JP4652873B2 - Tool measurement method for machine tools - Google Patents

Tool measurement method for machine tools Download PDF

Info

Publication number
JP4652873B2
JP4652873B2 JP2005109587A JP2005109587A JP4652873B2 JP 4652873 B2 JP4652873 B2 JP 4652873B2 JP 2005109587 A JP2005109587 A JP 2005109587A JP 2005109587 A JP2005109587 A JP 2005109587A JP 4652873 B2 JP4652873 B2 JP 4652873B2
Authority
JP
Japan
Prior art keywords
axis
tool
deviation
cutting
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109587A
Other languages
Japanese (ja)
Other versions
JP2006289513A (en
Inventor
清 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2005109587A priority Critical patent/JP4652873B2/en
Publication of JP2006289513A publication Critical patent/JP2006289513A/en
Application granted granted Critical
Publication of JP4652873B2 publication Critical patent/JP4652873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばマシニングセンタなどの工作機械によるヘール加工に用いる切削工具の形状を測定する方法に関する。   The present invention relates to a method for measuring the shape of a cutting tool used for hail machining by a machine tool such as a machining center.

マシニングセンタは通常は回転工具を用いてワークを加工するものであるが、回転工具に代えてヘールバイトなどの非回転の切削工具を主軸に取り付け、X,Y,Z軸の運動に同期させて、先端に切削工具を保持した主軸の角度を制御することで、切削工具正面を常に切削方向に向けて加工する、一般にヘール加工と呼ばれる加工方法が知られている。   The machining center is usually used to machine a workpiece using a rotary tool, but instead of a rotary tool, a non-rotating cutting tool such as a hail bite is attached to the main shaft and synchronized with the movement of the X, Y, and Z axes. A machining method generally called hail machining is known in which the front surface of the cutting tool is always oriented in the cutting direction by controlling the angle of the spindle holding the cutting tool at the tip.

こうしたヘール加工は、主に溝加工などに用いられ、切削工具の形状も、加工する溝の形状に合わせたものが一般的であったが、近年は加工形状とは異なる刃先断面を有する切削工具を使用する例も出てきている。例えば、特許文献1には、5軸制御可能なマシニングセンタにおいて総形バイトを用いて、刃先断面とは異なる断面形状をした加工形状を加工する切削加工法が提案されている。こうした中で、工具の刃先が円弧形状をした切削工具は、任意の自由曲面を創成することができるため汎用性が高い。   Such hail processing is mainly used for grooving and the like, and the shape of the cutting tool is generally adapted to the shape of the groove to be processed, but in recent years a cutting tool having a cutting edge cross section different from the processing shape There are also examples using. For example, Patent Document 1 proposes a cutting method in which a machining shape having a cross-sectional shape different from the cutting edge cross-section is processed by using a total shape tool in a 5-axis control machining center. In such circumstances, a cutting tool having a circular cutting edge of the tool is highly versatile because it can create an arbitrary free-form surface.

特開平6−711号JP-A-6-711

ところで、こうした非回転の切削工具を主軸に取り付け、主軸の回転角度を制御して加工を行う場合には、切削工具の取り付け精度が非常に重要な問題となる。しかしながら、工具を取り付けた主軸回転中心と切削工具中心位置を一致させることや、さらに切削工具の正面角度を一致させることは非常に困難な作業であり、主軸回転中心と切削工具中心との位置ずれや、切削工具の正面角度に不一致があると、加工形状に誤差が生じていた。また、工具半径についても正確にはわからず、同様に加工形状に誤差を生じる要因となっていた。   By the way, when such a non-rotating cutting tool is attached to the main shaft and the processing is performed by controlling the rotation angle of the main shaft, the mounting accuracy of the cutting tool is a very important issue. However, it is very difficult to match the center of rotation of the spindle to which the tool is attached and the center position of the cutting tool, and to match the front angle of the cutting tool, and the misalignment between the center of rotation of the spindle and the center of the cutting tool is difficult. If the front angle of the cutting tool is not consistent, an error has occurred in the machining shape. In addition, the tool radius is not accurately known, which is also a factor causing an error in the machining shape.

本発明は上述の課題に鑑みなされたもので、その目的とするところは、例えばマシニングセンタなどの工作機械によるヘール加工に用いる切削工具の形状を測定する際に、主軸回転中心と工具中心の位置ずれ量と、工具正面の角度のずれ量と、工具半径を測定する方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is, for example, when measuring the shape of a cutting tool used for hail machining by a machine tool such as a machining center, the positional deviation between the spindle rotation center and the tool center. It is to provide a method for measuring the amount, the amount of deviation of the angle in front of the tool, and the tool radius.

