JP6905834B2 - Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber - Google Patents

Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber Download PDF

Info

Publication number
JP6905834B2
JP6905834B2 JP2017030466A JP2017030466A JP6905834B2 JP 6905834 B2 JP6905834 B2 JP 6905834B2 JP 2017030466 A JP2017030466 A JP 2017030466A JP 2017030466 A JP2017030466 A JP 2017030466A JP 6905834 B2 JP6905834 B2 JP 6905834B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorber
fine particles
silver fine
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030466A
Other languages
Japanese (ja)
Other versions
JP2018137326A (en
Inventor
正人 大澤
正人 大澤
夏樹 橋本
夏樹 橋本
承俊 呉
承俊 呉
林 茂雄
茂雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2017030466A priority Critical patent/JP6905834B2/en
Publication of JP2018137326A publication Critical patent/JP2018137326A/en
Application granted granted Critical
Publication of JP6905834B2 publication Critical patent/JP6905834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、電磁波吸収体及び電磁波吸収体の製造方法に関し、より詳しくは、75GHz〜110GHzの周波数帯(W帯)の電磁波に対して吸収性を持つものに関する。 The present invention relates to an electromagnetic wave absorber and a method for producing the electromagnetic wave absorber, and more specifically, to an electromagnetic wave absorber having an absorption property for electromagnetic waves in a frequency band (W band) of 75 GHz to 110 GHz.

近年、所謂先進運転支援システム(ADAS:Advanced Driver Assistance System)の1つとして、衝突回避支援システムが普及している。衝突回避支援システムでは、車両の前方の対象物(例えば、他の車両、歩行者、障害物等)を検出するために、ミリ波レーダ装置が通常用いられる。ミリ波レーダ装置は、所定の周波数(例えば、76GHz)の電磁波を発するアンテナと、当該周波数の電磁波に対して吸収性を持つ電磁波吸収体とを備え、対象物に対して指向性よく電磁波を照射できるように構成されている。尚、吸収性とは、所定の周波数の電磁波を吸収し、かつ、当該周波数以外の電磁波は吸収せずに透過する性質を言う。このような電磁波吸収体としては、樹脂材中に抵抗体として作用する炭素材料(カーボン系粒子)を分散させたものが知られている(例えば特許文献1参照)。 In recent years, a collision avoidance support system has become widespread as one of the so-called Advanced Driver Assistance Systems (ADAS). In a collision avoidance support system, a millimeter-wave radar device is usually used to detect an object in front of a vehicle (for example, another vehicle, a pedestrian, an obstacle, etc.). The millimeter-wave radar device includes an antenna that emits an electromagnetic wave of a predetermined frequency (for example, 76 GHz) and an electromagnetic wave absorber that absorbs the electromagnetic wave of the frequency, and irradiates the object with the electromagnetic wave in a directional manner. It is configured so that it can be done. The absorbency means a property of absorbing an electromagnetic wave having a predetermined frequency and transmitting an electromagnetic wave other than the frequency without absorbing the electromagnetic wave. As such an electromagnetic wave absorber, one in which a carbon material (carbon-based particles) acting as a resistor is dispersed in a resin material is known (see, for example, Patent Document 1).

ところで、上記従来例の電磁波吸収体は、所定の周波数帯の電磁波に対する吸収率が約40%と低いため、電磁波吸収率を高める必要がある。電磁波吸収率を高める方法としては、炭素材料の含有量を増やして導電率を高めることが考えられる。然しながら、炭素材料は嵩高いため、樹脂材中の炭素材料の含有量を増やすことは難しいという問題がある。 By the way, since the electromagnetic wave absorber of the above-mentioned conventional example has a low absorption rate for electromagnetic waves in a predetermined frequency band of about 40%, it is necessary to increase the electromagnetic wave absorption rate. As a method of increasing the electromagnetic wave absorption rate, it is conceivable to increase the content of the carbon material to increase the conductivity. However, since the carbon material is bulky, there is a problem that it is difficult to increase the content of the carbon material in the resin material.

特開2015−15373号公報Japanese Unexamined Patent Publication No. 2015-15373

本発明は、以上の点に鑑み、樹脂材中の炭素材料の含有量が少なくても、75GHz〜110GHzの周波数帯の電磁波に対して優れた吸収性能を持つ電磁波吸収体及び電磁波吸収体の製造方法を提供することをその課題とする。 In view of the above points, the present invention manufactures an electromagnetic wave absorber and an electromagnetic wave absorber having excellent absorption performance for electromagnetic waves in the frequency band of 75 GHz to 110 GHz even if the content of the carbon material in the resin material is small. The challenge is to provide a method.

上記課題を解決するために、所定の周波数帯域の電磁波に対して吸収性を持つ本発明の電磁波吸収体は、所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成され、前記樹脂材100重量部に対して前記銀微粒子を4〜11重量部含むことを特徴とする。この場合、前記樹脂材100重量部に対して前記炭素材料を4〜11重量部含むことが好ましい。また、上記課題を解決するために、所定の周波数帯域の電磁波に対して吸収性を持つ本発明の電磁波吸収体は、所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成され、前記樹脂材100重量部に対して前記炭素材料を4〜11重量部含むことを特徴とする。 In order to solve the above problems, the electromagnetic wave absorber of the present invention, which has absorbency against electromagnetic waves in a predetermined frequency band, is a resin material formed into a predetermined shape and a carbon material dispersed in the resin material. It is composed of a sintered body obtained by sintering the above with silver fine particles, and is characterized by containing 4 to 11 parts by weight of the silver fine particles with respect to 100 parts by weight of the resin material. In this case, it is preferable that the carbon material is contained in an amount of 4 to 11 parts by weight with respect to 100 parts by weight of the resin material. Further, in order to solve the above problems, the electromagnetic wave absorber of the present invention having absorbency to electromagnetic waves in a predetermined frequency band is dispersed in a resin material formed into a predetermined shape and the resin material. It is composed of a sintered body obtained by sintering a carbon material through silver fine particles, and is characterized by containing 4 to 11 parts by weight of the carbon material with respect to 100 parts by weight of the resin material.

本発明によれば、銀微粒子で炭素材料を焼結させて低抵抗の焼結体とし、この焼結体を樹脂材中に分散させたため、炭素材料の含有量が少なくても導電率を高めることができ、その結果として、所定の周波数帯の電磁波に対して優れた吸収性能を持つ電磁波吸収体が得られる。後述する実施例によれば、75GHz〜110GHzの周波数帯の電磁波に対して99%以上の吸収率を持ち、優れた吸収性能を発揮することが確認された。 According to the present invention, a carbon material is sintered with silver fine particles to form a low-resistance sintered body, and the sintered body is dispersed in a resin material, so that the conductivity is increased even if the content of the carbon material is small. As a result, an electromagnetic wave absorber having excellent absorption performance for electromagnetic waves in a predetermined frequency band can be obtained. According to the examples described later, it was confirmed that it has an absorption rate of 99% or more with respect to electromagnetic waves in the frequency band of 75 GHz to 110 GHz and exhibits excellent absorption performance.

