JP2010123645A - Fine-particle material for preventing electromagnetic wave - Google Patents

Fine-particle material for preventing electromagnetic wave Download PDF

Info

Publication number
JP2010123645A
JP2010123645A JP2008294079A JP2008294079A JP2010123645A JP 2010123645 A JP2010123645 A JP 2010123645A JP 2008294079 A JP2008294079 A JP 2008294079A JP 2008294079 A JP2008294079 A JP 2008294079A JP 2010123645 A JP2010123645 A JP 2010123645A
Authority
JP
Japan
Prior art keywords
fine particle
particle material
electromagnetic waves
electromagnetic wave
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008294079A
Other languages
Japanese (ja)
Inventor
Jinko Cho
仁 鴻 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008294079A priority Critical patent/JP2010123645A/en
Publication of JP2010123645A publication Critical patent/JP2010123645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost fine-particle material for preventing an electromagnetic wave to effectively shield and absorb the electromagnetic wave in a wider frequency range among the fine-particle materials for preventing the electromagnetic wave that can be added to a polymer, a plastic material/resin paint or to the basic material of spinning fiber and cement powder or the like. <P>SOLUTION: The fine-particle material for preventing the electromagnetic wave is formed of at least one conductive fine-particle material and the conductive fine-particle material is formed of a granular conductive fine particle including a mixed tube/fiber state structural conductive fine particle or a structural conductive fine particle. A part of the electromagnetic wave absorbing fine-particle material can further be doped into the fine-particle material for preventing the electromagnetic wave in order to enhance capability for absorbing and eliminating or removing the electromagnetic wave. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電磁波防止用の微粒子材料に係り、特に、高分子、プラスチック材料/樹脂塗料又は紡績繊維、セメント粉体等の基材中に添加することができ、以って、いかなる当該基材で作製された物体又は表面処理材料等に、広い周波数の電磁波を遮蔽及び吸收する機能を具有させる電磁波防止用の微粒子材料に関するものである。   The present invention relates to a fine particle material for preventing electromagnetic waves, and in particular, can be added to a base material such as a polymer, a plastic material / resin paint or a spun fiber, cement powder, etc. The present invention relates to a fine particle material for preventing electromagnetic waves, which has a function of shielding and absorbing electromagnetic waves of a wide frequency in a manufactured object or surface treatment material.

近年、電子科学技術の発展が迅速であり、一日千里というスピードで発展しつつある。そして、生活の便利追求のため、昨今の社会における様々な電子製品の整合システム設備は、人類に無限な生活の便利を与えるが、各種電子設備により生じた電磁波と磁界で環境の妨害が生じている。それは、いわゆる電磁波妨害(Electro-magnetic Interference、EMI) である。   In recent years, the development of electronic science and technology is rapid, and it is developing at a speed of one thousand miles a day. And in order to pursue the convenience of life, the alignment system equipment of various electronic products in today's society gives mankind the infinite convenience of life, but the disturbance of the environment is caused by electromagnetic waves and magnetic fields generated by various electronic equipment. Yes. That is so-called Electro-magnetic Interference (EMI).

電磁波の発生原因は、主に全ての電子設備の動作時にある程度の電磁界が生じることに因る。特に、電子ユニットの密度が高すぎる場合、或いは、高周波回路を有する場合に、電子設備の稼動時に発生する電磁波が、他の電子設備を妨害して正常な動作ができない状態になってしまう。   The cause of the generation of electromagnetic waves is mainly due to the occurrence of a certain electromagnetic field during the operation of all electronic equipment. In particular, when the density of the electronic unit is too high, or when the electronic unit has a high-frequency circuit, electromagnetic waves generated during the operation of the electronic equipment can interfere with other electronic equipment and cannot operate normally.

それ故、EMIの防御措置がない場合、前記電磁波が他の電子設備の稼動に単に影響するだけでなく、当該電子設備自身も他の電子設備から容易に妨害を受ける。又、電磁波は電子設備の稼動に対して影響を及ぼす外、人体の健康に対しても重大な影響がある。このため、目下、世界各国の電子製品に対する電磁波防護標準は、益々厳しく制限されている。   Therefore, if there is no EMI protection measure, the electromagnetic waves not only affect the operation of other electronic equipment, but the electronic equipment itself is easily disturbed by other electronic equipment. In addition, electromagnetic waves have a significant impact on the health of the human body as well as on the operation of electronic equipment. For this reason, the electromagnetic wave protection standards for electronic products in countries around the world are now increasingly severely restricted.

異なる波長範囲の電磁波は、異なる方法及び輻射源により生じたものである。波長が一番長い(周波数が一番低い)のは、回路システムから生じる無線電波である。それに対して、波長の一番短いのはCRTから生じるX射線である。この放射性元素は、波長の一番短い(周波数が相対的に一番高い)電磁波であるγ(ガンマ)線を出射する。人類が網膜から感覚できる可視電磁波は可視光であるが、可視光の波長範囲は約0.4乃至0.76μmの間にある。   Electromagnetic waves in different wavelength ranges are generated by different methods and radiation sources. The longest wavelength (the lowest frequency) is a radio wave generated from the circuit system. On the other hand, the shortest wavelength is an X ray generated from the CRT. This radioactive element emits γ (gamma) rays which are electromagnetic waves having the shortest wavelength (relatively highest frequency). Visible electromagnetic waves that humans can sense from the retina are visible light, but the wavelength range of visible light is between about 0.4 to 0.76 μm.

一般的に言うと、可視光の最短波長0.4μmの紫外線を境にして、波長が紫外線の電磁波より短いものは、すべて短波長の電磁波に属する。そして、電磁波の波長が短いほどエネルギーレベルが高くなり、人体の細胞に対する傷害もより直接的になる。極短波長の電磁波、例えば、X線又はγ(ガンマ)線のレベルになると、細胞DNAを破壊し得る程度に達し、それ故、直接に人体に対して傷害を与える。   Generally speaking, anything that has a wavelength shorter than that of ultraviolet rays with the shortest visible light wavelength of 0.4 μm as a boundary belongs to short-wave electromagnetic waves. And the shorter the wavelength of the electromagnetic wave, the higher the energy level and the more direct damage to human cells. The level of electromagnetic waves with very short wavelengths, such as X-rays or γ (gamma) rays, reaches a level that can destroy cellular DNA, and thus directly damages the human body.

一方、比較的長い波長の電磁波、例えば、無線電波、携帯電話の電磁波、変電所及び高電圧送電鉄塔で生じた磁界は、いずれも波長の長い電磁波に属するが、人体の健康に対する影響は現在になっても定論がない。但し、基本的には長期間に及ぶ高強度の電磁波中に人体を暴露することは、やはり病変が生じる恐れが有る。また、その主な病変を起こすタイプは、以下の通りである。
1. 電流が細胞外マトリックス(ECM)を通過し、細胞電位を変更させる。
2. マイクロウェーブ又はオーブンのように、人体組織の水分を加熱して組織を破壊させる。
3. 磁界效果で細胞を改変させる。
4. 生理的に電磁波の輻射が人体に対して、心臟血管、内分泌、免疫、生殖等のシステムの機能及び血小板と白血球の低下を抑制し、神経衰弱、眼球混濁などを起こし、ないしは奇形児の誕生と癌細胞の加速拡散のような厳重な影響に至る。
On the other hand, electromagnetic waves of relatively long wavelengths, such as radio waves, mobile phone electromagnetic waves, substations, and high-voltage power transmission towers, all belong to long-wave electromagnetic waves, but the effects on human health are currently present. There is no definite theory. However, basically, exposing a human body to high-intensity electromagnetic waves for a long period of time may cause lesions. The types that cause the main lesions are as follows.
1. An electric current passes through the extracellular matrix (ECM), changing the cell potential.
2. Like the microwave or oven, heat the human tissue moisture to destroy the tissue.
3. Modify the cell by magnetic field effect.
4. Physiologically radiated electromagnetic waves suppress the function of system such as cardiovascular blood vessels, endocrine, immunity, reproduction, etc. and decrease in platelets and white blood cells, causing nervous breakdown, ocular opacity, etc. Severe effects such as birth and accelerated diffusion of cancer cells.

上記電磁波はその種類が多すぎるので、電磁の防護技術も相当複雑になる。現在、汎用の電子製品は、殆どプラスチックをハウジング材料が採択されている。しかし、プラスチック製のハウジングは、電磁波防止の措置が講じられていないため、何らかの技術手段を通じて電磁波の遮蔽及び吸收を達成する必要がある。当該業界で多く採用されている電磁波に関する防護方法は、主として金属のハウジング、金属片、メッキ、導電ペイント、真空スパッタ法又は微粒子材料等による防護である(例えば、特許文献1乃至3参照)。
特開2008−042113公報 特開2005−172591公報 特開2002−367692公報
Since there are too many types of electromagnetic waves, the electromagnetic protection technology is considerably complicated. At present, most of the general-purpose electronic products adopt plastic housing materials. However, since the plastic housing is not provided with an electromagnetic wave prevention measure, it is necessary to achieve shielding and absorption of electromagnetic waves through some technical means. A protection method for electromagnetic waves that is widely used in the industry is protection mainly by a metal housing, metal piece, plating, conductive paint, vacuum sputtering, or fine particle material (see, for example, Patent Documents 1 to 3).
JP 2008-042113 A JP 2005-172591 A Japanese Patent Laid-Open No. 2002-367692

従来技術は次のような課題を有する。以下、上記従来の金属のハウジング、金属片、メッキ、導電ペイント、真空スパッタ法又は微粒子材料等による電磁波防護技術の課題について説明する。   The prior art has the following problems. The problems of the electromagnetic wave protection technique using the conventional metal housing, metal piece, plating, conductive paint, vacuum sputtering method, or fine particle material will be described below.

1. 金属のハウジングについて
これはアルミニウム−マグネシウムのような金属等の高導電性材料を利用して作製された電子製品のハウジングであり、金属製ハウジングの電磁波反射性を利用して電磁波を遮蔽する。しかしながら、当該方法の主要な欠点は、金属製ハウジングの製造コストがプラスチック製ハウジングの数十倍以上になり、製造コストが高くなるという問題を有している。
1. Metal housing This is a housing for electronic products made using highly conductive materials such as metals such as aluminum-magnesium, and shields electromagnetic waves using the electromagnetic wave reflectivity of metal housings. . However, the main drawback of this method is that the manufacturing cost of the metal housing is several tens of times higher than that of the plastic housing, which increases the manufacturing cost.

なお、金属材料は僅かに電磁波を遮蔽する機能を有しているので、電磁波が導電材料に当たった後、再び反射、回折、クリーピング等の現象を起こす。このため、依然として電磁波を除去することができず、他の方向から電磁波が漏洩して、電磁波の防護効果を有効に達成することができない。   Note that since the metal material has a function of slightly shielding electromagnetic waves, after the electromagnetic waves hit the conductive material, phenomena such as reflection, diffraction, and creeping occur again. For this reason, it is still impossible to remove the electromagnetic wave, and the electromagnetic wave leaks from other directions, so that the protective effect of the electromagnetic wave cannot be effectively achieved.

2. 金属片の遮蔽について
これは白銅、燐青銅等の高導電材料を電磁波防止用保護片として製作し、該保護片をプラスチックハウジングの内側に貼り付けることで、電磁波の遮蔽効果が発揮される。当該方法によれば、金属ハウジングよりもコストが低下するが、プラスチックハウジングの厚さが増加する外、上記同様に、電磁波の反射若しくは回折、クリーピング等の現象を取り除くことができない。
2. Shielding of metal pieces This is a highly conductive material such as white bronze and phosphor bronze manufactured as an anti-electromagnetic wave protection piece, and the protective piece is affixed to the inside of the plastic housing. . According to this method, although the cost is lower than that of the metal housing, the thickness of the plastic housing is increased, and similarly to the above, phenomena such as reflection or diffraction of electromagnetic waves and creeping cannot be removed.

3. メッキについて
これはプラスチックハウジングの表面に一層又は多層の導電性金属の薄い膜をメッキし、プラスチックハウジングの表面に導電性を持たせるものである。この方法は環境保全のため、現在、欧米のような先進的な国家では、メッキ製品の輸入禁止が法律により規定されている。
3. About plating This is to make the surface of the plastic housing conductive by plating a thin layer of one or more layers of conductive metal on the surface of the plastic housing. In order to protect the environment, currently, in advanced countries such as Europe and America, the ban on the import of plated products is regulated by law.

4. プラスチックハウジングへの導電ペイントの塗布
これはプラスチックハウジングに導電ペイントをスプレーするものである。当該方法は主として導電ペイントが環境保全を妨害する恐れを有し、かつ、その製品品質が低く安定性に劣るという問題を有している。
4. Application of conductive paint to plastic housing This is to spray conductive paint onto the plastic housing. The method mainly has a problem that the conductive paint has a risk of disturbing environmental conservation, and the product quality is low and the stability is poor.

5. 真空スパッタ法について
これは真空スパッタによりプラスチックハウジングの表面に導電性メッキ膜、又は電磁波吸收の微粒子材料で出来たメッキ膜を形成するものである。現今、プラスチック製品の電磁波防止処理にて多く使われているが、特殊な低温真空スパッタ設備が必要であるうえに、この技術は少数のメーカに掌握されている。このため、電子製品のハウジングを製造するプロセスにおいて、別の外注加工が必要であるので、製造時間が長くなり加工コストも高くなる。
5. Vacuum Sputtering Method This is a method in which a conductive plating film or a plating film made of an electromagnetic wave absorbing particulate material is formed on the surface of the plastic housing by vacuum sputtering. Currently, it is widely used in the electromagnetic wave prevention treatment of plastic products, but a special low-temperature vacuum sputtering facility is required, and this technology is held by a few manufacturers. For this reason, in the process of manufacturing the housing of an electronic product, since another outsourcing process is required, manufacturing time becomes long and processing cost also becomes high.

6. 電磁波の吸收微粒子材料(ESD)を利用して電磁波を吸收について
これは電磁波の吸收微粒子材料の特質、即ち、電磁波に共振インピーダンス、誘電、磁力等を損失させる媒質を利用して、電磁波のエネルギーを熱エネルギーに転換させることで、電磁波の除去効果が達成される。
6. Absorbing electromagnetic waves using electromagnetic wave absorbing fine particle material (ESD) This is a characteristic of electromagnetic wave absorbing fine particle materials, that is, using a medium that loses resonance impedance, dielectric, magnetic force, etc. By converting energy into thermal energy, the effect of removing electromagnetic waves is achieved.

但し、この電磁波吸收微粒子材料は、電磁波の透過を阻止する遮蔽効果を有しないので、その電磁波吸收体の裏面に別の金属片を貼り付ける必要がある。よって、反射して生じた電磁波が再び電磁波吸收体に吸收されることがある。このため、電磁波吸收微粒子材料単独では電磁波防護効果が十分に達成されない。   However, since this electromagnetic wave absorbing fine particle material does not have a shielding effect for preventing the transmission of electromagnetic waves, it is necessary to affix another metal piece to the back surface of the electromagnetic wave absorber. Therefore, the electromagnetic wave generated by reflection may be absorbed again by the electromagnetic wave absorber. For this reason, the electromagnetic wave absorbing fine particle material alone does not sufficiently achieve the electromagnetic wave protection effect.

なお、前記電磁波吸收微粒子材料が吸收できる電磁波の周波数は、いずれも一定の範囲であるので、常用の電磁波吸收微粒子材料はすべての周波数の電磁波防護效果を達成することは到底できない。   In addition, since the frequency of electromagnetic waves that can be absorbed by the electromagnetic wave absorbing fine particle material is in a certain range, the usual electromagnetic wave absorbing fine particle material cannot achieve the electromagnetic wave protection effect of all frequencies.

以上の説明から判るように、従来の電磁波防護技術の主な欠点は、コストの高騰、製品のハウジング厚みの増加、及び単純な電磁波の遮蔽効果では電磁波の反射、回折、クリーピング等の現象を消去することができない等である。このため、これらの課題を改善する必要があった。   As can be seen from the above explanation, the main drawbacks of the conventional electromagnetic wave protection technology are that the cost increases, the thickness of the housing of the product increases, and the simple electromagnetic wave shielding effect eliminates phenomena such as electromagnetic wave reflection, diffraction and creeping. It cannot be erased. For this reason, it was necessary to improve these problems.

そこで、コストの高騰、製品のハウジング厚みの増加、電磁波の反射、回折、クリーピング等の現象を消去するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, technical problems to be solved in order to eliminate phenomena such as a rise in cost, an increase in the thickness of a housing of a product, reflection of electromagnetic waves, diffraction, and creeping arise, and the present invention solves this problem. For the purpose.