上述の課題を解決するために本発明の工作機械の測定方法は、互いに直交するX軸、Y軸、Z軸の3方向の送り軸制御による移動と主軸の回転角度制御により、主軸に取り付けた切削工具でワークを加工する工作機械において、加工に用いられる刃先が円弧形状をした非回転の切削工具を測定する方法であって、主軸の回転角度制御により、前記切削工具の工具正面をZ軸とY軸とを含む平面(YZ平面)に平行になるように割出したときの、前記主軸の回転中心と前記切削工具の円弧中心との前記Y軸及びZ軸方向の位置ずれ(Δy、Δz)、前記工具正面の、前記YZ平面に対するY軸回りの角度ずれ(β)、前記工具正面の、前記YZ平面に対するZ軸回りの角度ずれ(γ)、前記切削工具の円弧半径(R)の内、少なくとも1つ以上nヶの未知の値と、前記主軸の回転中心と前記切削工具の円弧中心との前記X軸方向の位置ずれ(Δx)とを、前記YZ平面内の2次元座標を測定する測定装置により求める測定方法において、主軸の回転角度制御により、前記切削工具の工具正面を前記YZ平面に略平行になるよう割出し、任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)を測定し、主軸を回転角度制御により所定角度回転させ、任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)を測定し、前記任意のn点と1点の測定刃先座標から、主軸回転中心と工具中心の位置ずれ(Δx、Δy、Δz)と工具正面の角度ずれ(β、γ)と工具半径(R)との内、未知の値を求めることを特徴とする。 In order to solve the above-mentioned problem, the measuring method of the machine tool of the present invention is attached to the main shaft by the movement by the feed axis control in three directions orthogonal to each other, the X axis, the Y axis and the Z axis, and the rotation angle control of the main shaft. In a machine tool for machining a workpiece with a cutting tool, a method for measuring a non-rotating cutting tool having a circular cutting edge used for machining, wherein the tool front surface of the cutting tool is controlled by the rotation angle control of the spindle. And a misalignment in the Y-axis and Z-axis directions (Δy,) between the rotation center of the main shaft and the arc center of the cutting tool when indexing so as to be parallel to a plane including the Y-axis (YZ plane) Δz), angle deviation around the Y axis relative to the YZ plane (β), angle deviation around the Z axis relative to the YZ plane (γ), arc radius of the cutting tool (R) Of which at least one or more n Measurement method for determining an unknown value of the main axis and a positional deviation (Δx) in the X-axis direction between the center of rotation of the spindle and the center of the arc of the cutting tool by a measuring device that measures two-dimensional coordinates in the YZ plane. in, the rotation angle control of the main shaft, said tool front of the cutting tool indexing so as to be substantially parallel to the YZ plane, the cutting edge of any point n Y-axis coordinate and Z-axis coordinate (y '1, z' 1 ··· y'n, z'n) measured by the rotation angle control spindle rotated by a predetermined angle, the cutting edge of any point Y axis coordinate and Z-axis coordinate (y ', z') was measured From the arbitrary n points and one measurement edge coordinate, the positional deviation (Δx, Δy, Δz) of the spindle rotation center and the tool center, the angular deviation (β, γ) of the tool front, and the tool radius (R) Among them, an unknown value is obtained.

ここで、前記任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)から、前記Y軸及びZ軸方向の位置ずれ(Δy、Δz)、前記Y軸回りの角度ずれ(β)、前記Z軸回りの角度ずれ(γ)、前記切削工具の円弧半径(R)の内の未知の値を求め、求めた未知の値と所定角度回転後の前記任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)から、前記X軸方向の位置ずれ(Δx)を求める用にすることができる(請求項2)。 Here, the positional deviation in the Y-axis and Z-axis directions (from Y-axis coordinates and Z-axis coordinates (y ′ 1 , z ′ 1 ... Y ′ n , z ′ n ) of the arbitrary n-point cutting edge ( Δy, Δz), an angular deviation about the Y axis (β), an angular deviation about the Z axis (γ), and an arc radius (R) of the cutting tool, and an unknown value obtained. And the position deviation (Δx) in the X-axis direction can be obtained from the Y-axis coordinate and the Z-axis coordinate (y ′, z ′) of the arbitrary one-pointed blade edge after a predetermined angle rotation (claim) Item 2).

