JP2010123728A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2010123728A
JP2010123728A JP2008295558A JP2008295558A JP2010123728A JP 2010123728 A JP2010123728 A JP 2010123728A JP 2008295558 A JP2008295558 A JP 2008295558A JP 2008295558 A JP2008295558 A JP 2008295558A JP 2010123728 A JP2010123728 A JP 2010123728A
Authority
JP
Japan
Prior art keywords
internal
solid electrolytic
electrolytic capacitor
terminal
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008295558A
Other languages
Japanese (ja)
Other versions
JP5131852B2 (en
Inventor
Tetsuhiro Osumi
哲博 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008295558A priority Critical patent/JP5131852B2/en
Publication of JP2010123728A publication Critical patent/JP2010123728A/en
Application granted granted Critical
Publication of JP5131852B2 publication Critical patent/JP5131852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor of high reliability in connection by eliminating the infiltration of solder at the time of mounting. <P>SOLUTION: In a solid electrolytic capacitor 100, a capacitor element 1 on a conversion substrate is covered with an armoring resin 8. A solder resist resin 9 is formed between the end face side of an internal positive-pole terminal 6a and the armoring resin 8 and between the end face side of an internal negative-pole terminal 7a and the armoring resin 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体電解コンデンサに関し、特に変換基板を用いた固体電解コンデンサに関する。   The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor using a conversion substrate.

図4は、従来の固体電解コンデンサを示す断面図である。又、図5は、従来の固体電解コンデンサの組み立て途中工程の斜視図、図6は従来の固体電解コンデンサに用いる変換基板の斜視図を示す。   FIG. 4 is a cross-sectional view showing a conventional solid electrolytic capacitor. FIG. 5 is a perspective view of a process for assembling a conventional solid electrolytic capacitor, and FIG. 6 is a perspective view of a conversion substrate used for the conventional solid electrolytic capacitor.

図4に示すように、従来の固体電解コンデンサの端子基板構造は、変換基板10の上面に内部陽極端子6aと内部陰極端子7aを有している。この内部陽極端子6aと内部陰極端子7aは、図6に示すように平板状の変換基板10上に金メッキを施して設けたもので、図5のようにコンデンサ素子の陽極リード2の先端部分に陽極金属片5が、陽極リード2と抵抗溶接によって接続され、その後、前記陽極金属片5と前記内部陽極端子6aが導電性接着剤4を介して接続され、又、コンデンサ素子1の外表面に形成された陰極層3に導電性接着剤4を介して陰極層3と内部陰極端子7aが接続されている。   As shown in FIG. 4, the terminal substrate structure of the conventional solid electrolytic capacitor has an internal anode terminal 6a and an internal cathode terminal 7a on the upper surface of the conversion substrate 10. The internal anode terminal 6a and the internal cathode terminal 7a are provided by applying gold plating on a flat conversion substrate 10 as shown in FIG. 6, and are provided at the tip of the anode lead 2 of the capacitor element as shown in FIG. The anode metal piece 5 is connected to the anode lead 2 by resistance welding, and then the anode metal piece 5 and the internal anode terminal 6 a are connected via the conductive adhesive 4, and to the outer surface of the capacitor element 1. The cathode layer 3 and the internal cathode terminal 7a are connected to the formed cathode layer 3 via a conductive adhesive 4.

このように、それぞれ陽極及び陰極が接続された後、外装樹脂8を形成させ、さらに、図4のように外部陽極端子6bと外部陰極端子7bの間の寸法が規定の寸法となるようにダイシングにより、外部陽極端子6bと外部陰極端子7bの外側部分を切断除去し製品外形を整えることにより固体電解コンデンサ100が製作される(例えば特許文献1)。   Thus, after the anode and the cathode are connected to each other, the exterior resin 8 is formed, and the dicing is performed so that the dimension between the external anode terminal 6b and the external cathode terminal 7b becomes a predetermined dimension as shown in FIG. Thus, the solid electrolytic capacitor 100 is manufactured by cutting and removing the outer portions of the external anode terminal 6b and the external cathode terminal 7b to adjust the outer shape of the product (for example, Patent Document 1).