本発明の主要目的は、1つの高分子、プラスチック材料/樹脂塗料、又は紡績繊維、セメント粉体等の基材中に添加できる電磁波防止用の微粒子材料(複合式電磁波微粒子材料とも言う)を提供することにあり、本発明の基材で作製された物品又は表面処理材料は、広い周波数範囲の妨害電磁波を遮蔽及び吸收する能力を有する。   The main object of the present invention is to provide an electromagnetic wave preventing fine particle material (also referred to as a composite electromagnetic fine particle material) that can be added to a single polymer, plastic material / resin paint, or a substrate such as spun fiber or cement powder. Therefore, an article or a surface treatment material made of the substrate of the present invention has an ability to shield and absorb interference electromagnetic waves in a wide frequency range.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、基材への添加が可能であり、且つ、該基材に電磁波を吸收及び遮蔽する特性を持たせるための導電性微粒子材料を含む電磁波防止用の微粒子材料において、当該導電性微粒子材料のうち少なくとも一部は管状/繊維状を呈する構造の導電性微粒子材料であって、該導電性微粒子材料を前記基材内部に添加する場合、前記導電性微粒子材料が相互に連結して不規則形状に形成され、且つ、導電路が増加して前記基材内部の導電性を向上させると共に電磁波を吸収及び遮蔽する特性を持つことを特徴とする磁波防止用の微粒子材料を提供する。   The present invention has been proposed to achieve the above object, and the invention according to claim 1 can be added to a base material, and has a property of absorbing and shielding electromagnetic waves in the base material. In the fine particle material for preventing electromagnetic waves including the conductive fine particle material, at least a part of the conductive fine particle material is a conductive fine particle material having a tubular / fibrous structure, and the conductive fine particle material is When added to the inside of the base material, the conductive fine particle materials are connected to each other to form an irregular shape, and the conductive path is increased to improve the conductivity inside the base material and absorb electromagnetic waves. There is provided a fine particle material for preventing magnetic waves characterized by having a shielding property.

この構成によれば、導電性微粒子材料が相互に連結して不規則形状に形成されているので、基材の導電路が増加して基材内部の導電性が向上する。   According to this configuration, since the conductive fine particle materials are connected to each other and formed in an irregular shape, the conductive path of the base material is increased and the electrical conductivity inside the base material is improved.

又、本発明によれば、広い周波数範囲の妨害電磁波を遮蔽及び吸收する能力を有する電磁波防止用の微粒子材料が得られる。   Further, according to the present invention, an electromagnetic wave preventing fine particle material having an ability to shield and absorb disturbing electromagnetic waves in a wide frequency range can be obtained.

請求項2記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記導電性材料は、カーボンナノチューブ、炭素繊維、活性炭素繊維、ナノ炭素材、その他導電性を具有する炭素系材料及び導電性金属系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 2 is the particulate material for preventing electromagnetic waves according to claim 1, wherein the conductive material is a carbon nanotube, carbon fiber, activated carbon fiber, nanocarbon material, or other carbon-based material having conductivity. Provided is a fine particle material for preventing electromagnetic waves, which includes a combination of any one or a plurality of materials and conductive metal materials.

この構成によれば、導電性材料は、カーボンナノチューブ、炭素繊維、活性炭素繊維、ナノ炭素材等の炭素系材料または導電性金属系材料から成るので、導電性微粒子材料の導電性が更に高くなる。   According to this configuration, the conductive material is made of a carbon-based material or a conductive metal-based material such as carbon nanotube, carbon fiber, activated carbon fiber, or nano-carbon material, so that the conductivity of the conductive fine particle material is further increased. .

請求項3記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は管状/繊維状の導電性微粒子材料と、顆粒状の導電性微粒子材料とを混合して成り、前記管状/繊維状の導電性微粒子材料と前記顆粒状の導電性微粒子材料とは、焼結にて相互に連結して不規則形状に形成し、前記導電性微粒子材料の導電路を増加させることを特徴とする電磁波防止用の微粒子材料を提供する。   According to a third aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the first aspect, the conductive fine particle material is a mixture of a tubular / fibrous conductive fine particle material and a granular conductive fine particle material. The tubular / fibrous conductive fine particle material and the granular conductive fine particle material are interconnected to form an irregular shape by sintering, and a conductive path of the conductive fine particle material is formed. The present invention provides a fine particle material for preventing electromagnetic waves, which is characterized by being increased.

この構成によれば、管状/繊維状の導電性微粒子材料と顆粒状の導電性微粒子材料とを、相互に焼結して不規則形状に形成したので、導電性微粒子材料の導電路の密集度が増進する。   According to this configuration, since the tubular / fibrous conductive fine particle material and the granular conductive fine particle material are sintered together to form an irregular shape, the density of the conductive path of the conductive fine particle material is reduced. Will be improved.

請求項4記載の発明は、請求項3に記載の電磁波防止用の微粒子材料において、前記顆粒状の導電性微粒子材料は、炭素系材料により形成され、且つ、異なるサイズの分布が均一でない球状若しくは不規則形状を有する顆粒状の微粒子であり、前記炭素系材料はグラファイト、C 60フラーレン、活性炭、竹炭及びその他の導電性の炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a fourth aspect of the present invention, there is provided the fine particle material for preventing electromagnetic waves according to the third aspect, wherein the granular conductive fine particle material is formed of a carbon-based material and has a spherical or non-uniform distribution of different sizes. Granular particles with irregular shape, and the carbon materials include graphite, C 60 fullerene, activated carbon, bamboo charcoal and other conductive carbon materials combined with one or more materials Provided is a fine particle material for preventing electromagnetic waves.

この構成によれば、顆粒状の導電性微粒子材料は、異なるサイズの分布が均一でない球状又は不規則形状を有するので、この導電性微粒子材料を基材に添加すると導電性が一層良くなる。   According to this configuration, the granular conductive fine particle material has a spherical or irregular shape in which the distribution of different sizes is not uniform. Therefore, when this conductive fine particle material is added to the base material, the conductivity is further improved.

請求項5記載の発明は、請求項3に記載の電磁波防止用の微粒子材料において、上記顆粒状の導電性微粒子材料は、導電性金属材料により形成された不規則な顆粒状の微粒子であり、前記導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 5 is the particulate material for preventing electromagnetic waves according to claim 3, wherein the granular conductive fine particle material is irregular granular fine particles formed of a conductive metal material, The conductive metal material includes a combination of one or a plurality of materials of gold, silver, copper, iron, pig iron, aluminum, nickel, tin, pure silicon, and silicon iron. A particulate material is provided.

この構成によれば、導電性微粒子材料は、導電性金属材料により形成された不規則な顆粒状の微粒子であり、金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数を組み合わせたものあるので、この導電性微粒子材料を基材に添加すると導電性が一層良くなる。   According to this configuration, the conductive fine particle material is irregular granular fine particles formed of a conductive metal material, such as gold, silver, copper, iron, pig iron, aluminum, nickel, tin, pure silicon, and silicon. Since there is a combination of any one or a plurality of irons, the conductivity is further improved when this conductive fine particle material is added to the base material.

請求項6記載の発明は、請求項3に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は、炭素系材料と導電性金属材料の微粒子とを混合して成り、前記炭素系材料はグラファイト、C 60フラーレン、活性炭、竹炭及びその他の導電性の炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包含し、前記導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a sixth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the third aspect, the conductive fine particle material is formed by mixing a carbon-based material and a fine particle of a conductive metal material. Includes graphite, C 60 fullerene, activated carbon, bamboo charcoal, and other conductive carbon-based materials in combination with one or more materials, and the conductive metal material includes gold, silver, copper, iron, Provided is a fine particle material for preventing electromagnetic waves, which includes a combination of any one or more of pig iron, aluminum, nickel, tin, pure silicon, and silicon iron.

この構成によれば、導電性微粒子材料は炭素系材料と導電性金属材料の微粒子とを混合して成るので、電磁波防止用の微粒子材料の導電性が相乗的に高くなる。   According to this configuration, since the conductive fine particle material is formed by mixing the carbon-based material and the fine particles of the conductive metal material, the conductivity of the fine particle material for preventing electromagnetic waves is synergistically increased.

請求項7記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、該電磁波防止用の微粒子材料は電磁波吸收微粒子材料を更に含み、該電磁波吸收微粒子材料は上記導電性微粒子材料が電磁波を遮る箇所にて反射又は回折した電磁波を吸収し、該電磁のエネルギーを消耗して熱エネルギーに転換させて該電磁波を消失除去することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a seventh aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the first aspect, the fine particle material for preventing electromagnetic waves further includes an electromagnetic wave absorbing fine particle material, and the conductive fine particle material is the electromagnetic wave absorbing fine particle material. Provided is a fine particle material for preventing electromagnetic waves, characterized in that it absorbs electromagnetic waves reflected or diffracted at a location where the electromagnetic waves are blocked, consumes the electromagnetic energy, converts it into thermal energy, and eliminates the electromagnetic wave to disappear.

この構成によれば、電磁波防止用の微粒子材料は電磁波吸收微粒子材料を更に含むので、導電性微粒子材料が電磁波を遮る箇所にて反射又は回折した電磁波が吸収される。   According to this configuration, since the electromagnetic wave preventing fine particle material further includes the electromagnetic wave absorbing fine particle material, the electromagnetic wave reflected or diffracted at the portion where the conductive fine particle material blocks the electromagnetic wave is absorbed.

請求項8記載の発明は、請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は金属酸化物の微粒子を含み、該金属酸化物は酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 8 is the fine particle material for preventing electromagnetic waves according to claim 7, wherein the electromagnetic wave absorbing fine particle material includes fine particles of metal oxide, and the metal oxide includes aluminum oxide, zinc oxide, titanium dioxide, Provided is a fine particle material for preventing electromagnetic waves, which includes a combination of any one or a plurality of photocatalyst materials and iron oxides.

この構成によれば、電磁波吸收微粒子材料は金属酸化物、例えば、酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物の少なくとも1以上を含むので、反射又は回折した電磁波が一層良好に吸収される。   According to this configuration, since the electromagnetic wave absorbing fine particle material contains at least one of metal oxides, for example, aluminum oxide, zinc oxide, titanium dioxide, photocatalyst material, and iron oxide, the reflected or diffracted electromagnetic waves are absorbed better. Is done.

請求項9記載の発明は、請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は磁性粉体であり、該磁性粉体は、磁性を有する金属材料若しくは金属酸化物材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 9 is the fine particle material for preventing electromagnetic waves according to claim 7, wherein the electromagnetic wave absorbing fine particle material is a magnetic powder, and the magnetic powder is a metal material or metal oxide material having magnetism. The present invention provides a fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of materials.

この構成によれば、電磁波吸收微粒子材料は、磁性を有する金属材料、又は磁性を有する金属酸化物材料のいずれかを含むので、電磁波の遮蔽効果だけではなく、電磁波の吸收微粒子材料により、電磁波の反射、回折等の現象が消失除去される。   According to this configuration, since the electromagnetic wave absorbing fine particle material includes either a magnetic metal material or a magnetic metal oxide material, not only the electromagnetic wave shielding effect but also the electromagnetic wave absorbing fine particle material Phenomena such as reflection and diffraction are eliminated and removed.

請求項10記載の発明は、請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料が天然鉱物材料であり、該天然鉱物材料はセメント、陶土、粘土、炭酸カルシウム及び遠赤外線放射鉱石材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 10 is the fine particle material for preventing electromagnetic waves according to claim 7, wherein the electromagnetic wave absorbing fine particle material is a natural mineral material, and the natural mineral material is cement, porcelain stone, clay, calcium carbonate and far infrared rays. Provided is a fine particle material for preventing electromagnetic waves, characterized in that it includes a combination of any one or a plurality of radioactive ore materials.

この構成によれば、電磁波吸收微粒子材料は、天然鉱物材料、例えば、セメント、陶土、粘土、炭酸カルミウム及び遠赤外線放射鉱石材料のいずれかを含むので、電磁波の遮蔽効果だけではなく、電磁波吸收微粒子材料を利用して電磁波の反射、回折等の現象を消失除去させることができる。   According to this configuration, the electromagnetic wave absorbing fine particle material includes any one of natural mineral materials such as cement, porcelain clay, clay, carbonic acid carbonate, and far-infrared radiation ore material. Phenomena such as reflection and diffraction of electromagnetic waves can be eliminated using materials.

請求項11記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記基材が高分子基材であり、該高分子基材はプラスチック/ゴムを包含し、且つ、プラスチック成形加工方法により当該高分子基材を各種の形状若しくは形態のプラスチック/ゴム製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料を提供する。   An eleventh aspect of the present invention is the fine particle material for preventing electromagnetic waves according to the first aspect, wherein the base material is a polymer base material, the polymer base material includes plastic / rubber, and plastic molding The polymer base material is processed into plastic / rubber products of various shapes or forms by a processing method, and the plastic molding processing method includes an injection molding processing method, and an electromagnetic wave preventing fine particle material is provided. .

この構成によれば、基材が高分子基材、例えば、プラスチック/ゴムを包含し、プラスチック成形加工方法(射出成形加工方法等)により加工される。依って、各種の形状若しくは形態のプラスチック/ゴム製品が容易に加工される。   According to this configuration, the base material includes a polymer base material, for example, plastic / rubber, and is processed by a plastic molding method (such as an injection molding method). Accordingly, various shapes or forms of plastic / rubber products are easily processed.

請求項12記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、上記電磁波微粒子材料は上記高分子基材の重合反応の過程中に該高分子基材中にドープすることを特徴とする電磁波防止用の微粒子材料を提供する。   According to a twelfth aspect of the present invention, there is provided the fine particle material for preventing electromagnetic waves according to the eleventh aspect, wherein the electromagnetic fine particle material is doped into the polymer substrate during the polymerization reaction of the polymer substrate. Provided is a fine particle material for preventing electromagnetic waves.

この構成によれば、電磁波微粒子材料は、高分子基材の重合反応の過程にて高分子基材中にドープして混合されるので、電磁波微粒子材料と高分子基材が互いに交絡して連結される。   According to this configuration, since the electromagnetic fine particle material is doped and mixed in the polymer base material in the course of the polymerization reaction of the polymer base material, the electromagnetic fine particle material and the polymer base material are entangled and connected to each other. Is done.

請求項13記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材は、先に打ち砕いて粉体状に加工し、然る後、前記電磁波防止用の微粒子材料を前記高分子基材中にドープし、更に、該高分子基材をプラスチック成形加工方法によりプラスチック製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a thirteenth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the eleventh aspect, the polymer base material is first crushed and processed into a powder form. An electromagnetic wave characterized in that a material is doped into the polymer base material, the polymer base material is further processed into a plastic product by a plastic molding method, and the plastic molding method includes an injection molding method. A particulate material for prevention is provided.

この構成によれば、高分子基材は、先に打ち砕いて粉体状に加工した後、前記電磁波防止用の微粒子材料を高分子基材中にドープする。そして、該高分子基材をプラスチック成形加工方法によりプラスチック製品に加工する。依って、プラスチック製品の高分子基材と電磁波微粒子材料との連結が高くなる。   According to this configuration, after the polymer base material is first crushed and processed into a powder form, the polymer base material is doped with the fine particle material for preventing electromagnetic waves. Then, the polymer substrate is processed into a plastic product by a plastic molding method. Therefore, the connection between the polymer base material of the plastic product and the electromagnetic fine particle material becomes high.

請求項14記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、該電磁波防止用の微粒子材料は、上記高分子基材が重合反応を完了して粉体となる状態にて該高分子基材の粉体中にドープして混合し、該高分子基材の粉体を顆粒に加工し、その後のプラスチック成形加工の進行に便ならしめ、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a fourteenth aspect of the present invention, there is provided the fine particle material for preventing electromagnetic waves according to the eleventh aspect, wherein the fine particle material for preventing electromagnetic waves is in a state in which the polymer base material becomes a powder after completing the polymerization reaction. The polymer base powder is doped and mixed, the polymer base powder is processed into granules, and the subsequent plastic molding process is facilitated. The plastic molding method is injection molding Provided is a fine particle material for preventing electromagnetic waves characterized by including a processing method.

この構成によれば、高分子基材の粉体中に電磁波防止用の微粒子材料をドープして混合した後に、該高分子基材の粉体を顆粒に加工する。依って、顆粒の高分子基材は、その後のプラスチック成形加工の進行を容易にする。   According to this configuration, the powder of the polymer base material is processed into a granule after the fine particle material for preventing electromagnetic waves is doped and mixed in the powder of the polymer base material. Thus, the granular polymeric substrate facilitates subsequent plastic molding processes.

請求項15記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、所定のドープ濃度を超えた該電磁波防止用の微粒子材料と上記高分子基材とを混合して高濃度の母粒を作製し、更に、該高濃度の母粒と未ドープの電磁波防止用の微粒子材料の高分子基材の顆粒とを混合して、プラスチック成形加工方法によりプラスチック製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a fifteenth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the eleventh aspect, the fine particle material for preventing electromagnetic waves exceeding a predetermined dope concentration and the polymer base material are mixed to obtain a high concentration. A mother granule is prepared, and the high-concentration mother granule and an undoped fine particle material polymer base granule for preventing electromagnetic waves are mixed and processed into a plastic product by a plastic molding method. The molding method provides a fine particle material for preventing electromagnetic waves, which includes an injection molding method.

この構成によれば、所定のドープ濃度を超えた電磁波防止用の微粒子材料と高分子基材とを混合して高濃度の母粒を作製する。そして、更に、高濃度の母粒と未ドープの電磁波防止用の微粒子材料の高分子基材の顆粒とを混合する。依って、顆粒の高分子基材は、その後のプラスチック成形加工の進行を容易にする。   According to this configuration, a high-concentration mother granule is prepared by mixing a fine particle material for preventing electromagnetic waves exceeding a predetermined dope concentration and a polymer base material. Further, a high-concentration mother granule and a polymer base granule of an undoped fine particle material for preventing electromagnetic waves are mixed. Thus, the granular polymeric substrate facilitates subsequent plastic molding processes.