また、前記任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)及び、所定角度回転後の任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)の測定は、前記X軸に平行なレーザ光を用いて行うのが好ましい(請求項3)。 Further, the Y-axis coordinate and the Z-axis coordinate (y ′ 1 , z ′ 1 ... Y ′ n , z ′ n ) of the arbitrary n- point cutting edge and the arbitrary one-point cutting edge after a predetermined angle rotation The measurement of the Y-axis coordinate and the Z-axis coordinate (y ′, z ′) is preferably performed using a laser beam parallel to the X axis.

本発明の請求項1又は2の測定方法によれば、工具中心の位置ずれ量と、工具正面の角度のずれ量と、工具半径と、を正確に求めることができる。また、求めた工具中心の位置ずれ量と、工具正面の角度のずれ量と、工具半径と、をNC装置に入力し、これらのずれ量を加味した位置指令をNC装置が出力することで加工形状の誤差が改善できる。また、平面(YZ平面)内の座標を測定する測定装置では本来測定不可能なX軸方向の工具中心のずれ量を正確に求めることができる。   According to the measuring method of the first or second aspect of the present invention, it is possible to accurately obtain the positional deviation amount of the tool center, the angular deviation amount of the tool front, and the tool radius. In addition, the obtained tool center position deviation amount, tool front angle deviation amount, and tool radius are input to the NC device, and the NC device outputs a position command that takes these deviation amounts into account. Shape error can be improved. Further, the amount of deviation of the tool center in the X-axis direction, which cannot be measured by a measuring apparatus that measures coordinates in the plane (YZ plane), can be accurately obtained.

本発明の請求項3の測定方法によれば、既設の工作機械に非接触式の工具長測定装置を用いることで容易に本発明を実施可能となる。   According to the measuring method of claim 3 of the present invention, the present invention can be easily implemented by using a non-contact type tool length measuring device for an existing machine tool.

図4は本発明の測定方法を実施する構成を示す図であって、図示しないマシニングセンタの主軸に取り付けられた切削工具1を、非接触工具長測定装置2を用いて測定する状態を示す図である。   FIG. 4 is a diagram showing a configuration for carrying out the measuring method of the present invention, and is a diagram showing a state in which a cutting tool 1 attached to a spindle of a machining center (not shown) is measured using a non-contact tool length measuring device 2. is there.

非接触工具長測定装置2は、切削工具1と非接触工具長測定装置2とが図示しないマシニングセンタの送り軸を利用することにより互いに直交3軸方向に移動可能となるように、図示しないマシニングセンタに固定されている。この非接触工具長測定装置2は、対向配置されたレーザ光源3とレーザ受光部4とから構成され、レーザ光源3から発射されたレーザ光5をレーザ受光部4が受光するようになっており、レーザ光源3とレーザ受光部4との間の位置に切削工具1が進入するとレーザ光5が遮断され、その時の工作機械の送り軸の座標値から、切削工具1のレーザ光5を遮断した位置の座標を算出することができる。このような非接触工具長測定装置2としては、BLUM社製のマシニングセンタ用Laser『MICRO』等市販のものを使用することができる。   The non-contact tool length measuring device 2 is connected to a machining center (not shown) so that the cutting tool 1 and the non-contact tool length measuring device 2 can move in three orthogonal directions by using a feed axis of the machining center (not shown). It is fixed. This non-contact tool length measuring device 2 is composed of a laser light source 3 and a laser light receiving unit 4 arranged so as to face each other, and the laser light receiving unit 4 receives the laser light 5 emitted from the laser light source 3. When the cutting tool 1 enters the position between the laser light source 3 and the laser light receiving unit 4, the laser beam 5 is cut off, and the laser beam 5 of the cutting tool 1 is cut off from the coordinate value of the feed axis of the machine tool at that time. The coordinates of the position can be calculated. As such a non-contact tool length measuring device 2, a commercially available device such as a laser “MICRO” for machining centers manufactured by BLUM can be used.

ここでは、非接触工具長測定装置2は、レーザ光5がマシニングセンタのX軸と平行となるように取り付けられている。このため、切削工具1と非接触工具長測定装置2とをYZ平面内で移動させて切削工具1を非接触工具長測定装置2に進入させ、レーザ光5が遮断された時の切削工具1のY軸及びZ軸方向の座標が測定でき、レーザ光5と平行となるX軸方向の座標は測定できないこととなる。   Here, the non-contact tool length measuring device 2 is attached so that the laser beam 5 is parallel to the X axis of the machining center. For this reason, the cutting tool 1 and the non-contact tool length measuring device 2 are moved in the YZ plane so that the cutting tool 1 enters the non-contact tool length measuring device 2, and the cutting tool 1 when the laser beam 5 is interrupted. The coordinates in the Y-axis and Z-axis directions can be measured, and the coordinates in the X-axis direction parallel to the laser beam 5 cannot be measured.

