JP7144185B2 - Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber Download PDF

Info

Publication number
JP7144185B2
JP7144185B2 JP2018091326A JP2018091326A JP7144185B2 JP 7144185 B2 JP7144185 B2 JP 7144185B2 JP 2018091326 A JP2018091326 A JP 2018091326A JP 2018091326 A JP2018091326 A JP 2018091326A JP 7144185 B2 JP7144185 B2 JP 7144185B2
Authority
JP
Japan
Prior art keywords
resin
electromagnetic wave
wave absorber
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018091326A
Other languages
Japanese (ja)
Other versions
JP2019197822A (en
Inventor
正人 大澤
夏樹 橋本
承俊 呉
茂雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018091326A priority Critical patent/JP7144185B2/en
Publication of JP2019197822A publication Critical patent/JP2019197822A/en
Application granted granted Critical
Publication of JP7144185B2 publication Critical patent/JP7144185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、電磁波吸収体及び電磁波吸収体の製造方法に関し、より詳しくは、75GHz~80GHzの周波数帯域の電磁波に対して吸収性を持つものに関する。 TECHNICAL FIELD The present invention relates to an electromagnetic wave absorber and a method for producing an electromagnetic wave absorber, and more particularly to an electromagnetic wave absorber that absorbs electromagnetic waves in the frequency band of 75 GHz to 80 GHz.

近年、所謂先進運転支援システム(ADAS:Advanced Driver Assistance System)の1つとして、衝突回避支援システムが普及している。衝突回避支援システムでは、車両の前方や後方の対象物(例えば、他の車両、歩行者、障害物等)を検出するために、ミリ波レーダ装置が通常用いられる。ミリ波レーダ装置は、所定の周波数(例えば、76GHz)の電磁波を発するアンテナと、当該周波数の電磁波に対して吸収性を持つ電磁波吸収体とを備え、対象物に対して指向性よく電磁波を照射できるように構成されている。尚、吸収性とは、所定の周波数の電磁波を透過も反射もしない性質を言う。 BACKGROUND ART In recent years, a collision avoidance support system has become popular as one of so-called advanced driver assistance systems (ADAS). A collision avoidance support system normally uses a millimeter-wave radar device to detect objects in front of and behind a vehicle (for example, other vehicles, pedestrians, obstacles, etc.). A millimeter-wave radar device includes an antenna that emits electromagnetic waves of a predetermined frequency (for example, 76 GHz) and an electromagnetic wave absorber that absorbs electromagnetic waves of that frequency, and irradiates electromagnetic waves with good directivity to an object. configured to allow Absorptivity refers to the property of neither transmitting nor reflecting electromagnetic waves of a predetermined frequency.

このような電磁波吸収体としての樹脂組成物は例えば特許文献1で知られている。このものでは、所定の周波数帯域の電磁波に対して吸収性を持つ吸収材としての粒子が第1樹脂に分散した状態で、第2樹脂に孤立して分散するようにしている。この場合、粒子としては炭素粒子等の導電性粒子が用いられ、このような導電性粒子が分散した第1樹脂が島相、第2の樹脂が海相となる海島構造が形成され、島相の導電性粒子の密度を高く、海相の導電性粒子の密度を低くしている。 A resin composition as such an electromagnetic wave absorber is known from Patent Document 1, for example. In this device, particles as an absorbing material having an ability to absorb electromagnetic waves in a predetermined frequency band are dispersed in a first resin, and are isolated and dispersed in a second resin. In this case, conductive particles such as carbon particles are used as the particles, and a sea-island structure is formed in which the first resin in which such conductive particles are dispersed is the island phase and the second resin is the sea phase. The density of the conductive particles in the sea phase is high, and the density of the conductive particles in the sea phase is low.

上記従来例のような樹脂組成物は、例えばGHz以上の電磁波を広帯域で吸収できるといった利点はあるものの、所定の周波数帯域の電磁波に対する吸収率が約40%と低い。このため、所定の周波数帯域の電磁波に対して高い吸収率を持つ電磁波吸収体の開発が望まれている。 The resin composition of the conventional example has the advantage of being able to absorb electromagnetic waves of GHz or higher over a wide band, but has a low absorption rate of about 40% for electromagnetic waves in a predetermined frequency band. Therefore, development of an electromagnetic wave absorber having a high absorption rate for electromagnetic waves in a predetermined frequency band is desired.

特開2015-15373号公報JP 2015-15373 A

本発明は、以上の点に鑑み、75GHz~80GHzの周波数帯域の電磁波に対して高い吸収率を持つ電磁波吸収体及び電磁波吸収体の製造方法を提供することをその課題とする。 In view of the above points, an object of the present invention is to provide an electromagnetic wave absorber having a high absorption rate for electromagnetic waves in the frequency band of 75 GHz to 80 GHz, and a method for manufacturing the electromagnetic wave absorber.

上記課題を解決するために、所定の周波数帯域の電磁波に対して吸収性を持つ吸収材が第1樹脂に分散した状態で、第2樹脂に孤立して分散する本発明の電磁波吸収体は、前記吸収材が、銀微粒子を介して炭素粒子を焼結した焼結体であり、前記第1樹脂の重量に対する前記銀微粒子の重量比が4~11重量%の範囲であり、前記第1樹脂と前記第2樹脂の総重量に対する前記第1樹脂の重量比が、10~70重量%の範囲であり、前記第1樹脂がポリビニルブチラール及びポリビニルアセトアセタールから選択される少なくとも1つであり、前記第2樹脂がポリメチルメタクリレートであり、75GHz~80GHzの周波数帯域の電磁波に対して68%以上の吸収率を有することを特徴とする。 In order to solve the above problems, the electromagnetic wave absorber of the present invention is isolated and dispersed in a second resin in a state in which an absorbing material having absorbency for electromagnetic waves in a predetermined frequency band is dispersed in the first resin, The absorbent is a sintered body obtained by sintering carbon particles via silver fine particles , and the weight ratio of the silver fine particles to the weight of the first resin is in the range of 4 to 11% by weight, and the first The weight ratio of the first resin to the total weight of the resin and the second resin is in the range of 10 to 70% by weight, and the first resin is at least one selected from polyvinyl butyral and polyvinyl acetoacetal, The second resin is polymethyl methacrylate and has an absorption rate of 68% or more for electromagnetic waves in a frequency band of 75 GHz to 80 GHz .

本発明によれば、銀微粒子で炭素粒子を焼結させて低抵抗の焼結体とし、この焼結体を第1樹脂に分散させたため、導電率を高めることができ、その結果として、所定の周波数帯域の電磁波に対して高い吸収率を持つ電磁波吸収体が得られる。後述する実施例によれば、75GHz~80GHzの周波数帯域の電磁波に対して68%以上の吸収率を持つことが確認され、さらに第1樹脂の重量比を最適化することにより、90%以上の吸収率を持つことが確認された。また、焼結体が電磁波を反射、散乱する機能を持つため、例えば金属製の所謂裏打ち層を不要にでき、有利である。 According to the present invention, carbon particles are sintered with silver fine particles to form a low-resistance sintered body, and the sintered body is dispersed in the first resin. An electromagnetic wave absorber having a high absorption rate for electromagnetic waves in the frequency band of is obtained. According to the examples described later, it is confirmed that the absorption rate of electromagnetic waves in the frequency band of 75 GHz to 80 GHz is 68% or more, and by optimizing the weight ratio of the first resin, the absorption rate is 90% or more. Absorbance was confirmed. In addition, since the sintered body has the function of reflecting and scattering electromagnetic waves, it is possible to eliminate the need for a so-called backing layer made of metal, which is advantageous.