上述した固体電解コンデンサにおいて、製品実装時に実装はんだが内部陽極端子6aおよび内部陰極端子7aと外装樹脂8の界面に侵入後、冷却時に実装はんだが凝固した際に内部陽極端子6aおよび内部陰極端子7aと外装樹脂8にすき間を発生させ、さらに陰極層3と導電性接着剤4を剥離させてしまう。そのため、接続の信頼性の高い製品を供給することができない欠点があった。   In the above-described solid electrolytic capacitor, when the mounting solder penetrates into the interface between the internal anode terminal 6a and internal cathode terminal 7a and the exterior resin 8 during product mounting, and the mounting solder solidifies during cooling, the internal anode terminal 6a and internal cathode terminal 7a. As a result, a gap is generated in the exterior resin 8, and the cathode layer 3 and the conductive adhesive 4 are peeled off. Therefore, there is a drawback that a product with high connection reliability cannot be supplied.

特開2002−110458号公報JP 2002-110458 A

本発明は、実装時のはんだ侵入をなくし接続の信頼性が高い固体電解コンデンサを提供することにある。   An object of the present invention is to provide a solid electrolytic capacitor that eliminates solder intrusion during mounting and has high connection reliability.

本発明によれば、上面に内部陽極端子と内部陰極端子が設けられ、下面に前記内部陽極端子とスルーホールを介して導通する外部陽極端子と前記内部陰極端子とスルーホールを介して導通する外部陰極端子が設けられた変換基板に陽極リードが導出されたコンデンサ素子を搭載した前記変換基板上のコンデンサ素子を外装樹脂で被覆した固体電解コンデンサにおいて、前記内部陽極端子の端面側と前記外装樹脂の間、及び、前記内部陰極端子の端面側と前記外装樹脂の間にソルダーレジスト樹脂を形成したことを特徴とする固体電解コンデンサを得ることが出来る。   According to the present invention, the internal anode terminal and the internal cathode terminal are provided on the upper surface, and the external anode terminal that is electrically connected to the internal anode terminal and the through-hole on the lower surface and the external electrode that is electrically connected to the internal cathode terminal and the through-hole. In a solid electrolytic capacitor in which a capacitor element on the conversion board on which a capacitor element from which an anode lead is led is mounted on a conversion board provided with a cathode terminal is coated with an exterior resin, the end face side of the internal anode terminal and the exterior resin A solid electrolytic capacitor characterized in that a solder resist resin is formed between and between the end face side of the internal cathode terminal and the exterior resin can be obtained.

本発明によれば、内部陽極端子および内部陰極端子と外装樹脂との界面に該当する部分に、ソルダーレジスト樹脂(以後レジスト樹脂と記載)を塗布することで実装はんだがその界面に侵入することを防止することで、接続の信頼性が高い固体電解コンデンサを提供することが出来る。   According to the present invention, by mounting a solder resist resin (hereinafter referred to as resist resin) on a portion corresponding to the interface between the internal anode terminal and the internal cathode terminal and the exterior resin, the mounting solder enters the interface. By preventing this, a solid electrolytic capacitor with high connection reliability can be provided.

本発明の実施の形態について図面を参照して説明する。図1は、本発明の実施の形態による固体電解コンデンサの断面図を示し、図2は本発明の固体電解コンデンサの組み立て途中工程の斜視図、図3は本発明に用いる変換基板の斜視図を示す(尚、図2、図3においては、各部位が明確にわかり易くするように一部ハッチングを用いた)。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a solid electrolytic capacitor according to an embodiment of the present invention, FIG. 2 is a perspective view of an assembly process of the solid electrolytic capacitor of the present invention, and FIG. 3 is a perspective view of a conversion board used in the present invention. This is shown (in FIG. 2 and FIG. 3, some hatching is used so that each part is clearly understandable).

タンタル、アルミニウム、ニオブのような弁作用金属をプレス成型後、真空高温焼結処理による多孔質体を形成する方法、又は、エッチング処理による拡面化を施して無数の多孔質体を形成する。その後、この多孔質体の表面に電気化学的生成方法により誘電体皮膜を形成した後、固体電解質を形成する。固体電解質としては、チオフェンモノマーやピロールモノマー及びこれらの誘導体モノマーを重合反応により得られる導電性高分子もしくは、硝酸マンガンの熱分解反応から得られる二酸化マンガンがあげられる。しかる後、前記固体電解質の上にグラファイトペースト及び、銀ペーストによる陰極層3を順次形成してコンデンサ素子1とする。   After press molding a valve metal such as tantalum, aluminum, or niobium, an infinite number of porous bodies are formed by a method of forming a porous body by vacuum high-temperature sintering treatment or by surface enlargement by etching treatment. Then, after forming a dielectric film on the surface of the porous body by an electrochemical generation method, a solid electrolyte is formed. Examples of the solid electrolyte include a conductive polymer obtained by polymerizing a thiophene monomer, a pyrrole monomer, and a derivative monomer thereof, or manganese dioxide obtained from a thermal decomposition reaction of manganese nitrate. Thereafter, a cathode layer 3 made of graphite paste and silver paste is sequentially formed on the solid electrolyte to obtain a capacitor element 1.