この非接触工具長測定装置2を用いた本発明の工具測定方法を説明する。図5において、切削工具1は、刃先外形が円弧形状をなす切削工具を示しており、上記のようにレーザ光をX軸と平行となるように配置した非接触工具長測定装置2により測定を行うために、工具正面8をYZ平面と平行となるように図示しない主軸を制御した状態を示したものである。   A tool measuring method of the present invention using this non-contact tool length measuring device 2 will be described. In FIG. 5, the cutting tool 1 is a cutting tool whose cutting edge has an arc shape, and the measurement is performed by the non-contact tool length measuring device 2 in which the laser beam is arranged parallel to the X axis as described above. In order to carry out, the state which controlled the spindle which is not illustrated so that tool front 8 may become parallel to a YZ plane is shown.

しかしながら実際には、マシニングセンタ各部の部品の加工精度や組立精度などの要因により、主軸回転中心6と工具中心7とはXYZの3軸方向それぞれにおいて位置ずれΔx、Δy、Δzが生じていると共に、工具正面8はYZ平面に対し角度ずれを生じている。   However, in actuality, due to factors such as machining accuracy and assembly accuracy of parts in each part of the machining center, the main shaft rotation center 6 and the tool center 7 have positional deviations Δx, Δy, Δz in the three XYZ directions, respectively, The tool front surface 8 has an angular deviation with respect to the YZ plane.

ここで、工具正面8のYZ平面に対する角度ずれの理解をより容易にするため、切削工具を円と仮定して図6に示す。図6(a)は位置ずれや角度ずれのない理想的な状態を示すもので、YZ平面内で中心が原点に位置する半径Rの円となる。しかしながら実際には部品精度や組立精度が要因となりこの位置からずれることになる。これを各方向に分解すると、図6(b)に示すように、Y軸に回りにβ傾き、さらに図6(c)に示すようにZ軸回りにγ傾いていると考えることができる。   Here, in order to make it easier to understand the angular deviation of the tool front surface 8 with respect to the YZ plane, the cutting tool is assumed to be a circle and shown in FIG. FIG. 6A shows an ideal state with no positional deviation or angular deviation, and is a circle of radius R centered at the origin in the YZ plane. In practice, however, the accuracy of the parts and the accuracy of assembly will cause a deviation from this position. If this is decomposed in each direction, it can be considered that the inclination is β around the Y axis as shown in FIG. 6B, and further γ is inclined around the Z axis as shown in FIG. 6C.

したがって、実際には位置ずれとしてXYZ軸方向にそれぞれΔx、Δy、Δz平行移動し、且つY軸に回りにβ傾き、Z軸回りにγ傾いている円弧と考えることができ、このときの円弧上の位置ベクトルpは次のように表すことができる。   Therefore, in actuality, it can be considered as an arc that translates Δx, Δy, Δz in the XYZ axis directions as a position shift, and that has a β tilt around the Y axis and a γ tilt around the Z axis. The upper position vector p can be expressed as:

Figure 0004652873
Figure 0004652873
Figure 0004652873
Figure 0004652873

ここで、本実施形態ではレーザ光5をX軸と平行に配置しているため、測定により求められるのはYZ座標のみであることから、pはYZ平面への写像(q)と考えることができ、以下のように表すことができる。   Here, in the present embodiment, since the laser beam 5 is arranged in parallel with the X axis, only YZ coordinates are obtained by measurement, and therefore p can be considered as a mapping (q) to the YZ plane. And can be expressed as:

Figure 0004652873
Figure 0004652873

したがって、レーザ光5による第n番目の測定座標を(y,z)=(y´,c´)とすると、以下のように表すことができる。

Figure 0004652873
Therefore, when the nth measurement coordinate by the laser beam 5 is (y, z) = (y ′ n , c ′ n ), it can be expressed as follows.
Figure 0004652873

この式から、不明なパラメータβ、γ、Δy、Δz、Rを求めるには、工具外形上の任意の5個所を測定し、各々のY座標、Z座標を上式に入れることにより、合計15の式を作り、この方程式を解くことことにより求めることができる。   In order to obtain the unknown parameters β, γ, Δy, Δz, R from this equation, a total of 15 is obtained by measuring any five points on the tool outer shape and putting each Y coordinate and Z coordinate in the above equation. Can be obtained by making the following equation and solving this equation.