尚、本発明において、炭素粒子としては、粒状、粉末状、球状、棒状、平板状、繊維状、中空状、角状または塊状のものを用いることができ、例えば、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン及びフラーレンから選択して用いることができる。また、前記銀微粒子の平均粒子径は1nm~100nmであることが好ましい。この場合、第1樹脂100重量部に対して銀微粒子を4~11重量部含むことが好ましく、また、第1樹脂100重量部に対して炭素粒子を4~11重量部含むことが好ましい。 In the present invention, the carbon particles may be granular, powdery, spherical, rod-shaped, flat plate-shaped, fibrous, hollow, angular or massive. Examples include carbon black, acetylene black, carbon It can be selected from nanotubes, carbon nanofibers, graphene and fullerene. Further, the average particle size of the fine silver particles is preferably 1 nm to 100 nm. In this case, it is preferable to contain 4 to 11 parts by weight of fine silver particles with respect to 100 parts by weight of the first resin, and it is preferable to contain 4 to 11 parts by weight of carbon particles with respect to 100 parts by weight of the first resin.

本発明において、前記第1樹脂と前記第2樹脂の総重量に対する前記第1樹脂の重量比が、10~70重量%の範囲外になると、吸収率が低下する場合がある。後述する実施例によれば、前記第1樹脂の重量比を20~40重量%の範囲にすることで80%以上の電磁波吸収率を持ち、30重量%にすることで90%(10dB)以上の電磁波吸収率を持つことが確認された。 In the present invention, if the weight ratio of the first resin to the total weight of the first resin and the second resin is out of the range of 10 to 70% by weight, the absorbency may decrease. According to the examples described later, the electromagnetic wave absorption rate is 80% or more by setting the weight ratio of the first resin in the range of 20 to 40% by weight, and 90% (10 dB) or more by setting it to 30% by weight. was confirmed to have an electromagnetic wave absorption rate of

上記電磁波吸収体を製造する本発明の電磁波吸収体の製造方法は、銀微粒子が付着した炭素粒子を作製する工程と、前記銀微粒子が付着した炭素粒子と第1樹脂とを混合して第1混合物を得る工程と、第1混合物に第2樹脂を添加し、混合して第2混合物を得る工程と、第2混合物を所定形状に成形して乾燥する工程と、乾燥により得られた乾燥体を所定の温度で加熱して、前記炭素粒子を前記銀微粒子で焼結する工程とを含むことを特徴とする。 The method for producing an electromagnetic wave absorber of the present invention for producing the electromagnetic wave absorber includes steps of producing carbon particles to which silver fine particles are attached; mixing the carbon particles to which the silver fine particles are attached and a first resin, and A step of obtaining a mixture, a step of adding a second resin to the first mixture and mixing to obtain a second mixture, a step of molding the second mixture into a predetermined shape and drying, and a dried body obtained by drying is heated at a predetermined temperature to sinter the carbon particles with the silver fine particles.

本発明において、前記銀微粒子が付着した炭素粒子を作製する工程は、界面活性剤で覆われた銀微粒子を低極性溶媒に分散させて分散液を得て、この分散液に炭素粒子を混合する工程と、炭素粒子が混合された分散液に極性溶媒を加え、界面活性剤で覆われた銀微粒子が付着した炭素粒子を沈降させる工程とを含むことが好ましい。この場合、低極性溶媒としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を単独でまたは組み合わせて用いることができる。 In the present invention, the step of producing the carbon particles to which the silver fine particles are attached comprises dispersing the silver fine particles covered with a surfactant in a low-polar solvent to obtain a dispersion, and mixing the carbon particles into this dispersion. and a step of adding a polar solvent to the dispersion liquid in which the carbon particles are mixed to precipitate the carbon particles to which the surfactant-coated silver fine particles are attached. In this case, the low-polarity solvent is at least one liquid hydrocarbon selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene. Or they can be used in combination.

前記乾燥体を180~300℃の温度で加熱する場合、前記界面活性剤としては、炭素数6~18の脂肪酸及び炭素数6~18の脂肪族アミンから選択される少なくともいずれか1種を用いることが好ましい。これによれば、180~300℃という比較的低い温度で加熱しても、銀微粒子から界面活性剤を脱離させることができ、界面活性剤が銀微粒子に付着したまま残留することを防止できる。 When the dried body is heated at a temperature of 180 to 300° C., at least one selected from fatty acids having 6 to 18 carbon atoms and aliphatic amines having 6 to 18 carbon atoms is used as the surfactant. is preferred. According to this, even when heated at a relatively low temperature of 180 to 300° C., the surfactant can be detached from the fine silver particles, and the surfactant can be prevented from remaining attached to the fine silver particles. .

本発明の実施形態の電磁波吸収体を模式的に示す図。The figure which shows typically the electromagnetic wave absorber of embodiment of this invention. 本発明の実施形態の電磁波吸収体の製造方法を説明する工程図。Process drawing explaining the manufacturing method of the electromagnetic wave absorber of embodiment of this invention. (a)は、図2に示すステップ1を説明する模式図であり、(b)は、図2に示すステップ3を説明する模式図。(a) is a schematic diagram explaining step 1 shown in FIG. 2, (b) is a schematic diagram explaining step 3 shown in FIG. (a)は、第1樹脂の重量比と76GHzの電磁波吸収率との関係を示すグラフであり、(b)は、第1樹脂の重量比と77GHzの電磁波吸収率との関係を示すグラフであり、(c)は、第1樹脂の重量比と79GHzの電磁波吸収率との関係を夫々示すグラフ。(a) is a graph showing the relationship between the weight ratio of the first resin and the electromagnetic wave absorption rate at 76 GHz, and (b) is a graph showing the relationship between the weight ratio of the first resin and the electromagnetic wave absorption rate at 77 GHz. and (c) is a graph showing the relationship between the weight ratio of the first resin and the electromagnetic wave absorption rate at 79 GHz. (a)及び(b)は、本発明の実施例2で作製した電磁波吸収シートのSEM像。(a) and (b) are SEM images of the electromagnetic wave absorbing sheet produced in Example 2 of the present invention. 本発明の実施例2で作製した電磁波吸収シートで分散する焼結体を示すSTEM像。FIG. 10 is a STEM image showing a sintered body dispersed in the electromagnetic wave absorbing sheet produced in Example 2 of the present invention. FIG. (a)は、本発明の実施例2と比較例2で求めた電磁波吸収率を示すグラフであり、(b)は、電磁波反射率を示すグラフであり、(c)は、電磁波透過率を示すグラフ。(a) is a graph showing the electromagnetic wave absorption rate obtained in Example 2 and Comparative Example 2 of the present invention, (b) is a graph showing the electromagnetic wave reflectance, and (c) is the electromagnetic wave transmittance. Graph showing.