図1より、外表面に陰極層3を有し、一方の端部から外方に向かって陽極リード2が突出しているコンデンサ素子と、前記陰極層3に電気的に接続されている平面状の変換基板10上に金メッキを施して設けた内部陰極端子7aと、前記陽極リード2の先端部分に前記陽極金属片5(例えば、長さ0.3mm×幅0.7mm×厚さ0.2mm)を介し、電気的に接続されている平面上の変換基板10上に金メッキを施して設けた内部陽極端子6aとが、外装樹脂8の下面側に配置された固体電解コンデンサ100において、前記内部陽極端子6aと前記内部陰極端子7aの上面部にレジスト樹脂9を形成した構造となっている。前記陽極金属片材料としては42合金や銅などがあげられ、又、外装樹脂材料としては、ガラス含有エポキシ樹脂、液晶ポリマー、トランスファーモールド樹脂、粉体樹脂または、液状エポキシ樹脂があげられる。又、前記レジスト樹脂には、フェノール樹脂、エポキシ樹脂などがあげられ、樹脂特性としては、前記外装樹脂と比較して前記内部陽陰極端子との密着強度が高いことが好ましい。これは、前記実装はんだが実装はんだが内部陽極端子6aおよび内部陰極端子7aと外装樹脂8の界面に侵入を防止することに対して有効である。   From FIG. 1, a capacitor element having a cathode layer 3 on the outer surface and having an anode lead 2 projecting outward from one end, and a planar shape electrically connected to the cathode layer 3. An internal cathode terminal 7a provided by applying gold plating on the conversion substrate 10 and the anode metal piece 5 (for example, length 0.3 mm × width 0.7 mm × thickness 0.2 mm) at the tip of the anode lead 2 In the solid electrolytic capacitor 100 in which the internal anode terminal 6a provided by performing gold plating on the conversion substrate 10 on the plane that is electrically connected to each other is disposed on the lower surface side of the exterior resin 8, the internal anode The resist resin 9 is formed on the upper surfaces of the terminal 6a and the internal cathode terminal 7a. Examples of the anode metal piece material include 42 alloy and copper, and examples of the exterior resin material include glass-containing epoxy resin, liquid crystal polymer, transfer mold resin, powder resin, and liquid epoxy resin. Examples of the resist resin include a phenol resin and an epoxy resin, and it is preferable that the resin properties have higher adhesion strength with the internal positive and negative electrode terminals than the exterior resin. This is effective for preventing the mounting solder from penetrating into the interface between the internal anode terminal 6 a and the internal cathode terminal 7 a and the exterior resin 8.

ここで、図3の前記内部陽極端子6aと前記内部陰極端子7aの上面部にレジスト樹脂9を形成しているが、形成位置は、外部陽極端子6bと外部陰極端子7bの外側である線Dでダイシングにより切断除去して、製品外形を整えた際に前記レジスト樹脂9が露出するべく位置に形成する。   Here, although the resist resin 9 is formed on the upper surface portions of the internal anode terminal 6a and the internal cathode terminal 7a in FIG. 3, the formation position is a line D outside the external anode terminal 6b and the external cathode terminal 7b. Then, the resist resin 9 is formed at a position so that the resist resin 9 is exposed when the outer shape of the product is adjusted by dicing.

しかる後、陽極体1を図2のように内部陽極端子6a上に陽極金属片5を内部陰極端子7a上に陰極層3をそれぞれ配置し、コンデンサ素子1を従来技術に述べたように、陽極部及び陰極部を接続した後、樹脂外装8を実施して前述した後、ダイシングにより製品外形を整え、例えば、長さ2.0mm×幅1.2mm×高さ1.0mmの図1に示す固体電解コンデンサ100を製作する。   Thereafter, the anode body 1 is arranged with the anode metal piece 5 and the cathode layer 3 on the internal cathode terminal 7a as shown in FIG. After connecting the part and the cathode part, after carrying out the resin sheathing 8 as described above, the outer shape of the product is adjusted by dicing, for example, as shown in FIG. 1 of length 2.0 mm × width 1.2 mm × height 1.0 mm. A solid electrolytic capacitor 100 is manufactured.