請求項16記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材が電子製品のハウジングに加工されていることを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 16 provides the particulate material for preventing electromagnetic waves according to claim 11, wherein the polymer base material is processed into a housing of an electronic product. To do.

この構成によれば、高分子基材は電子製品のハウジングに加工して使用される。   According to this configuration, the polymer base material is used after being processed into a housing for an electronic product.

請求項17記載の発明は、請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材が管状又は平板状の電磁波遮蔽ユニットに加工されていることを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 17 is the electromagnetic wave preventing fine particle material according to claim 11, wherein the polymer base material is processed into a tubular or flat electromagnetic shielding unit. Provide particulate material.

この構成によれば、高分子基材は管状又は平板状の電磁波遮蔽ユニットに加工して使用される。   According to this configuration, the polymer substrate is processed into a tubular or flat electromagnetic shielding unit.

請求項18記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記基材が樹脂塗料であり、前記電磁波防止用の微粒子材料が添加された樹脂塗料を、電子製品、木材、セメント、ガラス、紙類、プラスチック、布地若しくは建材の表面、或いは、金属/管材若しくは電線の内表面又は外表面に塗装又は印刷することにより、当該樹脂塗料にて塗布された物品に、電磁波を吸収及び遮蔽する機能を持たせることを特徴とする電磁波防止用の微粒子材料を提供する。   According to an eighteenth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the first aspect, the substrate is a resin paint, and the resin paint to which the fine particle material for preventing electromagnetic waves is added is an electronic product, wood By applying or printing on the surface of cement, glass, paper, plastic, fabric or building material, or the inner or outer surface of metal / pipe material or electric wire, electromagnetic waves are applied to the article coated with the resin paint. Provided is a fine particle material for preventing electromagnetic waves, which has a function of absorbing and shielding.

この構成によれば、電磁波防止用の微粒子材料に樹脂塗料を添加して、これを電子製品、木材、セメント、ガラス、紙類、プラスチック、布地若しくは建材の表面、或いは、金属/管材若しくは電線の内表面又は外表面に塗装又は印刷して使用する。依って、該樹脂塗料にて塗布された製品は、電磁波を吸収及び遮蔽できる機能を有する。   According to this configuration, a resin paint is added to a fine particle material for preventing electromagnetic waves, and this is applied to the surface of an electronic product, wood, cement, glass, paper, plastic, cloth or building material, or metal / pipe material or electric wire. Used by painting or printing on the inner or outer surface. Therefore, the product applied with the resin paint has a function of absorbing and shielding electromagnetic waves.

請求項19記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記基材が人造の紡績繊維材料であり、前記電磁波防止用の微粒子は、当該人造の紡績繊維材料中に均一に分布して混入され、且つ、当該人造の紡績繊維材料が、電磁波防止特性を有した紡績繊維製品又は織物製品に加工されていることを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 19 is the fine particle material for preventing electromagnetic waves according to claim 1, wherein the base material is an artificial spun fiber material, and the fine particles for preventing electromagnetic waves are contained in the artificial spun fiber material. Disclosed is a fine particle material for preventing electromagnetic waves, characterized in that the spun fiber material is uniformly distributed and mixed, and the spun fiber material is processed into a spun fiber product or a textile product having anti-electromagnetic properties.

この構成によれば、人造の紡績繊維材料中に電磁波防止用の微粒子を均一に混入し、これを紡績繊維製品又は織物製品に加工する。   According to this configuration, fine particles for preventing electromagnetic waves are uniformly mixed in an artificially spun fiber material and processed into a spun fiber product or a woven product.

請求項20記載の発明は、請求項1に記載の電磁波防止用の微粒子材料において、上記基材がセメント材料であることを特徴とする電磁波防止用の微粒子材料を提供する。   According to a twentieth aspect of the present invention, there is provided the fine particle material for preventing electromagnetic waves according to the fine particle material for preventing electromagnetic waves according to the first aspect, wherein the base material is a cement material.

この構成によれば、導電性微粒子を含む基材はセメント材料として使用される。   According to this structure, the base material containing electroconductive fine particles is used as a cement material.

請求項21記載の発明は、少なくとも1つの導電性微粒子材料と少なくとも1つの電磁波吸收の微粒子材料とを混合して成る電磁波防止用の微粒子材料であって、該電磁波防止用の微粒子材料が1つの基材中にドープ可能であり、且つ、該基材に電磁波の透過を阻止及び吸収する特性を持たせる電磁波防止用の微粒子材料において、前記導電性微粒子材料は前記基材に導電性を持たせるために用いられ、且つ、電磁波の透過を遮蔽する前記電磁波吸收微粒子材料は、前記導電性微粒子材料が電磁波を遮る箇所で反射若しくは回折した電磁波を吸收するために用いられ、該電磁波のエネルギーを消耗して熱エネルギーに転換させて該電磁波を消失除去することを特徴とする電磁波防止用の微粒子材料電磁波防止用の微粒子材料を提供する。   The invention according to claim 21 is an electromagnetic wave preventing fine particle material obtained by mixing at least one conductive fine particle material and at least one electromagnetic wave absorbing fine particle material, and the electromagnetic wave preventing fine particle material is one In the fine particle material for preventing electromagnetic wave that can be doped in the base material and has the property of blocking and absorbing the transmission of the electromagnetic wave to the base material, the conductive fine particle material makes the base material conductive. The electromagnetic wave absorbing fine particle material that is used for shielding the transmission of electromagnetic waves is used to absorb electromagnetic waves reflected or diffracted at a location where the conductive fine particle material blocks electromagnetic waves, and consumes the energy of the electromagnetic waves. Thus, the present invention provides an electromagnetic wave-preventing fine particle material, which is converted to thermal energy to eliminate and remove the electromagnetic wave.

この構成によれば、導電性微粒子材料は、基材に導電性を持たせるために用いられる。又、電磁波の透過を遮蔽する電磁波吸收微粒子材料は、導電性微粒子材料が電磁波を遮る箇所にて反射若しくは回折した電磁波を吸收するために用いられ、そして、電磁波のエネルギーを消耗して熱エネルギーに転換させる。   According to this configuration, the conductive fine particle material is used for imparting conductivity to the base material. The electromagnetic wave absorbing fine particle material that shields the transmission of electromagnetic waves is used to absorb electromagnetic waves reflected or diffracted by the conductive fine particle material where electromagnetic waves are blocked. Convert.

請求項22記載の発明は、請求項21に記載の電磁波防止用の微粒子材料において、前記導電性微粒子材料が炭素系材料であり、該炭素系材料はグラファイト、C 60フラーレン、活性炭、竹炭及びその他導電性炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 22 is the fine particle material for preventing electromagnetic waves according to claim 21, wherein the conductive fine particle material is a carbon-based material, and the carbon-based material is graphite, C60 fullerene, activated carbon, bamboo charcoal, and others. Provided is a fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of conductive carbon-based materials.

この構成によれば、導電性微粒子材料は、グラファイト、C 60フラーレン、活性炭、竹炭及びその他導電性炭素系材料から成る。依って、導電性微粒子材料の導電性が更に高くなる。   According to this configuration, the conductive fine particle material is composed of graphite, C 60 fullerene, activated carbon, bamboo charcoal, and other conductive carbon-based materials. Therefore, the conductivity of the conductive fine particle material is further increased.

請求項23記載の発明は、請求項21に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は導電性金属材料を包含し、該導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a twenty-third aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the twenty-first aspect, the conductive fine particle material includes a conductive metal material, and the conductive metal material includes gold, silver, copper, iron, Provided is a fine particle material for preventing electromagnetic waves, which includes a combination of any one or more of pig iron, aluminum, nickel, tin, pure silicon, and silicon iron.

この構成によれば、導電性微粒子材料は、金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の導電性金属材料を組み合わせて形成される。依って、導電性微粒子材料の導電性が更に高くなる。   According to this configuration, the conductive fine particle material is formed by combining one or more conductive metal materials of gold, silver, copper, iron, pig iron, aluminum, nickel, tin, pure silicon, and silicon iron. The Therefore, the conductivity of the conductive fine particle material is further increased.

請求項24記載の発明は、請求項21に記載の電磁波防止用の微粒子材料において、前記電磁波吸收微粒子材料は金属酸化物材料を包含し、該金属酸化物材料は酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a twenty-fourth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the twenty-first aspect, the electromagnetic wave absorbing fine particle material includes a metal oxide material, and the metal oxide material includes aluminum oxide, zinc oxide, and titanium dioxide. The present invention provides a fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of materials of a photocatalytic material and an iron oxide.

この構成によれば、電磁波吸收微粒子材料は、酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物のいずれか1つ又は複数の金属酸化物材料を組み合わせて形成される。依って、導電性微粒子材料の導電性が更に高くなる。   According to this configuration, the electromagnetic wave absorbing fine particle material is formed by combining any one or more metal oxide materials of aluminum oxide, zinc oxide, titanium dioxide, photocatalyst material, and iron oxide. Therefore, the conductivity of the conductive fine particle material is further increased.

請求項25記載の発明は、請求項21に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は磁性粉体材料を包含し、該磁性粉体材料は磁性を有する金属材料若しくは金属酸化物材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   According to a twenty-fifth aspect of the present invention, in the fine particle material for preventing electromagnetic waves according to the twenty-first aspect, the electromagnetic wave absorbing fine particle material includes a magnetic powder material, and the magnetic powder material is a metal material or metal oxide having magnetism. Provided is a fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of materials.

この構成によれば、電磁波吸收微粒子材料は、磁性を有する金属材料、又は、磁性を有する金属酸化物材料のいずれか1つ又は複数の磁性粉体材料を組み合わせて形成される。依って、電磁波の遮蔽効果のみならず、電磁波吸收微粒子材料により電磁波の反射や回折の現象が消失除去される。   According to this configuration, the electromagnetic wave absorbing fine particle material is formed by combining one or a plurality of magnetic powder materials of a metal material having magnetism or a metal oxide material having magnetism. Therefore, not only the electromagnetic wave shielding effect, but also the electromagnetic wave absorption fine particle material eliminates and eliminates the phenomenon of electromagnetic wave reflection and diffraction.

請求項26記載の発明は、請求項21に記載の電磁波防止用の微粒子材料において、前記電磁波吸收微粒子材料は天然鉱物材料を包含し、前記天然鉱物材料はセメント、陶土、粘土、炭酸カルシウム及び遠赤外線放射鉱石材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料を提供する。   The invention according to claim 26 is the fine particle material for preventing electromagnetic waves according to claim 21, wherein the electromagnetic wave absorbing fine particle material includes a natural mineral material, and the natural mineral material is cement, porcelain stone, clay, calcium carbonate and distant material. Provided is a fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of infrared radiation ore materials.

この構成によれば、電磁波吸收微粒子材料は、セメント、陶土、粘土、炭酸カルシウム及び遠赤外線放射鉱石材料のいずれか1つ又は複数の天然鉱物材料を組み合わせて形成される。依って、電磁波の遮蔽効果のみならず、電磁波吸收微粒子材料により電磁波の反射や回折の現象が消失除去される。   According to this configuration, the electromagnetic wave absorbing fine particle material is formed by combining any one or a plurality of natural mineral materials of cement, porcelain clay, clay, calcium carbonate, and far infrared radiation ore material. Therefore, not only the electromagnetic wave shielding effect, but also the electromagnetic wave absorption fine particle material eliminates and eliminates the phenomenon of electromagnetic wave reflection and diffraction.

請求項1記載の発明は、基材内部の導電性が向上すると共に、電磁波を吸収及び遮蔽する特性が得られ、以って、高分子、プラスチック材料/樹脂塗料、又は紡績繊維、セメント粉体等の基材中に添加できる電磁波防止用の微粒子材料を安価に提供することができる。   According to the first aspect of the present invention, the conductivity inside the base material is improved and the property of absorbing and shielding electromagnetic waves is obtained, so that a polymer, a plastic material / resin paint, or a spun fiber, cement powder is obtained. It is possible to provide a particulate material for preventing electromagnetic waves that can be added to a substrate such as the above at a low cost.

又、本発明によれば、広い周波数範囲の電磁波妨害を遮蔽及び吸收できる電磁波防止用の微粒子材料が得られる。   Further, according to the present invention, an electromagnetic wave preventing fine particle material capable of shielding and absorbing electromagnetic wave interference in a wide frequency range can be obtained.

請求項2記載の発明は、電磁波防止用の微粒子材料は高い導電性を有するので、請求項1記載の発明の効果に加えて、広い周波数範囲の電磁波の妨害を遮蔽及び吸収する能力が向上する。   In the invention described in claim 2, since the fine particle material for preventing electromagnetic waves has high conductivity, in addition to the effect of the invention described in claim 1, the ability to shield and absorb electromagnetic interference in a wide frequency range is improved. .

請求項3記載の発明は、導電性微粒子材料の導電路が一層増加するので、請求項1記載の発明の効果に加えて、本発明の電磁波防止用の微粒子材料は、広い周波数範囲の電磁波を吸收、遮蔽及び除去する能力を一層向上させることができる。   In the invention described in claim 3, since the conductive path of the conductive fine particle material is further increased, in addition to the effect of the invention described in claim 1, the fine particle material for preventing electromagnetic waves of the present invention is capable of emitting electromagnetic waves in a wide frequency range. The ability to absorb, shield and remove can be further improved.

請求項4記載の発明は、当該導電性微粒子材料を基材に添加すると導電性が一層良くなるので、請求項3記載の発明の効果に加えて、物品の内部に入射した電磁波、又は物品の内部から生じた電磁波を外部に導出させることができる。依って、アース装置を介してして電磁波をグランドまで導くことができる。要するに、最終的には、前記電磁波を低減させて、電磁波の遮蔽効果を著しく向上させることができる。   In the invention described in claim 4, when the conductive fine particle material is added to the base material, the conductivity is further improved. Therefore, in addition to the effect of the invention described in claim 3, Electromagnetic waves generated from the inside can be led out to the outside. Therefore, the electromagnetic wave can be guided to the ground through the ground device. In short, finally, the electromagnetic wave can be reduced, and the shielding effect of the electromagnetic wave can be remarkably improved.

請求項5記載の発明は、当該導電性微粒子材料を基材に添加すると導電性が一層良くなるので、請求項4記載の発明の効果と同様に、アース装置を介して電磁波をグランドまで導いて、電磁波の遮蔽効果を向上させることができる。   In the fifth aspect of the invention, when the conductive fine particle material is added to the base material, the conductivity is further improved. Therefore, similarly to the effect of the fourth aspect of the invention, the electromagnetic wave is guided to the ground through the ground device. The electromagnetic wave shielding effect can be improved.

請求項6記載の発明は、電磁波防止用の微粒子材料の導電性が相乗的に良くなるので、請求項3記載の発明の効果に加えて、電磁波の遮蔽効果を一層向上させることができる。   According to the sixth aspect of the invention, since the conductivity of the fine particle material for preventing electromagnetic waves is synergistically improved, the electromagnetic wave shielding effect can be further improved in addition to the effect of the third aspect of the invention.

請求項7記載の発明は、電磁波を遮る箇所にて反射又は回折した電磁波を吸収できるので、請求項1記載の発明の効果に加えて、電磁波のエネルギーを消耗して熱エネルギーに転換させることができ、以って、該電磁波を一層良好に消失除去することができる。   Since the invention according to claim 7 can absorb the electromagnetic wave reflected or diffracted at the location where the electromagnetic wave is blocked, in addition to the effect of the invention according to claim 1, the energy of the electromagnetic wave can be consumed and converted into thermal energy. Therefore, the electromagnetic wave can be eliminated and removed more satisfactorily.

請求項8記載の発明は、反射又は回折した電磁波を一層良好に吸収できるので、請求項7記載の発明の効果に加えて、電磁波の消失除去効果を更に向上させることができる。   Since the invention according to claim 8 can absorb reflected or diffracted electromagnetic waves better, in addition to the effect of the invention according to claim 7, the effect of eliminating the disappearance of electromagnetic waves can be further improved.

請求項9記載の発明は、電磁波の遮蔽効果だけではなく、電磁波の吸收微粒子材料を利用して電磁波の反射、回折現象を消失除去できるので、請求項7記載の発明の効果に加えて、電磁波防護効果を十分に発揮することができる。   The invention described in claim 9 can eliminate not only the electromagnetic wave shielding effect but also the reflection and diffraction phenomenon of the electromagnetic wave by using the electromagnetic wave absorbing fine particle material. In addition to the effect of the invention of claim 7, the electromagnetic wave The protective effect can be fully demonstrated.

請求項10記載の発明は、請求項9記載の発明と同様に、電磁波の遮蔽効果だけではなく、電磁波の吸收微粒子材料を利用して電磁波の反射、回折現象などを消失除去できるので、請求項7記載の発明の効果に加えて、電磁波防護効果を十分に発揮させることができる。   Since the invention described in claim 10 can eliminate not only the electromagnetic wave shielding effect but also the electromagnetic wave absorption fine particle material, the electromagnetic wave reflection, diffraction phenomenon and the like can be eliminated. In addition to the effect of the invention described in item 7, the electromagnetic wave protection effect can be sufficiently exhibited.