さらに、Δxを求めるために、Z軸回りに既知の角度θ回転させて、同様にYZ平面への写像γを考えると次のように表すことができる。   Further, in order to obtain Δx, a known angle θ is rotated around the Z axis, and the mapping γ onto the YZ plane can be similarly expressed as follows.

Figure 0004652873
Figure 0004652873

したがって、5個所の測定を終えた後に、主軸を既知の角度θだけ回転させて、任意の第6番目の点を測定を行うことで次式が得られ、Δxを求めることができる。

Figure 0004652873
Therefore, after completing the measurement at five locations, the main axis is rotated by a known angle θ, and an arbitrary sixth point is measured to obtain the following equation, and Δx can be obtained.
Figure 0004652873

なお、これらの方程式は非線形方程式であるため直接的に解くことはできず、ニュートン・ラフソン法により反復的に解くことで解を得ることができる。   Since these equations are non-linear equations, they cannot be solved directly, but can be obtained by iteratively solving using the Newton-Raphson method.

本発明による工具測定方法の一例を図1及び図2、図3を用いて説明する。図1は本発明の測定方法のフローチャートであり、図2、図3は本発明の測定時の切削工具とレーザ光の状態を示している。図2(a)は主軸の制御により工具正面8をX軸方向に向けた切削工具1を工具正面方向から見た状態を示しており、図2(b)はZ軸方向工具先端側から見た状態を示している。図3(a)は主軸の制御により工具正面8を所定角度θ旋回させた後の切削工具1をX軸方向工具正面側から見た状態を示しており、図3(b)はZ軸方向工具先端側から見た状態を示している。   An example of the tool measuring method according to the present invention will be described with reference to FIGS. FIG. 1 is a flowchart of the measurement method of the present invention, and FIGS. 2 and 3 show the state of the cutting tool and laser light during the measurement of the present invention. FIG. 2 (a) shows a state in which the cutting tool 1 with the tool front surface 8 directed in the X-axis direction is viewed from the tool front direction by controlling the spindle, and FIG. 2 (b) is a view from the Z-axis direction tool front end side. Shows the state. FIG. 3A shows a state in which the cutting tool 1 after the tool front surface 8 is turned by a predetermined angle θ by controlling the spindle is viewed from the X-axis direction tool front side, and FIG. 3B shows the Z-axis direction. The state seen from the tool front end side is shown.

図1のフローチャートに基づき説明する。予め、切削工具1は工具正面8がX軸方向を向くように主軸を回転割出した状態で、図4のようにレーザ光源3とレーザ受光部4の間でYZ方向への移動でレーザを遮断可能な位置に位置決めされている。   This will be described based on the flowchart of FIG. In advance, the cutting tool 1 rotates the spindle so that the tool front surface 8 faces the X axis direction, and moves the laser by moving in the YZ direction between the laser light source 3 and the laser light receiving unit 4 as shown in FIG. It is positioned at a position where it can be shut off.

まず、S1において、主軸角度を固定した状態で、YZ平面内で切削工具1を非接触工具長測定装置2とを相対移動させることにより、図2(a)に示す工具刃先のYZ座標5点(y´,y´)から(y´,z´)を測定する。次にS2において、図3(b)に示すように、主軸を既知角度θ回転させる。続いてS3において、YZ平面内で切削工具1を非接触工具長測定装置2とを相対移動させることにより、図3(a)に示す第6番目の工具刃先のYZ座標(y´,z´)を測定する。最後にS4において、測定値から前述した方程式を演算して、位置ずれ量Δx、Δy、Δzと、工具正面の角度のずれ量β、γと、工具半径Rを求める。 First, in S1, by moving the cutting tool 1 relative to the non-contact tool length measuring device 2 in the YZ plane with the spindle angle fixed, five YZ coordinates of the tool edge shown in FIG. (Y ′ 5 , z ′ 5 ) is measured from (y ′ 1 , y ′ 1 ). Next, in S2, as shown in FIG. 3B, the main shaft is rotated by a known angle θ. Subsequently, in S3, the YZ coordinate (y ′ 6 , z) of the sixth tool edge shown in FIG. 3A is obtained by moving the cutting tool 1 relative to the non-contact tool length measuring device 2 in the YZ plane. ' 6 ) is measured. Finally, in S4, the above-described equations are calculated from the measured values to determine the positional deviation amounts Δx, Δy, Δz, the angular deviation amounts β, γ of the tool front, and the tool radius R.