以下、図面を参照して、本発明の実施形態の電磁波吸収体について説明する。図1に示すように、電磁波吸収体EAは、所定の周波数帯域の電磁波に対して吸収性を持つ吸収材Maが第1樹脂11に分散した状態で、第2樹脂12に孤立して分散させてなる。これにより、吸収材Maが分散した第1樹脂11が島相、第2樹脂12が海相となる海島構造(相分離構造)が形成されている。このような海島構造は、後述するように互いに非相溶の樹脂を混合することにより得られる。 Hereinafter, electromagnetic wave absorbers according to embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the electromagnetic wave absorber EA is isolated and dispersed in a second resin 12 in a state in which an absorbing material Ma, which absorbs electromagnetic waves in a predetermined frequency band, is dispersed in a first resin 11. It becomes As a result, a sea-island structure (phase separation structure) is formed in which the first resin 11 in which the absorbent material Ma is dispersed serves as an island phase, and the second resin 12 serves as a sea phase. Such a sea-island structure is obtained by mixing mutually incompatible resins as described later.

第1樹脂11としては、孤立電子対を有するアセタール基を官能基として持つものを用いることが好ましく、例えば、ポリビニルブチラール及びポリビニルアセトアセタール等から選択される少なくとも1つを用いることができる。このような孤立電子対を持つ官能基に後述する銀微粒子22が配位し易くなり、第1樹脂11中での銀微粒子22の凝集を抑制することができ、その結果として、銀微粒子22の分散性を高めることができる。第2樹脂12としては、第1樹脂11と非相溶のものを用いることが好ましく、例えば、ポリメチルメタクリレートを用いることができる。 As the first resin 11, it is preferable to use one having an acetal group having a lone pair of electrons as a functional group. For example, at least one selected from polyvinyl butyral, polyvinyl acetoacetal, and the like can be used. The silver fine particles 22, which will be described later, are easily coordinated to the functional groups having such lone electron pairs, and the aggregation of the silver fine particles 22 in the first resin 11 can be suppressed. Dispersibility can be enhanced. As the second resin 12, it is preferable to use a material that is incompatible with the first resin 11. For example, polymethyl methacrylate can be used.

ところで、第1樹脂11に分散させる吸収材Maを炭素粒子とすると、電磁波吸収率が低いことが判明した。そこで、本実施形態では、第1樹脂11に分散させる吸収材Maを、銀微粒子22を介して炭素粒子21を焼結した焼結体とした。炭素粒子21としては、粒状、粉末状、球状、棒状、平板状、繊維状、中空状、角状または塊状のものを用いることができ、例えば、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンフィラー、グラフェン及びフラーレンから選択した少なくとも1種を用いることができる。 By the way, it has been found that when carbon particles are used as the absorbing material Ma dispersed in the first resin 11, the electromagnetic wave absorption rate is low. Therefore, in the present embodiment, the absorbent Ma dispersed in the first resin 11 is a sintered body obtained by sintering the carbon particles 21 with the silver fine particles 22 interposed therebetween. As the carbon particles 21, granular, powdery, spherical, rod-like, flat plate-like, fibrous, hollow, angular, or massive particles can be used, and examples thereof include carbon black, acetylene black, carbon nanotubes, and carbon nanofibers. , carbon filler, graphene and fullerene.

銀微粒子22としては、その平均粒子径が1nm~100nmの範囲内であるものを用いることができる。平均粒子径が1nm未満では、銀微粒子22の比表面積が大きくなり、当該銀微粒子22の表面を被覆する後述する界面活性剤23の含有量が多くなりすぎるため、後述する比較的低い温度で熱処理を行うと、該界面活性剤23が十分に脱離しない場合があり、平均粒子径が100nmを超えると、銀微粒子22を介した炭素粒子21の焼結が不十分になる場合がある。なお、平均粒子径は、JISZ8828の動的光散乱法による粒子径解析に基づいて得られる値である。 As the fine silver particles 22, those having an average particle diameter within the range of 1 nm to 100 nm can be used. If the average particle diameter is less than 1 nm, the specific surface area of the silver fine particles 22 becomes large, and the content of the surfactant 23 described later covering the surface of the silver fine particles 22 becomes too large. , the surfactant 23 may not be sufficiently desorbed, and if the average particle size exceeds 100 nm, the sintering of the carbon particles 21 through the silver fine particles 22 may become insufficient. The average particle size is a value obtained based on particle size analysis by the dynamic light scattering method of JISZ8828.

以上によれば、島相たる第1樹脂11に電磁波が入射すると、吸収材Ma内の全体の電子に対して加速度を生じさせた結果として、第1樹脂11中に分散された炭素粒子21(抵抗体)に電流が流れ、電磁波エネルギーが熱エネルギーに変換されることで、電磁波の一部が吸収される。このとき、炭素粒子21は銀微粒子22を介して焼結されて低抵抗の焼結体Maを構成するため、炭素粒子のみを焼結した吸収材と比較した場合、導電率が高くなり(電流が流れやすくなり)、電磁波吸収率を高めることができる。焼結体Maは、電磁波を吸収するだけでなく、電磁波を反射、散乱する機能を持つため、この焼結体Maで反射、散乱された電磁波は、島相11に存する他の焼結体Maで吸収されたり、散乱されたりし、また島相11に存する各固体(焼結体Ma)同士の内部反射・散乱は一群の群体として放射される電磁波となり、他の島相(第1樹脂)11に入射する。このような電磁波の吸収、反射、散乱は、第2樹脂12に分散した複数の島相11で多重に起こる。その結果として、所定の周波数帯域の電磁波に対して高い吸収率を電磁波吸収体EAが得られる。さらに、上述のように焼結体Maは電磁波を反射、散乱する機能を持つため、例えば、金属製の所謂裏打ち層を不要にできる。そのため、裏打ち層と樹脂との間に生じる隙間に起因する吸収率の低下を防止することができ、有利である。 According to the above, when an electromagnetic wave is incident on the first resin 11 as an island phase, as a result of acceleration of all electrons in the absorber Ma, the carbon particles 21 dispersed in the first resin 11 ( A part of the electromagnetic wave is absorbed by the current flowing through the resistor) and converting the electromagnetic wave energy into heat energy. At this time, the carbon particles 21 are sintered through the silver fine particles 22 to form a low-resistance sintered body Ma. becomes easier to flow), and the electromagnetic wave absorption rate can be increased. The sintered body Ma not only absorbs electromagnetic waves, but also has the function of reflecting and scattering electromagnetic waves. In addition, the internal reflection and scattering between the solids (sintered body Ma) existing in the island phase 11 become electromagnetic waves radiated as a group, and other island phases (first resin) 11. Such absorption, reflection, and scattering of electromagnetic waves occur multiple times in the plurality of island phases 11 dispersed in the second resin 12 . As a result, the electromagnetic wave absorber EA can obtain a high absorption rate for electromagnetic waves in a predetermined frequency band. Furthermore, since the sintered body Ma has the function of reflecting and scattering electromagnetic waves as described above, for example, a so-called backing layer made of metal can be eliminated. Therefore, it is possible to prevent a decrease in absorptivity caused by a gap between the backing layer and the resin, which is advantageous.