本発明の実施例について図面を参照しながら説明する。本発明の実施例の示す固体電解コンデンサが、従来の固体電解コンデンサを示す断面図である図4の従来の固体電解コンデンサと相違する点は、図1に示すように変換基板10の内部陽極端子6aと内部陰極端子7aにダイシングによる切断加工部に沿ってレジスト樹脂9を形成している点である。   Embodiments of the present invention will be described with reference to the drawings. The solid electrolytic capacitor shown in the embodiment of the present invention is different from the conventional solid electrolytic capacitor of FIG. 4 which is a cross-sectional view showing a conventional solid electrolytic capacitor, as shown in FIG. 6a and the internal cathode terminal 7a, the resist resin 9 is formed along the cutting process part by dicing.

まず、コンデンサ素子1(図1)の作製については、公知の技術によるので簡略にして、タンタルを弁作用金属として用いた場合を説明する。タンタル線のまわりに、タンタル粉末をプレス機で成型し、高真空・高温度で焼結した。次にタンタル金属粉末の表面にTa25の酸化被膜を形成する。さらに、硝酸マンガンに浸漬した後、200℃で熱分解して、MnO2を形成し、引き続き、グラファイト及び銀ペーストによる陰極層3を形成して、コンデンサ素子1を得た。 First, the production of the capacitor element 1 (FIG. 1) is based on a known technique, so that the case where tantalum is used as the valve metal will be described. A tantalum powder was molded around the tantalum wire with a press machine and sintered at high vacuum and high temperature. Next, an oxide film of Ta 2 O 5 is formed on the surface of the tantalum metal powder. Further, after being immersed in manganese nitrate, it was thermally decomposed at 200 ° C. to form MnO 2 , and subsequently, a cathode layer 3 made of graphite and silver paste was formed to obtain a capacitor element 1.

次に、変換基板の構造について説明する。本実施例の変換基板としては、図3に示すように、厚さ0.1mmの絶縁性の基板の上面に、コンデンサ素子と導電性接着剤を介して接合させるためのコンデンサ素子1の接続面の寸法が、長さ0.3mm×幅1.0mmの内部陽極端子6a及び、長さ1.35mm×幅1.0mmの内部陰極極端子7aが形成されている。また、反対の実装電極面には、コンデンサ実装用電極からなる実装電極面に長さ0.7mm×幅0.9mmの外部陽極端子6b及び外部陰極端子7bが形成されている。そして、前記内部陽陰極端子と前記外部陽陰極端子をそれぞれを導通化させるために、基板内に複数箇所のスルーホール11を形成した。   Next, the structure of the conversion substrate will be described. As shown in FIG. 3, the conversion substrate of this embodiment is a connection surface of a capacitor element 1 for bonding to the upper surface of an insulating substrate having a thickness of 0.1 mm through a conductive adhesive. The internal anode terminal 6a having a length of 0.3 mm × width of 1.0 mm and the internal cathode terminal 7a having a length of 1.35 mm × width of 1.0 mm are formed. On the opposite mounting electrode surface, an external anode terminal 6b and an external cathode terminal 7b having a length of 0.7 mm and a width of 0.9 mm are formed on a mounting electrode surface made of a capacitor mounting electrode. Then, in order to make the internal positive electrode terminal and the external positive electrode terminal conductive, a plurality of through holes 11 were formed in the substrate.

前記基板の内部陽極端子6aと内部陰極端子7aの上にレジスト樹脂9である一液性熱硬化型ソルダーレジストインキを前記の端子の幅に沿って塗布するが、塗布幅は左右に端子が見えないように万遍に塗布する。塗布後、150℃ 30分間乾燥後、従来方法と同様に固体電解コンデンサ100を製作した。   A one-component thermosetting solder resist ink, which is a resist resin 9, is applied along the width of the terminal on the internal anode terminal 6a and the internal cathode terminal 7a of the substrate. Apply evenly so that there is no. After coating, the solid electrolytic capacitor 100 was manufactured in the same manner as in the conventional method after drying at 150 ° C. for 30 minutes.

(比較例)
比較例については、前述のレジスト樹脂を塗布しないこと以外は、実施例と同様とした。
(Comparative example)
The comparative example was the same as the example except that the resist resin was not applied.