以上により求めることができた工具中心の位置ずれ量Δx、Δy、Δzと、工具正面の角度のずれ量β、γと、工具半径RをNC装置に入力し、これらのずれ量を加味した位置指令をNC装置が出力することで加工形状の誤差を改善することができる。   The tool center position deviation amounts Δx, Δy, Δz, the tool front angle deviation amounts β, γ, and the tool radius R, which can be obtained as described above, are input to the NC apparatus, and the positions taking these deviation amounts into account. An error of the machining shape can be improved by outputting the command from the NC device.

尚、上記の実施形態では、工具中心の位置ずれ量Δx、Δy、Δzと、工具正面の角度のずれ量β、γと、工具半径Rの全てを求めたが、これらの内Δx以外の値の内、既知となっている値がある場合には、測定する座標の数を減らしても良い。   In the above embodiment, the tool center position deviation amounts Δx, Δy, Δz, the tool front angle deviation amounts β, γ, and the tool radius R are all obtained. If there is a known value, the number of coordinates to be measured may be reduced.

また、本発明を直交3軸方向の位置ずれ量のみの算出に用いる場合、或いは工具正面の角度ずれ量のみの算出い用いる場合などは、上述の式に予め求める値以外について既知の値を入れ、式を簡略化して使用することも可能である。   In addition, when the present invention is used for calculating only the positional deviation amount in the three orthogonal axes, or when calculating only the angular deviation amount in front of the tool, a known value other than the previously obtained value is entered in the above formula. It is also possible to use a simplified expression.

また、上記の実施形態では、レーザ光がX軸に平行になるように非接触工具長測定装置を配置し、その結果、最後にX軸方向の位置ずれ量Δxを求めるようになしたが、これに限定されるものではなく、レーザ光が他の送り軸、例えばY軸に平行になるように配置しても良く、その場合はY軸以外の未知の値を先に求め、その後主軸を回転させて1点を計測することによりY軸方向の位置ずれ量を求めることになる。   In the above embodiment, the non-contact tool length measuring device is arranged so that the laser beam is parallel to the X axis, and as a result, the positional deviation amount Δx in the X axis direction is finally obtained. However, the present invention is not limited to this, and the laser beam may be arranged so as to be parallel to another feed axis, for example, the Y axis. By rotating and measuring one point, the amount of positional deviation in the Y-axis direction is obtained.

更に、工具長測定装置は、非接触式に限らず、送り軸の2方向を含む平面内でその2方向の座標値を求めることができるものであれば良い。   Furthermore, the tool length measuring device is not limited to the non-contact type, and any device that can determine the coordinate values in the two directions within a plane including the two directions of the feed shaft may be used.

本発明による工具測定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the tool measuring method by this invention. 本発明の工具測定方法による工具正面がX軸方向を向いたときの工具刃先の測定点を示す図である。It is a figure which shows the measuring point of a tool blade edge when the tool front by the tool measuring method of this invention faces the X-axis direction. 本発明の工具測定方法による工具正面がYZ平面に対し所定角度回転させた状態での工具刃先の測定点を示す図である。It is a figure which shows the measuring point of the tool blade edge in the state which the tool front surface by the tool measuring method of this invention rotated predetermined angle with respect to the YZ plane. 本発明の測定方法を実施する構成を示す図である。It is a figure which shows the structure which implements the measuring method of this invention. 本発明の工具測定時の工具と主軸回転中心との位置関係を示す図である。It is a figure which shows the positional relationship of the tool at the time of the tool measurement of this invention, and a spindle rotation center. 工具と主軸回転中心との位置関係を説明する図である。It is a figure explaining the positional relationship of a tool and a spindle rotation center.

符号の説明Explanation of symbols

1・・・切削工具
2・・・非接触工具長測定装置
3・・・レーザ光源
4・・・レーザ受光部
5・・・レーザ光
6・・・主軸回転中心
7・・・工具中心
8・・・工具正面
DESCRIPTION OF SYMBOLS 1 ... Cutting tool 2 ... Non-contact tool length measuring device 3 ... Laser light source 4 ... Laser light-receiving part 5 ... Laser beam 6 ... Spindle center of rotation 7 ... Tool center 8. ..Tool front

Claims (3)

