement period of the measurement. Still, the number of machines measuring at the production location is maintained low. Therefore, in many cases, it is impossible to inspect each and every production machine tool, so that sampling measurements can be performed.

公開號DE 36 35 446 A1建議一種用於測量工作件之多個參數的方法。為了如此進行,可使用產生雷射光束帶的雷射測量裝置。為了施行該測量,該工作件以相對於穿過雷射光束帶的雷射光束帶面的直角,以一固定速率移動。在該穿過移動期間內,測量該工作件。此外,該工作件繞著它的縱軸的轉動移動亦可能發生。此方法被使用以快速且簡單地測量一工作件的直徑或粗度。 A method for measuring a plurality of parameters of a work piece is proposed in the publication DE 36 35 446 A1. In order to do so, a laser measuring device that produces a laser beam band can be used. To perform this measurement, the workpiece moves at a fixed rate relative to the right angle of the laser beam passing through the laser beam. The work piece is measured during the passing movement. Furthermore, rotational movement of the workpiece about its longitudinal axis may also occur. This method is used to quickly and simply measure the diameter or thickness of a workpiece.

再者,一種測量在一機械化裝置中之工作件的方法已經從公開號DE 10 2007 016 056 B4已知。為了能夠準確地機械加工一安裝工作件,該工作件的夾持位置則以此測量決定。這是以測量裝置來進行,例如,借助於雷射掃瞄器。由於此,可決定在該工作件上的多數表面點。理想工作件的表面資料係已知。在夾持工作件的理想表面資料與所偵測表面點之間的平移及/或轉動相對移動係被施行。當所偵測表面點與理想表面資料有最佳可能符合時,在理想夾持工作件及實際夾持工作件之間的平移及/或轉動偏差係被決定。此偏差則可使用於後續的機械加工。 Furthermore, a method of measuring a work piece in a mechanized device is known from the publication DE 10 2007 016 056 B4. In order to be able to accurately machine a mounting workpiece, the clamping position of the workpiece is determined by this measurement. This is done with a measuring device, for example by means of a laser scanner. Because of this, most of the surface points on the workpiece can be determined. The surface data of an ideal workpiece is known. The translational and/or rotational relative movement between the ideal surface material of the gripping workpiece and the detected surface point is performed. When the detected surface point is optimally matched to the ideal surface data, the translational and/or rotational deviation between the ideal clamping work piece and the actual clamping work piece is determined. This deviation can then be used for subsequent machining.

有鑑於此先前技術,本發明之目的可被認為是一種方法與裝置之提供,以此,將被測量或檢驗之工具機的工作件參數可被快速且簡單地偵測。 In view of this prior art, the object of the present invention can be considered as a method and apparatus for providing workpiece parameters of a machine tool to be measured or inspected that can be quickly and easily detected.

此目的係藉由呈現申請專利範圍第1項之特徵的方法以及藉由呈現申請專利範圍第16項之特徵的裝置來得到。 This object is achieved by a method of presenting the features of claim 1 and by means of the features of claim 16 of the patent application.

根據本發明,該至少一特徵係藉由決定一虛擬工具機模型的 一模型參數而在一處理裝置中被決定,該模型參數對應該特徵。決定在該工具機模型上之至少一模型參數的該處理裝置係為該測量機器或測量裝置的一組件,或者可藉由因此分開設計的一算術與邏輯單元所產生。 According to the invention, the at least one feature is determined by determining a virtual machine tool model A model parameter is determined in a processing device that corresponds to the feature. The processing device that determines at least one model parameter on the machine tool model is a component of the measuring machine or measuring device, or can be generated by an arithmetic and logic unit that is thus separately designed.

首先,將該工具機之三維虛擬工具機模型產生、從記憶體載入或輸入。假如該工具機模型已經存在,它則可使用於進一步的處理。否則,首先產生三維虛擬工具機模型。為了完成此,可使用3D掃瞄器,例如雷射掃瞄器,該掃瞄器掃瞄來自數方向的工具機-各以對該工具機之縱軸的直角或平行該工具機的縱軸-且產生掃瞄資料。該掃瞄資料存在於代表該工具機之邊緣及表面的雲端中。在掃瞄過程期間內,該工具機係從數方向被較佳地掃瞄,較佳地從數徑向,且額外地,從沿著該縱軸的頂部,使得該等邊緣與表面能夠完全由該雲端所代表。為了該雲端的清楚視覺化,可能可從該雲端產生三維工具機模型,較佳地藉由形成網狀或柵格模型,或藉由以已知演算法及數學程式來組織化處理該等網狀或柵格模型。替代地,亦可能可持續直接與雲端一起運作且使用該運端當作工具機模型。再者,視覺化可能可從該雲端產生一平面化工具機模型,且除了那以外,使用該雲端作為用來決定該等模型參數的基礎。 First, the 3D virtual machine tool model of the machine tool is generated, loaded or input from the memory. If the machine tool model already exists, it can be used for further processing. Otherwise, a three-dimensional virtual machine tool model is first generated. In order to accomplish this, a 3D scanner, such as a laser scanner, can be used, which scans the machine tools from several directions - each at right angles to the longitudinal axis of the machine tool or parallel to the longitudinal axis of the machine tool - and generate scan data. The scan data is present in the cloud representing the edge and surface of the machine tool. During the scanning process, the machine tool is preferably scanned from a number of directions, preferably from a number of radial directions, and additionally, from the top along the longitudinal axis, such that the edges and surfaces are completely Represented by the cloud. For clear visualization of the cloud, it is possible to generate a three-dimensional machine tool model from the cloud, preferably by forming a mesh or grid model, or by organizing the networks with known algorithms and mathematical programs. Shape or grid model. Alternatively, it is also possible to work directly with the cloud and use the terminal as a machine tool model. Furthermore, visualization may generate a planarized machine tool model from the cloud, and in addition to that, the cloud is used as a basis for determining the parameters of the models.

代表工具機邊緣與表面的雲端可被處理,以用來形成工具機模型。例如,已知的演算法或數學程序可被使用來除去不必要的端點及/或明顯錯誤的端點。 Clouds representing the edges and surfaces of the machine tool can be processed to form a machine tool model. For example, known algorithms or mathematical programs can be used to remove unnecessary endpoints and/or apparently erroneous endpoints.

在已經將虛擬工具機模型輸入或產生以後,可從既存數目的測量程式定義及/或選擇測量程式。各測量程式代表切割虛擬工具機模型的一個或多個切割面。各切割面以相對於虛擬空間固定的方式來定義,在該虛擬空間中,可產生虛擬工具機模型。例如,藉由沿著該參考座標軸的一長度特徵,一切割面以相對於一參考座標軸的一直角來定義。沿著該參考 座標軸的一切割面可藉由繞著該參考座標軸之切線方向中的一轉動角度來定義。再者,亦可能可定義切割面,該等切割面按需要在該空間中為傾斜的。 After the virtual machine model has been entered or generated, the measurement program can be defined and/or selected from an existing number of measurement programs. Each measurement program represents one or more cutting faces of the virtual machine tool model. Each cutting face is defined in a manner fixed relative to the virtual space in which a virtual machine tool model can be generated. For example, a cut surface is defined by a right angle relative to a reference coordinate axis by a length feature along the reference coordinate axis. Along this reference A cut surface of the coordinate axis can be defined by a rotation angle in a tangential direction about the reference coordinate axis. Furthermore, it is also possible to define cutting faces which are inclined in this space as needed.

再者,該測量程式定義將被決定的至少一模型參數。任一參數(藉由此參數可代表該工具機的一個特徵)可被使用當作模型參數。較佳地,藉由該等模型參數,在一測量程式中的數個模型參數總是被決定以便能夠代表具有充分準確度的工具。 Furthermore, the measurement program defines at least one model parameter to be determined. Any parameter (by which this parameter can represent a feature of the machine tool) can be used as a model parameter. Preferably, with the model parameters, several model parameters in a measurement program are always determined to be able to represent tools with sufficient accuracy.

為了決定此至少一模型參數,將至少一測量任務指派到各切割面。在工具機模型之所得到切割輪廓上的切割面中,至少一測量任務以該切割面來決定一測量點及/或一模型參數。一個或多個模型參數可在一個切割面中被決定。例如,在橫向於該工具機模型之該縱軸延伸的一切割面中,可能可決定模型參數,譬如餘隙角及/或斜角及/或有角度節距及/或核心直徑等等。額外或替代地,在數個切割面中,亦可能決定在該切割輪廓上的一個測量點且從不同切割面中的數個測量點決定一模型參數。例如,一螺旋切割邊緣的一參考點可被決定當作在數個切割面中的一測量點,各沿著該工具機模型的該縱軸延伸,該等切割面繞著縱軸彼此相對地轉動一已知轉動角。以存在於縱方向中的該高度差以及該轉動角度為基礎,可能可將該螺旋切割邊緣的一螺旋角度決定當作一模型參數。 In order to determine the at least one model parameter, at least one measurement task is assigned to each of the cutting faces. In the cutting surface on the cutting contour of the machine tool model, at least one measuring task determines a measuring point and/or a model parameter with the cutting surface. One or more model parameters can be determined in one cutting plane. For example, in a cutting plane extending transversely to the longitudinal axis of the machine tool model, model parameters such as clearance angle and/or bevel angle and/or angular pitch and/or core diameter may be determined. Additionally or alternatively, in several cutting faces, it is also possible to determine a measurement point on the cutting profile and determine a model parameter from several of the different cutting faces. For example, a reference point of a spiral cutting edge can be determined as a measurement point in a plurality of cutting faces, each extending along the longitudinal axis of the machine tool model, the cutting faces being opposite each other about a longitudinal axis Rotate a known angle of rotation. Based on the height difference existing in the longitudinal direction and the angle of rotation, it is possible to determine a helix angle of the spiral cut edge as a model parameter.

在啟始該測量程式以後,以在該切割面中之該虛擬工具機模型的該至少一所得到的切割輪廓為基礎來決定該至少一模型參數,以便能夠代表該工具機或以該工具機模型為基礎的它的特徵。 After starting the measurement program, the at least one model parameter is determined based on the at least one obtained cutting contour of the virtual machine tool model in the cutting surface so as to be representative of the machine tool or the machine tool The model is based on its characteristics.

藉由使用一虛擬工具機模型,可能可快速且簡單地決定模型參數。為了完成此,亦可能可使用算術與邏輯單元,特別是習知電腦,其係可獨立於且平行於一測量裝置或諸測量機器來操作。藉由使用掃瞄資料 之虛擬工具機模型的產生可發生在該測量裝置的一處理裝置中或者亦在獨立於它的一算術與邏輯單元中。 By using a virtual machine tool model, it is possible to quickly and easily determine model parameters. In order to accomplish this, it is also possible to use arithmetic and logic units, in particular conventional computers, which can be operated independently and parallel to a measuring device or measuring machines. By using scanning data The generation of the virtual machine tool model can occur in a processing device of the measuring device or also in an arithmetic and logic unit independent of it.