本実施例と比較例をそれぞれ1000個の固体電解コンデンサを製作して、それぞれ厚み0.8mmの実装基板に搭載した後、240℃ 10秒の条件でリフローを実施した。その後、X線により固体電解コンデンサ100における内部陽極端子6aおよび内部陰極端子7aと外装樹脂8との界面に実装はんだが侵入している製品混入率を確認した結果を表1に示した。   In this example and comparative example, 1000 solid electrolytic capacitors were manufactured and mounted on a mounting board having a thickness of 0.8 mm, respectively, and then reflow was performed at 240 ° C. for 10 seconds. Thereafter, Table 1 shows the result of confirming the product mixing rate in which the mounting solder penetrates into the interface between the internal anode terminal 6a and the internal cathode terminal 7a and the exterior resin 8 in the solid electrolytic capacitor 100 by X-rays.

Figure 2010123728
Figure 2010123728

表1から明らかなように、比較例に比べて実施例の実装はんだ侵入率が改善されていることがわかる。この事により、内部陽極端子6aおよび内部陰極端子7aと外装樹脂8との界面に該当する部分に、レジスト樹脂を塗布することで実装はんだがその界面に侵入することを防止することで、接続の信頼性が高い固体電解コンデンサを得ることが出来る。   As apparent from Table 1, it can be seen that the mounting solder penetration rate of the example is improved as compared with the comparative example. By this, by applying a resist resin to the portion corresponding to the interface between the internal anode terminal 6a and the internal cathode terminal 7a and the exterior resin 8, it is possible to prevent the mounting solder from entering the interface. A solid electrolytic capacitor with high reliability can be obtained.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち、当業者であれば、なしうるであろう各種変形、修正を含むことはもちろんである。特に変換基板については、一般的な材料及び製造方法で製作可能であり、実施例では1個分の製品について記述しているが、1枚のプリント回路板に複数個分の製品パターンを形成して多数個取りの対応を行うことも可能である。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to this embodiment, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, it goes without saying that various modifications and corrections that can be made by those skilled in the art are included. In particular, the conversion substrate can be manufactured using general materials and manufacturing methods. In the embodiment, one product is described, but a plurality of product patterns are formed on one printed circuit board. It is also possible to handle multiple pieces.

本発明の実施の形態による固体電解コンデンサの断面図。1 is a cross-sectional view of a solid electrolytic capacitor according to an embodiment of the present invention. 本発明の固体電解コンデンサの組み立て途中工程の斜視図。The perspective view of the assembly middle process of the solid electrolytic capacitor of this invention. 本発明に用いる変換基板の斜視図。The perspective view of the conversion board | substrate used for this invention. 従来の固体電解コンデンサを示す断面図。Sectional drawing which shows the conventional solid electrolytic capacitor. 従来の固体電解コンデンサの組み立て途中工程の斜視図。The perspective view of the assembly process of the conventional solid electrolytic capacitor. 従来の固体電解コンデンサに用いる変換基板の斜視図。The perspective view of the conversion board | substrate used for the conventional solid electrolytic capacitor.

符号の説明Explanation of symbols

1 コンデンサ素子
2 陽極リード
3 陰極層
4 導電性接着剤
5 陽極金属片
6a 内部陽極端子
6b 外部陽極端子
7a 内部陰極端子
7b 外部陰極端子
8 外装樹脂
9 (ソルダー)レジスト樹脂
10 変換基板
11 スルーホール
100 固体電解コンデンサ
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode lead 3 Cathode layer 4 Conductive adhesive 5 Anode metal piece 6a Internal anode terminal 6b External anode terminal 7a Internal cathode terminal 7b External cathode terminal 8 Exterior resin 9 (solder) Resist resin 10 Conversion substrate 11 Through hole 100 Solid electrolytic capacitor

Claims (1)

上面に内部陽極端子と内部陰極端子が設けられ、下面に前記内部陽極端子とスルーホールを介して導通する外部陽極端子と前記内部陰極端子とスルーホールを介して導通する外部陰極端子が設けられた変換基板に陽極リードが導出されたコンデンサ素子を搭載した前記変換基板上のコンデンサ素子を外装樹脂で被覆した固体電解コンデンサにおいて、前記内部陽極端子の端面側と前記外装樹脂の間、及び、前記内部陰極端子の端面側と前記外装樹脂の間にソルダーレジスト樹脂を形成したことを特徴とする固体電解コンデンサ。   An internal anode terminal and an internal cathode terminal are provided on the upper surface, and an external anode terminal electrically connected to the internal anode terminal through the through hole and an external cathode terminal electrically connected to the internal cathode terminal and the through hole are provided on the lower surface. In a solid electrolytic capacitor in which a capacitor element on which the anode lead is derived is mounted on the conversion substrate and the capacitor element on the conversion substrate is covered with an exterior resin, between the end face side of the internal anode terminal and the exterior resin, and the internal A solid electrolytic capacitor, wherein a solder resist resin is formed between an end face side of a cathode terminal and the exterior resin.
JP2008295558A 2008-11-19 2008-11-19 Solid electrolytic capacitor Active JP5131852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295558A JP5131852B2 (en) 2008-11-19 2008-11-19 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295558A JP5131852B2 (en) 2008-11-19 2008-11-19 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010123728A true JP2010123728A (en) 2010-06-03
JP5131852B2 JP5131852B2 (en) 2013-01-30

Family

ID=42324815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295558A Active JP5131852B2 (en) 2008-11-19 2008-11-19 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5131852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231120A (en) * 2011-04-15 2012-11-22 Nec Tokin Corp Solid electrolytic capacitor
WO2014068923A1 (en) * 2012-10-29 2014-05-08 三洋電機株式会社 Solid electrolytic capacitor and method for manufacturing same
US9741495B2 (en) 2012-09-28 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor including pillow member having edge overlapping recessed portion or through hole, and production method therefor
EP3761492B1 (en) * 2019-07-05 2023-01-04 Infineon Technologies AG Snubber circuit and power semiconductor module with snubber circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191433A (en) * 2003-12-26 2005-07-14 Tdk Corp Capacitor
JP2007234749A (en) * 2006-02-28 2007-09-13 Nichicon Corp Manufacturing method of chip-shape solid electrolytic capacitor
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191433A (en) * 2003-12-26 2005-07-14 Tdk Corp Capacitor
JP2007234749A (en) * 2006-02-28 2007-09-13 Nichicon Corp Manufacturing method of chip-shape solid electrolytic capacitor
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231120A (en) * 2011-04-15 2012-11-22 Nec Tokin Corp Solid electrolytic capacitor
US9007743B2 (en) 2011-04-15 2015-04-14 Nec Tokin Corporation Solid electrolytic capacitor
US9741495B2 (en) 2012-09-28 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor including pillow member having edge overlapping recessed portion or through hole, and production method therefor
US10014119B2 (en) 2012-09-28 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor including positive electrode connection member having recessed portion, and production method therefor
WO2014068923A1 (en) * 2012-10-29 2014-05-08 三洋電機株式会社 Solid electrolytic capacitor and method for manufacturing same
JPWO2014068923A1 (en) * 2012-10-29 2016-09-08 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
EP3761492B1 (en) * 2019-07-05 2023-01-04 Infineon Technologies AG Snubber circuit and power semiconductor module with snubber circuit

Also Published As

Publication number Publication date
JP5131852B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
TWI412048B (en) Solid electrolytic capacitor and its manufacturing method
US20090116173A1 (en) Solid electrolytic capacitor
WO2001082319A1 (en) Solid electrolyte capacitor
JP5131852B2 (en) Solid electrolytic capacitor
US8320106B2 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
US7508652B2 (en) Solid electrolytic capacitor and method of making same
JP5201671B2 (en) Bottom electrode type solid electrolytic capacitor and manufacturing method thereof
JP2002299161A (en) Composite electronic component
JP2011014663A (en) Solid electrolytic capacitor
KR102052763B1 (en) Tantalum capacitor and method of preparing the same
JP4285346B2 (en) Manufacturing method of solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JP6647124B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP5469960B2 (en) Bottom electrode type solid electrolytic capacitor and manufacturing method thereof
JP5164213B2 (en) Solid electrolytic capacitor
KR102064017B1 (en) Solid electrolytic capacitor
JP3958725B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP5201670B2 (en) Solid electrolytic capacitor
JP2008109007A (en) Method of manufacturing bottom-surface electrode type solid-state electrolytic capacitor, and lead frame used for the same
JP2005012084A (en) Circuit module
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP2022085762A (en) Electrolytic capacitor
JPH09102442A (en) Manufacture of nonpolar solid-state electrolytic capacitor
JP5642508B2 (en) Surface mount thin capacitors
JP2011108843A (en) Surface mounting solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250