互いに直交するX軸、Y軸、Z軸の3方向の送り軸制御による移動と主軸の回転角度制御により、主軸に取り付けた切削工具でワークを加工する工作機械において、加工に用いられる刃先が円弧形状をした非回転の切削工具を測定する方法であって、主軸の回転角度制御により、前記切削工具の工具正面をZ軸とY軸とを含む平面(YZ平面)に平行になるように割出したときの、前記主軸の回転中心と前記切削工具の円弧中心との前記Y軸及びZ軸方向の位置ずれ(Δy、Δz)、前記工具正面の、前記YZ平面に対するY軸回りの角度ずれ(β)、前記工具正面の、前記YZ平面に対するZ軸回りの角度ずれ(γ)、前記切削工具の円弧半径(R)の内、少なくとも1つ以上nヶの未知の値と、前記主軸の回転中心と前記切削工具の円弧中心との前記X軸方向の位置ずれ(Δx)とを、前記YZ平面内の2次元座標を測定する測定装置により求める測定方法において、
主軸の回転角度制御により、前記切削工具の工具正面を前記YZ平面に略平行になるよう割出し、
任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)を測定し、
主軸を回転角度制御により所定角度回転させ、
任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)を測定し、
前記任意のn点と1点の測定刃先座標から、主軸回転中心と工具中心の位置ずれ(Δx、Δy、Δz)と工具正面の角度ずれ(β、γ)と工具半径(R)との内、未知の値を求めることを特徴とする工作機械の工具測定方法。
In a machine tool that processes a workpiece with a cutting tool attached to the main axis by movement by three-direction feed axis control of X, Y, and Z axes orthogonal to each other and rotation angle control of the main axis, the cutting edge used for processing is an arc A method of measuring a non-rotating cutting tool having a shape, wherein the tool front surface of the cutting tool is divided so as to be parallel to a plane (YZ plane) including the Z axis and the Y axis by controlling the rotation angle of the spindle. Position deviation (Δy, Δz) between the rotation center of the main shaft and the arc center of the cutting tool in the Y-axis and Z-axis directions, and angle deviation of the tool front surface around the Y-axis with respect to the YZ plane (Β), at least one or more unknown values among the angle deviation (γ) around the Z axis with respect to the YZ plane on the front surface of the tool, and the arc radius (R) of the cutting tool, The center of rotation and the arc of the cutting tool In the method of the said X-axis direction position deviation ([Delta] x), determined by a measuring device for measuring the two-dimensional coordinates in the YZ plane with,
By controlling the rotation angle of the spindle, the tool front of the cutting tool is indexed so as to be substantially parallel to the YZ plane,
Measure Y-axis coordinates and Z-axis coordinates (y ′ 1 , z ′ 1 ... Y ′ n , z ′ n ) of an arbitrary n-point cutting edge,
Rotate the spindle by a predetermined angle by rotation angle control,
Measure the Y-axis coordinate and Z-axis coordinate (y ′, z ′) of any one cutting edge,
From the arbitrary n points and one measurement edge coordinate, the position deviation (Δx, Δy, Δz) between the spindle rotation center and the tool center, the angle deviation (β, γ) of the tool front, and the tool radius (R) A method for measuring a tool of a machine tool characterized by obtaining an unknown value.
前記任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)から、前記Y軸及びZ軸方向の位置ずれ(Δy、Δz)、前記Y軸回りの角度ずれ(β)、前記Z軸回りの角度ずれ(γ)、前記切削工具の円弧半径(R)の内の未知の値を求め、
求めた未知の値と所定角度回転後の前記任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)から、前記X軸方向の位置ずれ(Δx)を求めることを特徴とする請求項1に記載の工作機械の工具測定方法。
From the Y-axis coordinate and the Z-axis coordinate (y ′ 1 , z ′ 1 ... Y ′ n , z ′ n ) of the arbitrary n-point cutting edge, the positional deviation (Δy, Δz) in the Y-axis and Z-axis directions. ), Determining an unknown value among the angular deviation (β) about the Y axis, the angular deviation (γ) about the Z axis, and the arc radius (R) of the cutting tool,
The positional deviation (Δx) in the X-axis direction is obtained from the obtained unknown value and the Y-axis coordinate and the Z-axis coordinate (y ′, z ′) of the arbitrary one point of the blade after being rotated by a predetermined angle. A tool measuring method for a machine tool according to claim 1.
前記任意のn点の刃先のY軸座標及びZ軸座標(y´,z´・・・y´,z´)及び、所定角度回転後の任意の1点の刃先のY軸座標及びZ軸座標(y´,z´)の測定を、前記X軸に平行なレーザ光を用いて行うことを特徴とする請求項1又は2に記載の工作機械の工具測定方法。
Y-axis coordinate and Z-axis coordinate (y ′ 1 , z ′ 1 ... Y ′ n , z ′ n ) of the arbitrary n- point cutting edge, and the Y-axis of the arbitrary one-point cutting edge after a predetermined angle rotation The tool measurement method for a machine tool according to claim 1 or 2, wherein measurement of coordinates and Z-axis coordinates (y ', z') is performed using a laser beam parallel to the X-axis.
JP2005109587A 2005-04-06 2005-04-06 Tool measurement method for machine tools Expired - Fee Related JP4652873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109587A JP4652873B2 (en) 2005-04-06 2005-04-06 Tool measurement method for machine tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109587A JP4652873B2 (en) 2005-04-06 2005-04-06 Tool measurement method for machine tools