假如虛擬工具機模型已經存在,它僅需要從一記憶體被載入或輸入,且該測量程式可被產生或選擇。只要將一虛擬工具機模型測量,以用來決定該至少一模型參數,則可能已經藉由使用3D掃瞄器將另一個工具機掃瞄到一測量裝置內,以便能夠產生係為用於產生虛擬工具機模型之基礎的掃瞄資料。 If the virtual machine model already exists, it only needs to be loaded or input from a memory, and the measurement program can be generated or selected. As long as a virtual machine tool model is measured to determine the at least one model parameter, another machine tool may have been scanned into a measuring device by using a 3D scanner so that the system can be generated for generation. Scanning data based on the virtual machine model.

可將一測量程式產生,在該測量程式中,至少一切割面相對於工具機模型被定義。當如此進行時,可決定在哪一點或在那個角度下,各別切割面用以切割工具機模型。例如,至少一切割面可被固定地定義於工具機模型的虛擬空間中,且該工具機模型可被移動到在該虛擬空間中之一事先規劃的位置及/或定向內。由於此,切割面相對於工具機模型的準確空間位置亦可被預定。以此方式,可能可獨立於固化的工具機模型而來定義測量程式。 A measurement program can be generated in which at least one of the cutting faces is defined relative to the machine tool model. When doing so, it can be decided at which point or at that angle that the individual cutting faces are used to cut the machine tool model. For example, at least one cutting surface can be fixedly defined in the virtual space of the machine tool model, and the machine tool model can be moved into a pre-planned position and/or orientation in the virtual space. Due to this, the exact spatial position of the cutting surface relative to the machine tool model can also be predetermined. In this way, it is possible to define the measurement program independently of the solidified machine tool model.

再者,將測量任務事先規劃用於各切割面,該測量任務可被使用-施加所得到的切割輪廓於工具機模型與切割面之間-以定義一測量點及/或決定一模型參數。藉由使用來自不同切割面的數個測量點或藉由使用在單一切割面中的切割輪廓,隨後可能可決定至少一模型參數。例如,正如在上文所討論地,在一截面中,可能可決定模型參數,譬如核心直徑、有角度節距、斜角、餘隙角或諸餘隙角等等。藉由沿著縱軸而在數個切割面中定義測量點,亦可能可決定模型參數,譬如螺旋角或螺旋節距。 Furthermore, the measurement task is planned in advance for each cutting surface, which can be used - applying the resulting cutting contour between the machine tool model and the cutting surface - to define a measuring point and/or to determine a model parameter. At least one model parameter may then be determined by using several measurement points from different cutting faces or by using a cutting profile in a single cutting face. For example, as discussed above, in a section, it may be possible to determine model parameters such as core diameter, angular pitch, bevel angle, clearance angle or clearance angle, and the like. By defining measurement points in several cutting faces along the longitudinal axis, it is also possible to determine model parameters such as helix angle or helix pitch.

不過,就一項有利的方法而論,亦可能可決定及/或補償該工具機模型之縱軸相對於虛擬空間中之參考軸的偏差,在該虛擬空間中,可排列三維工具機模型。例如,此一偏差可被決定,其中該切割輪廓的中 心被決定在相對於工具機模型之縱軸以一直角而延伸的一切割面中,且其中該中心點相對於該虛擬空間中之參考軸的位置偏差會被決定。此偏差可藉由虛擬空間中之虛擬工具機模型的對應偏移而被補償。 However, in an advantageous manner, it is also possible to determine and/or compensate for the deviation of the longitudinal axis of the machine tool model relative to the reference axis in the virtual space in which the three-dimensional machine tool model can be arranged. For example, this deviation can be determined, wherein the middle of the cutting profile The heart is determined to be in a cutting face that extends at a right angle relative to the longitudinal axis of the machine tool model, and wherein the positional deviation of the center point relative to the reference axis in the virtual space is determined. This deviation can be compensated for by the corresponding offset of the virtual machine tool model in the virtual space.

藉由決定及/或補償在沿著該工具機模型之該縱軸之沿著兩切割面而分開之兩切割面中的此一偏差,可能可得到該工具機模型的縱軸相對於該虛擬空間中之該參考軸的該定向及/或得到一全等的對準。當如此進行時,可施行在該虛擬空間中之該工具機模型的一平移移動及/或在該虛擬空間中之該工具機模型的一轉動移動,以便能夠使該工具機模型的縱軸對準在該虛擬空間中的該參考軸。 By determining and/or compensating for this deviation in the two cutting faces that are separated along the longitudinal axis of the machine tool model along the two cutting faces, it is possible to obtain the longitudinal axis of the machine tool model relative to the virtual This orientation of the reference axis in space and/or a congruent alignment. When this is done, a translational movement of the machine tool model in the virtual space and/or a rotational movement of the machine tool model in the virtual space can be performed in order to enable the vertical axis of the machine tool model The reference axis in the virtual space.

較佳地,在該虛擬空間中的該參考軸對應用於測量該工具機或用於產生掃瞄資料之一測量裝置之一工具機支架的該中心軸。假如當如此進行時,該工具機的縱軸不會與該工具機支架的該中心軸重合,那麼在它繞著一工具機支架之該中心軸轉動的期間內,自該工具機之該同心移動或一擺動的偏差則將發生。因此,藉由使用工具機模型以及該工具機模型的縱軸相對於虛擬空間中之受影響參考軸的位置,此一偏差可被偵測且較佳地被補償。可將虛擬工具機模型移到虛擬空間中的一位置內,該位置係被定義用於具有測量程式的模型參數決定。 Preferably, the reference axis in the virtual space corresponds to the central axis of the machine tool holder for measuring the machine tool or one of the measuring devices for generating scanning data. If the longitudinal axis of the machine tool does not coincide with the central axis of the power tool holder, the concentricity of the machine tool during its rotation about the central axis of the machine tool holder A deviation of movement or a swing will occur. Thus, by using the machine tool model and the position of the longitudinal axis of the machine tool model relative to the affected reference axis in the virtual space, this deviation can be detected and preferably compensated. The virtual machine tool model can be moved to a location in the virtual space that is defined for model parameter determination with a measurement program.

當定義將被使用於多數個相似類型工具機的測量程式時,有相對於虛擬空間的座標系統來定義切割面的選項。當相對於虛擬空間的座標系統來定位虛擬工具機模型時,且特別地,當沿著在該虛擬空間中之該座標系統的參考軸來放置該工具機模型的縱向軸時,可能可決定在該工具機模型中的模型參數,該測量程式則以相同的準確度被施加到全部的工具機模型。當掃瞄資料正被產生時,將不考慮起因於該工具機或該等工具機之充分錯誤夾持的不準確度。 When defining a measurement program that will be used for most similar types of machine tools, there is an option to define the facets relative to the coordinate system of the virtual space. When positioning the virtual machine tool model relative to the coordinate system of the virtual space, and in particular, when placing the longitudinal axis of the machine tool model along the reference axis of the coordinate system in the virtual space, it may be decided The model parameters in the machine tool model are applied to all machine tool models with the same accuracy. When scan data is being generated, inaccuracies due to sufficient mis-clamping of the machine tool or the machine tools will not be considered.

因此,可能可在使工具機模型相對於參考軸來對準以後決定該工具機模型的有效同心移動或偵測該工具機的失衡。 Therefore, it may be possible to determine the effective concentric movement of the machine tool model or to detect an imbalance of the machine tool after aligning the machine tool model with respect to the reference axis.

在另一項有利的實施例中,除了縱軸相對於虛擬座標系統之參考軸的平移及/或轉動對準以外,亦可能決定及/或補償在當作經過該虛擬工具機模型之一參考面的一切割面相對於該虛擬空間中之該參考面之間該轉動角度的偏差。例如,可將經過該工具機模型的縱向中心面(參考面)之轉動角度相對於一參考面的一偏差決定或補償。因此,不僅自該同心移動的偏差或振動偏差可被決定或補償,而且亦可能建立為了以測量程式來測量工具機模型所定義之工具機模型的轉動角度相對於虛擬空間中之座標系統的位置。 In another advantageous embodiment, in addition to the translational and/or rotational alignment of the longitudinal axis relative to the reference axis of the virtual coordinate system, it is also possible to determine and/or compensate for reference as one of the virtual machine tool models. The deviation of a cutting face of the face relative to the angle of rotation between the reference faces in the virtual space. For example, a deviation of the angle of rotation of the longitudinal center plane (reference plane) through the machine tool model relative to a reference plane can be determined or compensated. Therefore, not only the deviation or vibration deviation from the concentric movement can be determined or compensated, but also the position of the rotation angle of the machine tool model defined by the machine tool model relative to the coordinate system in the virtual space can be established by measuring the measurement program. .

再者,如果影響在該工作件中所形成之雷射燒蝕剖面的至少一模型參數被決定,則是有利的。為了決定此一模型參數,工具機模型可在虛擬空間中繞著一虛擬轉動軸來轉動,且可自其產生一虛擬包封。較佳地,虛擬轉動軸對應該工具機模型的該縱軸。可選用地,該縱軸自該虛擬轉動軸的一偏差可被補償,如在上文所說明,以便能夠避免在決定虛擬包封時同心移動或振動失誤。 Furthermore, it is advantageous if at least one model parameter affecting the laser ablation profile formed in the workpiece is determined. To determine this model parameter, the machine tool model can be rotated in a virtual space about a virtual axis of rotation and a virtual envelope can be generated therefrom. Preferably, the virtual axis of rotation corresponds to the longitudinal axis of the machine tool model. Alternatively, a deviation of the longitudinal axis from the virtual axis of rotation can be compensated, as explained above, to avoid concentric movement or vibration errors in determining the virtual envelope.

較佳地,該包封可被使用來決定至少一額外的模型參數,例如步進工具機的步進角及/或步進長度及/或切割邊緣半徑。 Preferably, the envelope can be used to determine at least one additional model parameter, such as a stepper angle and/or a step length and/or a cutting edge radius of the stepper.