次に、図2を参照して、上記電磁波吸収体EAの製造方法について、電磁波吸収シートを製造する場合を例に説明する。先ず、ステップS1にて、低極性溶媒24に、界面活性剤23で表面が被覆された銀微粒子22を分散させて分散液を作製し、作製した分散液に炭素粒子21を攪拌・混合する(図3(a)参照)。攪拌・混合には、公知のホモジナイザーを用いることができる。尚、界面活性剤23で被覆された銀微粒子22が低極性溶媒24に予め分散している分散液を準備し、この分散液に炭素粒子21を攪拌・混合してもよい。 Next, referring to FIG. 2, the method for manufacturing the electromagnetic wave absorber EA will be described by taking the case of manufacturing an electromagnetic wave absorbing sheet as an example. First, in step S1, the fine silver particles 22 whose surfaces are coated with the surfactant 23 are dispersed in the low-polar solvent 24 to prepare a dispersion liquid, and the carbon particles 21 are stirred and mixed in the prepared dispersion liquid ( See FIG. 3(a)). A known homogenizer can be used for stirring and mixing. It is also possible to prepare a dispersion in which the fine silver particles 22 coated with the surfactant 23 are previously dispersed in the low-polarity solvent 24, and to stir and mix the carbon particles 21 into this dispersion.

ここで、銀微粒子22の配合割合は、後に添加される第1樹脂(11)100重量部に対して4~11重量部の範囲に設定することが好ましく、炭素粒子21の配合割合も、第1樹脂(11)100重量部に対して4~11重量部の範囲に設定することが好ましい。これらの範囲を外れると、電磁波吸収率が低くなる場合がある。また、界面活性剤23としては、炭素数6~18の脂肪酸及び炭素数6~18の脂肪族アミンから選択される少なくともいずれか1種を用いることが好ましい。炭素数6~18の脂肪酸としては、例えば、炭素数6のヘキサン酸、2-エチル酪酸、ネオへキサン酸;炭素数7のヘプタン酸、2-メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、ネオオクタン酸、2-エチルヘキサン酸;炭素数9のノナン酸;炭素数10のネオデカン酸、デカン酸;炭素数11のウンデカン酸;炭素数12のネオドデカン酸、ドデカン酸;及び炭素数14のテトラデカン酸;炭素数16のパルミチン酸;及び炭素数18のステアリン酸、オレイン酸、リノール酸、リノレン酸から選択された少なくとも1種を単独でまたは組み合わせて用いることができる。また、炭素数6~18の脂肪族アミンとしては、例えば、炭素数6のヘキシルアミン、シクロヘキシルアミン、アニリン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2-エチルヘキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;炭素数14のテトラドデシルアミン;及び炭素数18のステアリルアミン、オレイルアミンから選択された少なくとも1種を単独でまたは組み合わせて用いることができる。炭素数6未満の脂肪酸や脂肪族アミンでは、低極性溶媒24中での銀微粒子22の分散性が低下する場合がある一方で、炭素数19以上の脂肪酸や脂肪族アミンでは、後述する比較的低い温度で熱処理を行うと、銀微粒子22の表面からの界面活性剤23(脂肪酸や脂肪族アミン)の脱離が不十分となり、焼結体Maの抵抗値が高くなる場合がある。低極性溶媒24としては、例えば、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、オクチルベンゼン、ドデシルベンゼン、デカリン、テトラリン、シクロドデカン、シクロヘキシルベンゼン及びシクロドデセンから選択された少なくとも1種を単独でまたは組み合わせて用いることができる。 Here, the mixing ratio of the silver fine particles 22 is preferably set in the range of 4 to 11 parts by weight with respect to 100 parts by weight of the first resin (11) added later. It is preferable to set the amount in the range of 4 to 11 parts by weight with respect to 100 parts by weight of 1 resin (11). Outside these ranges, the electromagnetic wave absorptivity may decrease. As the surfactant 23, it is preferable to use at least one selected from fatty acids having 6 to 18 carbon atoms and aliphatic amines having 6 to 18 carbon atoms. Examples of fatty acids having 6 to 18 carbon atoms include hexanoic acid, 2-ethylbutyric acid and neohexanoic acid having 6 carbon atoms; heptanoic acid, 2-methylhexanoic acid and cyclohexanecarboxylic acid having 7 carbon atoms; Octanoic acid, neooctanoic acid, 2-ethylhexanoic acid; C9 nonanoic acid; C10 neodecanoic acid, decanoic acid; C11 undecanoic acid; C12 neododecanoic acid, dodecanoic acid; tetradecanoic acid having 16 carbon atoms; palmitic acid having 18 carbon atoms; and stearic acid having 18 carbon atoms, oleic acid, linoleic acid, and linolenic acid. Examples of aliphatic amines having 6 to 18 carbon atoms include hexylamine, cyclohexylamine and aniline having 6 carbon atoms; heptylamine having 7 carbon atoms; octylamine and 2-ethylhexylamine having 8 carbon atoms; decylamine having 10 carbon atoms; dodecylamine having 12 carbon atoms; tetradodecylamine having 14 carbon atoms; and stearylamine and oleylamine having 18 carbon atoms. . Fatty acids and aliphatic amines having less than 6 carbon atoms may reduce the dispersibility of the fine silver particles 22 in the low-polar solvent 24, whereas fatty acids and aliphatic amines having 19 or more carbon atoms may cause relatively If the heat treatment is performed at a low temperature, the surfactant 23 (fatty acid or aliphatic amine) may not be sufficiently desorbed from the surface of the fine silver particles 22, and the resistance of the sintered body Ma may increase. As the low-polarity solvent 24, for example, at least one selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, octylbenzene, dodecylbenzene, decalin, tetralin, cyclododecane, cyclohexylbenzene and cyclododecene. Seeds can be used singly or in combination.

その後、極性溶媒25を加え(ステップS2)、十分に攪拌した後、所定時間(例えば、2~12時間)静置する。これにより、図3(b)に示すように、銀微粒子22が付着した炭素粒子21が沈降する(ステップS3)。極性溶媒25としては、例えば、メタノール、エタノール、プロパノール等のアルコール類や、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等のケトン類から選択された少なくとも1種を用いることができる。その上澄み液をデカンテーションなどにより除去することで(ステップS4)、銀微粒子22が付着した炭素粒子21が作製される。尚、極性溶媒25の添加(ステップS2)~上澄み液の除去(ステップS4)の工程を複数回繰り返してもよい。 After that, the polar solvent 25 is added (step S2), and after sufficiently stirring, the mixture is allowed to stand still for a predetermined time (for example, 2 to 12 hours). As a result, as shown in FIG. 3B, the carbon particles 21 to which the silver fine particles 22 are attached settle (step S3). As the polar solvent 25, for example, at least one selected from alcohols such as methanol, ethanol and propanol, and ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone can be used. By removing the supernatant liquid by decantation or the like (step S4), carbon particles 21 to which silver microparticles 22 are attached are produced. The steps from the addition of the polar solvent 25 (step S2) to the removal of the supernatant (step S4) may be repeated multiple times.