請求項11記載の発明はし、プラスチック成形加工方法により各種の形状若しくは形態のプラスチック/ゴム製品を加工できるので、請求項1記載の発明の効果に加えて、高い電磁波防護効果を有するプラスチック/ゴム製品を安価に量産することができる。   Since the invention according to claim 11 can process plastic / rubber products of various shapes or forms by the plastic molding method, the plastic / rubber having a high electromagnetic wave protection effect in addition to the effect of the invention of claim 1 Products can be mass-produced at low cost.

請求項12記載の発明は、電磁波微粒子材料と高分子基材とを互いに絡ませて連結できるので、請求項11記載の発明の効果に加えて、高分子基材の導電性を一層向上させることができる。   In the invention described in claim 12, since the electromagnetic fine particle material and the polymer base material can be entangled and connected to each other, in addition to the effect of the invention of claim 11, the conductivity of the polymer base material can be further improved. it can.

請求項13記載の発明は、プラスチック製品の高分子基材と電磁波微粒子材料との連結が高くなるので、請求項11記載の発明の効果に加えて、高分子基材の導電性が増加するのみならず、高い電磁波遮蔽機能を有するプラスチック製品が得られる。   In the invention described in claim 13, since the connection between the polymer base material of the plastic product and the electromagnetic fine particle material becomes high, in addition to the effect of the invention of claim 11, only the conductivity of the polymer base material increases. In other words, a plastic product having a high electromagnetic wave shielding function can be obtained.

請求項14記載の発明は、高分子基材の粉体を顆粒に加工するので、請求項11記載の発明の効果に加えて、その後のプラスチック成形加工の進行が円滑になる。   In the invention described in claim 14, since the powder of the polymer base material is processed into granules, in addition to the effect of the invention described in claim 11, the subsequent plastic molding process proceeds smoothly.

請求項15記載の発明は、高濃度の母粒と未ドープの電磁波防止用の微粒子材料の高分子基材の顆粒とを混合するので、請求項11記載の発明の効果に加えて、その後のプラスチック成形加工の進行が一層円滑になる。   In the invention described in claim 15, since the high concentration mother granule and the polymer base granule of the undoped fine particle material for preventing electromagnetic waves are mixed, in addition to the effect of the invention described in claim 11, Progress of plastic molding process becomes smoother.

請求項16記載の発明は、高分子基材は電子製品用のハウジングに加工するので、請求項11記載の発明の効果に加えて、電磁波を良好に吸収できる電子製品用のハウジングが得られる。   In the invention described in claim 16, since the polymer substrate is processed into a housing for electronic products, in addition to the effect of the invention described in claim 11, a housing for electronic products capable of absorbing electromagnetic waves satisfactorily is obtained.

請求項17記載の発明は、高分子基材は管状又は平板状の電磁波遮蔽ユニットに加工するので、請求項11記載の発明の効果に加えて、電磁波を良好に吸収できる電磁波遮蔽ユニットが得られる。   In the invention described in claim 17, since the polymer substrate is processed into a tubular or flat electromagnetic shielding unit, in addition to the effect of the invention described in claim 11, an electromagnetic shielding unit capable of absorbing electromagnetic waves satisfactorily is obtained. .

請求項18記載の発明は、電磁波防止用の微粒子材料に樹脂塗料を添加して、製品の表面に塗装又は印刷して使用できるので、請求項1記載の発明の効果に加えて、電磁波を吸収及び遮蔽できる製品、即ち、電子製品、木材、セメント、ガラス、紙類、プラスチック、布地若しくは建材、金属/管材及び電線が得られる。   Since the invention according to claim 18 can be used by adding a resin paint to the fine particle material for preventing electromagnetic waves and painting or printing on the surface of the product, it absorbs electromagnetic waves in addition to the effect of the invention according to claim 1. And products that can be shielded, ie electronic products, wood, cement, glass, papers, plastics, fabrics or building materials, metals / tubes and wires.

請求項19記載の発明は、人造の紡績繊維材料中に電磁波防止用の微粒子を均一に混入して紡績繊維製品又は織物製品に加工できるので、請求項1記載の発明の効果に加えて、高い電磁波防止特性を有する紡績繊維製品又は織物製品が得られる。   Since the invention according to claim 19 can be processed into a spun fiber product or a woven product by uniformly mixing fine particles for preventing electromagnetic waves into the artificial spun fiber material, in addition to the effect of the invention according to claim 1, high A spun fiber product or a woven product having electromagnetic wave prevention characteristics is obtained.

請求項20記載の発明は、導電性微粒子を含む基材はセメント材料として使用できるので、請求項1記載の発明の効果に加えて、電磁波防止特性を有するセメント製品が得られる。   In the invention described in claim 20, since the base material containing conductive fine particles can be used as a cement material, in addition to the effect of the invention described in claim 1, a cement product having electromagnetic wave prevention characteristics can be obtained.

請求項21記載の発明は、電磁波のエネルギーを消耗して熱エネルギーに転換できるので、電磁波の消失除去が可能になる。   According to the twenty-first aspect of the present invention, since the electromagnetic wave energy can be consumed and converted to thermal energy, the electromagnetic wave can be eliminated and removed.

請求項22記載の発明は、導電性微粒子材料は高い導電性を有するので、請求項21記載の発明の効果に加えて、広い周波数範囲の電磁波の妨害を阻止及び吸収除去する能力が向上する。   In the twenty-second aspect of the invention, since the conductive fine particle material has high conductivity, in addition to the effect of the twenty-first aspect of the invention, the ability to block and absorb and remove electromagnetic waves in a wide frequency range is improved.

請求項23記載の発明は、導電性微粒子材料は高い導電性を有するので、請求項21記載の発明の効果に加えて、広い周波数範囲の電磁波の妨害を阻止及び吸収除去する能力が向上する。   According to the twenty-third aspect of the present invention, since the conductive fine particle material has high conductivity, in addition to the effect of the twenty-first aspect of the invention, the ability to block and absorb and remove electromagnetic waves in a wide frequency range is improved.

請求項24記載の発明は、導電性微粒子材料は高い導電性を有するので、請求項21記載の発明の効果に加えて、広い周波数範囲の電磁波の妨害を阻止及び吸収除去する能力が向上する。   According to the twenty-fourth aspect of the invention, since the conductive fine particle material has high conductivity, in addition to the effect of the twenty-first aspect of the invention, the ability to block and absorb and remove electromagnetic waves in a wide frequency range is improved.

請求項25記載の発明は、高い電磁波遮蔽効果が得られるのみならず、電磁波の反射や回折を消失除去できるので、請求項21記載の発明の効果に加えて、高い電磁波防護効果を十分に発揮することができる。   The invention according to claim 25 not only provides a high electromagnetic wave shielding effect, but also can eliminate and eliminate the reflection and diffraction of electromagnetic waves. Therefore, in addition to the effect of the invention according to claim 21, it sufficiently exhibits a high electromagnetic wave protection effect. can do.

請求項26記載の発明は、高い電磁波遮蔽効果が得られるのみならず、電磁波の反射や回折を消失除去できるので、請求項21記載の発明の効果に加えて、高い電磁波防護効果を十分に発揮することができる。   The invention described in claim 26 not only provides a high electromagnetic wave shielding effect, but also eliminates the reflection and diffraction of electromagnetic waves, so that in addition to the effect of the invention described in claim 21, it sufficiently exhibits a high electromagnetic wave protection effect. can do.

本発明は高分子、プラスチック材料/樹脂塗料、又は紡績繊維、セメント粉体等の基材中に添加できる電磁波防止用の微粒子材料であって、広い周波数範囲の電磁波を有効に遮蔽及び吸收できる電磁波防止用の微粒子材料を安価に提供するという目的を達成するために、電磁波防止用の微粒子材料は、少なくとも1つの導電性微粒子材料からなり、当該導電性微粒子材料は、管状/繊維状の構造導電性微粒子又は構造の導電性微粒子が混合された顆粒状の導電性微粒子からなり、当該電磁波防止用の微粒子材料中にさらに一部の電磁波吸收微粒材料をドープすることができ、以って、電磁波の吸收及び消失除去の能力を増進させることにより実現した。   The present invention is an electromagnetic wave-preventing fine particle material that can be added to a base material such as a polymer, plastic material / resin paint, spun fiber, cement powder, etc., and can effectively shield and absorb electromagnetic waves in a wide frequency range. In order to achieve the object of providing a particulate material for prevention at a low cost, the particulate material for preventing electromagnetic waves comprises at least one conductive particulate material, and the conductive particulate material is a tubular / fibrous structural conductive material. The conductive fine particles or the granular conductive fine particles mixed with the conductive fine particles having the structure can be doped with a part of the electromagnetic wave absorbing fine particle material in the fine particle material for preventing electromagnetic waves, thereby This was achieved by increasing the ability to absorb and eliminate the odor.

本発明は上記目的及びその他の目的を達成するため、茲に採用する好適な技術手段及びその好ましい実施例を挙げながら、以下のように詳細に説明する。ただし、本発明の実施できる範囲は之に限定されるものではない。   In order to achieve the above and other objects, the present invention will be described in detail as follows, with reference to preferred technical means employed in the bag and preferred embodiments thereof. However, the scope in which the present invention can be implemented is not limited to this.

図1に示すように、本発明の電磁波防止用の微粒子材料は1つのプラチックゴム、樹脂塗料、セメント粉体又は人造紡績繊維等の基材の中にドープでき、且つ、広いバンドの電磁波を吸収及び遮蔽可能な微粒子材料であって、それを添加した基材は電磁波防止特性を有し、当該基材を利用して電子製品用のハウジング、紡績繊維製品又は織物製品又は塗料等の製品を作製できる。   As shown in FIG. 1, the fine particle material for preventing electromagnetic waves of the present invention can be doped into a substrate such as one plastic rubber, resin paint, cement powder or artificially spun fiber, and absorbs a wide band of electromagnetic waves. And a fine particle material that can be shielded, and the base material to which the material is added has electromagnetic wave prevention characteristics, and the base material is used to produce a housing such as a housing for electronic products, a spun fiber product, a textile product, or a paint. it can.

本発明の電磁波防止用の微粒子材料は、少なくとも1種の導電性微粒子材料又は2種以上の導電性微粒子材料を組み合せて成るものであって、当該導電性微粒子材料は、管状/繊維状の構造(長形構造)又は不規則な顆粒状の構造に形成できるが、管状/繊維状の構造と不規則な顆粒状構造との混合体でもよい。   The fine particle material for preventing electromagnetic waves of the present invention comprises at least one kind of conductive fine particle material or a combination of two or more kinds of conductive fine particle material, and the conductive fine particle material has a tubular / fibrous structure. (Long structure) or an irregular granular structure, but may be a mixture of a tubular / fibrous structure and an irregular granular structure.

前記導電性微粒子材料の主な効果は、当該基材の導電性の増進、及び基材の内部に密集して織られた導電路を形成するために用いられ、以って、基材に広い周波数範囲の電磁波妨害を吸收及び遮蔽する能力を付与する。   The main effect of the conductive fine particle material is that it is used to increase the conductivity of the base material and to form a conductive path densely woven inside the base material. Provides the ability to absorb and shield electromagnetic interference in the frequency range.

更に、もう一歩進んで導電性微粒子材料が電磁波を遮ることで生じた回折、屈折、クリーピング等の電磁波現象を消去するために、当該電磁波防止用の微粒子材料には、更に電磁波吸收微粒子材料を添加することができる。   Further, in order to eliminate the electromagnetic wave phenomenon such as diffraction, refraction, creeping, etc. caused by the conductive fine particle material blocking the electromagnetic wave by going one step further, the electromagnetic wave absorbing fine particle material is further added to the electromagnetic wave preventing fine particle material. Can be added.

電磁波吸收微粒子材料の材質として、例えば、主として金属酸化物、光触媒材料、磁性粉体、及び炭酸カルシウム、セメント、天然鉱石、遠赤外線放射鉱石等の材料が挙げられる。   Examples of the material of the electromagnetic wave absorbing fine particle material mainly include metal oxides, photocatalytic materials, magnetic powders, and materials such as calcium carbonate, cement, natural ore, and far-infrared radiation ore.

その主な機能は、導電材料で遮られて生じた反射電磁波や回折電磁波を吸収し、該電磁波のエネルギーを消耗して熱エネルギーに転換することにより、電磁波の反射や回折等を消失除去する機能である。   Its main function is to absorb the reflected electromagnetic waves and diffracted electromagnetic waves generated by being blocked by the conductive material, and consumes the energy of the electromagnetic waves and converts it to thermal energy, thereby eliminating and removing the reflection and diffraction of the electromagnetic waves. It is.

本発明の第一の実施例を図1に示す。同図に示すように、本実施例の電磁波防止用の微粒子材料は、少なくとも1つの管状/繊維状を呈する構造の導電性微粒子材料10から構成される。   A first embodiment of the present invention is shown in FIG. As shown in the figure, the electromagnetic wave preventing fine particle material of the present embodiment is composed of at least one conductive fine particle material 10 having a tubular / fibrous structure.

当該構造の導電性微粒子材料10はその特殊な構造を有するため、基材30の中に添加した場合に、双方の頭部と尾部が相互に連結し易くなり、しかも、交織網状の組織構造に形成される。   Since the conductive fine particle material 10 having the structure has a special structure, when added to the base material 30, both the head and the tail are easily connected to each other, and the interwoven mesh structure is formed. It is formed.

斯くして、導電性微粒子材料10は、上記構造を有するために相互に連結し、基材30内部の導電路を増加させて導電性が向上し、加えて、電磁波を遮蔽し得る網状の導電ネットを生成する。このため、当該基材30には電磁波阻止特性及び電磁波遮蔽特性が付与される。   Thus, since the conductive fine particle material 10 has the structure described above, the conductive fine particle material 10 is connected to each other, increases the conductive path inside the base material 30 to improve the conductivity, and in addition, a net-like conductive material that can shield electromagnetic waves. Generate a net. For this reason, the base material 30 is provided with electromagnetic wave blocking characteristics and electromagnetic wave shielding characteristics.

前記構造の導電性微粒子材料として、主な選択使用できるものは以下の通りである。
1.炭素系材料について; 例えば、カーボンナノチューブ、炭素繊維材料、及び繊維状のナノ炭素材及びその他導電性の炭素系材料である。
2.導電性金属系材料について; 導電性金属を極細い形状の繊維に製作し、更に、微細化処理を経て、それを基材の中にドープ可能な微粒子材料に作製する。
As the conductive fine particle material having the above structure, the following can be mainly used.
1. Regarding carbon-based materials; for example, carbon nanotubes, carbon fiber materials, fibrous nanocarbon materials, and other conductive carbon-based materials.
2. Regarding the conductive metal-based material: The conductive metal is manufactured into an extremely thin fiber, and is further processed into a fine particle material that can be doped into the base material through a miniaturization process.

本発明の第一の実施例は先行技術と比べて、管状/繊維状の構造を呈する導電性微粒子材料10は相互に連結でき、且つ、不規則の網状構造に編織できるので、各導電性微粒子間に電気的伝導特性が生成増進する。   In the first embodiment of the present invention, the conductive fine particle material 10 having a tubular / fibrous structure can be interconnected and knitted into an irregular network structure as compared with the prior art. In the meantime, electrical conduction characteristics are generated and enhanced.

しかも、その生成増進した導電性により、常用の単純な粉体顆粒状の導電性添加材料よりも基材の導電性が高くなる。なお且つ、基材30内において、綿密な導電路から成る網状導電ネットワークを形成するので、電磁波の妨害を有効に遮蔽・防護する機能が確保される。   Moreover, the conductivity of the base material is higher than that of a conventional simple powder granular conductive additive material due to the enhanced conductivity. In addition, since a net-like conductive network composed of close conductive paths is formed in the base material 30, a function of effectively shielding / protecting electromagnetic interference is ensured.

本発明の第二の実施例を図2に示す。同図に示すように、本実施例は、管状/繊維状の構造の導電性微粒子材料10と、顆粒構造の導電性微粒子材料10Bとを互に混合した実施形態である。   A second embodiment of the present invention is shown in FIG. As shown in the figure, the present embodiment is an embodiment in which a conductive fine particle material 10 having a tubular / fibrous structure and a conductive fine particle material 10B having a granular structure are mixed with each other.

殊に、顆粒構造の導電性微粒子材料10Bは、異なる直径の不規則形状の導電性材料により顆粒状に製作したものであり、それを管状/繊維状構造の導電性微粒子材料10と混合して、基材30中にドープしている。   In particular, the conductive fine particle material 10B having a granular structure is manufactured in a granular shape by using irregular-shaped conductive materials having different diameters, and mixed with the conductive fine particle material 10 having a tubular / fibrous structure. The substrate 30 is doped.

本実施例では、管状/繊維状構造の導電性微粒子材料10は、顆粒構造の導電性微粒子材料10Bと相互に交差編織して連結できるため、基材30の導電性の増加及び妨害電磁波の遮蔽機能が確保される。   In the present embodiment, the conductive fine particle material 10 having a tubular / fibrous structure can be connected to the conductive fine particle material 10B having a granular structure by cross-weaving each other. Function is secured.

本発明に係る導電性微粒子材料10,10Bとして選択可能なものは、以下のように分けられる。   Materials that can be selected as the conductive fine particle materials 10 and 10B according to the present invention are classified as follows.