在本方法的另一項有利例示性實施例中,除了3D掃瞄器的掃瞄資料以外,較佳地可使用至少一額外測量裝置的資料,較佳地一透射光照相機及/或一入射光照相機及/或一感測裝置,以便能夠改善虛擬工具機模型的準確度。特別地,在測量程式的定義及/或選擇以後且在測量程式的啟始以前,藉由使用此額外測量裝置的測量資料偵測可被啟動。較佳地,以該裝置在偵測邊緣時顯示比3D掃瞄器更大的準確度的此一方式可選出測 量裝置。使用當作3D掃瞄器的雷射掃瞄器(該掃瞄器以三角化原理操作)經常沒有充分地準確,其係因為撞擊在該邊緣上的雷射光沿不同方向反射。起因於額外測量裝置的測量資料,可能(特別在此些邊緣的區域中)增強該虛擬工具機模型以及該模型的準確度。 In a further advantageous exemplary embodiment of the method, in addition to the scanning data of the 3D scanner, at least one additional measuring device data, preferably a transmitted light camera and/or an incident, is preferably used. A light camera and/or a sensing device to improve the accuracy of the virtual machine tool model. In particular, the measurement data detection by using this additional measuring device can be initiated after the definition and/or selection of the measurement program and before the start of the measurement program. Preferably, the device can select a larger accuracy than the 3D scanner when detecting the edge. Measuring device. The use of a laser scanner as a 3D scanner (which operates on the principle of triangulation) is often not sufficiently accurate because the laser light impinging on the edge is reflected in different directions. Due to the measurement data of the additional measuring device, it is possible (especially in the region of such edges) to enhance the virtual machine tool model and the accuracy of the model.

較佳地,在選擇用於決定該模型參數的一測量程式以後,該額外的測量裝置僅僅使用於該工作件的該至少一段中,以用於該測量資料偵測,其中該測量程式的該至少一切割面被放置在該工具機模型中。由於此,可防止用一額外測量裝置之該工具的完整測量,且該測量裝置以一目標方式使用於那些點上,在那些點上,該等模型參數將被稍後決定。例如,以該額外測量裝置的該測量可被限制於該工作工具機的那些區域,在那些區域中,該工具機模型的至少一切割輪廓與至少一切割面會被放置。在一進一步實施例中,用該額外測量裝置的該測量亦可侷限於將決定一測量點及/或一模型參數之該至少一切割輪廓的部份。將被測量之該工具機的該等區域起因於該測量工具機。在該工具機模型之其他區域中的準確度沒有必要增加。 Preferably, after selecting a measurement program for determining the model parameters, the additional measuring device is only used in the at least one segment of the workpiece for the measurement data detection, wherein the measurement program At least one cutting face is placed in the machine tool model. Because of this, a complete measurement of the tool with an additional measuring device can be prevented, and the measuring device is used at those points in a targeted manner, at which point the model parameters will be determined later. For example, the measurement with the additional measuring device can be limited to those areas of the work machine, in which at least one cutting profile and at least one cutting face of the machine tool model are placed. In a further embodiment, the measurement with the additional measuring device may also be limited to a portion of the at least one cutting profile that will determine a measurement point and/or a model parameter. The areas of the machine tool to be measured are attributed to the measuring machine. There is no need to increase the accuracy in other areas of the machine tool model.

再者,當藉由使用該方法、產生用於一具體類型工具機的一現存測量程式及/或為產生該測量程式之基礎之該工具機的該原始、虛擬工具機模型係被使用當作當以3D掃瞄器來掃瞄該相同類型工具機之另一工具機的先前知識時是有利的。當如此進行時,當藉由使用此定義或選擇的測量程式而使將被掃瞄的工具機藉由僅僅在至少一段中的3D掃瞄器被至少部分地掃瞄時是有利的,在該段中,放置了-在該測量程式或在該原始虛擬工具機模型中-由該測量程式所預先決定的該至少一切割面,及/或在該段中,放置了-在具有該至少一切割面之該原始虛擬工具機模型的該切割輪廓中-一角落或一邊緣。由於此,當掃瞄相同工具機類型的數個相似工具 機以減少必要的時間時則是可能的,尤其如果該等工具機非常大及/或長。 Furthermore, when using the method, generating an existing measurement program for a specific type of machine tool and/or the original, virtual machine tool model of the machine tool that is the basis for generating the measurement program is used as It is advantageous when scanning a prior knowledge of another machine tool of the same type of machine tool with a 3D scanner. When doing so, it is advantageous when the machine tool to be scanned is at least partially scanned by the 3D scanner in at least one segment by using the defined or selected measurement program. In the segment, placed in the measurement program or in the original virtual machine model - the at least one cutting surface predetermined by the measurement program, and/or in the segment, placed - having the at least one The cutting contour of the cutting surface of the original virtual machine tool model - a corner or an edge. Because of this, when scanning several similar tools of the same machine type It is possible to reduce the necessary time, especially if the machine tools are very large and/or long.

15‧‧‧測量裝置 15‧‧‧Measurement device

16‧‧‧工具機支架 16‧‧‧Tooling machine bracket

17‧‧‧工具機 17‧‧ Tools machine

18‧‧‧多圈致動器 18‧‧‧Multi-turn actuator

19‧‧‧3D掃瞄器 19‧‧‧3D scanner

20‧‧‧雷射光束 20‧‧‧Laser beam

21‧‧‧處理裝置 21‧‧‧Processing device

22‧‧‧測量裝置 22‧‧‧Measurement device

23‧‧‧照相機 23‧‧‧ camera

24‧‧‧照明排列 24‧‧‧Lighting arrangement

25‧‧‧使用者介面 25‧‧‧User interface

26‧‧‧使用者桌面 26‧‧‧User desktop

27‧‧‧記憶體 27‧‧‧ memory

28‧‧‧外部算術與邏輯單元 28‧‧‧External Arithmetic and Logic Unit

35‧‧‧切割邊緣 35‧‧‧ cutting edge

α‧‧‧斜角 α ‧‧‧ oblique angle

β‧‧‧餘隙角 clearance angle β ‧‧‧

γ‧‧‧對應角 γ ‧‧‧corresponding angle

δ‧‧‧螺旋角 δ ‧‧‧helix angle

ψ‧‧‧轉動角 ψ‧‧‧Rotation angle

τ‧‧‧有角度節距 τ ‧‧‧Angle pitch

A1‧‧‧第一偏差 A1‧‧‧First deviation

BV‧‧‧虛擬空間中的參考軸 Reference axis in BV‧‧ virtual space

CR‧‧‧角落半徑 CR‧‧‧ corner radius

D‧‧‧轉動軸 D‧‧‧Rotary axis

DQ‧‧‧高度差 DQ‧‧‧ height difference

EB‧‧‧參考位準 EB‧‧‧ reference level

ER‧‧‧參考面 ER‧‧‧ reference surface

ES‧‧‧切割面 ES‧‧‧cut surface

KD‧‧‧核心直徑 KD‧‧‧ core diameter

LG‧‧‧總長度 LG‧‧‧ total length

LM‧‧‧虛擬工具機模型的縱軸 The vertical axis of the LM‧‧‧ virtual machine model

LS‧‧‧軸長度 LS‧‧‧ shaft length

MD‧‧‧測量資料 MD‧‧‧Measurement data

MP‧‧‧模型參數 MP‧‧‧ model parameters

MV‧‧‧虛擬工具機模型 MV‧‧‧ virtual machine model

MV’‧‧‧增強的虛擬工具機模型 MV’‧‧‧ enhanced virtual machine model

PR‧‧‧測量程式 PR‧‧‧Measurement program

PW‧‧‧雲端 PW‧‧‧Cloud

Q‧‧‧測量點 Q‧‧‧measuring point

RV‧‧‧虛擬空間 RV‧‧‧ virtual space

SD‧‧‧掃瞄資料 SD‧‧·Scan data

V‧‧‧方法 V‧‧‧ method

V1‧‧‧第一方法步驟 V1‧‧‧ first method steps

V1a‧‧‧選擇步驟 V1a‧‧‧Selection steps

V2‧‧‧第二方法步驟 V2‧‧‧ second method step

V3‧‧‧第三方法步驟 V3‧‧‧ third method steps

V4‧‧‧第四方法步驟 V4‧‧‧Fourth method steps

V5‧‧‧第五方法步驟 V5‧‧‧ fifth method step

V6‧‧‧第六方法步驟 V6‧‧‧ sixth method steps

V7‧‧‧第七方法步驟 V7‧‧‧ seventh method steps

V8‧‧‧第八方法步驟 V8‧‧‧ eighth method steps

V9‧‧‧第九方法步驟 V9‧‧‧ ninth method step

XV‧‧‧虛擬空間的參考軸 Reference axis for XV‧‧ virtual space

YV‧‧‧虛擬空間的Y-座標軸 The Y-coordinate axis of the YV‧‧ virtual space

ZV‧‧‧虛擬空間的X-座標軸 X-coordinate axis of ZV‧‧ virtual space

該方法或該測量裝置的有利實施例可從申請專利範圍獨立項、說明、以及圖式被推論。在下文,本發明係藉由使用參考附圖的例示性實施例來解釋。它們顯示於圖1,其係為在將被測量之一工具機的一側視圖中,一測量裝置之一例示性實施例的一方塊圖;圖2,其係為在將被測量之工具機的一平面圖中,如在圖1中的例示性實施例;圖3,其係為根據本發明之方法之例示性數列的流程圖;圖4至9,其係為用於控制該製程流或用於控制該測量裝置之一顯示單元或一使用者桌面的不同圖式。 Advantageous embodiments of the method or the measuring device can be inferred from the independent terms, descriptions, and drawings of the patent application. Hereinafter, the present invention is explained by using an exemplary embodiment with reference to the drawings. They are shown in Figure 1, which is a block diagram of an exemplary embodiment of a measuring device in a side view of one of the machine tools to be measured; Figure 2 is a machine tool to be measured In a plan view, as in the exemplary embodiment in FIG. 1; FIG. 3, is a flow chart of an exemplary sequence of methods in accordance with the present invention; FIGS. 4 through 9 are used to control the process flow or A different pattern for controlling a display unit or a user's desktop of the measuring device.

圖1與2示意地繪示測量裝置15的例示性實施例。測量裝置15包含用於容納將被測量之工具機17的工具機支架16。工具機支架16可經由多圈致動器18繞著轉動軸D轉動。當工具機17在工具機支架16時,工具機17的縱軸-在理想情況中-沿著轉動軸D延伸。假如有夾持失誤,工具機17的縱軸平行於轉動軸D移位及/或沿著相對於轉動軸D的一個或多個空間方向傾斜。 1 and 2 schematically illustrate an exemplary embodiment of a measuring device 15. The measuring device 15 comprises a power tool carrier 16 for accommodating a machine tool 17 to be measured. The power tool carrier 16 is rotatable about the axis of rotation D via a multi-turn actuator 18. When the power tool 17 is in the machine tool holder 16, the longitudinal axis of the machine tool 17 - in the ideal case - extends along the axis of rotation D. If there is a clamping error, the longitudinal axis of the machine tool 17 is displaced parallel to the axis of rotation D and/or is inclined along one or more spatial directions with respect to the axis of rotation D.