このように作製された銀微粒子22が付着した炭素粒子21に第1樹脂11を添加し(ステップS5)、十分に攪拌・混合して第1混合物を得る(ステップS6)。この攪拌・混合には、公知のホモジナイザーを用いることができる。尚、第1樹脂11としては、溶媒に予め溶解させたものを用いることができる。 The first resin 11 is added to the carbon particles 21 to which the silver fine particles 22 thus produced are adhered (step S5), and sufficiently stirred and mixed to obtain a first mixture (step S6). A known homogenizer can be used for this stirring and mixing. As the first resin 11, a resin dissolved in advance in a solvent can be used.

上記ステップS6で得られた第1混合物に第2樹脂12を添加し(ステップS7)、十分に攪拌・混合して第2混合物を得る(ステップS8)。この攪拌・混合には、公知のホモジナイザーを用いることができる。尚、第2樹脂としては、溶媒に予め溶解させたものや、粉末状のものを用いることができる。 The second resin 12 is added to the first mixture obtained in step S6 (step S7) and sufficiently stirred and mixed to obtain a second mixture (step S8). A known homogenizer can be used for this stirring and mixing. As the second resin, a resin dissolved in advance in a solvent or a powdery resin can be used.

上記ステップS8で得られた第2混合物を所定の容器に流下させて成形し、これを所定時間(例えば、6~12時間)乾燥させて乾燥体を得る(ステップS9)。乾燥時の温度は、60~100℃の範囲に設定することができる。最後に、乾燥体を180~300℃の温度、5~15MPaの圧力で熱プレス処理する(ステップS10)。これにより、銀微粒子22で炭素粒子21が焼結されると共に、銀微粒子22から界面活性剤23が脱離し、電磁波吸収シートが得られる。尚、上記ステップS10では、必ずしも加圧する必要はないが、加圧することで炭素粒子21間の距離が近くなって焼結し易くなる。 The second mixture obtained in step S8 is flowed down into a predetermined container to be shaped, and dried for a predetermined time (for example, 6 to 12 hours) to obtain a dried product (step S9). The temperature during drying can be set in the range of 60 to 100°C. Finally, the dried body is heat-pressed at a temperature of 180-300° C. and a pressure of 5-15 MPa (step S10). As a result, the carbon particles 21 are sintered with the fine silver particles 22, and the surfactant 23 is detached from the fine silver particles 22 to obtain an electromagnetic wave absorbing sheet. In step S10, it is not always necessary to pressurize, but by pressurizing, the distance between the carbon particles 21 becomes shorter and sintering becomes easier.

以下、本発明の実施形態をより具体化した実施例について、電磁波吸収シートを例に説明する。 Hereinafter, examples that embody the embodiments of the present invention will be described by taking an electromagnetic wave absorbing sheet as an example.

(実施例1)
粒状の炭素粒子(キャボット製の商品名「Vurcan XC-72R」)11重量部に、銀微粒子(アルバック製の商品名「AgナノメタルインクL-Ag1T」)4重量部を配合し、これに少量(100重量部)のトルエンを加え、25℃にてホモジナイザーで十分に(10分以上)攪拌・混合した。これにトルエンの5倍の重量(500重量部)のアセトンを加えて十分に攪拌し、攪拌を停止した後、12時間静置することにより、銀微粒子が付着した炭素粒子を沈降させた。上澄み液を除去した後、メチルエチルケトンに予め溶解させた第1樹脂としてのポリビニルブチラール(和光純薬製の商品名「ポリビニルブチラール630」)を10重量部(第1樹脂のみの重量部換算)添加し、ホモジナイザーで十分に(10分以上)攪拌・混合して第1混合物を得た。この第1混合物に、メチルエチルケトンに予め溶解させた第2樹脂としてのポリメチルメタクリレート(住友化学製の商品名「LG2」)を90重量部(第2樹脂のみの重量部換算)添加し、ホモジナイザーで十分に(10分以上)攪拌・混合して第2混合物を得た。この第2混合物を150mm×150mm×50mmのフィルム容器に流下させ、これを60℃で12時間乾燥させて乾燥体を得た。この乾燥体を200℃、10MPaで1時間の熱プレス処理を行い、150mm×150mm×1mmの電磁波吸収シートを作製した。本実施例1では、第1樹脂と第2樹脂との重量比は、10重量%、90重量%となる。
(Example 1)
Granular carbon particles (manufactured by Cabot under the trade name “Vurcan XC-72R”) were blended with 11 parts by weight of fine silver particles (manufactured by Ulvac under the trade name of “Ag nano metal ink L-Ag1T”), and a small amount ( 100 parts by weight) of toluene was added, and the mixture was sufficiently stirred and mixed at 25° C. with a homogenizer (for 10 minutes or longer). Acetone five times the weight of toluene (500 parts by weight) was added to the solution, and the mixture was sufficiently stirred. After the stirring was stopped, the mixture was allowed to stand for 12 hours to allow the carbon particles with the silver fine particles to settle. After removing the supernatant liquid, 10 parts by weight of polyvinyl butyral (trade name "polyvinyl butyral 630" manufactured by Wako Pure Chemical Industries, Ltd.) as the first resin dissolved in methyl ethyl ketone in advance (converted to parts by weight of the first resin only) was added. , sufficiently (10 minutes or longer) with a homogenizer to obtain a first mixture. To this first mixture, 90 parts by weight (converted to parts by weight of the second resin only) of polymethyl methacrylate (trade name "LG2" manufactured by Sumitomo Chemical Co., Ltd.) as a second resin dissolved in methyl ethyl ketone in advance was added, and the mixture was homogenized with a homogenizer. A second mixture was obtained by sufficiently stirring and mixing (10 minutes or more). This second mixture was poured down into a film container of 150 mm×150 mm×50 mm and dried at 60° C. for 12 hours to obtain a dried product. This dried body was heat-pressed at 200° C. and 10 MPa for 1 hour to prepare an electromagnetic wave absorbing sheet of 150 mm×150 mm×1 mm. In Example 1, the weight ratios of the first resin and the second resin are 10% by weight and 90% by weight.

(実施例2)
本実施例2では、第1樹脂としてのポリビニルブチラール(和光純薬製の商品名「ポリビニルブチラール630」)を30重量部添加する点と、第2樹脂としてのポリメチルメタクリレート(住友化学製の商品名「LG2」)を70重量部添加する点とを除き、上記実施例1と同様の方法で電磁波吸収シートを作製した。
(Example 2)
In Example 2, 30 parts by weight of polyvinyl butyral (trade name "polyvinyl butyral 630" manufactured by Wako Pure Chemical Industries, Ltd.) is added as the first resin, and polymethyl methacrylate (product of Sumitomo Chemical Co., Ltd.) is added as the second resin. An electromagnetic wave absorbing sheet was produced in the same manner as in Example 1 above, except that 70 parts by weight of LG2 was added.