1.炭素系材料について; これは主としてグラファイト、C60フラーレン、活性炭、竹炭、カーボンナノチューブ、炭素繊維又はナノ炭素材等の炭素系材料である。   1. Regarding carbon-based materials; this is mainly carbon-based materials such as graphite, C60 fullerene, activated carbon, bamboo charcoal, carbon nanotubes, carbon fibers or nanocarbon materials.

これら炭素系材料は、高温反応を経た後に導電性が付与される。そして、炭素系材料を研磨して超微細な微粒子に加工することで、導電性を具有した管状/繊維状(線状又は棒状を含む)構造又は顆粒状構造の微粒子材料が得られる。   These carbon-based materials are given conductivity after undergoing a high temperature reaction. Then, by polishing the carbon-based material and processing it into ultrafine particles, a particulate material having a conductive / tubular / fibrous (including linear or rod-like) structure or a granular structure can be obtained.

2.導電性金属系材料について; これは金、銀、銅、アルミニウム、鉄、銑鉄、ニッケル、スズ、ピュアシリコン、珪鉄等の導電性金属で製作した微粒子材料である。   2. Regarding conductive metal-based materials; this is a fine particle material made of a conductive metal such as gold, silver, copper, aluminum, iron, pig iron, nickel, tin, pure silicon, or silica.

本発明は、上記のように、管状/繊維状構造の導電性微粒子と、不規則の顆粒状構造の導電性微粒とを互いに混合した技術であり、その効果は、図8及び図9に示す2つの電子顕微鏡の拡大図を比較することで知ることができる。   As described above, the present invention is a technique in which conductive fine particles having a tubular / fibrous structure and conductive fine particles having an irregular granular structure are mixed with each other, and the effect thereof is shown in FIGS. 8 and 9. This can be found by comparing the enlarged views of the two electron microscopes.

図8は、本発明の技術手段を利用して、カーボンナノチューブの柱の構造、ナノレベルの屑状若しくは球状構造及び不規則な顆粒形状の炭素系微粒子を混合して、プラスチック基材中にドープして形成された組織構造の電子顕微鏡の拡大図である。同図より明らかなように、管状/繊維状構造の炭素系材料の導電性微粒子と、顆粒状の炭素系材料の導電性微粒子とから形成された不規則な組成構造が見られる。しかも、プラスチック基材中において、綿密な導電路及び電磁波遮蔽ネットを形成している。このため、電磁波を阻止及び遮蔽する効果が顕著に発揮されている。尚、図中の符号81はナノカーボン、符号82はナノ炭素材、符号83はカーボンナノチューブを示す。   FIG. 8 is a graph showing a structure in which carbon nanotube columnar structures, nano-level scrap-like or spherical structures, and irregular granular carbon-based fine particles are mixed into a plastic substrate using the technical means of the present invention. It is an enlarged view of the electron microscope of the structure | tissue structure formed in this way. As is apparent from the figure, there is an irregular composition structure formed of conductive fine particles of a carbon-based material having a tubular / fibrous structure and conductive fine particles of a granular carbon-based material. In addition, a fine conductive path and an electromagnetic wave shielding net are formed in the plastic substrate. For this reason, the effect of blocking and shielding electromagnetic waves is remarkably exhibited. In the figure, reference numeral 81 indicates nanocarbon, reference numeral 82 indicates a nanocarbon material, and reference numeral 83 indicates a carbon nanotube.

また、図9は、顆粒状構造の導電性微粒子をプラスチック基材に単にドープした組織構造の電子顕微鏡の拡大図である。同図より明らかなように、顆粒状構造の導電路は比較的短小(綿密でない)であり、且つ、構成された電磁波遮蔽の領域範囲も比較的小さい。このため、本発明の第一及び第二の実施例と比べて、電磁波を阻止及び遮蔽する効果が得難いものとなる。   FIG. 9 is an enlarged view of an electron microscope having a tissue structure in which conductive particles having a granular structure are simply doped on a plastic substrate. As is clear from the figure, the conductive path of the granular structure is relatively short (not fine), and the constructed electromagnetic shielding area range is also relatively small. For this reason, it is difficult to obtain the effect of blocking and shielding electromagnetic waves as compared with the first and second embodiments of the present invention.

前記導電性微粒子材料10,10Bは基材30に導電性を増加させることによって電磁波を遮蔽して、電磁波の透過を遮る効果が得られる。しかし、電磁波は導体に対し反射、回折、クリーピング等の現象を有するため、導電性微粒子材料10,10Bにより遮蔽されても、電磁波を有効に消失除去することはできない。   The conductive fine particle materials 10 and 10B have an effect of shielding the electromagnetic wave by increasing the conductivity of the base material 30 and blocking the transmission of the electromagnetic wave. However, since the electromagnetic wave has phenomena such as reflection, diffraction, and creeping on the conductor, the electromagnetic wave cannot be effectively eliminated and removed even when shielded by the conductive fine particle materials 10 and 10B.

そこで、図3示す本発明の第三の実施例のように、電磁波防止用の微粒子材料中に更に電磁波吸收微粒子材料20を添加し、これにより、導電性微粒子材料10,10Bにて反射又は回折する電磁波エネルギーを熱エネルギーに転換させ、以って、電磁波を吸収して消失除去効果が発揮される。   Therefore, as in the third embodiment of the present invention shown in FIG. 3, the electromagnetic wave absorbing fine particle material 20 is further added to the fine particle material for preventing electromagnetic waves, thereby reflecting or diffracting by the conductive fine particle materials 10 and 10B. The electromagnetic wave energy to be converted is converted into thermal energy, so that the electromagnetic wave is absorbed and the disappearance removal effect is exhibited.

前記電磁波吸收微粒子材料20は、高度の電磁波反射損失率を有し、主に電磁波が当たった時に、インピーダンス、磁性、共振、ディエレクトリックカレント損失(電磁波反射損失)等の現象を生じさせ、しかも、電磁波エネルギーを熱エネルギーに転換するように機能する。当該電磁波吸收微粒子材料20として選択可能な材料は、主として以下のように分けられる。   The electromagnetic wave absorbing fine particle material 20 has a high degree of electromagnetic wave reflection loss rate, and causes phenomena such as impedance, magnetism, resonance, deelectric current loss (electromagnetic wave reflection loss), etc. It functions to convert electromagnetic energy into thermal energy. Materials that can be selected as the electromagnetic wave absorbing fine particle material 20 are mainly classified as follows.

1.金属酸化物粉体について; これは主に酸化アルミニウム、酸化亜鉛、酸化銅、二酸化チタン、光触媒材料等の金属酸化物粉体又は鉄の酸化物が挙げられ、例えば、四酸化三鉄のように、高インピーダンス又は高ディエレクトリックカレント係数(電磁波反射損失の係数)の特性を有し、電磁波のインピーダンス損失又はディエレクトリックカレント損失を生じせしめるので、電磁波エネルギーを損失させることができる。   1. About metal oxide powders; This mainly includes metal oxide powders such as aluminum oxide, zinc oxide, copper oxide, titanium dioxide, photocatalyst materials or iron oxides, for example, triiron tetroxide Since it has the characteristics of high impedance or high deelectric current coefficient (coefficient of electromagnetic wave reflection loss) and causes impedance loss or deelectric current loss of electromagnetic wave, electromagnetic wave energy can be lost.

2.磁性粉体について; これは主として磁性を有した金属粉体(例えば:ネオジウム、硼素系合金等)、及び磁性を有した金属酸化物(例えば:磁性酸化鉄)であり、それらが電磁波に磁性損失と共振損失を生じさせ、以って、電磁波のエネルギーを消耗させることができる。   2. About magnetic powder; This is mainly metal powder with magnetism (for example: neodymium, boron-based alloy, etc.) and metal oxide with magnetism (for example: magnetic iron oxide), and they are magnetic loss to electromagnetic waves. Resonance loss is caused, and electromagnetic energy can be consumed.

3.天然鉱石について; これはセメント粉体、陶磁器、粘土、炭酸カルシウム、又は内部に珪素、鉄、アルミニウム、ニッケル、炭素、マグネシウム、マンガン、クロム鉱物等が含まれた天然鉱石、及び遠赤外線放射天然鉱石であり、例えば、電石、斑岩‐岩石、石英、水晶、雲母等である。それらの材質で製作した粉体は、高インピーダンスと高ディエレクトリックカレント特性を有する。そのため、これを本発明の電磁波防止用の微粒子粉体の中に添加すると、電磁波吸收効果の向上に大いに寄与しうる。    3. For natural ores; this is cement powder, ceramics, clay, calcium carbonate, or natural ores containing silicon, iron, aluminum, nickel, carbon, magnesium, manganese, chromium minerals, etc., and far-infrared emitting natural ores For example, electric stone, porphyry-rock, quartz, quartz, mica and the like. Powders made of these materials have high impedance and high deelectric current characteristics. Therefore, when this is added to the fine particle powder for preventing electromagnetic waves of the present invention, it can greatly contribute to the improvement of the electromagnetic wave absorption effect.

なお、図4に示す第四の実施例のように、本発明は顆粒状の導電性微粒子材料10Bを電磁波吸收微粒子20と混合した形態により実用化できる。本実施例においては、前記実施例で使用された繊維状又は管状の導電性微粒子材料を有しないが、導電性の微粒子材料と、ディエレクトリックカレント性の微粒子材料との混合により、比較的常用の導電性又はディエレクトリックカレント性を有した電磁波防止微材料よりも比較的好ましい効果に達しうる。   As in the fourth embodiment shown in FIG. 4, the present invention can be put into practical use by mixing the granular conductive fine particle material 10 </ b> B with the electromagnetic wave absorbing fine particles 20. In this embodiment, the fibrous or tubular conductive fine particle material used in the above embodiment is not included, but a relatively common use is obtained by mixing the conductive fine particle material and the deelectric current fine particle material. A relatively preferable effect can be achieved as compared with the electromagnetic wave preventing fine material having conductivity or deelectric current property.

上記の記載から判るように、導電性材料と電磁波吸收微粒子材料の粉体顆粒の直径は、電磁波を遮蔽及び吸收できる機能に関して、いずれも電磁波の波長範囲によって異なる。故に、本発明は、異なる直径の顆粒状構造の導電性微粒子材料10Bと電磁波吸收微粒子材料20とを混合して使用する。斯くして、異なる波長の電磁波を有効に阻止して吸收する効果が得られる。 As can be seen from the above description, the diameters of the powder granules of the conductive material and the electromagnetic wave absorbing fine particle material both differ depending on the wavelength range of the electromagnetic wave with respect to the function of shielding and absorbing the electromagnetic wave. Therefore, in the present invention, the conductive fine particle material 10B having a granular structure with different diameters and the electromagnetic wave absorbing fine particle material 20 are mixed and used. Thus, an effect of effectively blocking and absorbing electromagnetic waves having different wavelengths can be obtained.

また、極短い波長の電磁波の防護に即応すべく、前記顆粒状構造の導電性微粒子材料10B及び電磁波吸收微粒子材料20は微粒化加工を経て、少なくとも一部の粉体直径が1〜100ナノメータの範囲に設定し、これにより、ナノメータオーダーの粉体顆粒の形態が得られる。   Further, in order to immediately respond to protection of electromagnetic waves having an extremely short wavelength, the conductive fine particle material 10B and the electromagnetic wave absorbing fine particle material 20 having a granular structure are subjected to atomization processing, and at least a part of the powder diameter is 1 to 100 nanometers. The range is set so that nanometer-scale powder granule morphology is obtained.

本発明の電磁波防止用の微粒子材料は、複数の形態の基材30中に添加でき、該微粒子材料の添加により、広い周波数範囲の電磁波を吸收と消失除去する能力が基材30に付与される。当該基材30として、プラスチック/ゴム等の高分子基材、樹脂塗料、紡績繊維材料又はセメント等を採択できる。   The fine particle material for preventing electromagnetic waves of the present invention can be added to the substrate 30 in a plurality of forms, and the addition of the fine particle material gives the substrate 30 the ability to absorb and eliminate electromagnetic waves in a wide frequency range. . As the base material 30, a polymer base material such as plastic / rubber, resin paint, spun fiber material, cement, or the like can be adopted.

前記基材30が高分子基材(例えば:PC、PE、POLYESTER、PP、PVC、ABS、PET、PT、PU、ナイロン、アクリル樹脂、ゴム、スポンジ、シリカゲル等)の場合、射出成形加工方法又はその他プラスチック成形加工方法により、直接に電子製品のハウジング、又は遮蔽板、糸通し管、ワイヤ被覆材等のユニットに製造可能である。   When the base material 30 is a polymer base material (for example: PC, PE, POLYESTER, PP, PVC, ABS, PET, PT, PU, nylon, acrylic resin, rubber, sponge, silica gel, etc.) In addition, it can be manufactured directly into a housing of an electronic product or a unit such as a shielding plate, a threading tube, or a wire covering material by a plastic molding method.

このため、本発明の電磁波防止用の微粒子材料は、相当な広範囲な応用が可能である。その具体的な応用例は、図5に示すように、当該基材を用いて電子製品のハウジング40に製作できる。また、作製した当該ハウジング40は、電磁波を遮蔽及び吸收する効果を有するようになる。故に、前記ハウジング40は、回路ユニット41にて生じた電磁波を遮蔽及び吸收するために用いられる。   For this reason, the particulate material for preventing electromagnetic waves of the present invention can be applied in a considerably wide range. As a specific application example, as shown in FIG. 5, the substrate can be used to manufacture an electronic product housing 40. Further, the produced housing 40 has an effect of shielding and absorbing electromagnetic waves. Therefore, the housing 40 is used for shielding and absorbing electromagnetic waves generated in the circuit unit 41.

図6に示すように、当該基材を使用して各種形状の板片50に製作して、これを電磁波遮蔽板として使用してもよい。又、図7に示すように、当該基材を1つの防護管60に製作し、且つ、当該防護管60の中央部に電力/メッセージ線路70を設ける。これにより、当該電力/メッセージ線路70の外部からの電磁波妨害を阻止し、又は、当該電力/メッセージ線路70は外部からの電磁波妨害の影響を防止し、或いは、当該電力/メッセージ線路70からの電磁波の漏洩を避けることができる。   As shown in FIG. 6, various base plate pieces 50 may be manufactured using the base material and used as an electromagnetic wave shielding plate. Further, as shown in FIG. 7, the base material is manufactured in one protective tube 60, and a power / message line 70 is provided in the central portion of the protective tube 60. Thereby, electromagnetic interference from the outside of the power / message line 70 is prevented, or the power / message line 70 prevents the influence of electromagnetic interference from the outside, or electromagnetic waves from the power / message line 70. Leakage can be avoided.

なお、前記基材は樹脂塗料であってもよい。基材が樹脂塗料である場合、それを塗料又は顔料として使用できる。故に、広範囲な製品、例えば、プラスチック製品、布地、金属、木材、建築物の壁板、ガラス、プラスチックの管体及び電線等の各種材料の塗装又は表面処理にて応用可能である。従って、様々な各種材質であっても、電磁波を遮蔽及び吸收する効果が発揮される。   The substrate may be a resin paint. If the substrate is a resin paint, it can be used as a paint or pigment. Therefore, it can be applied to a wide range of products such as plastic products, fabrics, metal, wood, building wall plates, glass, plastic pipes, and various materials such as electric wires or surface treatment. Therefore, even if it is various various materials, the effect which shields and absorbs electromagnetic waves is exhibited.

当該基材30がプラスチックの高分子材料である場合、前記電磁波防止用の微粒子材料を当該基材30中に添加する方法は、主に下記の通りである。   When the base material 30 is a plastic polymer material, the method of adding the fine particle material for preventing electromagnetic waves to the base material 30 is mainly as follows.

1.高分子基材の重合反応の過程中にて、本発明の電磁波防止用の微粒子材料を添加すること。   1. The fine particle material for preventing electromagnetic waves of the present invention is added during the polymerization reaction of the polymer substrate.

2.なお、一般の高分子基材が重合反応を経た後に殆ど粉体状態となり、それを更にモールドにより顆粒状に加工して、その後のプラスチックの射出成形加工方法にて便ならしめることができる。このため、本発明は前記高分子基材が重合反応を完了し、かつ、粉体の状態となっている時に、本発明の電磁波防止用の微粒子材料を当該高分子基材の粉末中に添加でき、そして、当該混合後の高分子基材の粉体を用いて顆粒材料に作製する。それにより、継続する後工程において、プラスチックを射出成形加工方法又はその他プラスチックの成形加工する際に製造面で有利になる。   2. It should be noted that a general polymer base material is almost in a powder state after undergoing a polymerization reaction, which can be further processed into granules by a mold, and can be conditioned by a subsequent plastic injection molding method. For this reason, the present invention adds the fine particle material for electromagnetic wave prevention of the present invention to the powder of the polymer substrate when the polymer substrate has completed the polymerization reaction and is in a powder state. It can be made into a granular material using the powder of the polymer base material after mixing. Thereby, it is advantageous in terms of manufacturing when the plastic is subjected to an injection molding method or other plastic molding processing in the subsequent post-process.

3.若し、高分子基材がプラスチック粒子の状態である場合は、当該プラスチック粒子を打ち砕いた後、本発明の電磁波防止用の微粒子材料に加入、又は電磁波防止用の微粒子材料を直接プラスチックの母料中に混入、そして、射出成形加工方法又はその他のプラスチック成形加工方法により製品を直接作製することができる。   3. If the polymer substrate is in the form of plastic particles, the plastic particles are crushed and then added to the electromagnetic wave preventing fine particle material of the present invention, or the electromagnetic wave preventing fine particle material is directly used as a plastic base material. The product can be made directly by mixing and injection molding or other plastic molding process.