再者,測量裝置15包含3D掃瞄器19。3D掃瞄器19及/或工具機支架16可相對於彼此、以一個或多個平移及/或轉動自由度來移動。根據該實例,3D掃瞄器係以雷射掃瞄器實施,該雷射掃瞄器引導在將被測量之工作件17上的至少一雷射光束20。正如以在圖1中的高度示意方式顯示,3D掃瞄器19在相對於工具機支架16或工具機17的不同位置中移動。工具機17 可被掃瞄,其特別沿相對於轉動軸D成直角或徑向的一方向及/或自底部斜向及/或自頂部以多種角度及/或自頂部平行或沿著轉動軸D。3D掃瞄器19的一些可能位置係藉由圖1顯示。 Furthermore, the measuring device 15 comprises a 3D scanner 19. The 3D scanner 19 and/or the power tool holder 16 are movable relative to one another in one or more translational and/or rotational degrees of freedom. According to this example, the 3D scanner is implemented with a laser scanner that directs at least one laser beam 20 on the workpiece 17 to be measured. As shown in a highly schematic manner in FIG. 1 , the 3D scanner 19 is moved in different positions relative to the machine tool carrier 16 or the power tool 17 . Machine tool 17 It can be scanned, in particular in a direction at right angles or to the radial direction relative to the axis of rotation D and/or obliquely from the bottom and/or at various angles from the top and/or parallel from the top or along the axis of rotation D. Some possible locations of the 3D scanner 19 are shown in FIG.

借助於3D掃瞄器19,掃瞄資料SD以及特別地雲端PW會被產生且傳送到處理裝置21。處理裝置21係為測量裝置15的組件。替代地,處理裝置21亦可能由在測量裝置15外面的算術與邏輯單元代表。在此事件中,測量裝置15可包含用於資料傳送的適當介面。 By means of the 3D scanner 19, the scanning data SD and in particular the cloud PW are generated and transmitted to the processing device 21. The processing device 21 is a component of the measuring device 15. Alternatively, the processing device 21 may also be represented by arithmetic and logic units external to the measuring device 15. In this event, measurement device 15 may contain an appropriate interface for data transfer.

在此顯示的例示性實施例中,測量裝置15額外地包含另一個測量裝置22以及根據該實例的照相機23。測量裝置22或照相機23將測量資料MD傳到處理裝置21。照相機23以線照相機或以具有數線的面照相機來組態。在例示性實施例中,這是透射光照相機。因此,照明排列24係被提供在與照相機23相反之工具機17之側上(圖2)。 In the exemplary embodiment shown here, the measuring device 15 additionally comprises another measuring device 22 and a camera 23 according to this example. The measuring device 22 or the camera 23 transmits the measurement data MD to the processing device 21. The camera 23 is configured with a line camera or with a face camera having a number of lines. In an exemplary embodiment, this is a transmitted light camera. Thus, the illumination arrangement 24 is provided on the side of the machine tool 17 opposite the camera 23 (Fig. 2).

在例示性實施例中,處理裝置21亦配置用來致動3D掃瞄器19、測量裝置22、多圈致動器18、以及照明排列24。處理裝置21亦可能致動沒有繪示的平移及/或轉動驅動器,以用於3D掃瞄器19相對於工具機支架16的移動。 In the exemplary embodiment, processing device 21 is also configured to actuate 3D scanner 19, measurement device 22, multi-turn actuator 18, and illumination array 24. The processing device 21 may also actuate a translational and/or rotational drive, not shown, for movement of the 3D scanner 19 relative to the power tool holder 16.

處理裝置21連接到使用者介面25。使用者介面25包含顯示器或使用者桌面26。使用者介面25的輸入構件可包括全部已知的控制選項,該等控制選項亦被使用於習知電腦中,譬如觸敏式螢幕、電腦滑鼠、鍵盤、觸控板、經由傾斜的動作控制器及/或加速感測器等等。 The processing device 21 is connected to the user interface 25. User interface 25 includes a display or user desktop 26. The input member of the user interface 25 can include all known control options, which are also used in conventional computers, such as touch sensitive screens, computer mice, keyboards, trackpads, and controlled motion via tilting. And / or acceleration sensors and so on.

在例示性實施例中,處理裝置21包含非揮發性記憶體27。應理解,非揮發性記憶體27亦可排列在測量裝置15外面且可連接到處理裝置21。 In an exemplary embodiment, processing device 21 includes non-volatile memory 27. It should be understood that the non-volatile memory 27 may also be arranged outside of the measuring device 15 and may be connected to the processing device 21.

再者,圖1與2顯示連接處理裝置21到外部算術與邏輯單元28 的選項。用於控制測量裝置15或用於施行方法的控制與算術任務可藉由外部算術與邏輯單元28被額外或替代地施行。 Furthermore, Figures 1 and 2 show the connection processing means 21 to the external arithmetic and logic unit 28 Options. Control and arithmetic tasks for controlling the measurement device 15 or for performing the method may be additionally or alternatively performed by the external arithmetic and logic unit 28.

圖3顯示用於決定至少一模型參數MP之例示性方法V的流程圖。模型參數MP係藉由使用虛擬工具機模型MV來決定且對應以虛擬工具機模型MV為基礎之工具機17的一個特徵。特別參考圖3至9,此方法將在下文中被解釋。 FIG. 3 shows a flow chart of an exemplary method V for determining at least one model parameter MP. The model parameter MP is determined by using the virtual machine tool model MV and corresponds to a feature of the machine tool 17 based on the virtual machine tool model MV. With particular reference to Figures 3 to 9, this method will be explained below.

方法V在第一方法步驟V1中啟始。在此以後,在第二方法步驟V2中,3D掃瞄器19經由處理裝置21致動,且在工具機支架16中所握持的工具機17則被掃瞄。在此掃瞄操作期間內,工具機17可繞著轉動軸D連續及/或漸進式地轉動,使得3D掃瞄器19能夠感測來自許多方向或來自許多側的工具機17。額外地,根據該實例,3D掃瞄器19會被移到在圖1中以虛線所指示的位置內,以便能夠從頂部、沿著轉動軸D掃瞄工具機17。 Method V is initiated in a first method step V1. In the second method step V2 , the 3D scanner 19 is actuated via the processing device 21 and the machine tool 17 held in the power tool carrier 16 is scanned. During this scanning operation, the power tool 17 is rotatable continuously and/or progressively about the axis of rotation D such that the 3D scanner 19 is capable of sensing the machine tool 17 from many directions or from many sides. Additionally, according to this example, the 3D scanner 19 will be moved into the position indicated by the dashed line in FIG. 1 so that the machine tool 17 can be scanned from the top along the axis of rotation D.

因此,在第二方法步驟V2結束時,有代表掃瞄資料SD以及工具機17之表面與邊緣的雲端PW。 Thus, at the end of the second method step V2, there is a cloud PW representative of the scan data SD and the surface and edges of the machine tool 17.

在第三方法步驟V3中,藉由產生柵格模型及/或藉由模型化及/或藉由組織化,使用雲端PW來產生虛擬工具機模型MV於虛擬空間RV中。例示性虛擬工具機模型MV係藉由圖4顯示。其中排列虛擬工具機模型MV的虛擬空間RV係藉由座標軸XV、YV、ZV所定義。在此虛擬空間RV中,有定義一參考軸BV。在此所示的例示性實施例中,座標軸XV、YV、ZV其中一個代表參考軸BV-亦即,根據該實例,虛擬空間RV之座標系統的X-軸XV。 In a third method step V3, the virtual machine tool model MV is generated in the virtual space RV using the cloud PW by generating a raster model and/or by modeling and/or by organizing. An exemplary virtual machine tool model MV is shown in Figure 4. The virtual space RV in which the virtual machine tool model MV is arranged is defined by the coordinate axes XV, YV, and ZV. In this virtual space RV, a reference axis BV is defined. In the exemplary embodiment shown here, one of the coordinate axes XV, YV, ZV represents the reference axis BV - that is, according to this example, the X-axis XV of the coordinate system of the virtual space RV.

虛擬工具機模型MV的縱軸被標為LM。由於在測量期間內的夾持誤差,可能發生工具機17的縱軸沒有與工具機支架16的轉動軸D重合。在虛擬空間RV中,參考軸BV對應轉動軸D的位置。因此可能發生夾持 失誤,使得工具機模型MV的縱軸LM相對於參考軸BV移位及/或傾斜到虛擬空間RV的一個或多個空間方向。此一情形由圖4的實例示意地顯示。 The vertical axis of the virtual machine model MV is labeled LM. Due to the clamping error during the measurement, it is possible for the longitudinal axis of the machine tool 17 not to coincide with the rotational axis D of the machine tool carrier 16 . In the virtual space RV, the reference axis BV corresponds to the position of the rotational axis D. Therefore clamping may occur The error causes the longitudinal axis LM of the machine tool model MV to be displaced relative to the reference axis BV and/or tilted to one or more spatial directions of the virtual space RV. This situation is shown schematically by the example of FIG.

作為第二與第三方法步驟V2、V3之實施例的替代物,亦可能在第四方法步驟V4中,將既存的虛擬工具機模型MV載入或輸入到處理裝置21內或到使用來施行額外方法的另一算術與邏輯單元28內。此選項係以圖3中的虛線來指示。 As an alternative to the second and third method steps V2, V3, it is also possible in the fourth method step V4 to load or input the existing virtual machine tool model MV into the processing device 21 or to use it. Another arithmetic and logic unit 28 is included. This option is indicated by the dashed line in Figure 3.

在另一、進一步修改的製程流中,亦可能使用雲端PW當作虛擬工具機模型MV,而不會產生格柵模型或網站或面積。為了完成此,最初以掃瞄資料SD形式存在的雲端亦可被處理。例如,可將不需要雲端的端點及/或被認定為錯誤安排的端點除去。處理或未處理雲端PS之使用當作虛擬工具機模型MV係被示意地繪示於方法步驟V3與V4中,其中-在括弧裡,接在用於虛擬工具機模型的參考符號「MV」之後-參考符號「PW」係指示用於雲端。 In another, further modified process flow, it is also possible to use the cloud PW as the virtual machine model MV without generating a grid model or website or area. In order to accomplish this, the cloud initially in the form of scan data SD can also be processed. For example, endpoints that do not require the cloud and/or endpoints that are deemed to be misrouted may be removed. The use of the processed or unprocessed cloud PS as a virtual machine tool model MV is schematically illustrated in method steps V3 and V4, where - in brackets, after the reference symbol "MV" for the virtual machine model - The reference symbol "PW" is used for the cloud.