(実施例3)
本実施例3では、第1樹脂としてのポリビニルブチラール(和光純薬製の商品名「ポリビニルブチラール630」)を50重量部添加する点と、第2樹脂としてのポリメチルメタクリレート(住友化学製の商品名「LG2」)を50重量部添加する点とを除き、上記実施例1と同様の方法で電磁波吸収シートを作製した。
(Example 3)
In Example 3, 50 parts by weight of polyvinyl butyral (trade name "Polyvinyl butyral 630" manufactured by Wako Pure Chemical Industries) is added as the first resin, and polymethyl methacrylate (trade name manufactured by Sumitomo Chemical Co., Ltd.) is added as the second resin. An electromagnetic wave absorbing sheet was produced in the same manner as in Example 1 above, except that 50 parts by weight of LG2 was added.

次に、上記実施例に対する比較例について説明する。 Next, a comparative example for the above example will be described.

(比較例1)
本比較例1では、第1樹脂としてのポリビニルブチラール(和光純薬製の商品名「ポリビニルブチラール630」)を100重量部添加する点と、第2樹脂としてのポリメチルメタクリレート(住友化学製の商品名「LG2」)を添加しない(0重量部とする)点とを除き、上記実施例1と同様の方法で電磁波吸収シートを作製した。
(Comparative example 1)
In this Comparative Example 1, 100 parts by weight of polyvinyl butyral (trade name “Polyvinyl butyral 630” manufactured by Wako Pure Chemical Industries) as the first resin is added, and polymethyl methacrylate (trade name manufactured by Sumitomo Chemical Co., Ltd.) is added as the second resin. An electromagnetic wave-absorbing sheet was produced in the same manner as in Example 1 above, except that (0 weight parts) was not added.

(比較例2)
本比較例2では、銀微粒子(アルバック製の商品名「AgナノメタルインクL-Ag1T」)を添加しない(0重量部とする)点、つまり、炭素粒子21が焼結していない点を除き、上記実施例2と同様の方法で電磁波吸収シートを作製した。
(Comparative example 2)
In Comparative Example 2, silver fine particles (trade name “Ag nano metal ink L-Ag1T” manufactured by ULVAC) are not added (0 parts by weight), that is, carbon particles 21 are not sintered. An electromagnetic wave absorbing sheet was produced in the same manner as in Example 2 above.

次に、上記実施例1~3及び比較例1で作製した電磁波吸収シートの76GHz、77GHz及び79GHzの周波数帯域における電磁波吸収率を公知の自由空間法/Sパラメータ法により測定した。測定した電磁波吸収率をプロットした結果を図4に示す。図4の横軸は、第1樹脂と第2樹脂の総重量に対する第1樹脂の重量比である。これによれば、第1樹脂の重量比を10~70重量%の範囲にすることが好ましく、20~40重量%にすることがより好ましく、30重量%にすることが最も好ましい。第1樹脂の重量比を10~70重量%にすることで68%以上の電磁波吸収率を得ることができ、20~40重量%にすることで80%以上の電磁波吸収率を得ることができ、30重量%にすることで90%(10dB)以上の電磁波吸収率を得ることができる。 Next, the electromagnetic wave absorption rate in the frequency bands of 76 GHz, 77 GHz and 79 GHz of the electromagnetic wave absorbing sheets produced in Examples 1 to 3 and Comparative Example 1 was measured by a known free space method/S parameter method. FIG. 4 shows the results of plotting the measured electromagnetic wave absorptivity. The horizontal axis of FIG. 4 is the weight ratio of the first resin to the total weight of the first resin and the second resin. According to this, the weight ratio of the first resin is preferably in the range of 10-70% by weight, more preferably 20-40% by weight, and most preferably 30% by weight. An electromagnetic wave absorption rate of 68% or more can be obtained by setting the weight ratio of the first resin to 10 to 70% by weight, and an electromagnetic wave absorption rate of 80% or more can be obtained by setting the weight ratio of the first resin to 20 to 40% by weight. , 30% by weight, an electromagnetic wave absorption rate of 90% (10 dB) or more can be obtained.

イオン研磨(IP)法により、実施例2で作製した電磁波吸収シートの断面を作製し、当該断面を走査型電子顕微鏡(SEM)により観察した。その反射電子像を図5に示す。図5(a)に示すように、ポリビニルブチラールを島相11、ポリメチルメタクリレートを海相12とする海島構造(相分離構造)が得られ、球状の島相の直径が数μm~100μmの範囲であり、様々な大きさや形状の島相が海相に分散していることが確認された。さらに、図5(b)に示す電子像の部分について、エネルギー分散型X線分光法(EDX)により、海相構造の炭素、酸素及び銀の特性X線(それぞれ、CKα線、OKα線、AgLα線)像を観察したところ、炭素濃度は、海相12と島相11とで明確な差が無いことが確認された。これは、海相12と島相11を構成する両樹脂に炭素が多量に含まれるためであると考えられる。他方で、酸素濃度は、海相12が島相11よりも高くなっており、銀濃度は、島相11が海相12よりも高くなっていることが確認された。さらに、図5(a)に示す反射電子像では、島相11が海相12よりも明るくなっている。また、上記作製した断面を持つ試料を走査型透過電子顕微鏡(STEM)により観察し、そのSTEM像を図6に示す。これによれば、銀微粒子22は炭素粒子21に付着して焼結体Maを構成することが確認された。以上より、島相11に焼結体Maが分散していることが判った。 A cross section of the electromagnetic wave absorbing sheet produced in Example 2 was prepared by an ion polishing (IP) method, and the cross section was observed with a scanning electron microscope (SEM). FIG. 5 shows the backscattered electron image. As shown in FIG. 5(a), a sea-island structure (phase-separated structure) having island phases 11 made of polyvinyl butyral and sea phases 12 made of polymethyl methacrylate was obtained, and the diameter of the spherical island phases ranged from several μm to 100 μm. It was confirmed that island facies of various sizes and shapes were dispersed in the sea facies. Furthermore, for the part of the electron image shown in FIG. Line) images were observed, and it was confirmed that there was no clear difference in carbon concentration between the sea phase 12 and the island phase 11 . It is considered that this is because both the resins forming the sea phase 12 and the island phase 11 contain a large amount of carbon. On the other hand, it was confirmed that the sea phase 12 has a higher oxygen concentration than the island phase 11 and the island phase 11 has a higher silver concentration than the sea phase 12 . Furthermore, in the backscattered electron image shown in FIG. 5( a ), the island phase 11 is brighter than the sea phase 12 . Further, the sample having the cross section prepared above was observed with a scanning transmission electron microscope (STEM), and the STEM image is shown in FIG. According to this, it was confirmed that the fine silver particles 22 adhered to the carbon particles 21 to constitute the sintered body Ma. From the above, it was found that the sintered body Ma was dispersed in the island phase 11 .