4.なお、本発明は、先に正常なドープ濃度を超えた分量の当該電磁波防止用の微粒子材料を高分子基材の中に添加することが可能であり、以って、“高濃度の母粒”を製造する。然る後、当該高濃度のプラスチック毋粒を一般のプラスチック母粒中に混合させて、更に、一般の射出成形加工方法又はその他のプラスチック成形加工方法により、電子製品のハウジング又はその他の製品を作製する。   Four. In the present invention, it is possible to add an amount of the fine particle material for preventing electromagnetic waves exceeding the normal dope concentration into the polymer base material, and thus, “high concentration mother particle” "To manufacture. After that, the high-concentration plastic granules are mixed into general plastic mother grains, and further, an electronic product housing or other product is produced by a general injection molding method or other plastic molding method. To do.

例えば、本発明の電磁波防止用の微粒子材料と高分子基材との正常ドープ比例を5wt%とした場合、一部の高分子基材中に5倍濃度、即ち25wt%の電磁波防止用の微粒子材料をドープすることができる。そして、これを用いて前記「高濃度の母粒」に製作する。   For example, when the proportion of normal dope between the fine particle material for preventing electromagnetic waves of the present invention and the polymer substrate is 5 wt%, the fine particles for preventing electromagnetic waves of 5 times the concentration in some polymer substrates, that is, 25 wt%. The material can be doped. And using this, it manufactures to the said "high concentration mother grain".

然る後、更に「高濃度の母粒」を、4倍重量部の電磁波防止用の微粒子材料を添加しない高分子基材顆粒と相互に混合する。そして、混合後の顆粒を利用して、後続の成形加工を経てプラスチック製品を製作する。このようにして、当該プラスチック製品中に含んだ電磁波防止用の微粒子材料のドープ濃度は、予め決められた5wt%の比重となる。   Thereafter, the “high concentration mother granule” is further mixed with a polymer base granule to which 4 times by weight of the fine particle material for preventing electromagnetic waves is not added. Then, a plastic product is manufactured through subsequent molding using the mixed granule. In this way, the dope concentration of the fine particle material for preventing electromagnetic waves contained in the plastic product has a predetermined specific gravity of 5 wt%.

なお、若し、当該高分子基材がゴム又はスポンジ等の形態の高分子材料である場合、ゴム材料の発泡過程において、当該電磁波防止用の微粒子材料を発泡中のゴム材料中に添加できる。   If the polymer base material is a polymer material such as rubber or sponge, the fine particle material for preventing electromagnetic waves can be added to the rubber material being foamed during the foaming process of the rubber material.

又、前記基材30が紡績繊維である場合、当該紡績繊維母粒材料の重合反応中に、本発明の電磁波防止用の微粒子材料を添加することにより、当該電磁波防止用の微粒子材料を含有した繊維母粒又は繊維母粒を引き出し糸に製作する段階において、電磁波防止用の微粒子材料の添加により、電磁波防止特性を有する紡績繊維が作製される。   Further, when the base material 30 is a spun fiber, the anti-electromagnetic wave fine particle material is contained by adding the anti-electromagnetic wave fine particle material of the present invention during the polymerization reaction of the spun fiber base material. In the step of producing fiber mother particles or fiber mother particles as drawn yarns, a spun fiber having anti-electromagnetic properties is produced by adding a fine particle material for preventing electromagnetic waves.

前記基材30はセメントであってもよい。本発明の電磁波防止用の微粒子材料をセメント形態(製品)の基材30中に混入した時、当該セメント製品の基材に電磁波防止特性を持たせることができる。このため、当該セメント形態の基材30を利用して、壁又は建築物の仕切り用の材料を製作した場合、建築用構造物に電磁波防止特性を持たせることができる。   The substrate 30 may be cement. When the fine particle material for preventing electromagnetic waves of the present invention is mixed in the base material 30 in the cement form (product), the base material of the cement product can have an electromagnetic wave preventing property. For this reason, when the base material 30 of the said cement form is utilized and the material for the partition of a wall or a building is manufactured, an electromagnetic wave prevention characteristic can be given to a building structure.

本発明によれば、電磁波防止用の微粒子材料を各種形態の基材の中への添加により、基材に広い周波数範囲に渡って、妨害電磁波を吸收及び消失除去できる特性が得られる。先行技術と比べて、特殊な構造の導電性微粒子材料を採用して導電性を増加できる。しかも、導電微粒子材料と電磁波吸收微粒子材料との混合が可能であるので、電磁波の反射、回折、クリーピング等の現象を完全に消去することができる。このため、広い周波数範囲の電磁波妨害を有効かつ完全に吸收阻止するという目的を達成することができる。   According to the present invention, by adding the fine particle material for preventing electromagnetic waves into the base material in various forms, the base material can have a characteristic capable of absorbing and eliminating elimination of the disturbing electromagnetic wave over a wide frequency range. Compared with the prior art, the conductivity can be increased by employing a conductive fine particle material having a special structure. Moreover, since the conductive fine particle material and the electromagnetic wave absorbing fine particle material can be mixed, phenomena such as electromagnetic wave reflection, diffraction, and creeping can be completely eliminated. For this reason, it is possible to achieve the purpose of effectively and completely absorbing and preventing electromagnetic interference in a wide frequency range.

また、本発明によれば、基材30を用いて、電子製品のハウジング又はその他の電磁波防護ユニットを直接に製造でき、更に、その他の電磁波防護ユニットを付設する必要はない。加えて、本発明による材料の加工手順は、伝統的な既存のプラスチック材料の加工手順と完全に同一であるので、電子製品のハウジングの生産コストを有効に低減できる。   Further, according to the present invention, it is possible to directly manufacture a housing of an electronic product or other electromagnetic wave protection unit using the base material 30, and it is not necessary to attach another electromagnetic wave protection unit. In addition, since the material processing procedure according to the present invention is completely the same as the traditional existing plastic material processing procedure, the production cost of the housing of the electronic product can be effectively reduced.

更に本発明の技術により各種塗料の製造が可能となり、それを各種製品の電磁波防護手段として広汎に用いることができ、従って、本発明の応用面は、各種の日常生活用品の電磁波防護までに広範に及んでいる。   Furthermore, the technology of the present invention makes it possible to produce various paints, which can be widely used as electromagnetic wave protection means for various products. Therefore, the application aspect of the present invention can be widely applied to electromagnetic wave protection of various daily life products. It reaches to.

叙上の如く本発明によると、電磁波防止用の微粒子材料は、少なくとも1つの基材中に添加可能であり、電磁波を吸収及び遮蔽可能な導電性微粒子材料を含むものである。そのうち、当該導電性微粒子材料の少なく一部は、管状/繊維状の導電性微粒子材料からなり、該導電性微粒子を基材中 (基材内部)に混入し、焼結により相互に結合して不規則な組織構造を生成する。従って、管状/繊維状の導電性微粒子材料が電気的伝導性を促進し、広い周波数範囲に及んで、妨害電磁波を遮蔽及び吸収する能力が著しく向上する。   As described above, according to the present invention, the fine particle material for preventing electromagnetic waves can be added to at least one base material, and includes conductive fine particle materials that can absorb and shield electromagnetic waves. At least a part of the conductive fine particle material is composed of tubular / fibrous conductive fine particle material. The conductive fine particles are mixed in the base material (inside the base material) and bonded together by sintering. Generate an irregular organizational structure. Thus, the tubular / fibrous conductive particulate material promotes electrical conductivity and significantly improves the ability to shield and absorb interfering electromagnetic waves over a wide frequency range.

又、管状/繊維状の導電性微粒子材料は、カーボンナノチューブ、活性炭素繊維、炭素繊維、ナノ炭素材及びその他導電性の炭素系材料、又は導電性の金属材料のうちの1つ又は2つ以上を組み合わせたものである。尚、特に説明のない限り、本発明が言及している“1つ”とは、複数のうちのいずれか1つを任意に選択することを意味する。   The tubular / fibrous conductive fine particle material may be one or more of carbon nanotubes, activated carbon fibers, carbon fibers, nanocarbon materials and other conductive carbon-based materials, or conductive metal materials. Is a combination. Unless otherwise specified, “one” referred to in the present invention means that any one of a plurality is arbitrarily selected.

本発明の具体的な実施例によれば、前記導電性微粒子材料は、管状/繊維状の導電性微粒子を顆粒状の導電性微粒子と混合してもよい。又、管状/繊維状の導電微粒子材料と,不規則な形状の顆粒状の導電微粒子材料とを相互に混合紡織しても良く、この場合は、導電性微粒子材料の電気的特性が更に生成/増加する。従って、導電性微粒子材料の導電路の密集度が増進されるため、電磁波防止用の微粒子材料は、より広い周波数範囲の電磁波を吸收、遮蔽及び除去する能力が高まることは勿論である。   According to a specific embodiment of the present invention, the conductive fine particle material may be obtained by mixing tubular / fibrous conductive fine particles with granular conductive fine particles. Alternatively, the tubular / fibrous conductive fine particle material and the irregular shaped granular conductive fine particle material may be mixed and spun together. In this case, the electrical characteristics of the conductive fine particle material are further generated / To increase. Therefore, since the density of the conductive path of the conductive fine particle material is increased, the fine particle material for preventing electromagnetic waves naturally increases the ability to absorb, shield and remove electromagnetic waves in a wider frequency range.

実施例によれば、顆粒状の導電性微粒子材料は、炭素系材料から製作されたサイズの大小分布が異なる球状又は不規則な顆粒状の微粒子であってもよい。当該炭素系材料はグラファイト、竹炭、カーボンブラック、C60フラーレン、活性炭、ナノ炭素材(ナノ炭球)又はその他導電性の炭素系材料中のいずれか1つ又は複数を組み合わせて構成される。   According to the embodiment, the granular conductive fine particle material may be spherical or irregular granular fine particles having a different size distribution manufactured from a carbon-based material. The carbon-based material is configured by combining any one or more of graphite, bamboo charcoal, carbon black, C60 fullerene, activated carbon, nano-carbon material (nano-carbon ball) or other conductive carbon-based material.

一方、導電性微粒子材料は金、銀、銅、アルミニウム、鉄、銑鉄、ニッケルとスズ、ピュアシリコンと硅素鉄等の導電性の金属系材料中のいずれか1つ又は複数を組み合わせて作製される。そして、導電性微粒子材料は導電性の炭素系微粒子材料と導電性の金属系微粒子材料とを混合して形成できる。   On the other hand, the conductive fine particle material is produced by combining any one or a plurality of conductive metal materials such as gold, silver, copper, aluminum, iron, pig iron, nickel and tin, pure silicon and silicon iron. . The conductive fine particle material can be formed by mixing a conductive carbon-based fine particle material and a conductive metal-based fine particle material.

当該導電性微粒子材料の主な効果は、電磁波防止の電磁波粒子材料を基礎材質に添加して導電性を付与し、以って、電磁波、例えば、外部から入射した電磁波、又は内部ユニットから生じた電磁波を導出させることができる。そして、1つのアース装置を介してして電磁波をグランドまで導出させ、最後に、電磁波を低減させることにより、電磁波の遮蔽という目的を達成することができる。   The main effect of the conductive fine particle material is that an electromagnetic wave preventive electromagnetic wave particle material is added to the base material to impart conductivity, and thus, an electromagnetic wave, for example, an electromagnetic wave incident from the outside or an internal unit is generated. Electromagnetic waves can be derived. The object of shielding electromagnetic waves can be achieved by deriving electromagnetic waves to the ground through one earthing device and finally reducing the electromagnetic waves.

なお、本発明の電磁波防止用の微粒子材料は、導電性微粒子と電磁波吸收微粒子材料とを交互に混合して組成する構造であってもよい。該電磁波吸收微粒子材料として選択可能な材質は、主に金属酸化物、光触媒材料、磁性粉体、炭酸カルシウム、セメント、天然鉱石、遠赤外線放射鉱石材料等の材料である。   The fine particle material for preventing electromagnetic waves of the present invention may have a structure in which conductive fine particles and electromagnetic wave absorbing fine particle materials are alternately mixed and composed. Materials that can be selected as the electromagnetic wave absorbing fine particle material are mainly materials such as metal oxides, photocatalytic materials, magnetic powders, calcium carbonate, cement, natural ores, and far-infrared emitting ore materials.

電磁波防止用の微粒子材料の主要な機能の1つは、導電性材料で遮られた箇所にて反射又は回折して発生した電磁波を吸収し、そして、該電磁波のエネルギーを消耗して熱エネルギーに転換する機能であり、これによって電磁波の反射、回折等の現象を有効に消去又は除去することができる。   One of the main functions of the fine particle material for preventing electromagnetic waves is to absorb electromagnetic waves generated by reflection or diffraction at a location blocked by the conductive material, and to consume the electromagnetic waves to generate thermal energy. This is a function to convert, and by this, phenomena such as reflection and diffraction of electromagnetic waves can be effectively erased or removed.

特に、上記金属酸化物は、酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄の酸化物等のいずれか1つ又は複数を組み合わせたものである。又、上記磁性粉体は、磁性を有した金属材料、或いは、磁性を有した金属酸化物材料である。更に、上記天然鉱物材料は、セメント、陶土、粘土、炭酸カルシウムその他の金属鉱石等の天然鉱物材料中のいずれか1つ又は複数を組み合わせたものである。   In particular, the metal oxide is a combination of one or more of aluminum oxide, zinc oxide, titanium dioxide, photocatalytic material, and iron oxide. The magnetic powder is a metal material having magnetism or a metal oxide material having magnetism. Furthermore, the natural mineral material is a combination of any one or a plurality of natural mineral materials such as cement, porcelain clay, clay, calcium carbonate and other metal ores.

電磁波防止用の微粒子材料は、導電性微粒子と電磁波吸收微粒子材料とを混合して構成できる。この構成によれば、電磁波の遮蔽効果だけでなく、電磁波吸收微粒子材料の性質を利用して、電磁波の反射や回折等の現象の消失除去効果が増大し、十分な電磁波防護効果を発揮し得る。   The fine particle material for preventing electromagnetic waves can be constituted by mixing conductive fine particles and an electromagnetic wave absorbing fine particle material. According to this configuration, not only the electromagnetic wave shielding effect but also the properties of the electromagnetic wave absorbing fine particle material can be used to increase the disappearance removal effect of phenomena such as reflection and diffraction of electromagnetic waves, and to exhibit a sufficient electromagnetic wave protection effect. .

本発明の電磁波防止用の微粒子材料によれば、上記基材としては高分子基材を採択できる。該高分子基材は具体的にはプラスチック/ゴムであり、プラスチック成形加工方法により、当該高分子基材を各種の形状若しくは形態のプラスチック製品/ゴム製品に製作できる。また、プラスチックの成形加工方法としては射出成形加工方法を採択できる。   According to the fine particle material for preventing electromagnetic waves of the present invention, a polymer substrate can be adopted as the substrate. The polymer substrate is specifically plastic / rubber, and the polymer substrate can be produced into plastic products / rubber products of various shapes or forms by a plastic molding method. An injection molding method can be adopted as a plastic molding method.

電磁波防止用の微粒子材料は、前記高分子基材の重合反応の過程中に該高分子基材中にドープすることができる。又、電磁波防止用の微粒子材料を、高分子基材の重合反応が完成して、原料粉の状態で高分子基材の粉体中にドープして混合することができる。そして、高分子基材の粉体を顆粒に製作することで、その後のプラスチック加工を円滑に進行させることができる。この場合、プラスチック成形加工方法としては射出成形加工方法を採択できる。   The fine particle material for preventing electromagnetic waves can be doped into the polymer substrate during the polymerization reaction of the polymer substrate. Further, the fine particle material for preventing electromagnetic waves can be mixed by doping into the powder of the polymer substrate in the raw material powder state after the polymerization reaction of the polymer substrate is completed. And the subsequent plastic processing can be smoothly advanced by manufacturing the powder of a polymer base material to a granule. In this case, an injection molding method can be adopted as the plastic molding method.

他の実施例によれば、高分子基材を粉体状に粉砕し、電磁波防止用の微粒子材料を当該高分子基材中にドープし、更に、当該高分子基材をプラスチック成形加工方法にてプラスチック製品に加工する。この場合、プラスチック成形加工方法としては射出成形加工方法を採択できる。   According to another embodiment, the polymer base material is pulverized into a powder form, a fine particle material for preventing electromagnetic waves is doped into the polymer base material, and the polymer base material is further processed into a plastic molding method. To plastic products. In this case, an injection molding method can be adopted as the plastic molding method.

更に他の実施例によれば、正常なドープ濃度(予め定めた最適な所定濃度)を超えた電磁波防止用の微粒子材料と高分子基材とを混合して、高濃度の母粒を作製する。次いで、この高濃度の母粒は、電磁波防止用の微粒子材料をドープしていない高分子材料の顆粒と混合させ、混合後の高分子基材が正常なドープ濃度になるように調整する。更に、プラスチック成形加工方法に従いプラスチック成形品を作製する。この場合も、プラスチック成形加工方法としては射出成形加工方法を採択できる。   According to still another embodiment, a high-concentration mother particle is prepared by mixing an electromagnetic wave preventing fine particle material exceeding a normal dope concentration (predetermined optimum predetermined concentration) and a polymer substrate. . Next, the high-concentration mother granule is mixed with granules of a polymer material that is not doped with a fine particle material for preventing electromagnetic waves, and adjusted so that the polymer base material after mixing has a normal dope concentration. Further, a plastic molded product is produced according to the plastic molding method. Also in this case, an injection molding method can be adopted as the plastic molding method.