第三或第四方法步驟V3、V4後面接著第五方法步驟V5,在該第五方法步驟內,測量程式PR(圖4)可從現存測量程式程式庫選出或新產生,或現存測量程式PR被修改。被修改或新產生的測量程式PR後續可被儲存在記憶體中且可用於未來相似類型的測量。在產生與儲存測量程式的事件中,可能可-經由使用者介面25-產生未來可被使用於選擇測量程式PR的選項單入口及/或圖像。 The third or fourth method step V3, V4 is followed by a fifth method step V5, in which the measurement program PR (Fig. 4) can be selected or newly generated from the existing measurement program library, or the existing measurement program PR modified. The modified or newly generated measurement program PR can then be stored in memory and used for future similar types of measurements. In the event of generating and storing a measurement program, it is possible to generate, via the user interface 25, a menu entry and/or image that can be used in the selection measurement program PR in the future.

測量程式PR的產生係以在圖4中的高示意方式來繪示。各測量程式PR具有至少一切割面ES於虛擬空間RV中。圖5至7顯示不同的切割面ES。僅僅以在圖4中的實例示意地顯示的測量程式PR具有三個切割面ES。切割面ES的其中兩者,第一切割面ES1與第二切割面ES2係以相對於參考軸BV或者相對於虛擬工具機模型MV之縱軸LM的直角被定位。額外、第三、 切割面ES3(圖6)在事先規劃的轉動角下,相對於由參考面BV及至少一額外軸或座標軸YV、ZV所定義之虛擬空間RV的參考位準EB來延伸(圖8)。 The generation of the measurement program PR is shown in a highly schematic manner in FIG. Each measurement program PR has at least one cutting plane ES in the virtual space RV. Figures 5 to 7 show different cutting faces ES. The measurement program PR shown schematically only in the example in Fig. 4 has three cutting faces ES. For both of the cutting faces ES, the first cutting face ES1 and the second cutting face ES2 are positioned at right angles to the reference axis BV or to the longitudinal axis LM of the virtual machine tool model MV. Extra, third, The cutting plane ES3 (Fig. 6) extends at a pre-planned angle of rotation relative to the reference level EB of the virtual space RV defined by the reference plane BV and at least one additional axis or coordinate axes YV, ZV (Fig. 8).

額外地或替代以相對於參考軸BV之直角或與之平行或沿著參考軸BV的切割面ES,亦可能定義在虛擬空間RV中斜向延伸的切割面ES。 Additionally or alternatively to a cutting plane ES that is parallel to or parallel to the reference axis BV or along the reference axis BV, it is also possible to define a cutting plane ES that extends obliquely in the virtual space RV.

在一項例示性實施例中,在測量程式PR中定義的切割面ES被定義且放置於在虛擬空間RV中以及因而相對於座標軸XV、YV、ZV的它們位置與定向。為了容許至少一模型參數MP的校正決定,打算根據該實例使虛擬工具機模型MV置於虛擬空間RV中的定義位置中。這會以在測量程式PR中的第一步驟來進行。由於此,在工具機支架16中之工具機17的夾持失誤係在虛擬空間RV中被補償。 In an exemplary embodiment, the cutting faces ES defined in the measurement program PR are defined and placed in their position and orientation in the virtual space RV and thus relative to the coordinate axes XV, YV, ZV. In order to allow for a correction decision of at least one model parameter MP, it is intended to place the virtual machine tool model MV in a defined position in the virtual space RV according to this example. This will be done in the first step in the measurement program PR. Due to this, the clamping errors of the machine tool 17 in the power tool carrier 16 are compensated in the virtual space RV.

此一校正係在測量程式PR的第一步驟中被施行,且可參考圖4與7被示意地解釋。圖4顯示虛擬工具機模型MV的縱軸LM自參考軸BV偏離。圖7繪示虛擬工具機模型MV之縱軸LM相對於在延伸經過虛擬工具機模型MV之軸的第一切割面ES1中之參考軸BV的第一偏差A1。此第一偏差A1可藉由在虛擬空間RV中之虛擬工具機模型MV的平移移位而補償。假如模型參數MP將在此切割面ES內被決定,在切割面ES內的此一校正則會是充足的。較佳地,第二偏差則在第二切割面ES2中被決定。後續,藉由兩偏差之補償,在虛擬空間RV中之虛擬工具機模型MV的移位及/或轉動則可發生,使得虛擬工具機模型MV的縱軸LM與參考軸BV重合。 This correction is performed in the first step of the measurement program PR and can be explained schematically with reference to Figures 4 and 7. Figure 4 shows that the longitudinal axis LM of the virtual machine tool model MV deviates from the reference axis BV. FIG. 7 shows a first deviation A1 of the longitudinal axis LM of the virtual machine tool model MV relative to the reference axis BV in the first cutting plane ES1 extending through the axis of the virtual machine tool model MV. This first deviation A1 can be compensated for by a translational shift of the virtual machine tool model MV in the virtual space RV. If the model parameter MP will be determined within this cutting plane ES, this correction in the cutting plane ES will be sufficient. Preferably, the second deviation is determined in the second cutting plane ES2. Subsequently, by means of the compensation of the two deviations, the shifting and/or rotation of the virtual machine tool model MV in the virtual space RV can take place such that the longitudinal axis LM of the virtual machine tool model MV coincides with the reference axis BV.

考慮方法V的可選用實施例,除了沿著參考軸BV之虛擬工具機模型MV之縱軸LM的對準以外,亦可能可將虛擬工具機模型MV繞著它的縱軸LM或參考軸BV的轉動的位置對準。這藉由圖8當作範例。在那裡,可看到沿著虛擬工具機模型MV之縱軸LM的參考面ER相對於在虛擬空間RV中的參考面EB轉動一轉動角φ。此轉動角φ可在決定模型參數MP以前被 除去。 Considering an alternative embodiment of the method V, in addition to the alignment of the longitudinal axis LM of the virtual machine tool model MV along the reference axis BV, it is also possible to orbit the virtual machine tool model MV about its longitudinal axis LM or reference axis BV. The position of the rotation is aligned. This is illustrated by Figure 8 as an example. There, it can be seen that the reference plane ER along the longitudinal axis LM of the virtual machine tool model MV is rotated by a rotational angle φ with respect to the reference plane EB in the virtual space RV. This angle of rotation φ can be removed before the model parameter MP is determined.

參考在這裡所繪示的測量程式PR,第三切割面ES3(圖6)被事先規劃緊鄰第一切割面ES1與第二切割面ES2,該第三切割面-與其他兩切割面ES1、ES2不同-正以相對於參考軸XV的直角被定位但卻沿著參考軸XV延伸。當如此進行時,藉由具有參考座標位準EB之第三切割面ES3所對向的角度係按需要地被定義。 Referring to the measurement program PR illustrated here, the third cutting surface ES3 (Fig. 6) is pre-planned in close proximity to the first cutting surface ES1 and the second cutting surface ES2, the third cutting surface - and the other two cutting surfaces ES1, ES2 Different - being positioned at a right angle relative to the reference axis XV but extending along the reference axis XV. When this is done, the angle that is opposed by the third cutting surface ES3 having the reference coordinate level EB is defined as needed.

應理解,切割面ES的數目與定向可在各測量程式PR中改變且隨自其產生的工具機17或虛擬工具機模型MV如何被設計而變動。在沒有幾何定義切割邊緣的轉動對稱工具機中,將被決定的參數與具有一個或多個幾何定義切割邊緣的工具機中不同。具有螺旋切割邊緣的工具機接下來將需要與具有直線切割邊緣之工具機或具有可反向切割板之工具機不同的測量程式。測量程式可依需要被定義、儲存、及選擇及啟始,以用於各類型的工具機或用於必須經常被測量之相似類型的各工具機。 It should be understood that the number and orientation of the cutting faces ES can be varied in each measurement program PR and vary with how the machine tool 17 or virtual machine tool model MV generated therefrom is designed. In a rotationally symmetrical machine tool without geometrically defined cutting edges, the parameters to be determined are different from those in a machine tool having one or more geometrically defined cutting edges. A machine tool with a helical cutting edge will then require a different measuring program than a machine tool with a straight cutting edge or a machine tool with a reversible cutting plate. The measurement program can be defined, stored, and selected and initiated as needed for each type of machine tool or for each type of machine tool of a similar type that must be constantly measured.

再者,在被事先規劃的測量程式PR中,在虛擬工具機模型MV中至少一模型參數MP將被決定。為了完成此,關於在虛擬工具機模型MV與至少一切割面ES之間導致的各切割輪廓將如何被評估的方面,可事先規劃測量任務。模型參數MP及/或測量點可在切割輪廓中被決定。替代地或額外地,從不同切割輪廓以及因此不同切割面的許多測量點,可將至少一模型參數MP決定。 Furthermore, in the previously planned measurement program PR, at least one model parameter MP in the virtual machine tool model MV will be determined. In order to accomplish this, the measuring task can be planned in advance in terms of how the individual cutting contours between the virtual machine tool model MV and the at least one cutting surface ES will be evaluated. The model parameters MP and/or measuring points can be determined in the cutting profile. Alternatively or additionally, at least one model parameter MP can be determined from a plurality of measurement points of different cutting profiles and thus different cutting faces.

在這裡所繪示的例示性實施例中,斜角α i及餘隙角β i係被決定於虛擬工具機模型MV之各切割邊緣35上的第二切割面ES2,以及核心直徑KD與在繞著參考軸XV之切線方向中的相鄰切割邊緣35之間的有角度節距τ i。指數i陳述切割邊緣的號碼(在此:i=1至4)。 In the exemplary embodiment illustrated herein, the bevel angle α i and the clearance angle β i are determined by the second cutting face ES2 on each cutting edge 35 of the virtual machine tool model MV, and the core diameter KD and An angular pitch τ i between adjacent cutting edges 35 in the tangential direction of the reference axis XV. The index i states the number of the cut edge (here: i = 1 to 4).

例如,在第三切割面ES3中,沿著參考軸BV的總長度LG或 軸長度LS可被決定。 For example, in the third cutting plane ES3, along the total length LG of the reference axis BV or The shaft length LS can be determined.

亦可能在一個切割面中(亦即,根據該實例的第三切割面ES3)決定一測量點Q於虛擬工具機模型MV的切割輪廓上。與來自其他切割面ES的其他測量點Q相結合,這容許模型參數MP的決定,以及根據該實例,切割邊緣35其中一個的螺旋角δ。在第三切割面ES3之虛擬工具機模型MV的切割輪廓中,測量點Q指出在切割邊緣35上的一點。假如,例如,受影響切割邊緣35上之切割輪廓上的測量點Q再度決定於沿著參考軸BV的額外切割面中,該額外切割面相對於第三切割面ES3轉動大約一差角,在沿著參考軸BV之這兩測量點Q之間的高度差DQ與在兩切割面之間的已知差角容許藉由使用節距三角形來決定螺旋角δ,如在圖6中以高示意方式顯示。 It is also possible to determine a measuring point Q on the cutting contour of the virtual machine tool model MV in a cutting plane (ie, according to the third cutting plane ES3 of this example). In combination with other measuring points Q from other cutting faces ES, this allows the determination of the model parameters MP, and according to this example, the helix angle δ of one of the cutting edges 35. In the cutting profile of the virtual machine tool model MV of the third cutting face ES3, the measuring point Q points to a point on the cutting edge 35. If, for example, the measurement point Q on the cutting profile on the affected cutting edge 35 is again determined by the additional cutting face along the reference axis BV, the additional cutting face is rotated by about a difference angle with respect to the third cutting face ES3. The height difference DQ between the two measurement points Q of the reference axis BV and the known difference angle between the two cutting faces allow the helix angle δ to be determined by using a pitch triangle, as shown in a high schematic manner in FIG. display.

進一步,假如工具機17將被掃瞄且測量程式PR已經被產生以用於相同類型的工具機,則可能可簡化如上文所說明的方法。在接在該程序起始以後的選擇步驟V1a期間內,產生用於該類型工具機(相似工具機)的現存測量程式PR隨後可首先被選出。此測量程式PR已經定義在虛擬空間RV中之切割面ES的位置,當相同類型工具機的另一工具機17以3D掃瞄器掃瞄時,該測量程式可被施加當作先前知識。可選用地,額外亦可能考慮使用當作用於產生選出測量程式之基礎的工具機17的原始虛擬工具機模型。根據該實例,此選出的測量程式PR係被使用來至少部份掃瞄工具機17,該工具機將藉由在該至少一段中的3D掃瞄器而來掃瞄,其中-在測量程式PR中-藉由測量程式PR事先規劃的至少一切割面會被放置。當如此進行時,掃瞄區域不會被精確地限制於一面,但卻限制於圍繞此面而定義的一段。此段的尺寸可改變,在該情況中,該段小於工具機17的外部表面。假如有存在許多切割面ES的話,將被掃瞄之全部段的總區域則比工具機17的總外部表面更小。 Further, if the machine tool 17 is to be scanned and the measurement program PR has been generated for the same type of machine tool, it may be possible to simplify the method as explained above. During the selection step V1a following the start of the program, an existing measurement program PR for the type of machine tool (similar machine tool) can then be selected first. This measuring program PR has been defined in the position of the cutting plane ES in the virtual space RV, which can be applied as prior knowledge when another machine tool 17 of the same type of machine tool is scanned with a 3D scanner. Alternatively, it is also possible to additionally use the original virtual machine tool model as the machine tool 17 for generating the basis for selecting the measurement program. According to this example, the selected measurement program PR is used to at least partially scan the machine tool 17, which will be scanned by the 3D scanner in the at least one segment, wherein - in the measurement program PR Medium - at least one cutting face planned in advance by the measuring program PR will be placed. When this is done, the scan area is not precisely limited to one side, but is limited to a section defined around this side. The size of this segment can vary, in which case the segment is smaller than the outer surface of the machine tool 17. If there are many cutting faces ES, the total area of all segments to be scanned is smaller than the total outer surface of the machine tool 17.

根據另一項實施例,亦可能使將被掃瞄的該段侷限於其中一角落或邊緣被放置在具有至少一切割面之原始、虛擬工具機模型之切割輪廓中的區域。 According to another embodiment, it is also possible to limit the section to be scanned to an area in which one of the corners or edges is placed in the cutting profile of the original, virtual machine tool model having at least one cutting face.

在定義或選擇測量程式PR以後,可能在第六方法步驟V6中使用測量裝置22,以及例如照相機23,以產生工具機17的測量資料MD。特別地,照相機23偵測且僅僅測量工具機17的那些段,其中將被執行的測量程式PR具有一切割面ES。亦可能不會再度測量在工具機17上具有其中一切割面之虛擬工具機模型MV的整個總切割輪廓,但卻將用測量裝置22的測量限制於切割輪廓上的模型參數MP及/或測量點Q將被測量的該位置或該等位置。因此,不一定以照相機23來偵測工具機17的總輪廓。該偵測可侷限於工具機17的那些區域,在此增加測量資料MD的準確度是有利的,特別是在切割輪廓將被準確偵測以用來決定模型參數MP或測量點Q的區域中。這是特別在那些點上的情況,在此,切割面ES會與工具機模型MV的邊緣交叉-因為當偵測邊緣時照相機23比3D掃瞄器19傳送更準確的資料。因此,額外或替代地,亦可能將用測量裝置22的測量限制於邊緣及/或切割邊緣35及/或至少一切割面ES與一邊緣及/或虛擬工具機模型MV之切割邊緣35交叉的該等點。 After the measurement program PR has been defined or selected, the measuring device 22, and for example the camera 23, may be used in a sixth method step V6 to generate the measurement data MD of the machine tool 17. In particular, the camera 23 detects and measures only those segments of the machine tool 17, wherein the measurement program PR to be executed has a cutting surface ES. It is also possible that the entire overall cutting profile of the virtual machine tool model MV having one of the cutting faces on the machine tool 17 may not be measured again, but the measurement of the measuring device 22 is limited to the model parameters MP and/or the measurement on the cutting contour. The location or locations at which point Q will be measured. Therefore, the overall contour of the machine tool 17 is not necessarily detected by the camera 23. The detection can be limited to those areas of the machine tool 17, where it is advantageous to increase the accuracy of the measurement data MD, in particular in the region where the cutting contour is to be accurately detected for determining the model parameter MP or the measurement point Q. . This is particularly the case at those points where the cutting face ES will intersect the edge of the machine tool model MV - because the camera 23 transmits more accurate data than the 3D scanner 19 when detecting the edges. In addition or alternatively, it is also possible to limit the measurement by the measuring device 22 to the edge and/or the cutting edge 35 and/or the at least one cutting surface ES intersecting an edge and/or the cutting edge 35 of the virtual machine tool model MV. These points.

在第七方法步驟V7期間內,在考量測量資料MD之下,可能使用照相機23的偵測測量資料MD來改善虛擬工具機模型MV以及產生增強的虛擬工具機模型MV’。 During the seventh method step V7, under consideration of the measurement data MD, it is possible to use the detected measurement data MD of the camera 23 to improve the virtual machine tool model MV and to generate an enhanced virtual machine tool model MV'.

第六與第七方法步驟V6、V7係為可選用的,且如果以3D掃瞄器19之掃瞄資料SD為基礎之虛擬工具機模型MV的準確度是充分的話則可被省略。這藉由在圖3中之虛線的箭頭所示意地繪示,該箭頭可以說是橋接第六與第七方法步驟V6、V7。 The sixth and seventh method steps V6, V7 are optional, and may be omitted if the accuracy of the virtual machine tool model MV based on the scan data SD of the 3D scanner 19 is sufficient. This is illustrated by the dashed arrow in Figure 3, which can be said to bridge the sixth and seventh method steps V6, V7.

在後續的第八方法步驟V8期間內,使用具有各別給定切割面ES之虛擬工具機模型MV或增強虛擬工具機模型MV’的至少一切割輪廓的測量程式PR決定至少一模型參數MP。 During a subsequent eighth method step V8, at least one model parameter MP is determined using a measurement program PR having at least one cutting contour of the virtual machine tool model MV or the enhanced virtual machine tool model MV' for each given cutting surface ES.

在此所繪示的例示性模型中,使用已經被解釋的第二切割面ES2決定斜角α1、餘隙角β1以及在四個切割邊緣35(圖5)上或之間的有角度節距τi(i=1、2、3、4)。更者,將核心直徑KD決定。 In the exemplary model illustrated here, the angle of inclination α1, the clearance angle β1 and the angular pitch on or between the four cutting edges 35 (Fig. 5) are determined using the second cutting surface ES2 that has been explained. Τi (i = 1, 2, 3, 4). Furthermore, the core diameter KD is determined.

藉由使用具有第三切割面ES3的切割輪廓,可決定額外的模型參數MP,譬如例如總長度LG或軸長度LS。可選用地,螺旋角δ係以在上文所解釋的第三切割面ES3與至少一額外的切割面ES來決定。模型參數MP的數目與類型可隨著將被施行的工具類型及各別的驗證任務而變。 By using the cutting profile with the third cutting face ES3, an additional model parameter MP can be determined, such as for example the total length LG or the shaft length LS. Alternatively, the helix angle δ is determined by the third cutting face ES3 explained above and at least one additional cutting face ES. The number and type of model parameters MP can vary depending on the type of tool to be performed and the individual verification tasks.

在已經決定模型參數MP以後,方法V係在第九方法步驟V9內被推斷。 After the model parameter MP has been determined, the method V is inferred in the ninth method step V9.

圖9繪示可藉由使用方法V或測量程式PR而實施的另一個選項。可能產生虛擬工具機模型MV的虛擬封包HV,其中該虛擬工具機模型MV繞著虛擬轉動軸以及根據該實例的參考軸BV(圖9)而轉動。這導致虛擬封包HV。藉由使用此虛擬封包HV,可能可決定無法以切割面ES為基礎而簡單決定的額外模型參數MP。例如,可能可藉由使用封包HV來決定一步進工具的一個或多個對應角度γ i(i=1、2)。再者,在切割邊緣35或另一邊緣上的至少一角落半徑CR可借助於虛擬封包HV來決定。 FIG. 9 illustrates another option that can be implemented by using method V or measurement program PR. A virtual package HV of the virtual machine tool model MV may be generated, wherein the virtual machine tool model MV rotates about a virtual axis of rotation and a reference axis BV (FIG. 9) according to the example. This results in a virtual packet HV. By using this virtual packet HV, it is possible to determine an additional model parameter MP that cannot be easily determined based on the cutting plane ES. For example, one or more corresponding angles y i (i = 1, 2) of a stepping tool may be determined by using the packet HV. Furthermore, at least one corner radius CR on the cutting edge 35 or on the other edge can be determined by means of a virtual envelope HV.

應理解,用於藉由使用虛擬工具機模型MV來決定模型參數MP或對準虛擬空間RV中之虛擬工具機模型MV的解釋可被類似地施加到增強的虛擬工具機模型MV’。 It should be understood that the interpretation for determining the model parameter MP or the virtual machine tool model MV in the alignment virtual space RV by using the virtual machine tool model MV can be similarly applied to the enhanced virtual machine tool model MV'.

本發明係關於一種用於決定虛擬工具機模型MV中之至少一模型參數MP的方法與裝置。為了完成此,首先將虛擬工具機模型MV載 入、輸入或產生。為了能夠產生虛擬工具機模型MV,可使用3D掃瞄器,且藉由使用來自雲端PW的掃瞄資料SD,可決定虛擬工具機模型MV。可產生及/或選擇測量程式PR。測量程式PR事先規劃經過虛擬工具機模型MV的至少一切割面ES以及將被決定的至少一模型參數MP。藉由使用在虛擬工具機模型MV與至少一切割面ES之間的切割輪廓,將模型參數MP決定。藉由各別使用該方法與該裝置,可能可快速且簡單地偵測至少一模型參數MP,藉由該參數可代表工具機17。 The present invention relates to a method and apparatus for determining at least one model parameter MP in a virtual machine tool model MV. In order to accomplish this, the virtual machine model MV is first loaded. Enter, input or generate. In order to be able to generate the virtual machine tool model MV, a 3D scanner can be used, and by using the scan data SD from the cloud PW, the virtual machine tool model MV can be determined. The measurement program PR can be generated and/or selected. The measurement program PR previously plans at least one cutting surface ES of the virtual machine tool model MV and at least one model parameter MP to be determined. The model parameter MP is determined by using a cutting profile between the virtual machine tool model MV and at least one cutting face ES. By using the method and the device separately, it is possible to quickly and easily detect at least one model parameter MP, by means of which the machine tool 17 can be represented.

15‧‧‧測量裝置 15‧‧‧Measurement device

16‧‧‧工具機支架 16‧‧‧Tooling machine bracket

17‧‧‧工具機 17‧‧ Tools machine

18‧‧‧多圈致動器 18‧‧‧Multi-turn actuator

19‧‧‧3D掃瞄器 19‧‧‧3D scanner

20‧‧‧雷射光束 20‧‧‧Laser beam

21‧‧‧處理裝置 21‧‧‧Processing device

22‧‧‧測量裝置 22‧‧‧Measurement device

23‧‧‧照相機 23‧‧‧ camera

25‧‧‧使用者介面 25‧‧‧User interface

26‧‧‧使用者桌面 26‧‧‧User desktop

27‧‧‧記憶體 27‧‧‧ memory

28‧‧‧外部算術與邏輯單元 28‧‧‧External Arithmetic and Logic Unit

D‧‧‧轉動軸 D‧‧‧Rotary axis

Claims (18)

一種用於決定一工具機(17)之一工具機模型(MV)之至少一模型參數(MP)的方法(V),該模型參數(MP)對應該工具機(17)的一特徵,其包含下列步驟:輸入或裝載或產生該工具機(17)的一三維虛擬工具機模型(MV),產生及/或選擇一測量程式(PR)以及一測量任務,其中該測量程式(PR)事前規劃經過該虛擬工具機模型(MV)的至少一切割面(ES),藉此,該至少一模型參數(MP)可藉由使用在該虛擬工具機模型(MV)與該至少一切割面(ES)之間的該至少一切割輪廓而被決定,藉由使用具有該至少一切割面(ES)之該虛擬工具機模型(MV)的該至少一切割輪廓,來啟動該測量程式(PR)且決定該至少一模型參數(MP)。 A method (V) for determining at least one model parameter (MP) of a machine tool model (MV) of a machine tool (17), the model parameter (MP) corresponding to a feature of the machine tool (17), The method comprises the following steps: inputting or loading or generating a three-dimensional virtual machine tool model (MV) of the machine tool (17), generating and/or selecting a measurement program (PR) and a measurement task, wherein the measurement program (PR) is in advance Planning at least one cutting surface (ES) of the virtual machine tool model (MV), whereby the at least one model parameter (MP) can be used by the virtual machine tool model (MV) and the at least one cutting surface ( The at least one cutting profile between the ES) is determined to initiate the measurement program (PR) by using the at least one cutting profile of the virtual machine tool model (MV) having the at least one cutting face (ES) And determining the at least one model parameter (MP). 如申請專利範圍第1項之方法,其特徵在於,就該模型參數(MP),有使用一斜角(α)及/或一餘隙角(β)及/或一楔角及/或一切割邊緣數目及/或一有角度節距(τ)及/或該工具機(17)的一長度(LG、LS)及/或一核心直徑(KD)及/或一螺旋角(δ)。 The method of claim 1, wherein the model parameter (MP) has an oblique angle (α) and/or a clearance angle (β) and/or a wedge angle and/or a The number of cutting edges and/or an angular pitch (τ) and/or a length (LG, LS) and/or a core diameter (KD) and/or a helix angle (δ) of the machine tool (17). 如申請專利範圍第1項或第2項之方法,其特徵在於該虛擬工具機模型(MV)係由如下產生:藉由一3D掃瞄器(19),從多方向掃瞄該工具(17),且產生呈一雲端(SD)之該形式的該掃瞄資料(SD),以該雲端(PW)的邊緣及/或區域來產生該工具機(17)的該三維虛擬工具機模型(MV),或使用該處理或未處理的雲端(PW)當作該虛擬工具機模型(MV)。 The method of claim 1 or 2, wherein the virtual machine model (MV) is generated by scanning the tool from multiple directions by a 3D scanner (19) (17) And generating the scan data (SD) in the form of a cloud (SD), and generating the three-dimensional virtual machine tool model of the machine tool (17) with the edge and/or region of the cloud (PW) ( MV), or use the processed or unprocessed cloud (PW) as the virtual machine model (MV). 如申請專利範圍第3項之方法,其特徵在於,當產生該虛擬工具機模型(MV’)時,除了該掃瞄資料(SD)以外還使用額外的測量資料(MD),該測 量資料已經藉由除了該3D掃瞄器(19)以外還使用的一測量裝置(22)來產生。 The method of claim 3, wherein when the virtual machine model (MV') is generated, an additional measurement data (MD) is used in addition to the scan data (SD). The amount of data has been generated by a measuring device (22) used in addition to the 3D scanner (19). 如前述申請專利範圍中任一項之方法,其特徵在於一測量程式(PR)可被產生,其中與該虛擬工具機模型交叉的至少一切割面(ES)被定義,且此至少一切割面(ES)被分派一測量任務,以用於藉由使用在該虛擬工具機模型(MV)與該至少一切割面(ES)之間的該至少一切割輪廓來決定該至少一模型參數(MP)。 A method according to any one of the preceding claims, characterized in that a measurement program (PR) can be produced, wherein at least one cutting surface (ES) intersecting the virtual machine tool model is defined, and the at least one cutting surface (ES) being assigned a measurement task for determining the at least one model parameter by using the at least one cutting profile between the virtual machine tool model (MV) and the at least one cutting surface (ES) ). 如申請專利範圍第5項之方法,其特徵在於該測量任務係配置以決定在不同切割面(ES)中各別一個切割輪廓上的數個測量點(Q)且使用這些以決定一模型參數(MP)。 The method of claim 5, characterized in that the measuring task is configured to determine a plurality of measuring points (Q) on a respective cutting profile in different cutting faces (ES) and use these to determine a model parameter (MP). 如前述申請專利範圍中任一項之方法,其特徵在於一測量程式(PR)的至少一切割面(ES)與該虛擬工具機模型(MV)的該縱向軸(LM)在一點相交或者以相對於該虛擬工具機模型(MV)的該縱軸(LM)或該虛擬空間(RV)中的一座標軸(XV)的一直角來對準。 A method according to any one of the preceding claims, characterized in that at least one cutting face (ES) of a measuring program (PR) intersects the longitudinal axis (LM) of the virtual machine tool model (MV) at a point or Aligned with respect to the vertical axis (LM) of the virtual machine tool model (MV) or the right angle of one of the target axes (XV) in the virtual space (RV). 如前述申請專利範圍中任一項之方法,其特徵在於將該虛擬工具機模型(MV)之該縱軸(LM)相對於一虛擬空間(RV)中之一參考軸(EV)的一偏差被決定及/或補償。 A method according to any one of the preceding claims, characterized by a deviation of the longitudinal axis (LM) of the virtual machine tool model (MV) from a reference axis (EV) of a virtual space (RV) Determined and / or compensated. 如申請專利範圍第8項之方法,其特徵在於,在補償該虛擬工具機模型(MV)之該縱軸(LM)相對於在一虛擬空間(RV)中之該參考軸(BV)的該偏差(AI)之後,決定該工具機模型(MV)的該有效同心度。 The method of claim 8 is characterized in that the vertical axis (LM) of the virtual machine tool model (MV) is compensated for the reference axis (BV) in a virtual space (RV) After the deviation (AI), the effective concentricity of the machine tool model (MV) is determined. 如前述申請專利範圍中任一項之方法,其特徵在於不具有一相交點之一測量程式(PR)的至少一切割面(ES)係與該虛擬工具機模型(MV)的該縱軸(LM)對準或沿著或平行於該虛擬工具機模型(MV)的該縱軸(LM)。 A method according to any one of the preceding claims, characterized in that at least one cutting surface (ES) system having no measurement program (PR) of one intersection point and the vertical axis of the virtual machine tool model (MV) LM) aligns or follows or parallels the longitudinal axis (LM) of the virtual machine tool model (MV). 如前述申請專利範圍中任一項之方法,其特徵在於當作該參考面(ER)之 一切割面(ES)的一轉動角(φ)係藉由相對於在一虛擬空間(RV)中之該參考位準(EB)的該虛擬工具機模型(MV)所決定及/或補償。 A method according to any one of the preceding claims, characterized in that it is regarded as the reference surface (ER) A rotational angle (φ) of a cutting plane (ES) is determined and/or compensated by the virtual machine tool model (MV) relative to the reference level (EB) in a virtual space (RV). 如前述申請專利範圍中任一項之方法,其特徵在於該虛擬工具機模型(MV)繞著一垂直轉動軸而轉動且一虛擬包封(HV)自其產生。 A method according to any one of the preceding claims, characterized in that the virtual machine tool model (MV) is rotated about a vertical axis of rotation and a virtual envelope (HV) is generated therefrom. 如申請專利範圍第12項之方法,其特徵在於至少一模型參數(MP)係以該包封為基礎來決定。 The method of claim 12, wherein the at least one model parameter (MP) is determined based on the envelope. 如前述申請專利範圍中任一項之方法,其特徵在於,藉由使用一定義或選擇的測量程式(PR),為該工具機模型(MV)基礎的該工具機(17)至少部份地在該至少一段中被測量,在該段中,在該虛擬工具機模型(MV)中,由該測量程式(PR)事先規劃的該至少一切割面會被放置,或者在該段中,在具有該至少一切割面(ES)之該虛擬工具機模型(MV)的該切割輪廓中,一角落或一邊緣被設置。 A method according to any one of the preceding claims, characterized in that the machine tool (17) based on the machine tool model (MV) is at least partially used by using a defined or selected measurement program (PR) Measured in the at least one segment, in which the at least one cutting surface planned by the measuring program (PR) is placed in the virtual machine tool model (MV), or in the segment, in the segment In the cutting profile of the virtual machine tool model (MV) having the at least one cutting face (ES), a corner or an edge is provided. 如前述申請專利範圍中任一項之方法,其特徵在於,最初,在一選擇步驟(V1a)期間內,可選擇一已經產生、儲存的測量程式(PR),且後續,為了產生該工具機(17)的一三維虛擬工具機模型(MV),可施行下列步驟:藉由一3D掃瞄器(19)來掃瞄該工具機(17)且產生呈一雲端(PW)形式的掃瞄資料(SD),其中掃瞄至少部份地僅僅發生於該至少一段中,使由該事先選擇測量程式(PR)所事先規劃的該切割面(ES)位於該段中,或者在該段中,其中,使一角落或邊緣位於該原始虛擬工具機模型的該切割輪廓中,該原始虛擬工具機模型的該切割輪廓係為以該至少一切割面(ES)來產生該選定測量程式(PR)的基礎,以該雲端(PW)的該等邊緣及/或區域來產生該工具機(17)的該三維虛擬工具機模型(MV),或使用該處理或未處理的雲端(PW)當作該虛擬工具機模型(MV)。 A method according to any one of the preceding claims, characterized in that initially, during a selection step (V1a), a measurement program (PR) that has been generated and stored can be selected, and subsequently, in order to generate the machine tool (3) A three-dimensional virtual machine tool model (MV), which can perform the following steps: scanning the machine tool (17) by a 3D scanner (19) and generating a scan in the form of a cloud (PW) Data (SD), wherein the scan occurs at least partially only in the at least one segment, such that the cutting surface (ES) planned by the pre-selected measurement program (PR) is located in the segment, or in the segment Wherein a corner or edge is located in the cutting profile of the original virtual machine tool model, the cutting profile of the original virtual machine tool model is to generate the selected measurement program (PR) by the at least one cutting face (ES) The basis for generating the three-dimensional virtual machine tool model (MV) of the machine tool (17) with the edges and/or regions of the cloud (PW), or using the processed or unprocessed cloud (PW) Make this virtual machine model (MV). 用於決定該工具機(17)之一工具機模型(MV)之至少一模型參數(MP)的測量裝置(15),該模型參數(MP)對應該工具機(17)的一特徵,具有一3D掃瞄器(19),具有一處理裝置(21),該處理裝置係配置以施行下列步驟:啟動該3D掃瞄器(19),以用於從許多方向掃瞄該工具機(17)且產生呈一雲端(PW)形式的掃瞄資料(SD),從該雲端(PW),產生具有該工具機模型(17)之邊緣及/或區域的該三維虛擬工具機模型(MV),或使用該處理或未處理雲端(PW)當作該虛擬工具機模型(MV),產生及/或選擇一測量程式(PR),其中該測量程式(PR)事先規劃經過該虛擬工具機模型(MV)的至少一切割面(ES)以及將被決定的至少一模型參數(MP),藉由使用具有該至少一切割面(ES)之該虛擬工具機模型(MV)的該至少一切割輪廓,來執行該測量程式(PR)且決定該至少一模型參數(MP)。 a measuring device (15) for determining at least one model parameter (MP) of a machine tool model (MV) of the machine tool (17), the model parameter (MP) corresponding to a feature of the machine tool (17) having A 3D scanner (19) having a processing device (21) configured to perform the steps of activating the 3D scanner (19) for scanning the machine tool from a plurality of directions (17) And generating a scanning data (SD) in the form of a cloud (PW) from which the three-dimensional virtual machine tool model (MV) having the edge and/or region of the machine tool model (17) is generated. Or using the processed or unprocessed cloud (PW) as the virtual machine tool model (MV) to generate and/or select a measurement program (PR), wherein the measurement program (PR) is planned in advance through the virtual machine model At least one cutting face (ES) of (MV) and at least one model parameter (MP) to be determined by using the at least one cut of the virtual machine tool model (MV) having the at least one cutting face (ES) The contour is used to execute the measurement program (PR) and determine the at least one model parameter (MP). 如申請專利範圍第16項之測量裝置,其特徵在於一額外測量裝置(22)在邊緣偵測期間內呈現比該3D掃瞄器一更大的準確度,其中該處理裝置(21)係配置以在產生及/或選擇該測量程式(PR)以後使得藉由使用一額外測量裝置(22)的一額外工具機測量發生,使得額外的測量資料(MD)被產生,該測量資料則用來提高該虛擬工具機模型(MV)的準確度。 The measuring device of claim 16 is characterized in that an additional measuring device (22) exhibits greater accuracy than the 3D scanner during edge detection, wherein the processing device (21) is configured Taking an additional machine tool measurement using an additional measuring device (22) after the generation and/or selection of the measurement program (PR) causes additional measurement data (MD) to be generated, the measurement data being used Improve the accuracy of the virtual machine model (MV). 如申請專利範圍第17項之測量裝置,其特徵在於該處理裝置(21)係配置以使利用至少或全部在該工具機(17)其中至少一段中的該額外測量裝置(22)的該測量發生,在該段中,由該測量程式(PR)事先規劃的該至少一切割面(ES)位於該虛擬工具機模型(MV)中,或者在該段中,一角落或邊緣設置於具有該至少一切割面(ES)之該虛擬工具機模型(MV)的該切割輪廓中。 Measuring device according to clause 17 of the patent application, characterized in that the processing device (21) is configured such that the measurement is utilized with at least or all of the additional measuring device (22) in at least one of the machine tools (17) Occurring, in the paragraph, the at least one cutting surface (ES) planned by the measurement program (PR) is located in the virtual machine tool model (MV), or in the segment, a corner or an edge is disposed with the At least one cutting surface (ES) of the virtual machine tool model (MV) in the cutting profile.
TW104125342A 2014-08-07 2015-08-05 Method and device for the determination of at least one model parameter of a virtual tool model of a tool TW201616256A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014111240.7A DE102014111240A1 (en) 2014-08-07 2014-08-07 Method and device for determining at least one model parameter of a virtual tool model of a tool