次に、上記実施例2及び比較例2で作製した電磁波吸収シートの75GHz~80GHz周波数帯域での電磁波吸収率、電磁波反射率、電磁波透過率を上記自由空間法/Sパラメータ法により夫々測定した。測定した電磁波吸収率、電磁波反射率、電磁波透過率を図7に夫々示す。尚、この測定法は、試料に所定の周波数の電磁波を照射したときの反射係数S11と透過係数S21とを求め、下式(1)~(3)を用いて電磁波吸収率、電磁波反射率、電磁波透過率を求める方法である。
電磁波吸収率=1-|S11-|S21 (1)
電磁波反射率=|S11 (2)
電磁波透過率=|S21 (3)
Next, the electromagnetic wave absorption rate, electromagnetic wave reflectance, and electromagnetic wave transmittance in the frequency band of 75 GHz to 80 GHz of the electromagnetic wave absorbing sheets produced in Example 2 and Comparative Example 2 were measured by the free space method/S parameter method. The measured electromagnetic wave absorptivity, electromagnetic wave reflectance, and electromagnetic wave transmittance are shown in FIG. In this measurement method, the reflection coefficient S 11 and the transmission coefficient S 21 are obtained when the sample is irradiated with an electromagnetic wave of a predetermined frequency, and the electromagnetic wave absorption rate and the electromagnetic wave reflection are calculated using the following equations (1) to (3). It is a method to obtain the rate and electromagnetic wave transmittance.
Electromagnetic absorption rate=1-|S 11 | 2 -|S 21 | 2 (1)
Electromagnetic reflectance=|S 11 | 2 (2)
Electromagnetic wave transmittance=|S 21 | 2 (3)

図7(a)に示すように、実施例2の電磁波吸収シートは、比較例2のものよりも高い90%(10dB)以上の電磁波吸収率を発揮することが確認された。上式(1)~(3)から明らかなように、電磁波吸収率は、反射も透過もしない電磁波の比率を意味する。図7(b)及び図7(c)に示すように、比較例2のものは、実施例2のものに比べて反射率及び透過率が高いことが確認された。この理由は、以下のように考えられる。即ち、比較例2の如く吸収材が炭素粒子のみで構成される場合、炭素粒子自体が持つ抵抗と、炭素粒子間の静電容量(コンデンサ)とが複雑に結合した等価回路と考えることができる。一般に、コンデンサのインピーダンスは電磁波の周波数に反比例することが知られている。電磁波の周波数が75GHz~80GHzと低い場合には、抵抗体である炭素粒子に電流が流れ難くなり、電磁波が吸収され難くなり、その結果として、反射率や透過率が高くなる。それに対して、実施例2の如く吸収材Maを、銀微粒子を介して炭素粒子を焼結させた低抵抗の焼結体で構成して導電率を高めることで、抵抗体である炭素粒子21に電流が流れ易くなり、抵抗体に電流が流れることによって電磁波のエネルギーが熱エネルギーに変換されるため、反射率や透過率を低くすることができる。 As shown in FIG. 7A, it was confirmed that the electromagnetic wave absorbing sheet of Example 2 exhibits an electromagnetic wave absorbing rate of 90% (10 dB) or higher, which is higher than that of Comparative Example 2. As is clear from the above formulas (1) to (3), the electromagnetic wave absorption rate means the ratio of electromagnetic waves that are neither reflected nor transmitted. As shown in FIGS. 7B and 7C, it was confirmed that the comparative example 2 had higher reflectance and transmittance than the example 2. FIG. The reason for this is considered as follows. That is, when the absorbent is composed only of carbon particles as in Comparative Example 2, it can be considered as an equivalent circuit in which the resistance of the carbon particles themselves and the capacitance (capacitor) between the carbon particles are intricately coupled. . It is generally known that the impedance of a capacitor is inversely proportional to the frequency of electromagnetic waves. When the frequency of the electromagnetic wave is as low as 75 GHz to 80 GHz, it becomes difficult for current to flow through the carbon particles, which are resistors, and the electromagnetic wave is difficult to be absorbed, resulting in high reflectance and transmittance. On the other hand, as in Example 2, the absorber Ma is composed of a low-resistance sintered body in which carbon particles are sintered through silver fine particles to increase the conductivity, so that the carbon particles 21 that are resistors Since the current flows through the resistor, the energy of the electromagnetic wave is converted into heat energy, so that the reflectance and the transmittance can be lowered.

なお、本発明は上記実施形態に限定されるものではない。上記実施形態では、電磁波吸収体EAとして、シート状に成形される電磁波吸収シートを製造する場合について説明したが、電磁波吸収体EAの形状は任意であり、例えば、ブロック状や筒状に成形されたものであってもよい。 It should be noted that the present invention is not limited to the above embodiments. In the above embodiment, the electromagnetic wave absorber EA is formed into a sheet-shaped electromagnetic wave absorbing sheet, but the shape of the electromagnetic wave absorber EA is arbitrary. It can be anything.

また、上記実施形態では、銀微粒子22を介して粒状の炭素粒子21を焼結させて焼結体Maとする場合について説明したが、焼結体Maを構成できるものであれば炭素粒子21の形状は任意であってもよい。 Further, in the above-described embodiment, the case where the granular carbon particles 21 are sintered through the silver fine particles 22 to form the sintered body Ma has been described. The shape may be arbitrary.

また、上記実施形態では、島相となる第1樹脂11に焼結体Maを分散させる場合について説明したが、海相となる第2樹脂12に焼結体Maを分散させてもよい。 Further, in the above-described embodiment, the case where the sintered bodies Ma are dispersed in the first resin 11 serving as the island phase has been described, but the sintered bodies Ma may be dispersed in the second resin 12 serving as the sea phase.

EA…電磁波吸収体、Ma…吸収材,焼結体、11…第1樹脂,島相、12…第2樹脂,海相、21…炭素粒子、22…銀微粒子、23…界面活性剤、24…低極性溶媒、25…極性溶媒。 EA... Electromagnetic wave absorber, Ma... Absorbent, sintered body 11... First resin, island phase 12... Second resin, sea phase 21... Carbon particles, 22... Fine silver particles, 23... Surfactant, 24 ... low polarity solvent, 25 ... polar solvent.

Claims (4)