例えば、本発明の電磁波防止用の微粒子材料と高分子基材との正常なドープ比例を5wt%とすると、一部の高分子基材中へ5倍のドープ濃度、即ち、25wt%の電磁波防止用の微粒子材料をドープして、前述した「高濃度の母粒」を作製する。然る後に、「高濃度の母粒」を、電磁波防止用の微粒子材料を添加しない4倍重量の高分子基材の顆粒と相互に混合する。   For example, when the normal dope ratio between the fine particle material for preventing electromagnetic waves of the present invention and the polymer substrate is 5 wt%, the dope concentration is 5 times into a part of the polymer substrate, that is, 25 wt% of electromagnetic wave prevention. The above-mentioned “high-concentration mother grain” is produced by doping the fine particle material for use. Thereafter, the “high-concentration mother granule” is mixed with the 4 × weight polymer base granule to which no fine particle material for preventing electromagnetic waves is added.

そして、混合後の顆粒の材料を利用して、その後のプラスチック成形加工を介してプラスチック製品に加工する。これにより、当該プラスチック製品中に含まれる電磁波防止用の微粒子材料のドープ濃度は、予め設定した5wt%の比重となる。   Then, the mixed granule material is used to process into a plastic product through a subsequent plastic molding process. Thereby, the dope concentration of the fine particle material for preventing electromagnetic waves contained in the plastic product has a specific gravity of 5 wt% set in advance.

又、本発明の実施例によれば、基材を利用して電子製品用(電子部品用を含む)のハウジング、或いは、管状や平板状の電磁波遮蔽ユニットを作製することができる。   Further, according to the embodiment of the present invention, a housing for electronic products (including an electronic component) or a tubular or flat electromagnetic shielding unit can be manufactured using a base material.

更に、本発明に係る基材は、樹脂塗料としてもよい。当該樹脂塗料を電子製品、木材、セメント、ガラス、紙類、プラスチック、布地、建材表面、金属/管材の内表面又は外表面の品物表面に塗装又は印刷することができる。斯くして、当該樹脂塗料を塗布した物品に、電磁波吸収機能及び電磁波遮蔽機能が付与される。   Furthermore, the base material according to the present invention may be a resin paint. The resin paint can be coated or printed on electronic products, wood, cement, glass, paper, plastics, fabrics, building material surfaces, metal / pipe material inner surfaces or outer article surfaces. Thus, the electromagnetic wave absorbing function and the electromagnetic wave shielding function are imparted to the article coated with the resin paint.

基材は人造紡績繊維の材料として使用できる。この場合は、当該人造紡績繊維材料の中には電磁波防止用の微粒子材料が均一に分布するように混入される。当該人造紡績繊維材料を利用して、電磁波吸収機能付き紡績繊維製品又は織物製品が作製される。又、基材はセメント材料(粉体)として使用できる。この場合は、当該セメント材料を利用して電磁波吸収機能付きセメント構造物が作製される。   The substrate can be used as a material for artificially spun fibers. In this case, the artificially spun fiber material is mixed so that the fine particle material for preventing electromagnetic waves is uniformly distributed. Using the artificially spun fiber material, a spun fiber product or a textile product with an electromagnetic wave absorbing function is produced. The substrate can be used as a cement material (powder). In this case, a cement structure with an electromagnetic wave absorption function is produced using the cement material.

本発明は、他の1つの電磁波防止用の微粒子材料を提供する。即ち、当該電磁波防止用の微粒子材料は、少なくとも1つの導電性微粒子材料と、少なくとも1つの電磁波吸收の微粒子材料とを混合して成るものであり、且つ、該混合物を1つの基材中にドープでき、これにより、該基材に電磁波の透過を遮蔽、並びに、電磁波を吸收する特性を持たせることができる。特に、導電性微粒子材料は、基材に導電性を持たせるために用いられ、以て、電磁波の透過を阻止することができる。   The present invention provides another particulate material for preventing electromagnetic waves. That is, the electromagnetic wave preventing fine particle material is a mixture of at least one conductive fine particle material and at least one electromagnetic wave absorbing fine particle material, and the mixture is doped into one base material. Thus, the base material can be provided with the property of shielding the transmission of electromagnetic waves and absorbing the electromagnetic waves. In particular, the conductive fine particle material is used for imparting conductivity to the base material, and thus can prevent transmission of electromagnetic waves.

又、電磁波吸收微粒子材料は、導電性材料粉体にて遮られた箇所で、反射若しくは回折して生じる電磁波を吸収し、並びに、電磁波のエネルギーを消耗して熱エネルギーに転換させ、これにより、電磁波を消失除去するという目的が達成される。   Further, the electromagnetic wave absorbing fine particle material absorbs electromagnetic waves generated by reflection or diffraction at a location blocked by the conductive material powder, and consumes the electromagnetic wave energy to convert it into thermal energy. The purpose of eliminating and removing electromagnetic waves is achieved.

更に、導電性微粒子材料は、前記炭素系材料中の1つ又は複数の材料を組み合わせたもの、或いは、前記導電性金属材料中の1つ又は複数の材料を組み合わせたものが採用される。   Furthermore, as the conductive fine particle material, a combination of one or a plurality of materials in the carbon-based material or a combination of one or a plurality of materials in the conductive metal material is adopted.

更にまた、電磁波吸收微粒子材料は、前記金属酸化物中の1つ又は複数の材料を組み合わせたもの、前記磁性粉体中の1つ又は複数の材料を組み合わせたもの、或いは、前記天然鉱物材料中の1つ又は複数の材料を組み合わせたものが採用される。本発明の電磁波防止用の微粒子材料を基材の中に添加させることにより、電磁波の透過を遮蔽及び吸収できる、異なる形態の電磁波遮蔽材料を得ることができる。   Furthermore, the electromagnetic wave absorbing fine particle material may be a combination of one or more materials in the metal oxide, a combination of one or more materials in the magnetic powder, or the natural mineral material. A combination of one or a plurality of materials is employed. By adding the fine particle material for preventing electromagnetic waves of the present invention to the base material, it is possible to obtain electromagnetic wave shielding materials of different forms that can shield and absorb the transmission of electromagnetic waves.

本発明の電磁波防止用の微粒子材料は、これをプラスチック材料又はゴム材料の中に添加することにより、当該プラスチック材料又はゴム材料を使用して、射出成形加工方法又はその他プラスチック成形形成方法により電子製品のハウジングを作製でき、この場合、その他の電磁波防護ユニットを付加する必要はない。   The fine particle material for preventing electromagnetic waves of the present invention is added to a plastic material or rubber material, and the electronic material is produced by an injection molding method or other plastic molding method using the plastic material or rubber material. In this case, it is not necessary to add another electromagnetic wave protection unit.

又、本発明は、既存の加工技術を介して、良好な電磁波遮蔽機能を有し、且つ、広いバンド又は特定周波数の電磁波を吸收可能な電子製品のハウジングを製造でき。又、本発明の複合的機能性微粒子材料を利用して、その他の電磁波防護ユニットを製造できる。   In addition, the present invention can manufacture an electronic product housing that has a good electromagnetic wave shielding function and can absorb electromagnetic waves of a wide band or a specific frequency through existing processing techniques. In addition, other electromagnetic wave protection units can be manufactured using the composite functional fine particle material of the present invention.

なお、本発明の技術を利用して、EMI特性防止樹脂塗料を製造することも可能である。本発明による上記樹脂塗料を電子製品、木材、セメント、ガラス、プラスチック、布地、建材表面、紙類、又は管材の内表面又は外表面に塗装することができる。斯くして、当該樹脂塗料が塗装された物品は、いずれも広い周波数範囲に亘り、電磁波を遮蔽及び吸収できる特性を有する。   In addition, it is also possible to manufacture the EMI characteristic prevention resin coating using the technique of the present invention. The resin coating according to the present invention can be applied to the inner or outer surface of electronic products, wood, cement, glass, plastic, fabric, building material surfaces, papers, or pipes. Thus, any article coated with the resin paint has a characteristic capable of shielding and absorbing electromagnetic waves over a wide frequency range.

更に、前記樹脂塗料を紡績繊維製品又は織物製品などの表面に噴射又は散布(スプレイング)し、或いは、紡績繊維製品又は織物製品などの中に直接に添加することもできる。斯くして、当該紡績繊維製品又は織物製品は、広い周波数範囲に亘り、電磁波を遮蔽及び吸収する特性を有する。   Furthermore, the resin paint can be sprayed or sprayed on the surface of a spun fiber product or a woven product, or can be directly added to the spun fiber product or the woven product. Thus, the spun fiber product or woven product has the property of shielding and absorbing electromagnetic waves over a wide frequency range.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明による第一の実施例の電磁波防止用の微粒子材料を添加した基材の断面構造の説明図。Explanatory drawing of the cross-section of the base material which added the particulate material for electromagnetic wave prevention of the 1st Example by this invention. 本発明による第二の実施例の電磁波防止用の微粒子材料を添加した基材の断面構造の説明図。Explanatory drawing of the cross-section of the base material which added the particulate material for electromagnetic wave prevention of the 2nd Example by this invention. 本発明による第三の実施例の電磁波防止用の微粒子材料を添加した基材の断面構造の説明図。Explanatory drawing of the cross-section of the base material which added the particulate material for electromagnetic wave prevention of the 3rd Example by this invention. 本発明による第四の実施例の電磁波防止用の微粒子材料を添加した基材の断面構造の説明図。Explanatory drawing of the cross-section of the base material which added the particulate material for electromagnetic wave prevention of the 4th Example by this invention. 本発明の技術を利用して作製した電子製品のハウジングの構造の説明図。Explanatory drawing of the structure of the housing of the electronic product produced using the technique of this invention. 本発明の技術を利用して作製した電磁波遮蔽板ユニットの使用状態の説明図。Explanatory drawing of the use condition of the electromagnetic wave shielding board unit produced using the technique of this invention. 本発明の技術を利用して作製した電磁波防護管体の使用状態の説明図。Explanatory drawing of the use condition of the electromagnetic wave protection tubular body produced using the technology of the present invention. 本発明の技術を利用した構造のナノ微粒子をプラスチック材料中に添加して作製した電磁波防止材料の組織構造の電子顕微鏡の拡大写真。The enlarged photograph of the electron microscope of the structure | tissue structure of the electromagnetic wave prevention material produced by adding the nanoparticle of the structure using the technique of this invention in the plastic material. 顆粒状のナノ微粒子材料をプラスチック材料中に単に添加して作製した組織構造の電子顕微鏡の拡大写真。An enlarged photo of an electron microscope of a tissue structure created by simply adding a granular nanoparticulate material into a plastic material.

符号の説明Explanation of symbols

10 管状/繊維状構造の導電性微粒子材料
10B 顆粒状構造の導電性微粒子材料
20 電磁波吸收微粒子材料
30 基材
40 ハウジング
41 回路ユニット
50 板片
60 防護管
70 電力/メッセージ線路
10 Conductive fine particle material with tubular / fibrous structure
10B Conductive fine particle material with granular structure
20 Electromagnetic wave absorbing fine particle material
30 Base material
40 housing
41 Circuit unit
50 pieces
60 Protective tube
70 Power / Message Line

Claims (26)

基材への添加が可能であり、且つ、該基材に電磁波を吸收及び遮蔽する特性を持たせるための導電性微粒子材料を含む電磁波防止用の微粒子材料において、
当該導電性微粒子材料のうちの少なくとも一部は、管状/繊維状を呈する構造の導電性微粒子材料であって、該導電性微粒子材料を前記基材内部に添加する場合、前記導電性微粒子材料が相互に連結して不規則形状に形成され、且つ、導電路が増加して前記基材内部の導電性を向上させると共に、電磁波を吸収及び遮蔽する特性を持つことを特徴とする磁波防止用の微粒子材料。
In a fine particle material for preventing electromagnetic waves, including a conductive fine particle material that can be added to a base material and has a property of absorbing and shielding electromagnetic waves in the base material,
At least a part of the conductive fine particle material is a conductive fine particle material having a tubular / fibrous structure, and when the conductive fine particle material is added to the inside of the substrate, the conductive fine particle material is It is connected to each other and formed into an irregular shape, and the conductive path is increased to improve the conductivity inside the base material and to absorb and shield electromagnetic waves. Particulate material.
請求項1に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は、カーボンナノチューブ、炭素繊維、活性炭素繊維、ナノ炭素材、その他導電性を具有する炭素系材料及び導電性金属系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   2. The fine particle material for preventing electromagnetic waves according to claim 1, wherein the conductive fine particle material includes carbon nanotubes, carbon fibers, activated carbon fibers, nanocarbon materials, and other carbon-based materials and conductive metal-based materials having conductivity. A particulate material for preventing electromagnetic waves, comprising a combination of any one or a plurality of materials. 請求項1に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は管状/繊維状の導電性微粒子材料と、顆粒状の導電性微粒子材料とを混合して成り、前記管状/繊維状の導電性微粒子材料と前記顆粒状の導電性微粒子材料とは、焼結にて相互に連結して不規則形状に形成し、前記導電性微粒子材料の導電路を増加させることを特徴とする電磁波防止用の微粒子材料。   2. The fine particle material for electromagnetic wave prevention according to claim 1, wherein the conductive fine particle material is a mixture of a tubular / fibrous conductive fine particle material and a granular conductive fine particle material, and the tubular / fibrous material. The conductive fine particle material and the granular conductive fine particle material are connected to each other by sintering to form an irregular shape, and the conductive path of the conductive fine particle material is increased. Fine particle material for prevention. 請求項3に記載の電磁波防止用の微粒子材料において、上記顆粒状の導電性微粒子材料は、炭素系材料により形成され、且つ、異なるサイズの分布が均一でない球状又は不規則形状を有する顆粒状の微粒子であり、前記炭素系材料はグラファイト、C60フラーレン、活性炭、竹炭及びその他の導電性の炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   4. The fine particle material for preventing electromagnetic waves according to claim 3, wherein the granular conductive fine particle material is formed of a carbon-based material and has a granular or irregular shape in which different size distributions are not uniform. It is a fine particle, and the carbon-based material includes a combination of one or more of graphite, C60 fullerene, activated carbon, bamboo charcoal and other conductive carbon-based materials. Particulate material. 請求項3に記載の電磁波防止用の微粒子材料において、上記顆粒状の導電性微粒子材料は導電性金属材料により形成された不規則な顆粒状の微粒子であり、前記導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 3, wherein the granular conductive fine particle material is irregular granular fine particles formed of a conductive metal material, and the conductive metal material is gold, silver A particulate material for preventing electromagnetic waves, comprising a combination of any one or more of copper, iron, pig iron, aluminum, nickel, tin, pure silicon, and silicon iron. 請求項3に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は炭素系材料と導電性金属材料の微粒子とを混合して成り、前記炭素系材料はグラファイト、C60フラーレン、活性炭、竹炭及びその他の導電性の炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包含し、前記導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   4. The fine particle material for electromagnetic wave prevention according to claim 3, wherein the conductive fine particle material is a mixture of a carbon-based material and fine particles of a conductive metal material, and the carbon-based material is graphite, C60 fullerene, activated carbon, bamboo charcoal. And any combination of one or more conductive carbon-based materials, wherein the conductive metal material is gold, silver, copper, iron, pig iron, aluminum, nickel, tin, pure silicon And a combination of any one or more materials of silicon iron and a fine particle material for preventing electromagnetic waves. 請求項1に記載の電磁波防止用の微粒子材料において、該電磁波防止用の微粒子材料は電磁波吸收微粒子材料を更に含み、該電磁波吸收微粒子材料は、上記導電性微粒子材料が電磁波を遮る箇所にて反射又は回折した電磁波を吸収し、該電磁波のエネルギーを消耗して熱エネルギーに転換させて該電磁波を消失除去することを特徴とする電磁波防止用の微粒子材料。   2. The fine particle material for preventing electromagnetic waves according to claim 1, wherein the fine particle material for preventing electromagnetic waves further includes an electromagnetic wave absorbing fine particle material, and the electromagnetic wave absorbing fine particle material is reflected at a location where the conductive fine particle material blocks electromagnetic waves. Alternatively, a fine particle material for preventing electromagnetic waves, which absorbs the diffracted electromagnetic waves, consumes the energy of the electromagnetic waves, converts the electromagnetic waves into thermal energy, and disappears and removes the electromagnetic waves. 請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は金属酸化物の微粒子を含み、該金属酸化物は酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 7, wherein the electromagnetic wave absorbing fine particle material includes fine particles of metal oxide, and the metal oxide is any of aluminum oxide, zinc oxide, titanium dioxide, photocatalyst material, and iron oxide. A particulate material for preventing electromagnetic waves, comprising a combination of one or a plurality of materials. 請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は磁性粉体であり、前記磁性粉体は、磁性を有する金属材料若しくは金属酸化物材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 7, wherein the electromagnetic wave absorbing fine particle material is a magnetic powder, and the magnetic powder is one or more of a magnetic metal material or a metal oxide material. A fine particle material for preventing electromagnetic waves, characterized in that it includes a combination of materials. 請求項7に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料が天然鉱物材料であり、該天然鉱物材料はセメント、陶土、粘土、炭酸カルシウム及び遠赤外線放射鉱石材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 7, wherein the electromagnetic wave absorbing fine particle material is a natural mineral material, and the natural mineral material is any one of cement, porcelain stone, clay, calcium carbonate, and far-infrared radiation ore material. Alternatively, a fine particle material for preventing electromagnetic waves, comprising a combination of a plurality of materials. 請求項1に記載の電磁波防止用の微粒子材料において、上記基材が高分子基材であり、該高分子基材はプラスチック/ゴムを包含し、且つ、プラスチック成形加工方法により当該高分子基材を各種の形状若しくは形態のプラスチック/ゴム製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料。   2. The fine particle material for preventing electromagnetic waves according to claim 1, wherein the base material is a polymer base material, the polymer base material includes plastic / rubber, and the polymer base material is obtained by a plastic molding method. A fine particle material for preventing electromagnetic waves, characterized in that a plastic / rubber product of various shapes or forms is processed, and the plastic molding method includes an injection molding method. 請求項11に記載の電磁波防止用の微粒子材料において、上記電磁波微粒子材料は、上記高分子基材の重合反応の過程中に該高分子基材中にドープすることを特徴とする電磁波防止用の微粒子材料。   12. The electromagnetic wave preventing fine particle material according to claim 11, wherein the electromagnetic wave fine particle material is doped into the polymer base material during a polymerization reaction of the polymer base material. Particulate material. 請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材は、先に打ち砕いて粉体状に加工し、然る後、前記電磁波防止用の微粒子材料を前記高分子基材中にドープし、更に、該高分子基材をプラスチック成形加工方法によりプラスチック製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料。   12. The fine particle material for preventing electromagnetic waves according to claim 11, wherein the polymer base material is first crushed and processed into a powder form, and thereafter, the fine particle material for electromagnetic wave prevention is contained in the polymer base material. Further, the polymer base material is processed into a plastic product by a plastic molding method, and the plastic molding method includes an injection molding processing method. 請求項11に記載の電磁波防止用の微粒子材料において、該電磁波防止用の微粒子材料は、上記高分子基材が重合反応を完了して粉体となる状態において該高分子基材の粉体中にドープして混合され、該高分子基材の粉体を顆粒に加工し、その後のプラスチック成形加工の進行に便ならしめ、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 11, wherein the fine particle material for preventing electromagnetic waves is contained in the powder of the polymer substrate in a state where the polymer substrate completes a polymerization reaction to become a powder. The polymer base powder is processed into a granule and facilitates the subsequent plastic molding process. The plastic molding method includes an injection molding method. Fine particle material for preventing electromagnetic waves. 請求項11に記載の電磁波防止用の微粒子材料において、所定のドープ濃度を超えた該電磁波防止用の微粒子材料と上記高分子基材とを混合して高濃度の母粒を作製し、更に、該高濃度の母粒と未ドープの電磁波防止用の微粒子材料の高分子基材顆粒とを混合して、プラスチック成形加工方法によりプラスチック製品に加工し、該プラスチック成形加工方法は射出成形加工方法を包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 11, wherein the fine particle material for preventing electromagnetic waves exceeding a predetermined dope concentration and the polymer base material are mixed to prepare a high concentration mother particle, The high-concentration base granule and the undoped fine particle material polymer base granule for preventing electromagnetic waves are mixed and processed into a plastic product by a plastic molding method. The plastic molding method is an injection molding method. A fine particle material for preventing electromagnetic waves characterized by inclusion. 請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材が電子製品のハウジングに加工されていることを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 11, wherein the polymer base material is processed into a housing of an electronic product. 請求項11に記載の電磁波防止用の微粒子材料において、上記高分子基材が管状又は平板状の電磁波遮蔽ユニットに加工されていることを特徴とする電磁波防止用の微粒子材料。   12. The particulate material for preventing electromagnetic waves according to claim 11, wherein the polymer base material is processed into a tubular or flat electromagnetic shielding unit. 請求項1に記載の電磁波防止用の微粒子材料において、上記基材が樹脂塗料であり、前記電磁波防止用の微粒子材料が添加された樹脂塗料を、電子製品、木材、セメント、ガラス、紙類、プラスチック、布地若しくは建材の表面、金属/管材若しくは電線の内表面又は外表面に塗装又は印刷することにより、当該樹脂塗料にて塗布された物品に電磁波を吸収及び遮蔽する機能を持たせることを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 1, wherein the base material is a resin paint, and the resin paint to which the fine particle material for preventing electromagnetic waves is added is an electronic product, wood, cement, glass, paper, By coating or printing on the surface of plastics, fabrics or building materials, metal / pipe materials, or the inner or outer surface of electric wires, the article coated with the resin paint has a function of absorbing and shielding electromagnetic waves. Fine particle material for preventing electromagnetic waves. 請求項1に記載の電磁波防止用の微粒子材料において、上記基材が人造の紡績繊維材料であり、前記電磁波防止用の微粒子が当該人造の紡績繊維材料中に均一に分布して混入され、且つ、当該人造の紡績繊維材料が電磁波防止特性を有した紡績繊維製品又は織物製品に加工されていることを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 1, wherein the base material is an artificial spun fiber material, and the fine particles for preventing electromagnetic waves are uniformly distributed and mixed in the artificial spun fiber material, and An anti-electromagnetic particle material, wherein the artificial spun fiber material is processed into a spun fiber product or a textile product having anti-electromagnetic properties. 請求項1に記載の電磁波防止用の微粒子材料において、上記基材がセメント材料であることを特徴とする電磁波防止用の微粒子材料。   2. The particulate material for preventing electromagnetic waves according to claim 1, wherein the substrate is a cement material. 少なくとも1つの導電性微粒子材料と少なくとも1つの電磁波吸收微粒子材料とを混合して成る電磁波防止用の微粒子材料であって、該電磁波防止用の微粒子材料が基材中にドープ可能であり、且つ、該基材に電磁波の透過を阻止及び吸収する特性を持たせる電磁波防止用の微粒子材料において、
前記導電性微粒子材料は前記基材に導電性を持たせるために用いられ、且つ、電磁波の透過を遮蔽する前記電磁波吸收微粒子材料は、前記導電性微粒子材料の電磁波を遮る箇所にて反射若しくは回折した電磁波を吸收するために用いられ、該電磁波のエネルギーを消耗して熱エネルギーに転換させて該電磁波を消失除去することを特徴とする電磁波防止用の微粒子材料電磁波防止用の微粒子材料。
An electromagnetic wave preventing fine particle material obtained by mixing at least one conductive fine particle material and at least one electromagnetic wave absorbing fine particle material, wherein the electromagnetic wave preventing fine particle material can be doped into the substrate, and In the fine particle material for preventing electromagnetic waves that gives the base material the property of blocking and absorbing the transmission of electromagnetic waves,
The conductive fine particle material is used to impart conductivity to the base material, and the electromagnetic wave absorbing fine particle material that shields transmission of electromagnetic waves is reflected or diffracted at a location where the conductive fine particle material blocks electromagnetic waves. A fine particle material for preventing electromagnetic waves, which is used for absorbing absorbed electromagnetic waves, wherein the energy of the electromagnetic waves is consumed and converted into thermal energy to eliminate and remove the electromagnetic waves.
請求項21に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料が炭素系材料であり、該炭素系材料はグラファイト、C60フラーレン、活性炭、竹炭及びその他導電性の炭素系材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 21, wherein the conductive fine particle material is a carbon-based material, and the carbon-based material is any one of graphite, C60 fullerene, activated carbon, bamboo charcoal, and other conductive carbon-based materials. A fine particle material for preventing electromagnetic waves, comprising a combination of one or a plurality of materials. 請求項21に記載の電磁波防止用の微粒子材料において、上記導電性微粒子材料は導電性金属材料を包含し、該導電性金属材料は金、銀、銅、鉄、銑鉄、アルミニウム、ニッケル、スズ、ピュアシリコン及び硅素鉄のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 21, wherein the conductive fine particle material includes a conductive metal material, and the conductive metal material is gold, silver, copper, iron, pig iron, aluminum, nickel, tin, A fine particle material for preventing electromagnetic waves, comprising a combination of any one or more of pure silicon and silicon iron. 請求項21に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は金属酸化物材料を包含し、該金属酸化物材料は酸化アルミニウム、酸化亜鉛、二酸化チタン、光触媒材料及び鉄酸化物のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for preventing electromagnetic waves according to claim 21, wherein the electromagnetic wave absorbing fine particle material includes a metal oxide material, and the metal oxide material includes aluminum oxide, zinc oxide, titanium dioxide, photocatalyst material, and iron oxide. A fine particle material for preventing electromagnetic waves, comprising a combination of any one or a plurality of materials. 請求項21に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は磁性粉体を包含し、該磁性粉体は磁性を有する金属材料若しくは金属酸化物材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。   The fine particle material for electromagnetic wave prevention according to claim 21, wherein the electromagnetic wave absorbing fine particle material includes a magnetic powder, and the magnetic powder is one or more of a metal material or a metal oxide material having magnetism. A fine particle material for preventing electromagnetic waves, characterized in that it includes a combination of materials. 請求項21に記載の電磁波防止用の微粒子材料において、上記電磁波吸收微粒子材料は天然鉱物材料を包含し、前記天然鉱物材料はセメント、陶土、粘土、炭酸カルシウム及び遠赤外線放射鉱石材料のいずれか1つ又は複数の材料を組み合わせたものを包括することを特徴とする電磁波防止用の微粒子材料。

23. The fine particle material for electromagnetic wave prevention according to claim 21, wherein the electromagnetic wave absorbing fine particle material includes a natural mineral material, and the natural mineral material is any one of cement, porcelain stone, clay, calcium carbonate, and far infrared radiation ore material. A fine particle material for preventing electromagnetic waves, comprising a combination of two or more materials.

JP2008294079A 2008-11-18 2008-11-18 Fine-particle material for preventing electromagnetic wave Pending JP2010123645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294079A JP2010123645A (en) 2008-11-18 2008-11-18 Fine-particle material for preventing electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294079A JP2010123645A (en) 2008-11-18 2008-11-18 Fine-particle material for preventing electromagnetic wave

Publications (1)

Publication Number Publication Date
JP2010123645A true JP2010123645A (en) 2010-06-03

Family

ID=42324756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294079A Pending JP2010123645A (en) 2008-11-18 2008-11-18 Fine-particle material for preventing electromagnetic wave

Country Status (1)

Country Link
JP (1) JP2010123645A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189270A1 (en) * 2013-05-21 2014-11-27 한국생산기술연구원 Electromagnetic wave shielding sheet comprising carbon composite fiber manufactured by electrospinning and method for manufacturing same
KR20160126737A (en) * 2015-04-24 2016-11-02 엘지이노텍 주식회사 Structure for shielding electromagnetic interference
CN107507823A (en) * 2016-06-14 2017-12-22 三星电子株式会社 Semiconductor packages and the method for manufacturing semiconductor packages
KR20170141606A (en) * 2016-06-14 2017-12-26 삼성전자주식회사 Semiconductor package and method for manufacturing the same
JP2018137326A (en) * 2017-02-21 2018-08-30 株式会社アルバック Electromagnetic wave absorber and method for manufacturing the same
JP2019516253A (en) * 2016-03-24 2019-06-13 ノックスタック コーポレーションNoxtak Corp. Electromagnetic contamination nullifying composition, apparatus and method
JP2019121788A (en) * 2017-12-29 2019-07-22 エヌトリウム インコーポレイテッド Electronic device having electromagnetic interference shielding layer and method of manufacturing the same
JP2019197822A (en) * 2018-05-10 2019-11-14 株式会社アルバック Electromagnetic wave absorber and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456200A (en) * 1977-10-13 1979-05-04 Toray Industries Electromagnetic wave shielding material
JPH0521984A (en) * 1991-07-16 1993-01-29 Kitagawa Ind Co Ltd Electromagnetic wave shield composite material
JP2001311105A (en) * 2000-05-01 2001-11-09 Takenaka Komuten Co Ltd Granulated material having character to absorb electromagnetic wave, electromagnetic wave absorbing material, and its manufacturing method
JP2002298170A (en) * 2001-03-30 2002-10-11 Hitachi Ltd Automatic toll gate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456200A (en) * 1977-10-13 1979-05-04 Toray Industries Electromagnetic wave shielding material
JPH0521984A (en) * 1991-07-16 1993-01-29 Kitagawa Ind Co Ltd Electromagnetic wave shield composite material
JP2001311105A (en) * 2000-05-01 2001-11-09 Takenaka Komuten Co Ltd Granulated material having character to absorb electromagnetic wave, electromagnetic wave absorbing material, and its manufacturing method
JP2002298170A (en) * 2001-03-30 2002-10-11 Hitachi Ltd Automatic toll gate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468018B1 (en) * 2013-05-21 2014-12-02 한국생산기술연구원 EMI Shield sheet comprising carbon complex fiber manufactured by electrospinning and a preparation method thereof
CN105230146A (en) * 2013-05-21 2016-01-06 韩国生产技术研究院 Comprise electromagnetic wave shielding plate and the manufacture method thereof of the carbon composite fibre manufactured by Electrospun operation
WO2014189270A1 (en) * 2013-05-21 2014-11-27 한국생산기술연구원 Electromagnetic wave shielding sheet comprising carbon composite fiber manufactured by electrospinning and method for manufacturing same
KR102400056B1 (en) * 2015-04-24 2022-05-19 엘지이노텍 주식회사 Structure for shielding electromagnetic interference
KR20160126737A (en) * 2015-04-24 2016-11-02 엘지이노텍 주식회사 Structure for shielding electromagnetic interference
JP2019516253A (en) * 2016-03-24 2019-06-13 ノックスタック コーポレーションNoxtak Corp. Electromagnetic contamination nullifying composition, apparatus and method
CN107507823A (en) * 2016-06-14 2017-12-22 三星电子株式会社 Semiconductor packages and the method for manufacturing semiconductor packages
KR20170141606A (en) * 2016-06-14 2017-12-26 삼성전자주식회사 Semiconductor package and method for manufacturing the same
CN107507823B (en) * 2016-06-14 2022-12-20 三星电子株式会社 Semiconductor package and method for manufacturing semiconductor package
KR102419046B1 (en) * 2016-06-14 2022-07-12 삼성전자주식회사 Semiconductor package and method for manufacturing the same
JP2018137326A (en) * 2017-02-21 2018-08-30 株式会社アルバック Electromagnetic wave absorber and method for manufacturing the same
JP2019121788A (en) * 2017-12-29 2019-07-22 エヌトリウム インコーポレイテッド Electronic device having electromagnetic interference shielding layer and method of manufacturing the same
JP2019197822A (en) * 2018-05-10 2019-11-14 株式会社アルバック Electromagnetic wave absorber and manufacturing method thereof
JP7144185B2 (en) 2018-05-10 2022-09-29 株式会社アルバック Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
JP2010123645A (en) Fine-particle material for preventing electromagnetic wave
CN101605447B (en) Anti-electromagnetic wave particle material
US20100059243A1 (en) Anti-electromagnetic interference material arrangement
Ma et al. NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@ SiO2@ C nanochains with high-performance microwave absorption
Sista et al. Carbonyl iron powders as absorption material for microwave interference shielding: A review
Guo et al. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption
CN102634177B (en) A kind of composite electromagnetic shield materials for cable
Sun et al. Biomass-derived carbon decorated with Ni0. 5Co0. 5Fe2O4 particles towards excellent microwave absorption performance
Sun et al. One-dimensional Ag@ NC-Co@ NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption
JP2013526775A (en) Broadband electromagnetic wave absorber and manufacturing method thereof
KR20070035832A (en) Interception material of electromagnetic waves
Mu et al. Ferrite-based composites and morphology-controlled absorbers
CN101163390A (en) Method of producing carbon nano-tube nonwoven cloth electromagnetic shielding composite material
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
Darvishzadeh et al. Broadband and tunable high-performance microwave absorption properties by Ni-coated carbon fibers
Dong et al. Controllable synthesis of N-doped carbon nanoparticles with proper electrical conductivity for excellent microwave absorption performance
GB2463017A (en) Anti-electromagnetic interference material arrangement
CN103390479B (en) A kind of inorganic compounding micropowder of high electromagnet shield effect and preparation method thereof
Shu et al. Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres
Aherrao et al. Review of ferrite-based microwave-absorbing materials: Origin, synthesis, morphological effects, dielectric/magnetic properties, composites, absorption mechanisms, and optimization
TW200947466A (en) Anti-electromagnetic interference material arrangement
Dong et al. Electromagnetic attenuation distribution in a three-dimensional amorphous carbon matrix with highly dispersed Fe/Fe3C@ graphite-C nanoparticles
Jin et al. Magnetic CoNi nanoparticles-decoated Ti3C2Tx MXene as excellent electromagnetic wave absorber
Liu et al. Multi-morphology composite: Particle & petal-shaped ZnFe2O4/flower-shaped ZnO@ Porous biomass carbon with excellent broadband microwave absorption performance
Cheng et al. 3D printed composites based on the magnetoelectric coupling of Fe/FeCo@ C with multiple heterogeneous interfaces for enhanced microwave absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126