Publications (1)

Publication Number Publication Date
TW201616256A true TW201616256A (en) 2016-05-01

Family

ID=53673098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125342A TW201616256A (en) 2014-08-07 2015-08-05 Method and device for the determination of at least one model parameter of a virtual tool model of a tool

Country Status (3)

Country Link
DE (1) DE102014111240A1 (en)
TW (1) TW201616256A (en)
WO (1) WO2016020175A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676909B (en) * 2018-01-19 2019-11-11 財團法人工業技術研究院 Display system and display method
TWI681849B (en) * 2017-09-12 2020-01-11 瑞士商羅伯特雷諾德有限公司 Motorized device for machine tool, guide and method for the device, computer data support and system
CN114453978A (en) * 2022-01-18 2022-05-10 东莞市银泽实业有限公司 Drill bit jitter analysis and outer diameter measurement device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489580B (en) * 2018-12-10 2021-09-24 华东理工大学 On-machine point cloud detection and compensation method for surface processing of aero-engine blade
CN109976254B (en) * 2019-03-29 2020-08-25 西安交通大学 Modeling method for chip groove method section of end mill with gradually-changed core thickness
JP7061701B1 (en) * 2021-02-01 2022-04-28 Dmg森精機株式会社 Image processing equipment and machine tools
CN114879602B (en) * 2022-05-17 2023-04-07 大连理工大学 Design method for five-axis side milling machining single-cutter-position envelope characteristic line of rotary cutter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635446A1 (en) 1985-12-17 1987-06-25 Manfred Meyer Method of measuring various parameters of workpieces
DE102006011796A1 (en) * 2005-04-06 2006-11-23 ZOLLER GmbH & Co. KG Einstell- und Messgeräte Tool measurement and adjusting device, for measuring profile of tool cutting edge, has sensor unit for simultaneously measuring parameter, such as width of round edges, of profile in two spots of tool cutting edge
US7577491B2 (en) * 2005-11-30 2009-08-18 General Electric Company System and method for extracting parameters of a cutting tool
US7768655B2 (en) * 2006-12-20 2010-08-03 General Electric Company Methods and system for measuring an object
DE102007016502B4 (en) * 2007-03-26 2012-08-16 Harbin Measuring & Cutting Tool Group Co.,Ltd. Measuring method and measuring system for measuring tools
DE102007016056B4 (en) 2007-04-03 2011-08-25 Sauer GmbH LASERTEC, 87437 Method and device for workpiece measurement and workpiece machining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI681849B (en) * 2017-09-12 2020-01-11 瑞士商羅伯特雷諾德有限公司 Motorized device for machine tool, guide and method for the device, computer data support and system
TWI676909B (en) * 2018-01-19 2019-11-11 財團法人工業技術研究院 Display system and display method
CN114453978A (en) * 2022-01-18 2022-05-10 东莞市银泽实业有限公司 Drill bit jitter analysis and outer diameter measurement device

Also Published As

Publication number Publication date
DE102014111240A1 (en) 2016-02-11
WO2016020175A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
TW201616256A (en) Method and device for the determination of at least one model parameter of a virtual tool model of a tool
KR102081572B1 (en) Method and device for machining a tool by removing material
US8987634B2 (en) Determining powder feed nozzle misalignment
JP6017213B2 (en) Calibration method for robot with optical sensor
CN109070354A (en) The axis calibration of beam processing machine
JPWO2015111200A1 (en) Tool shape measuring apparatus and tool shape measuring method
JP6570957B2 (en) Geometric error identification method for mechanical structure, numerical control method using the geometric error identification method, numerical control apparatus, and machining center
CN107532886A (en) Tool shape determines device
CN103328154A (en) Error measurement device and error measurement method
JP5792251B2 (en) Error correction amount creation device
JP5968749B2 (en) Geometric error identification method and numerical control method, numerical control apparatus and machining center using the geometric error identification method
JP2016074063A (en) Robot teaching device for teaching robot on line
JPWO2009025271A1 (en) Robot control apparatus and control method
EP3201706B1 (en) Machining method by turning at least one surface of an ophthalmic lens, using a turning machine having at least one geometrical defect
JP4667400B2 (en) DOE adjustment method and laser processing apparatus
JP4652873B2 (en) Tool measurement method for machine tools
JP6234091B2 (en) Robot apparatus and teaching point setting method
JP5151686B2 (en) Profile data creation method for machining non-circular workpieces
JP2018079548A (en) Drill blade phase measurement device and drill blade phase measurement method
JP5351083B2 (en) Teaching point correction apparatus and teaching point correction method
JP5483554B2 (en) Tool coordinate system calibration apparatus and calibration method
JP6079664B2 (en) Apparatus for measuring surface of object to be measured and method for measuring surface thereof
US20200206861A1 (en) Method for determining the topography of a machine tool
JP2007054930A (en) Positioning method and device for tool
JP6456205B2 (en) Method for measuring cross-sectional shape of measurement object