所定の周波数帯域の電磁波に対して吸収性を持つ吸収材が第1樹脂に分散した状態で、第2樹脂に孤立して分散する電磁波吸収体において、
前記吸収材が、銀微粒子を介して炭素粒子を焼結した焼結体であり、
前記第1樹脂の重量に対する前記銀微粒子の重量比が4~11重量%の範囲であり、
前記第1樹脂と前記第2樹脂の総重量に対する前記第1樹脂の重量比が、10~70重量%の範囲であり、
前記第1樹脂がポリビニルブチラール及びポリビニルアセトアセタールから選択される少なくとも1つであり、前記第2樹脂がポリメチルメタクリレートであり、
75GHz~80GHzの周波数帯域の電磁波に対して68%以上の吸収率を有することを特徴とする電磁波吸収体。
An electromagnetic wave absorber that is isolated and dispersed in a second resin in a state in which an absorbing material that absorbs electromagnetic waves in a predetermined frequency band is dispersed in the first resin,
The absorbent is a sintered body obtained by sintering carbon particles via silver fine particles ,
The weight ratio of the silver fine particles to the weight of the first resin is in the range of 4 to 11% by weight,
The weight ratio of the first resin to the total weight of the first resin and the second resin is in the range of 10 to 70% by weight,
The first resin is at least one selected from polyvinyl butyral and polyvinyl acetoacetal, the second resin is polymethyl methacrylate,
An electromagnetic wave absorber characterized by having an absorption rate of 68% or more for electromagnetic waves in a frequency band of 75 GHz to 80 GHz .
請求項1記載の電磁波吸収体を製造する電磁波吸収体の製造方法であって、
銀微粒子が付着した炭素粒子を作製する工程と、
前記銀微粒子が付着した炭素粒子と第1樹脂とを混合して第1混合物を得る工程と、
第1混合物に第2樹脂を添加し、混合して第2混合物を得る工程と、
第2混合物を所定形状に成形して乾燥する工程と、
乾燥により得られた乾燥体を所定の温度で加熱して、前記炭素粒子を前記銀微粒子で焼結する工程を含むことを特徴とする電磁波吸収体の製造方法。
A method for manufacturing an electromagnetic wave absorber for manufacturing the electromagnetic wave absorber according to claim 1 ,
a step of producing carbon particles to which silver fine particles are attached;
a step of mixing the carbon particles to which the silver fine particles are attached and a first resin to obtain a first mixture;
adding a second resin to the first mixture and mixing to obtain a second mixture;
molding the second mixture into a predetermined shape and drying;
A method for producing an electromagnetic wave absorber, comprising a step of heating a dried body obtained by drying at a predetermined temperature to sinter the carbon particles with the silver fine particles.
前記銀微粒子が付着した炭素粒子を作製する工程は、
界面活性剤で覆われた銀微粒子を低極性溶媒に分散させて分散液を得て、この分散液に炭素粒子を混合する工程と、
炭素粒子が混合された分散液に極性溶媒を加え、界面活性剤で覆われた銀微粒子が付着した炭素粒子を沈降させる工程を含むことを特徴とする請求項記載の電磁波吸収体の製造方法。
The step of producing carbon particles to which the silver fine particles are attached includes:
a step of dispersing fine silver particles coated with a surfactant in a low-polar solvent to obtain a dispersion, and mixing carbon particles into the dispersion;
3. The method for producing an electromagnetic wave absorber according to claim 2 , further comprising the step of adding a polar solvent to the dispersion liquid containing the carbon particles and causing the carbon particles to settle, to which the silver fine particles coated with a surfactant are adhered. .
請求項記載の電磁波吸収体の製造方法であって、前記乾燥体を180~300℃の温度で加熱するものにおいて、
前記界面活性剤は、炭素数6~18の脂肪酸及び炭素数6~18の脂肪族アミンから選択される少なくともいずれか1種であることを特徴とする電磁波吸収体の製造方法。
The method for producing an electromagnetic wave absorber according to claim 3 , wherein the dried body is heated at a temperature of 180 to 300 ° C.,
A method for producing an electromagnetic wave absorber, wherein the surfactant is at least one selected from fatty acids having 6 to 18 carbon atoms and aliphatic amines having 6 to 18 carbon atoms.
JP2018091326A 2018-05-10 2018-05-10 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber Active JP7144185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091326A JP7144185B2 (en) 2018-05-10 2018-05-10 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091326A JP7144185B2 (en) 2018-05-10 2018-05-10 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2019197822A JP2019197822A (en) 2019-11-14
JP7144185B2 true JP7144185B2 (en) 2022-09-29

Family

ID=68537564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091326A Active JP7144185B2 (en) 2018-05-10 2018-05-10 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP7144185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235561A1 (en) * 2018-06-06 2019-12-12 株式会社新日本電波吸収体 Electromagnetic shielding material and signal processing unit provided with same
KR102602993B1 (en) * 2019-05-14 2023-11-16 후지필름 가부시키가이샤 radio wave absorber
KR102331076B1 (en) * 2020-03-02 2021-11-24 성균관대학교산학협력단 Electromagnetic shielding material and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043044A (en) 2005-06-30 2007-02-15 Jsr Corp Manufacturing method of electromagnetic wave shielding film
JP2010123645A (en) 2008-11-18 2010-06-03 Jinko Cho Fine-particle material for preventing electromagnetic wave
US20110260115A1 (en) 2008-12-10 2011-10-27 Ls Cable & System, Ltd Conductive paste and conductive circuit board produced therewith
JP2015015373A (en) 2013-07-05 2015-01-22 株式会社Kri Electromagnetic wave-absorbing resin composition, and molded product thereof
JP2017088734A (en) 2015-11-10 2017-05-25 株式会社アルバック Conductive metal ink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043044A (en) 2005-06-30 2007-02-15 Jsr Corp Manufacturing method of electromagnetic wave shielding film
JP2010123645A (en) 2008-11-18 2010-06-03 Jinko Cho Fine-particle material for preventing electromagnetic wave
US20110260115A1 (en) 2008-12-10 2011-10-27 Ls Cable & System, Ltd Conductive paste and conductive circuit board produced therewith
JP2015015373A (en) 2013-07-05 2015-01-22 株式会社Kri Electromagnetic wave-absorbing resin composition, and molded product thereof
JP2017088734A (en) 2015-11-10 2017-05-25 株式会社アルバック Conductive metal ink

Also Published As

Publication number Publication date
JP2019197822A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7144185B2 (en) Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
EP2785158B1 (en) Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
JP6404614B2 (en) Manufacturing method of core-shell type metal fine particles, core-shell type metal fine particles, conductive ink and substrate
TWI481326B (en) A conductive pattern forming method, and a conductive pattern forming composition by light irradiation or microwave heating
KR102225197B1 (en) Dispersion, and a method of manufacturing a structure with a conductive pattern using the same, and a structure with a conductive pattern
JP6449559B2 (en) Nanostructure dispersion and transparent conductor
KR20160081961A (en) Copper particle dispersion and method for producing conductive film using same
KR20170018897A (en) Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste
TW201110144A (en) Conductive material formed using light or thermal energy and method for manufacturing the same, and nano-scale composition
WO2011149039A1 (en) Dielectric material sheet and process for production thereof, and electromagnetic wave absorber
CN110892034A (en) Conductive adhesive composition
TWI694469B (en) Composition for forming conductive pattern and method of forming conductive pattern
TW201825613A (en) Silver particle dispersing solution, method for producing same, and method for producing conductive film using silver particle dispersing solution
Songping Preparation of micron size flake silver powders for conductive thick films
JP2019090110A (en) Structure having conductive pattern region and method for manufacturing the same
Rebber et al. Additive‐Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically Structured Bulk Aerogels
JP6905834B2 (en) Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber
JP6446069B2 (en) Conductive fine particles
JP2012104388A (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each thereof
CN111801183B (en) Silver paste and method for producing bonded body
JP2019178059A (en) Method for manufacturing dispersion
JP2019160689A (en) Dispersion, product containing coating film, method for producing structure with conductive pattern, and structure with conductive pattern
JP2020113706A (en) Structure with conductive pattern region and manufacturing method of the same
Ryu et al. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers
KR20230151101A (en) Conductive composition for bonding, bonding structure using the same, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

R150 Certificate of patent or registration of utility model

Ref document number: 7144185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150