尚、本発明において、炭素材料としては、粒子状、粉末状、球状、棒状、平板状、繊維状、中空状、角状または塊状のものを用いることができ、例えば、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン及びフラーレンから選択して用いることができる。 In the present invention, as the carbon material, particles, powders, spheres, rods, flat plates, fibrous, hollow, square or lumps can be used, for example, carbon black, acetylene black, and the like. It can be used by selecting from carbon nanotubes, carbon nanofibers, graphene and fullerenes.

本発明において、前記銀微粒子の平均粒子径は1nm〜100nmであることが好ましい In the present invention, the average particle size of the silver fine particles is preferably 1 nm to 100 nm .

所定の周波数帯域の電磁波に対して吸収性を持つ電磁波吸収体を製造する本発明の電磁波吸収体の製造方法は、電磁波吸収体が、所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成され、銀微粒子が付着した炭素材料を作製する工程と、前記銀微粒子が付着した炭素材料と樹脂材とを混合する工程と、混合により得られた混合物を所定形状に成形して乾燥する工程と、乾燥により得られた乾燥体を180〜300℃の温度で加熱して、前記炭素材料を銀微粒子で焼結する工程とを含むことを特徴とする。 In the method for producing an electromagnetic wave absorber of the present invention, which manufactures an electromagnetic wave absorber capable of absorbing electromagnetic waves in a predetermined frequency band, the electromagnetic wave absorber is formed into a resin material formed into a predetermined shape and the resin material is contained therein. The process of producing a carbon material to which a dispersed carbon material is sintered via silver fine particles and to which the silver fine particles are attached is mixed with the carbon material to which the silver fine particles are attached and a resin material. The step of forming the mixture obtained by mixing into a predetermined shape and drying, and the step of heating the dried product obtained by drying at a temperature of 180 to 300 ° C. and sintering the carbon material with silver fine particles. It is characterized by including a step of performing.

本発明において、前記銀微粒子が付着した炭素材料を作製する工程は、界面活性剤で覆われた銀微粒子を低極性溶媒に分散させてなる分散液を得て、この分散液に炭素材料を混合する工程と、炭素材料が混合された分散液に極性溶媒を加え、界面活性剤で覆われた銀微粒子が付着したカーボン材を沈降させる工程とを含むことが好ましい。 In the present invention, in the step of producing the carbon material to which the silver fine particles are attached, a dispersion liquid obtained by dispersing the silver fine particles covered with a surfactant in a low polar solvent is obtained, and the carbon material is mixed with the dispersion liquid. It is preferable to include a step of adding a polar solvent to the dispersion liquid in which the carbon material is mixed and a step of precipitating the carbon material to which the silver fine particles covered with the surfactant are attached.

本発明において、前記乾燥体を180〜300℃で加熱する場合、界面活性剤としては、炭素数6〜18の脂肪酸及び炭素数6〜18の脂肪族アミンから選択される少なくともいずれか1種を用いることが好ましい。これによれば、180〜300℃の比較的低い温度で加熱する場合でも、界面活性剤を脱離させることができ、界面活性剤が銀微粒子に付着したまま残留することを防止できる。 In the present invention, when the dried product is heated at 180 to 300 ° C., the surfactant is at least one selected from fatty acids having 6 to 18 carbon atoms and aliphatic amines having 6 to 18 carbon atoms. It is preferable to use it. According to this, even when heating at a relatively low temperature of 180 to 300 ° C., the surfactant can be desorbed, and the surfactant can be prevented from remaining attached to the silver fine particles.

尚、本発明において、低極性溶媒としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を単独でまたは組み合わせて用いることができる。 In the present invention, the low-polarity solvent is at least one liquid hydrocarbon selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, cyclododecane, cyclododecane, octylbenzene, and dodecylbenzene. Can be used alone or in combination.

本発明の実施形態の電磁波吸収体の模式的に示す図。The figure which shows typically the electromagnetic wave absorber of embodiment of this invention. 本発明の実施形態の電磁波吸収体の製造方法を説明する工程図。The process drawing explaining the manufacturing method of the electromagnetic wave absorber of embodiment of this invention. (a)は、図2に示すステップ1を説明する模式図であり、(b)は、図2に示すステップ3を説明する模式図。(A) is a schematic diagram for explaining step 1 shown in FIG. 2, and (b) is a schematic diagram for explaining step 3 shown in FIG. 本発明の実施例1において測定した複素比誘電率をプロットしたグラフ。The graph which plotted the complex relative permittivity measured in Example 1 of this invention. 本発明の実施例1において求めた電磁波吸収率を示すグラフ。The graph which shows the electromagnetic wave absorption rate obtained in Example 1 of this invention. 本発明の実施例1で作製した電磁波吸収シートのSTEM像。A STEM image of the electromagnetic wave absorbing sheet produced in Example 1 of the present invention. 本発明の実施例2において測定した複素比誘電率をプロットしたグラフ。The graph which plotted the complex relative permittivity measured in Example 2 of this invention. 本発明の実施例2において求めた電磁波吸収率を示すグラフ。The graph which shows the electromagnetic wave absorption rate obtained in Example 2 of this invention. 比較例1において測定した複素比誘電率をプロットしたグラフ。The graph which plotted the complex relative permittivity measured in the comparative example 1. 比較例1において求めた電磁波吸収率を示すグラフ。The graph which shows the electromagnetic wave absorption rate obtained in the comparative example 1. FIG. 比較例2において測定した複素比誘電率をプロットしたグラフ。The graph which plotted the complex relative permittivity measured in the comparative example 2. 比較例2において求めた電磁波吸収率を示すグラフ。The graph which shows the electromagnetic wave absorption rate obtained in the comparative example 2.

以下、本発明の実施形態の電磁波吸収体について、シート状のものを例に説明する。図1を参照して、電磁波吸収体EAは、シート状に成形された樹脂材1と、この樹脂材1中に分散させた、炭素材料21を銀微粒子22を介して焼結した焼結体2とで構成される。 Hereinafter, the electromagnetic wave absorber according to the embodiment of the present invention will be described by taking a sheet-like one as an example. With reference to FIG. 1, the electromagnetic wave absorber EA is a sintered body obtained by sintering a resin material 1 formed into a sheet shape and a carbon material 21 dispersed in the resin material 1 via silver fine particles 22. It is composed of 2.

樹脂材1としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアルコール、ポリエステル、ポリビニルブチラール、エチレン・酢酸ビニル共重合体樹脂(EVA樹脂)、アクリロニトリル・スチレン共重合体樹脂(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体樹脂(ABS樹脂)、アクリロニトリル・エチレン・スチレン共重合体樹脂(AES樹脂)、ポリアミド樹脂、フッ素系樹脂等の公知のものの中から選択して用いることができるが、孤立電子対を有するブチラール基、アセチル基や水酸基といった官能基を持つものを用いることが好ましい。このような孤立電子対を持つ官能基に銀微粒子22が配位し易くなり、樹脂材1中での銀微粒子22の凝集を抑制することができ、その結果として、銀微粒子22の分散性を高めることができる。このため、樹脂材1としては、ポリビニルブチラールを好適に用いることができる。 Examples of the resin material 1 include polyethylene, polypropylene, polystyrene, polyvinyl alcohol, polyester, polyvinyl butyral, ethylene / vinyl acetate copolymer resin (EVA resin), acrylonitrile / styrene copolymer resin (AS resin), and acrylonitrile / butadiene. -A styrene copolymer resin (ABS resin), acrylonitrile / ethylene / styrene copolymer resin (AES resin), polyamide resin, fluororesin, etc. can be selected and used, but isolated electron pairs can be used. It is preferable to use one having a functional group such as a butyral group, an acetyl group or a hydroxyl group. The silver fine particles 22 can be easily coordinated to the functional group having such a lone electron pair, and the aggregation of the silver fine particles 22 in the resin material 1 can be suppressed, and as a result, the dispersibility of the silver fine particles 22 can be improved. Can be enhanced. Therefore, polyvinyl butyral can be preferably used as the resin material 1.

炭素材料21としては、粒子状、粉末状、球状、棒状、平板状、繊維状、中空状、角状または塊状のものを用いることができ、例えば、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンフィラー、グラフェン及びフラーレンから選択した少なくとも1種を用いることができる。 As the carbon material 21, particles, powders, spheres, rods, flat plates, fibers, hollows, horns or lumps can be used, for example, carbon black, acetylene black, carbon nanotubes, carbon nano. At least one selected from fiber, carbon filler, graphene and fullerene can be used.

銀微粒子22としては、その平均粒子径が1nm〜100nmの範囲内であるものを用いることができる。平均粒子径が1nm未満では、銀微粒子22の比表面積が大きくなり、当該銀微粒子22の表面を被覆する界面活性剤24の含有量が多くなりすぎるため、後述する温度での熱処理時に該界面活性剤24が十分に脱離しない場合があり、平均粒子径が100nmを超えると、銀微粒子22を介した炭素材料21の焼結が不十分になる場合がある。なお、平均粒子径は、JISZ8828の動的光散乱法による粒子径解析に基づいて得られる値である。 As the silver fine particles 22, those having an average particle diameter in the range of 1 nm to 100 nm can be used. If the average particle size is less than 1 nm, the specific surface area of the silver fine particles 22 becomes large, and the content of the surfactant 24 that coats the surface of the silver fine particles 22 becomes too large. The agent 24 may not be sufficiently desorbed, and if the average particle size exceeds 100 nm, the sintering of the carbon material 21 via the silver fine particles 22 may be insufficient. The average particle size is a value obtained based on the particle size analysis by the dynamic light scattering method of JISZ8828.

次に、図2を参照して、上記電磁波吸収体EAの製造方法について、電磁波吸収シートを製造する場合を例に説明する。 Next, with reference to FIG. 2, the method for manufacturing the electromagnetic wave absorber EA will be described by taking the case of manufacturing an electromagnetic wave absorbing sheet as an example.

先ず、ステップS1にて、低極性溶媒23に銀微粒子22を分散させて分散液を作製し、作製した分散液に炭素材料21を攪拌・混合する(図3(a)参照)。攪拌・混合には、公知のホモジナイザーを用いることができる。尚、銀微粒子22を低極性溶媒23に予め分散している分散液を準備し、この分散液に炭素材料21を攪拌・混合してもよい。 First, in step S1, silver fine particles 22 are dispersed in a low-polarity solvent 23 to prepare a dispersion liquid, and the carbon material 21 is stirred and mixed with the prepared dispersion liquid (see FIG. 3A). A known homogenizer can be used for stirring and mixing. A dispersion in which the silver fine particles 22 are dispersed in the low polar solvent 23 in advance may be prepared, and the carbon material 21 may be stirred and mixed with the dispersion.

ここで、銀微粒子22の配合割合は、後述する樹脂100重量部に対して4〜11重量部の範囲に設定することができ、炭素材料21の配合割合も、後述する樹脂100重量部に対して4〜11重量部の範囲に設定することができる。4重量部未満では、後述する電磁波吸収体の複素比誘電率の虚部が低く、電磁波吸収性能が不十分となる場合があり、11重量部を超えると、前記複素比誘電率の虚部が大きくなりすぎて、電磁波吸収性能が不十分となる場合がある。銀微粒子22の分散性を高めるために、銀微粒子22の表面は界面活性剤24で覆われている。界面活性剤24としては、炭素数6〜18の脂肪酸及び炭素数6〜18の脂肪族アミンから選択される少なくともいずれか1種を用いることが好ましい。炭素数6〜18の脂肪酸としては、例えば、炭素数6のヘキサン酸、2−エチル酪酸;炭素数7のヘプタン酸、2−メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、ネオへキサン酸、2−エチルヘキサン酸;炭素数9のノナン酸;炭素数10のネオオクタン酸、デカン酸;炭素数11のウンデカン酸;炭素数12のネオデカン酸、ドデカン酸;及び炭素数14のテトラデカン酸;炭素数16のパルミチン酸;及び炭素数18のステアリン酸、オレイン酸、リノール酸、リノレン酸から選択された少なくとも1種を単独でまたは組み合わせて用いることができる。また、炭素数6〜18の脂肪族アミンとしては、例えば、炭素数6のヘキシルアミン、シクロヘキシルアミン、アニリン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2−エチルヘキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;炭素数14のテトラドデシルアミン;及び炭素数18のステアリルアミン、オレイルアミンから選択された少なくとも1種を単独でまたは組み合わせて用いることができる。炭素数6未満の脂肪酸や脂肪族アミンでは、低極性溶媒23中での銀微粒子22の分散性が低下する場合がある一方で、炭素数19以上の脂肪酸や脂肪族アミンでは、後述する温度での熱処理時に銀微粒子22の表面からの界面活性剤24(脂肪酸や脂肪族アミン)の脱離が不十分となり、焼結体2の抵抗値が高くなる場合がある。低極性溶媒23としては、例えば、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、オクチルベンゼン、ドデシルベンゼン、デカリン、テトラリン、シクロドデカン、シクロヘキシルベンゼン及びシクロドデセンから選択された少なくとも1種を単独でまたは組み合わせて用いることができる。 Here, the blending ratio of the silver fine particles 22 can be set in the range of 4 to 11 parts by weight with respect to 100 parts by weight of the resin described later, and the blending ratio of the carbon material 21 is also set with respect to 100 parts by weight of the resin described later. It can be set in the range of 4 to 11 parts by weight. If it is less than 4 parts by weight, the imaginary part of the complex relative permittivity of the electromagnetic wave absorber described later may be low and the electromagnetic wave absorption performance may be insufficient. If it exceeds 11 parts by weight, the imaginary part of the complex relative permittivity may be insufficient. It may become too large and the electromagnetic wave absorption performance may be insufficient. In order to enhance the dispersibility of the silver fine particles 22, the surface of the silver fine particles 22 is covered with the surfactant 24. As the surfactant 24, it is preferable to use at least one selected from fatty acids having 6 to 18 carbon atoms and aliphatic amines having 6 to 18 carbon atoms. Examples of fatty acids having 6 to 18 carbon atoms include hexanoic acid having 6 carbon atoms and 2-ethylbutyric acid; heptanoic acid having 7 carbon atoms, 2-methylhexanoic acid and cyclohexanecarboxylic acid; octanoic acid having 8 carbon atoms and neo. Xanoic acid, 2-ethylhexanoic acid; 9-carbon nonanoic acid; 10-carbon neooctanoic acid, decanoic acid; 11-carbon undecanoic acid; 12-carbon neodecanoic acid, dodecanoic acid; and 14-carbon tetradecanoic acid Palmitic acid having 16 carbon atoms; and at least one selected from stearic acid, oleic acid, linoleic acid, and linolenic acid having 18 carbon atoms can be used alone or in combination. Examples of aliphatic amines having 6 to 18 carbon atoms include hexylamines having 6 carbon atoms, cyclohexylamines and aniline; heptylamines having 7 carbon atoms; octylamines having 8 carbon atoms and 2-ethylhexylamines; 9 carbon atoms. Nonylamine; decylamine with 10 carbon atoms; dodecylamine with 12 carbon atoms; tetradodecylamine with 14 carbon atoms; and stearylamine with 18 carbon atoms, at least one selected from oleylamine can be used alone or in combination. .. For fatty acids and aliphatic amines having less than 6 carbon atoms, the dispersibility of the silver fine particles 22 in the low polar solvent 23 may decrease, while for fatty acids and aliphatic amines having 19 or more carbon atoms, at the temperature described later. The desorption of the surfactant 24 (fatty acid or aliphatic amine) from the surface of the silver fine particles 22 may be insufficient during the heat treatment, and the resistance value of the sintered body 2 may increase. The low protic solvent 23 is, for example, at least one selected from octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, octylbenzene, dodecylbenzene, decalin, tetraline, cyclododecane, cyclohexylbenzene and cyclododecane. The seeds can be used alone or in combination.

その後、極性溶媒25を加え(ステップS2)、十分に攪拌した後、所定時間(例えば、2〜12時間)静置する。これにより、図3(b)に示すように、銀微粒子22が付着した炭素材料21が沈降する(ステップS3)。極性溶媒25としては、例えば、メタノール、エタノール、プロパノール等のアルコール類や、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等のケトン類から選択された少なくとも1種を用いることができる。その上澄み液をデカンテーションなどにより除去することで(ステップS4)、銀微粒子22が付着した炭素材料21が作製される。尚、極性溶媒25の添加(ステップS2)〜上澄み液の除去(ステップS4)を複数回繰り返してもよい。 Then, the polar solvent 25 is added (step S2), the mixture is sufficiently stirred, and then the mixture is allowed to stand for a predetermined time (for example, 2 to 12 hours). As a result, as shown in FIG. 3B, the carbon material 21 to which the silver fine particles 22 are attached settles (step S3). As the polar solvent 25, for example, at least one selected from alcohols such as methanol, ethanol and propanol, and ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone can be used. By removing the supernatant liquid by decantation or the like (step S4), the carbon material 21 to which the silver fine particles 22 are attached is produced. The addition of the polar solvent 25 (step S2) to the removal of the supernatant liquid (step S4) may be repeated a plurality of times.

このように作製された銀微粒子22が付着した炭素材料21に樹脂材を添加し(ステップS5)、十分に攪拌・混合して混合物を得る(ステップS6)。この攪拌・混合には、公知のホモジナイザーを用いることができる。尚、樹脂材としては、粉末状のものを用いることができる。 A resin material is added to the carbon material 21 to which the silver fine particles 22 thus produced are attached (step S5), and the mixture is sufficiently stirred and mixed to obtain a mixture (step S6). A known homogenizer can be used for this stirring / mixing. As the resin material, a powdery material can be used.

上記ステップS6で得られた混合物を所定の容器に流下させて成形し、これを所定時間(例えば、6〜12時間)乾燥させて乾燥体を得る(ステップS7)。乾燥時の温度は、60〜100℃の範囲に設定することができる。最後に、乾燥体を180〜300℃の温度、5〜15MPaの圧力で熱プレス処理することで(ステップS8)、所定形状の電磁波吸収シートが得られる。この熱処理時に加圧することで、炭素材料21間の距離が近くなり、焼結し易くなる。 The mixture obtained in step S6 is poured into a predetermined container for molding, and this is dried for a predetermined time (for example, 6 to 12 hours) to obtain a dried product (step S7). The drying temperature can be set in the range of 60 to 100 ° C. Finally, the dried body is heat-pressed at a temperature of 180 to 300 ° C. and a pressure of 5 to 15 MPa (step S8) to obtain an electromagnetic wave absorbing sheet having a predetermined shape. By applying pressure during this heat treatment, the distance between the carbon materials 21 becomes shorter, and sintering becomes easier.

ところで、金属裏打ちした1層構成の電磁波吸収シート等の電磁波吸収体EAに平面波が垂直に入射する場合の電磁波吸収率A(dB)は、下式(1)で表すことができる。 By the way, the electromagnetic wave absorption rate A (dB) when a plane wave is vertically incident on an electromagnetic wave absorber EA such as a metal-lined one-layer electromagnetic wave absorbing sheet can be expressed by the following equation (1).

Figure 0006905834
Figure 0006905834

式(1)中のZinは、真空中における波動インピーダンスで規格化された電磁波吸収体EAの入力インピーダンスであり、下式(2)で表すことができる。 Z in in the equation (1) is the input impedance of the electromagnetic wave absorber EA normalized by the wave impedance in vacuum, and can be expressed by the following equation (2).

Figure 0006905834
Figure 0006905834

式(2)中、εは複素比誘電率、jは虚数単位、fは電磁波の周波数(Hz)、dは電磁波吸収体EAの厚み(m)、Cは真空中の光速(=約3×10(m/s))である。 In equation (2), ε * is the complex relative permittivity, j is the imaginary unit, f is the frequency of the electromagnetic wave (Hz), d is the thickness of the electromagnetic wave absorber EA (m), and C 0 is the speed of light in vacuum (= about). It is 3 × 10 8 (m / s)).

上式(1)より、Zin=1のとき、電磁波吸収率A(dB)が最大となる。このため、上式(2)の左辺=1とすると、電磁波吸収率Aが最大となる条件(以下「無反射条件」という)を満たす式として、下式(3)が得られる。 From the above equation (1), when Z in = 1, the electromagnetic wave absorption rate A (dB) becomes maximum. Therefore, assuming that the left side of the above equation (2) is 1, the following equation (3) can be obtained as an equation satisfying the condition that the electromagnetic wave absorption rate A is maximized (hereinafter referred to as “non-reflection condition”).

Figure 0006905834
Figure 0006905834

式(3)は複素比誘電率εの関数、即ち、無反射条件を表す式である。式(3)を満たす複素比誘電率εは無数に存在する。この式(3)は、下式(4)のように近似することができる。 Equation (3) is a function of the complex relative permittivity ε * , that is, an equation expressing the non-reflection condition. There are innumerable complex relative permittivity ε * that satisfy equation (3). This equation (3) can be approximated as the following equation (4).

Figure 0006905834
Figure 0006905834

式(4)中のnは無反射条件を表す式(後述の無反射曲線)の次数と呼ばれる値であり、n=1、2、3、4、・・・の値をとる。このうち、式(4)において、電磁波吸収体EAの厚みd(m)が最小となるのは、n=1のときである。そこで、n=1を式(4)に代入すると、下式(5)が得られる。 N in the equation (4) is a value called the order of the equation (non-reflective curve described later) expressing the non-reflective condition, and takes the values of n = 1, 2, 3, 4, .... Of these, in the equation (4), the thickness d (m) of the electromagnetic wave absorber EA becomes the minimum when n = 1. Therefore, by substituting n = 1 into the equation (4), the following equation (5) is obtained.

Figure 0006905834
Figure 0006905834

また、複素比誘電率εは、下式(6)で表すことができる。 Further, the complex relative permittivity ε * can be expressed by the following equation (6).

Figure 0006905834
Figure 0006905834

式(6)中、ε’は、複素比誘電率εの実部であり、ε’’は、複素比誘電率εの虚部である。式(5)及び(6)より、下式(7)及び(8)が得られる。これらの式(7)及び(8)より、下式(9)が得られる。 In equation (6), ε'is the real part of the complex relative permittivity ε * , and ε'' is the imaginary part of the complex relative permittivity ε *. From the equations (5) and (6), the following equations (7) and (8) can be obtained. From these equations (7) and (8), the following equation (9) can be obtained.

Figure 0006905834
Figure 0006905834

Figure 0006905834
Figure 0006905834

Figure 0006905834
Figure 0006905834

式(9)が、電磁波吸収体EAの厚みが最も小さくなる場合の、無反射条件を満足する近似式となる。そして、ε’−ε’’平面(複素平面)において式(9)で表される曲線を無反射曲線と呼ぶ。この無反射曲線に複素比誘電率εの実部ε’及び虚部ε’’をフィットさせるためには、電磁波吸収体EAの導電率を高める必要があるが、上述の如く炭素材料21の含有量を増やすことは難しい。 Equation (9) is an approximate equation that satisfies the non-reflection condition when the thickness of the electromagnetic wave absorber EA is the smallest. Then, the curve represented by the equation (9) in the ε'−ε'' plane (complex plane) is called a non-reflective curve. In order to fit the real part ε'and the imaginary part ε'' of the complex relative permittivity ε * to this non-reflective curve, it is necessary to increase the conductivity of the electromagnetic wave absorber EA. It is difficult to increase the content.

本実施形態によれば、銀微粒子22で炭素材料21を焼結させて低抵抗の焼結体2とし、この焼結体2を樹脂材1中に分散させたため、炭素材料21の含有量が少なくても導電率を高めることができる。このように電磁波吸収体EAの導電率を高めることで、複素比誘電率εの実部ε’及び虚部ε’’を無反射条件にフィットさせることができる。従って、吸収する電磁波の周波数に応じて、電磁波吸収体EAの厚みを適宜設定すれば、当該周波数の電磁波に対して優れた吸収性能を持たせることができる。 According to the present embodiment, the carbon material 21 is sintered with the silver fine particles 22 to obtain a low-resistance sintered body 2, and the sintered body 2 is dispersed in the resin material 1, so that the content of the carbon material 21 is increased. At a minimum, the conductivity can be increased. By increasing the conductivity of the electromagnetic wave absorber EA in this way, the real part ε'and the imaginary part ε'' of the complex relative permittivity ε * can be fitted to the non-reflection condition. Therefore, if the thickness of the electromagnetic wave absorber EA is appropriately set according to the frequency of the electromagnetic wave to be absorbed, it is possible to provide excellent absorption performance for the electromagnetic wave of the frequency.

以下、本発明の実施形態をより具体化した実施例について説明する。 Hereinafter, examples in which the embodiments of the present invention are more embodied will be described.

(実施例1)
粒子状の炭素材料(キャボット製の商品名「Vurcan XC−72R」)11重量部に、銀微粒子(アルバック製の商品名「AgナノメタルインクL−Ag1T」)4重量部を配合し、これに少量(100重量部)のトルエンを加え、25℃にてホモジナイザーで十分に(10分以上)攪拌・混合した。これにトルエンの5倍の体積(500重量部)のエタノールを加えて十分に攪拌し、攪拌を停止した後、12時間静置することにより、銀微粒子が付着した炭素材料を沈降させた。上澄み液を除去した後、樹脂(和光純薬製の商品名「ポリビニルブチラール630」)を100重量部添加し、さらにエタノールを300重量部を加えて、ホモジナイザーで十分に(10分以上)攪拌・混合して混合物を得た。この混合物を150mm×150mm×50mmのフィルム容器に流下させ、これを60℃で12時間乾燥させて乾燥体を得た。この乾燥体を200℃、10MPaで1時間の熱プレス処理を行い、150mm×150mm×1mmの電磁波吸収シートを作製した。作製した電磁波吸収シートの75〜110GHzの周波数帯における複素比誘電率を自由空間法により測定した。その測定した複素比誘電率をプロットした結果を図4に示す。これによれば、複素比誘電率が無反射曲線の近傍にプロットされていることが確認された。測定した複素比誘電率に基づき、電磁波吸収シートの厚みを0.28,0.30,0.32,0.34,0.36,0.38mmのように変化させたときに、式(1)により計算された電磁波吸収率を図5に示す。これによれば、電磁波吸収シートの厚みを適宜設定することで、75〜110GHzの周波数帯で20dB以上(99%以上)という優れた電磁波吸収率を持ち、優れた吸収性能を発揮することが判った。
(Example 1)
4 parts by weight of silver fine particles (trade name "Ag Nanometal Ink L-Ag1T" made by ULVAC) is mixed with 11 parts by weight of particulate carbon material (trade name "Vurcan XC-72R" made by Cabot), and a small amount thereof is added. (100 parts by weight) of toluene was added, and the mixture was sufficiently stirred and mixed with a homogenizer at 25 ° C. (10 minutes or more). Ethanol having a volume (500 parts by weight) five times that of toluene was added thereto, and the mixture was sufficiently stirred. After stopping the stirring, the carbon material to which the silver fine particles were attached was precipitated by allowing it to stand for 12 hours. After removing the supernatant, add 100 parts by weight of resin (trade name "Polyvinyl butyral 630" manufactured by Wako Pure Chemical Industries, Ltd.), add 300 parts by weight of ethanol, and stir sufficiently (10 minutes or more) with a homogenizer. Mixing gave a mixture. This mixture was poured into a film container having a size of 150 mm × 150 mm × 50 mm and dried at 60 ° C. for 12 hours to obtain a dried product. This dried product was heat-pressed at 200 ° C. and 10 MPa for 1 hour to prepare an electromagnetic wave absorbing sheet having a size of 150 mm × 150 mm × 1 mm. The complex relative permittivity in the frequency band of 75 to 110 GHz of the prepared electromagnetic wave absorbing sheet was measured by the free space method. The result of plotting the measured complex relative permittivity is shown in FIG. According to this, it was confirmed that the complex relative permittivity was plotted near the non-reflective curve. Based on the measured complex relative permittivity, when the thickness of the electromagnetic wave absorbing sheet is changed to 0.28, 0.30, 0.32, 0.34, 0.36, 0.38 mm, the formula (1) ) Is shown in FIG. According to this, it was found that by appropriately setting the thickness of the electromagnetic wave absorption sheet, it has an excellent electromagnetic wave absorption rate of 20 dB or more (99% or more) in the frequency band of 75 to 110 GHz, and exhibits excellent absorption performance. rice field.

集束イオンビーム(FIB)法により、実施例1で作製した電磁波吸収シートの断面を薄片化した試料を作製し、当該試料を走査型透過電子顕微鏡(STEM)により観察した。そのSTEMの明視野像を図6に示す。これによれば、銀微粒子22は炭素材料21に付着して焼結体2を構成しながら、焼結体2が樹脂材1に分散していることが判った。 A sample in which the cross section of the electromagnetic wave absorbing sheet prepared in Example 1 was sliced was prepared by a focused ion beam (FIB) method, and the sample was observed with a scanning transmission electron microscope (STEM). The bright field image of the STEM is shown in FIG. According to this, it was found that the silver fine particles 22 adhered to the carbon material 21 to form the sintered body 2, and the sintered body 2 was dispersed in the resin material 1.

(実施例2)
銀微粒子(アルバック製の商品名「L−Ag1T」)11重量部を配合する点と、乾燥体の熱プレス処理の温度を180℃とした点とを除き、上記実施例1と同様の方法で電磁波吸収シートを作製した。作製した電磁波吸収シートの75〜110GHzの周波数帯における複素比誘電率を、上記実施例1と同様に、自由空間法により測定した。その測定した複素比誘電率をプロットした結果を図7に示す。これによれば、複素比誘電率が無反射曲線の近傍にプロットされていることが確認された。測定した複素比誘電率に基づき、電磁波吸収シートの厚みを0.28,0.30,0.32,0.34,0.36,0.38mmのように変化させたときに、式(1)により計算された電磁波吸収率を図8に示す。これによれば、電磁波吸収シートの厚みを適宜設定することで、75〜110GHzの周波数帯で20dB以上(99%以上)という優れた電磁波吸収率を持ち、優れた吸収性能を発揮することが判った。
(Example 2)
By the same method as in Example 1 above, except that 11 parts by weight of silver fine particles (trade name "L-Ag1T" manufactured by ULVAC) are blended and the temperature of the heat press treatment of the dried product is set to 180 ° C. An electromagnetic wave absorbing sheet was prepared. The complex relative permittivity in the frequency band of 75 to 110 GHz of the prepared electromagnetic wave absorbing sheet was measured by the free space method in the same manner as in Example 1 above. The result of plotting the measured complex relative permittivity is shown in FIG. According to this, it was confirmed that the complex relative permittivity was plotted near the non-reflective curve. Based on the measured complex relative permittivity, when the thickness of the electromagnetic wave absorbing sheet is changed to 0.28, 0.30, 0.32, 0.34, 0.36, 0.38 mm, the formula (1) ) Is shown in FIG. According to this, it was found that by appropriately setting the thickness of the electromagnetic wave absorption sheet, it has an excellent electromagnetic wave absorption rate of 20 dB or more (99% or more) in the frequency band of 75 to 110 GHz, and exhibits excellent absorption performance. rice field.

次に、上記実施例に対する比較例について説明する。 Next, a comparative example with respect to the above embodiment will be described.

(比較例1)
比較例1では、炭素材料(キャボット製の商品名「Vurcan XC−72R」)を配合せず、銀微粒子(アルバック製の商品名「L−Ag1T」)4重量部に少量(100重量部)のトルエンを加え、25℃にてホモジナイザーで十分に(10分以上)攪拌・混合した。これにトルエンの5倍の体積(500重量部)のエタノールを加えて十分に攪拌し、攪拌を停止した後、12時間静置することにより、銀微粒子を沈降させた。その後、上記実施例1と同様の方法で電磁波吸収シートを作製した。作製した電磁波吸収シートの75〜110GHzの周波数帯における複素比誘電率を、上記実施例1と同様に、自由空間法により測定した。その測定した複素比誘電率をプロットした結果を図9に示す。これによれば、複素比誘電率が無反射曲線から離れた領域にプロットされていることが確認された。測定した複素比誘電率に基づき、電磁波吸収シートの厚みを0.52,0.56,0.60,0.64,0.68,0.72mmのように変化させたときに、式(1)により計算された電磁波吸収率を図10に示す。これによれば、電磁波吸収シートの厚みを変化させても、75〜110GHzの周波数帯で電磁波吸収率が20dB未満であることが判った。
(Comparative Example 1)
In Comparative Example 1, a small amount (100 parts by weight) of silver fine particles (trade name “L-Ag1T” manufactured by ULVAC) was added to 4 parts by weight without blending a carbon material (trade name “Vurcan XC-72R” manufactured by Cabot). Toluene was added, and the mixture was sufficiently stirred and mixed with a homogenizer at 25 ° C. (10 minutes or more). Ethanol having a volume (500 parts by weight) five times that of toluene was added thereto, and the mixture was sufficiently stirred. After stopping the stirring, the silver fine particles were allowed to settle for 12 hours. Then, an electromagnetic wave absorption sheet was produced in the same manner as in Example 1 above. The complex relative permittivity in the frequency band of 75 to 110 GHz of the prepared electromagnetic wave absorbing sheet was measured by the free space method in the same manner as in Example 1 above. The result of plotting the measured complex relative permittivity is shown in FIG. According to this, it was confirmed that the complex relative permittivity was plotted in the region away from the non-reflective curve. Based on the measured complex relative permittivity, when the thickness of the electromagnetic wave absorbing sheet is changed to 0.52, 0.56, 0.60, 0.64, 0.68, 0.72 mm, the equation (1) ) Is shown in FIG. According to this, it was found that the electromagnetic wave absorption rate was less than 20 dB in the frequency band of 75 to 110 GHz even if the thickness of the electromagnetic wave absorption sheet was changed.

(比較例2)
比較例2では、銀微粒子(アルバック製の商品名「L−Ag1T」)を配合せず、炭素材料(キャボット製の商品名「Vurcan XC−72R」)11重量部に少量(100重量部)のトルエンを加え、25℃にてホモジナイザーで十分に(10分以上)攪拌・混合した。その後、上記実施例1と同様の方法で電磁波吸収シートを作製した。作製した電磁波吸収シートの75〜110GHzの周波数帯における複素比誘電率を、上記実施例1と同様に、自由空間法により測定した。その測定した複素比誘電率をプロットした結果を図11に示す。これによれば、複素比誘電率が無反射曲線から離れた領域にプロットされていることが確認された。測定した複素比誘電率に基づき、電磁波吸収シートの厚みを0.28,0.30,0.32,0.34,0.36mmのように変化させたときに、式(1)により計算された電磁波吸収率を図12に示す。これによれば、電磁波吸収シートの厚みを変化させても、75〜110GHzの周波数帯で電磁波吸収率が20dB未満であることが判った。
(Comparative Example 2)
In Comparative Example 2, silver fine particles (trade name "L-Ag1T" manufactured by ULVAC) were not blended, and a small amount (100 parts by weight) was added to 11 parts by weight of a carbon material (trade name "Vurcan XC-72R" manufactured by Cabot). Toluene was added, and the mixture was sufficiently stirred and mixed with a homogenizer at 25 ° C. (10 minutes or more). Then, an electromagnetic wave absorption sheet was produced in the same manner as in Example 1 above. The complex relative permittivity in the frequency band of 75 to 110 GHz of the prepared electromagnetic wave absorbing sheet was measured by the free space method in the same manner as in Example 1 above. The result of plotting the measured complex relative permittivity is shown in FIG. According to this, it was confirmed that the complex relative permittivity was plotted in the region away from the non-reflective curve. Calculated by Eq. (1) when the thickness of the electromagnetic wave absorbing sheet is changed to 0.28, 0.30, 0.32, 0.34, 0.36 mm based on the measured complex relative permittivity. The electromagnetic absorption rate is shown in FIG. According to this, it was found that the electromagnetic wave absorption rate was less than 20 dB in the frequency band of 75 to 110 GHz even if the thickness of the electromagnetic wave absorption sheet was changed.

なお、本発明は上記実施形態に限定されるものではない。上記実施形態では、電磁波吸収シートを製造する場合について説明したが、電磁波吸収体の形状は任意であり、例えば、ブロック状に成形されたものであってもよい。 The present invention is not limited to the above embodiment. In the above embodiment, the case of manufacturing the electromagnetic wave absorbing sheet has been described, but the shape of the electromagnetic wave absorbing body is arbitrary, and may be formed into a block shape, for example.

EA…電磁波吸収体、1…樹脂材、2…焼結体、21…炭素材料、22…銀微粒子、23…低極性溶媒、24…界面活性剤、25…極性溶媒。
EA ... Electromagnetic wave absorber, 1 ... Resin material, 2 ... Sintered body, 21 ... Carbon material, 22 ... Silver fine particles, 23 ... Low polar solvent, 24 ... Surfactant, 25 ... Polar solvent.

Claims (7)

所定の周波数帯域の電磁波に対して吸収性を持つ電磁波吸収体において、
所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成され
前記樹脂材100重量部に対して前記銀微粒子を4〜11重量部含むことを特徴とする電磁波吸収体。
In an electromagnetic wave absorber that absorbs electromagnetic waves in a predetermined frequency band,
It is composed of a resin material molded into a predetermined shape and a sintered body in which a carbon material dispersed in the resin material is sintered via silver fine particles .
An electromagnetic wave absorber containing 4 to 11 parts by weight of the silver fine particles with respect to 100 parts by weight of the resin material.
前記樹脂材100重量部に対して前記炭素材料を4〜11重量部含むことを特徴とする請求項1記載の電磁波吸収体。The electromagnetic wave absorber according to claim 1, wherein the carbon material is contained in an amount of 4 to 11 parts by weight based on 100 parts by weight of the resin material. 所定の周波数帯域の電磁波に対して吸収性を持つ電磁波吸収体において、In an electromagnetic wave absorber that absorbs electromagnetic waves in a predetermined frequency band,
所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成され、It is composed of a resin material molded into a predetermined shape and a sintered body in which a carbon material dispersed in the resin material is sintered via silver fine particles.
前記樹脂材100重量部に対して前記炭素材料を4〜11重量部含むことを特徴とする電磁波吸収体。An electromagnetic wave absorber containing 4 to 11 parts by weight of the carbon material with respect to 100 parts by weight of the resin material.
前記銀微粒子の平均粒子径は1nm〜100nmであることを特徴とする請求項1〜3のいずれか1項記載の電磁波吸収体 The electromagnetic wave absorber according to any one of claims 1 to 3, wherein the average particle size of the silver fine particles is 1 nm to 100 nm . 所定の周波数帯域の電磁波に対して吸収性を持つ電磁波吸収体を製造する電磁波吸収体の製造方法であって、電磁波吸収体が、所定形状に成形された樹脂材と、この樹脂材中に分散させた、炭素材料を銀微粒子を介して焼結した焼結体とで構成されるものにおいて、
銀微粒子が付着した炭素材料を作製する工程と、
前記銀微粒子が付着した炭素材料と樹脂材とを混合する工程と、
混合により得られた混合物を所定形状に成形して乾燥する工程と、
乾燥により得られた乾燥体を180〜300℃の温度で加熱して、前記炭素材料を銀微粒子で焼結する工程とを含むことを特徴とする電磁波吸収体の製造方法。
A method for manufacturing an electromagnetic wave absorber that manufactures an electromagnetic wave absorber that absorbs electromagnetic waves in a predetermined frequency band. The electromagnetic wave absorber is dispersed in a resin material formed into a predetermined shape and the resin material. In the case of a product composed of a sintered body obtained by sintering a carbon material through silver fine particles.
The process of producing a carbon material with silver fine particles attached,
The step of mixing the carbon material to which the silver fine particles are attached and the resin material, and
The process of molding the mixture obtained by mixing into a predetermined shape and drying it.
A method for producing an electromagnetic wave absorber, which comprises a step of heating a dried product obtained by drying at a temperature of 180 to 300 ° C. and sintering the carbon material with silver fine particles.
前記銀微粒子が付着した炭素材料を作製する工程は、
界面活性剤で覆われた銀微粒子を低極性溶媒に分散させて分散液を得て、この分散液に炭素材料を混合する工程と、
炭素材料が混合された分散液に極性溶媒を加え、界面活性剤で覆われた銀微粒子が付着したカーボン材を沈降させる工程とを含むことを特徴とする請求項5記載の電磁波吸収体の製造方法。
The step of producing the carbon material to which the silver fine particles are attached is
A step of dispersing silver fine particles covered with a surfactant in a low-polarity solvent to obtain a dispersion liquid, and mixing a carbon material with this dispersion liquid.
The production of the electromagnetic wave absorber according to claim 5, further comprising a step of adding a polar solvent to a dispersion liquid mixed with a carbon material and precipitating a carbon material to which silver fine particles covered with a surfactant are attached. Method.
請求項6記載の電磁波吸収体の製造方法であって、前記乾燥体を180〜300℃で加熱するものにおいて、
前記界面活性剤は、炭素数6〜18の脂肪酸及び炭素数6〜18の脂肪族アミンから選択される少なくともいずれか1種であることを特徴とする請求項6記載の電磁波吸収体の製造方法。
The method for producing an electromagnetic wave absorber according to claim 6, wherein the dried body is heated at 180 to 300 ° C.
The method for producing an electromagnetic wave absorber according to claim 6, wherein the surfactant is at least one selected from a fatty acid having 6 to 18 carbon atoms and an aliphatic amine having 6 to 18 carbon atoms. ..
JP2017030466A 2017-02-21 2017-02-21 Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber Active JP6905834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030466A JP6905834B2 (en) 2017-02-21 2017-02-21 Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030466A JP6905834B2 (en) 2017-02-21 2017-02-21 Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2018137326A JP2018137326A (en) 2018-08-30
JP6905834B2 true JP6905834B2 (en) 2021-07-21

Family

ID=63366216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030466A Active JP6905834B2 (en) 2017-02-21 2017-02-21 Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP6905834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235561A1 (en) * 2018-06-06 2019-12-12 株式会社新日本電波吸収体 Electromagnetic shielding material and signal processing unit provided with same
KR20220018568A (en) * 2019-06-05 2022-02-15 바스프 에스이 electromagnetic wave transmission reducing material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270218A (en) * 2008-05-02 2009-11-19 Diatex Co Ltd Electromagnetic wave suppression flat yarn, electromagnetic wave suppression product using same, and method for producing the same
JP2010123645A (en) * 2008-11-18 2010-06-03 Jinko Cho Fine-particle material for preventing electromagnetic wave
JP2010132736A (en) * 2008-12-03 2010-06-17 Toyo Ink Mfg Co Ltd Conductive ink and conductive coating
KR101099237B1 (en) * 2008-12-10 2011-12-27 엘에스전선 주식회사 Conductive Paste and Conductive Circuit Board Produced Therewith
JP4832615B1 (en) * 2010-11-01 2011-12-07 Dowaエレクトロニクス株式会社 Low-temperature sinterable conductive paste, conductive film using the same, and method for forming conductive film
JP5934561B2 (en) * 2012-04-06 2016-06-15 株式会社アルバック Conductive metal paste
JP2016000843A (en) * 2014-06-11 2016-01-07 片野染革株式会社 Spherical composite metal fine particle and manufacturing method therefor
CN104700961B (en) * 2015-03-18 2016-10-12 上海和伍复合材料有限公司 A kind of graphene/silver composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2018137326A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
US9717170B2 (en) Graphene nanoplatelets- or graphite nanoplatelets-based nanocomposites for reducing electromagnetic interferences
Kosmala et al. Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing
JP5916547B2 (en) Ultra-thin flaky silver powder and method for producing the same
JP6976597B2 (en) Copper particle mixture and its production method, copper particle mixture dispersion, copper particle mixture-containing ink, copper particle mixture storage method and copper particle mixture sintering method
JP6905834B2 (en) Method of manufacturing electromagnetic wave absorber and electromagnetic wave absorber
JP7144185B2 (en) Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
JP6404614B2 (en) Manufacturing method of core-shell type metal fine particles, core-shell type metal fine particles, conductive ink and substrate
JP6180769B2 (en) Flaky microparticles
CN104710878A (en) Metal nanoparticle synthesis and conductive ink formulation
Sandhya et al. Experimental study on properties of hybrid stable & surfactant-free nanofluids GNPs/CNCs (Graphene nanoplatelets/cellulose nanocrystal) in water/ethylene glycol mixture for heat transfer application
Ajmal et al. A superior method for constructing electrical percolation network of nanocomposite fibers: in situ thermally reduced silver nanoparticles
CN112752627A (en) Silver powder, method for producing same, and conductive paste
Xue et al. Electrical conductivity and percolation behavior of polymer nanocomposites
Songping Preparation of micron size flake silver powders for conductive thick films
JP2006348345A (en) Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid
JP5830237B2 (en) Silver particle-containing composition, dispersion and method for producing paste
JP2017118073A (en) Electromagnetic wave absorbing material
Sheng et al. Printing nanostructured copper for electromagnetic interference shielding
CN112521702B (en) Polymer composition, flexible self-supporting film, and preparation method and application thereof
CN103819591B (en) Copper nano-wire/Polyacrylate Composites and preparation method thereof
Park et al. Dispersion of multi-walled carbon nanotubes mechanically milled under different process conditions
Ryu et al. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers
JP6648423B2 (en) Nonwoven fabric and method for producing the same
Wang et al. Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction
WO2016195032A1 (en) Metal microparticle aggregate, metal microparticle dispersion liquid, heat-ray-shielding film, heat-ray-shielding glass, heat-ray-shielding microparticle dispersion, and heat-ray-shielding laminated transparent substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6905834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250