Publications (2)

Publication Number Publication Date
JP2006289513A JP2006289513A (en) 2006-10-26
JP4652873B2 true JP4652873B2 (en) 2011-03-16

Family

ID=37410661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109587A Expired - Fee Related JP4652873B2 (en) 2005-04-06 2005-04-06 Tool measurement method for machine tools

Country Status (1)

Country Link
JP (1) JP4652873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017001297A1 (en) 2016-02-19 2017-08-24 Fanuc Corporation Device for indexing a spindle phase for a machine tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876561B1 (en) 2007-07-03 2008-12-31 한국전자통신연구원 Position correction device of mobile robot and its method
JP2010256341A (en) * 2009-03-31 2010-11-11 Toshiba Mach Co Ltd Cutting-edge position detecting method and cutting-edge position detecting apparatus
DE112014006253T5 (en) 2014-01-24 2016-10-27 Mitsubishi Electric Corporation Tool shape measuring device and tool shape measuring method
JP6963833B2 (en) 2019-07-24 2021-11-10 株式会社レイズエンジニアリング How to manufacture vehicle wheels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06711A (en) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd Cutting method
JPH10328979A (en) * 1997-05-26 1998-12-15 Okuma Mach Works Ltd Detection of angle phase difference of knife edge of fixed tool
JP2000148219A (en) * 1998-11-12 2000-05-26 Mori Seiki Co Ltd Tool correction quantity calculating device using image pickup device
JP2004034278A (en) * 2002-07-08 2004-02-05 Makino Milling Mach Co Ltd Tool measuring method and machine tool equipped with tool measurement function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06711A (en) * 1992-06-19 1994-01-11 Makino Milling Mach Co Ltd Cutting method
JPH10328979A (en) * 1997-05-26 1998-12-15 Okuma Mach Works Ltd Detection of angle phase difference of knife edge of fixed tool
JP2000148219A (en) * 1998-11-12 2000-05-26 Mori Seiki Co Ltd Tool correction quantity calculating device using image pickup device
JP2004034278A (en) * 2002-07-08 2004-02-05 Makino Milling Mach Co Ltd Tool measuring method and machine tool equipped with tool measurement function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017001297A1 (en) 2016-02-19 2017-08-24 Fanuc Corporation Device for indexing a spindle phase for a machine tool
US9902031B2 (en) 2016-02-19 2018-02-27 Fanuc Corporation Spindle phase indexing device for machine tool

Also Published As

Publication number Publication date
JP2006289513A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
US9448552B2 (en) Numerically-controlled machine tool and spindle error compensating method thereof
TWI451217B (en) Method for calculating probe mounting position in on-machine measuring device
US8250952B2 (en) Method of machine tool calibration
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
JP4510755B2 (en) Tool edge position calculation method and machine tool
JP2017159376A (en) Machine accuracy measuring method and device in machine tool
JP2009519137A5 (en)
JP2011173234A (en) Control method for machine tool
JP2015203567A (en) Metrology system
CN113518690B (en) Cutting device and contact position determination program
JP4652873B2 (en) Tool measurement method for machine tools
JP7221900B2 (en) Computer program, workpiece machining method using computer program, and workpiece machining apparatus using computer program
KR20220044506A (en) Machining error compensation system and method during precision jig grinding process
JP2015069355A (en) Error correction amount creation device
CN111492199A (en) Method and device for measuring a rolling tool
TW201616256A (en) Method and device for the determination of at least one model parameter of a virtual tool model of a tool
JP2007257606A (en) Method for correcting tool alignment error
JP5272598B2 (en) Method for specifying jig coordinates of machining apparatus and machining apparatus using the method
US10088831B2 (en) Numerical controller capable of checking interference between tool and workpiece
JP2017124485A (en) Machine tool and correction method of tool tip position
JP7266511B2 (en) POSITION MEASURING METHOD OF OBJECT IN MACHINE TOOL, POSITION MEASURING SYSTEM, AND POSITION MEASURING PROGRAM
JP6623061B2 (en) Machine tool and control method of machine tool
JP2007054930A (en) Positioning method and device for tool
US20200206861A1 (en) Method for determining the topography of a machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Ref document number: 4652873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees