JPH0521984A - Electromagnetic wave shield composite material - Google Patents

Electromagnetic wave shield composite material

Info

Publication number
JPH0521984A
JPH0521984A JP17557091A JP17557091A JPH0521984A JP H0521984 A JPH0521984 A JP H0521984A JP 17557091 A JP17557091 A JP 17557091A JP 17557091 A JP17557091 A JP 17557091A JP H0521984 A JPH0521984 A JP H0521984A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
carbon fiber
composite material
wave shield
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17557091A
Other languages
Japanese (ja)
Other versions
JP3011378B2 (en
Inventor
Koji Kitagawa
弘二 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP3175570A priority Critical patent/JP3011378B2/en
Publication of JPH0521984A publication Critical patent/JPH0521984A/en
Application granted granted Critical
Publication of JP3011378B2 publication Critical patent/JP3011378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide an electromagnetic wave shield composite material of new constitution which exhibits a high electromagnetic wave shield performance and causes no secondary problems such as decreases in mechanical strength and corrosion current. CONSTITUTION:An electromagnetic wave shield composite material 1 comprises coil-shaped carbon fiber chips 5 turning and dispersing in every direction to be carried in a low-conductivity material 3 such as cement, synthetic resin, rubber, and paper and incorporates entanglements of carbon fiber chips 5. Every carbon fiber chip 5 acts as a small coil electromagnetically; therefore, a high electromagnetic shield performance is exhibited by consuming heat by electromagnetic induction based on Lentz's law.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電磁波シールド複合材
料に関する。
FIELD OF THE INVENTION The present invention relates to an electromagnetic wave shield composite material.

【0002】[0002]

【従来の技術】従来より、例えばカーボンブラックや金
属粒子を合成樹脂の生地中に分散担持させて導電性を与
えた複合材料によって、各種電子機器の収納容器等にお
けるガスケット等に利用されていた。これら従来の複合
材料は、カーボンブラックや金属粒子の混入により合成
樹脂の電気抵抗率を減少させることで電磁波シールド性
を与えたものである。
2. Description of the Related Art Conventionally, for example, a composite material in which carbon black or metal particles are dispersed and carried in a synthetic resin cloth to give conductivity to be used as a gasket or the like in a storage container of various electronic devices. These conventional composite materials are provided with electromagnetic wave shielding properties by reducing the electrical resistivity of the synthetic resin by mixing carbon black or metal particles.

【0003】従って、電磁波シールド性をより一層向上
させようとする場合には、カーボンブラックや金属粒子
の混入量を増加させればよいことになる。
Therefore, in order to further improve the electromagnetic wave shielding property, it is sufficient to increase the amount of carbon black or metal particles mixed.

【0004】[0004]

【発明が解決しようとする課題】しかし、カーボンブラ
ックの混入量の増大は、生地である合成樹脂(例えば熱
可塑性樹脂)の機械的強度の低下を引き起こす。このた
め、従来の複合材料では導電性の付与に限界があり、電
磁波シールド性能の向上が図れないという問題があっ
た。
However, an increase in the amount of carbon black mixed in causes a decrease in the mechanical strength of the synthetic resin (for example, thermoplastic resin) which is the base material. Therefore, the conventional composite material has a limit in imparting conductivity, and there is a problem that the electromagnetic wave shielding performance cannot be improved.

【0005】また、金属粒子を混入したものは、例え
ば、近年盛んに建設されているインテリジェントビルデ
ィングの外壁材などに利用した場合に腐食の問題があ
る。従って、外壁材の強度劣化を引き起こしたり、腐食
電流の発生原因となるおそれがあった。
Further, a material containing metal particles has a problem of corrosion when used as an outer wall material of an intelligent building which has been actively constructed in recent years. Therefore, there is a possibility that the strength of the outer wall material may be deteriorated or that a corrosion current may be generated.

【0006】そこで、良好な電磁波シールド性能を発揮
し、機械的強度の低下や腐食電流等の二次的な問題の発
生もない新規な構成の電磁波シールド複合材料を提供す
ることを目的として本発明を完成した。
Therefore, the present invention is intended to provide an electromagnetic wave shield composite material having a novel structure which exhibits good electromagnetic wave shield performance and does not cause secondary problems such as deterioration of mechanical strength and corrosion current. Was completed.

【0007】[0007]

【課題を解決するための手段】即ち、上記目的を達成す
るためになされた本発明は、低導電率の生地中にコイル
状の炭素繊維片を方向性なく複数分散担持させた電磁波
シールド複合材料を要旨とする。
Means for Solving the Problems That is, the present invention made to achieve the above object is to provide an electromagnetic wave shield composite material in which a plurality of coil-like carbon fiber pieces are dispersed and supported in a low conductivity cloth in a non-directional manner. Is the gist.

【0008】低導電率の生地は、その用途に応じて、例
えばセメント,合成樹脂,ゴム,紙等種々のものを採用
できることはいうまでもない。ここにおいて炭素繊維片
は、線径0.1〜1μm,コイル径1〜30μm,コイ
ル長0.1〜5mmであることが望ましく、さらに、生
地中に重量比20〜60%の割合で分散担持されている
ことが望ましい。
Needless to say, various materials such as cement, synthetic resin, rubber, and paper can be used as the low-conductivity cloth depending on the application. Here, it is desirable that the carbon fiber pieces have a wire diameter of 0.1 to 1 μm, a coil diameter of 1 to 30 μm, and a coil length of 0.1 to 5 mm. Further, the carbon fiber pieces are dispersed and carried in the dough at a ratio of 20 to 60% by weight. It is desirable that

【0009】本発明の電磁波シールド複合材料の概念的
な構成を図1に示す。図示の様に、電磁波シールド複合
材料1は、絶縁物などの低導電率の生地3の中に、コイ
ル状の炭素繊維片5をあちこちの方向を向いて分散担持
させたものである。ここで、この電磁波シールド複合材
料1を電磁波が透過しようとする際の電磁波シールド作
用を図2にて説明する。
A conceptual structure of the electromagnetic wave shield composite material of the present invention is shown in FIG. As shown in the figure, the electromagnetic wave shield composite material 1 is obtained by dispersing and supporting coil-shaped carbon fiber pieces 5 in various directions in a low conductivity cloth 3 such as an insulator. Here, the electromagnetic wave shielding action when an electromagnetic wave is transmitted through the electromagnetic wave shielding composite material 1 will be described with reference to FIG.

【0010】この導電性複合材料1の一つ一つの炭素繊
維片5は、電磁気的には小さなコイルとして作用し、レ
ンツの法則に従い、コイル内を通る磁束hが変化すると
コイル内に起電力による誘導電流iが流れる。従って、
この電磁波シールド複合材料1を電磁波が透過しようと
する場合には、電磁波のエネルギは、誘導電流iに変換
され、コイル上を流れ、ジュール熱として消費され吸収
されることになる。
Each carbon fiber piece 5 of this conductive composite material 1 acts electromagnetically as a small coil, and when the magnetic flux h passing through the coil changes according to Lenz's law, an electromotive force is generated in the coil. The induced current i flows. Therefore,
When an electromagnetic wave is going to pass through the electromagnetic wave shield composite material 1, the energy of the electromagnetic wave is converted into an induced current i, flows over the coil, and is consumed and absorbed as Joule heat.

【0011】さらに、コイル状の炭素繊維片は、高導電
性であるため、電磁波の反射効果にも優れる。このた
め、上記吸収効果とこの反射効果により、高い電磁波シ
ールド効果を得ることができる。そして、本発明の電磁
波シールド複合材料においては、コイル状の炭素繊維片
5があちこちを向いた方向性のない状態で生地3中に分
散担持されていることから、電磁波がどの方向から加わ
ったとしてもこれを良好に吸収・反射することができ
る。
Further, since the coil-shaped carbon fiber piece is highly conductive, it also has an excellent electromagnetic wave reflection effect. Therefore, a high electromagnetic wave shielding effect can be obtained by the absorption effect and the reflection effect. In the electromagnetic wave shield composite material of the present invention, since the coiled carbon fiber pieces 5 are dispersed and carried in the cloth 3 in a state where the coiled carbon fiber pieces 5 are not oriented in various directions, it is determined from which direction the electromagnetic wave is applied. Can absorb and reflect this well.

【0012】また、粒子状ものの混入によらないことか
ら、熱可塑性樹脂を生地とした場合にもその機械的な強
度低下を引き起こすことがない。さらに、炭素繊維片5
は腐食電流の発生原因となることがないから、例えばセ
メントに混入して建築物における電磁波シールド特性を
確保する場合に、新たな問題の発生がない。
Further, since it does not depend on the mixture of particles, the mechanical strength of the thermoplastic resin does not deteriorate even when it is used as the cloth. Furthermore, carbon fiber pieces 5
Since it does not cause a corrosion current, no new problem occurs when it is mixed with cement to secure the electromagnetic wave shielding property in a building.

【0013】こうした本発明の電磁波シールド複合材料
は、例えば溶融状態の合成樹脂中にコイル状の炭素繊維
片を混合して成形・固化させることによって製造するこ
とができる。この時、炭素繊維片は比重が小さいことか
ら、合成樹脂と良好に混合され、良好な分散状態とな
り、あちこちを向いた状態で生地中に分散担持される。
加えて、複合材料自体の重量増加要因とならない。
The electromagnetic wave shield composite material of the present invention can be manufactured, for example, by mixing a coiled carbon fiber piece in a synthetic resin in a molten state and molding and solidifying the carbon fiber piece. At this time, since the carbon fiber pieces have a small specific gravity, they are well mixed with the synthetic resin and are in a good dispersed state, and are dispersed and carried in the dough in a state of being turned around.
In addition, it does not increase the weight of the composite material itself.

【0014】また、コイル状の炭素繊維片に、さらに高
温での気相チタナイジングやシリコナイジングをするこ
とによりコイル状の炭化チタン繊維や炭化ケイ素繊維と
することもでき、その場合には導電性が一層優れたもの
となる。本発明にいうコイル状炭素繊維片とは、これら
チタナイジングやシリコナイジングされたものも含んで
いる。
Further, the coil-shaped carbon fiber pieces may be subjected to vapor phase titanizing or siliconizing at a higher temperature to obtain coil-shaped titanium carbide fibers or silicon carbide fibers. Will be even better. The coil-shaped carbon fiber pieces referred to in the present invention include those which are titanized or siliconized.

【0015】なお、本発明を実際に適用するに当たっ
て、コイル状炭素繊維片だけではなく、直線状の炭素繊
維片やカーボンブラック粒子をも併用することもでき
る。
In the actual application of the present invention, not only the coil-shaped carbon fiber pieces but also linear carbon fiber pieces and carbon black particles can be used together.

【0016】[0016]

【実施例】次に、本発明の実施例を説明する。まず、実
施例において使用するコイル状の炭素繊維片5の製造方
法について説明する。
EXAMPLES Next, examples of the present invention will be described. First, a method of manufacturing the coil-shaped carbon fiber piece 5 used in the examples will be described.

【0017】実施例において用いるコイル状の炭素繊維
片5は、図3に示す様に、反応管11と加熱ヒータ13
とからなる製造装置内に金属基板15を配置し、加熱ヒ
ータ13にて加熱しつつ塩化物ガス及び炭化水素ガスを
入口17から出口19に向かって流すことにより、炭化
水素ガスの熱分解による気相流を生じさせ、金属基板1
5の表面を成長開始点として炭素繊維を成長させるとい
う手法により製造した。
The coil-shaped carbon fiber piece 5 used in the embodiment is, as shown in FIG. 3, a reaction tube 11 and a heater 13.
By disposing the metal substrate 15 in the manufacturing apparatus consisting of and flowing chloride gas and hydrocarbon gas from the inlet 17 toward the outlet 19 while heating with the heater 13, the gas generated by the thermal decomposition of the hydrocarbon gas can be obtained. A metal substrate 1 that causes a phase flow
It was manufactured by a method of growing carbon fiber using the surface of No. 5 as a growth starting point.

【0018】製造に当たっては、反応管11を650℃
とし、ここに塩化リン(PCl3 )ガス0.05scc
mとアセチレン(C22 )ガス30sccmとを供給
した。また、金属基板15としてはNi基板を用いた。
その結果、図示斜線の様に、金属基板15の入口17側
の部分に多くのコイル状の炭素繊維片5が形成された。
もちろん金属基板15の出口19に近い部分にもコイル
状の炭素繊維片5が形成されるが、その量は入口17か
ら離れるに従って次第に少なくなっていた。
In the production, the reaction tube 11 is heated to 650 ° C.
And phosphorus chloride (PCl 3 ) gas at 0.05 scc
m and acetylene (C 2 H 2 ) gas of 30 sccm were supplied. A Ni substrate was used as the metal substrate 15.
As a result, many coil-shaped carbon fiber pieces 5 were formed in the portion of the metal substrate 15 on the side of the inlet 17 as shown by the hatched lines.
Of course, the coil-shaped carbon fiber piece 5 is also formed in the portion near the outlet 19 of the metal substrate 15, but the amount thereof gradually decreased with increasing distance from the inlet 17.

【0019】出来上がったコイル状の炭素繊維片5は、
線径0.1〜1μm、コイル径1〜30μm、コイル長
さ0.1〜5mmのものであった。また、引張り強さ3
30kg/mm2 であった。この炭素繊維片を重量比2
0〜60%の割合で、シリコーンエラストマーに混入
し、シート及びガスケットを成形した。
The finished coil-shaped carbon fiber piece 5 is
The wire diameter was 0.1 to 1 μm, the coil diameter was 1 to 30 μm, and the coil length was 0.1 to 5 mm. Also, the tensile strength is 3
It was 30 kg / mm 2 . This carbon fiber piece has a weight ratio of 2
A sheet and a gasket were molded by mixing the silicone elastomer at a rate of 0 to 60%.

【0020】出来上がった複合材料の内部を確認したと
ころ、コイル状の炭素繊維片5があちこちの方向を向い
て分散担持されていた。また、それらは互いに絡み合っ
てもいた。また、実施例で用いたコイル状の炭素繊維片
5は、上述の通りに強度の高いものであることから剪断
されにくく、複合材料中で折れることが極めて少ない。
When the inside of the finished composite material was checked, coiled carbon fiber pieces 5 were dispersed and carried in various directions. They were also intertwined with each other. Further, since the coil-shaped carbon fiber piece 5 used in the examples has high strength as described above, it is hard to be sheared, and it hardly breaks in the composite material.

【0021】「KEC法」により電磁波シールド特性を
調べたところ、良好であった。この「KEC法」とは、
社団法人関西電子工業振興センターの生駒電波測定所で
開発された方法であり、近接界における材料のシールド
効果を測定する方法である。一方、複合材料の引張り強
度を調べたところ、10〜50%の向上が見られ、複合
材料は機械的性質も良好なことが分かった。従って、実
施例の複合材料は、電磁波シールド材に限らず、コイル
の特徴をいかした衝撃吸収材としても有効である。
When the electromagnetic wave shielding property was examined by the "KEC method", it was good. What is this "KEC method"?
This method was developed at the Ikoma Radio Measurement Station of the Kansai Electronics Industry Promotion Center and is a method of measuring the shielding effect of materials in the near field. On the other hand, when the tensile strength of the composite material was examined, an improvement of 10 to 50% was observed, and it was found that the composite material also had good mechanical properties. Therefore, the composite material of the example is effective not only as an electromagnetic wave shield material but also as a shock absorbing material utilizing the characteristics of the coil.

【0022】以上本発明の実施例について説明したが、
本発明はこのような実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々なる
態様で実施し得ることは勿論である。例えば、図3に示
した様な装置において、コイル状の炭素繊維片5を形成
した後で再熱処理を行う際に、アセチレンガスと共に塩
化金属(TiCl4 ,SiCl4 )ガスを反応管11に
注入することにより、炭素繊維片をチタナイジングやシ
リコナイジングして表面に金属コーティングのなされた
ものとし、これをシリコーンエラストマーなどに混入す
ることとしてもよい。
The embodiment of the present invention has been described above.
The present invention is not limited to the embodiments as described above, and it goes without saying that the present invention can be implemented in various modes without departing from the scope of the present invention. For example, in the apparatus as shown in FIG. 3, when the coil-shaped carbon fiber piece 5 is formed and reheated, metal chloride (TiCl 4 , SiCl 4 ) gas is injected into the reaction tube 11 together with acetylene gas. By doing so, the carbon fiber pieces may be titanized or siliconized so that the surface thereof has a metal coating, and this may be mixed with a silicone elastomer or the like.

【0023】[0023]

【発明の効果】以上詳記したように、本発明の電磁波シ
ールド複合材料は、粒子状の導電物質の混入ではなく、
コイル状の炭素繊維片の混入により形成されるものであ
るから、単なる生地の電気抵抗率の低下によるのではな
く、電磁誘導作用に基づいて電磁波エネルギを吸収する
ものである。従って、電磁波シールド性能が高い。
As described in detail above, the electromagnetic wave shield composite material of the present invention is not mixed with a particulate conductive material,
Since it is formed by mixing the coil-shaped carbon fiber pieces, it absorbs electromagnetic wave energy based on the electromagnetic induction action, not merely by the decrease in the electrical resistivity of the cloth. Therefore, the electromagnetic wave shielding performance is high.

【0024】また、粒状物の混入ではないことから、熱
可塑性樹脂との組合せによる構成でも機械的性質の劣化
等を起こさない。この結果、良好な電磁波シールド性能
を奏すると共に、機械的性質の良好な電磁波シールド複
合材料を提供することができる。
Further, since it is not a mixture of particulate matters, deterioration of mechanical properties or the like does not occur even in a constitution in which it is combined with a thermoplastic resin. As a result, it is possible to provide an electromagnetic wave shield composite material having good electromagnetic wave shield performance and good mechanical properties.

【0025】また、腐食の問題もないことからインテリ
ジェントビルの外壁材などにも有効である。
Further, since it has no problem of corrosion, it is also effective as an outer wall material of an intelligent building.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電磁波シールド複合材料の構成を例
示する概念図である。
FIG. 1 is a conceptual diagram illustrating the configuration of an electromagnetic wave shield composite material of the present invention.

【図2】 本発明による電磁波シールド作用を示した説
明図である。
FIG. 2 is an explanatory view showing an electromagnetic wave shield action according to the present invention.

【図3】 実施例における炭素繊維製造装置の概略構成
図である。
FIG. 3 is a schematic configuration diagram of a carbon fiber manufacturing apparatus in an example.

【符号の説明】[Explanation of symbols]

1・・・電磁波シールド複合材料、3・・・低導電率の
生地、5・・・コイル状の炭素繊維片、11・・・反応
管、13・・・加熱ヒータ、15・・・金属基板、17
・・・入口、19・・・出口。
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic wave shield composite material, 3 ... Low conductivity cloth, 5 ... Coil-shaped carbon fiber pieces, 11 ... Reaction tube, 13 ... Heater, 15 ... Metal substrate , 17
... Entrance, 19 ... Exit.

Claims (1)

【特許請求の範囲】 【請求項1】 低導電率の生地中にコイル状の炭素繊維
片を方向性なく複数分散担持させた電磁波シールド複合
材料。
Claim: What is claimed is: 1. An electromagnetic shield composite material comprising a plurality of coil-shaped carbon fiber pieces dispersed and supported in a low-conductivity cloth without orientation.
JP3175570A 1991-07-16 1991-07-16 Electromagnetic shielding composite material Expired - Lifetime JP3011378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175570A JP3011378B2 (en) 1991-07-16 1991-07-16 Electromagnetic shielding composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175570A JP3011378B2 (en) 1991-07-16 1991-07-16 Electromagnetic shielding composite material

Publications (2)

Publication Number Publication Date
JPH0521984A true JPH0521984A (en) 1993-01-29
JP3011378B2 JP3011378B2 (en) 2000-02-21

Family

ID=15998395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175570A Expired - Lifetime JP3011378B2 (en) 1991-07-16 1991-07-16 Electromagnetic shielding composite material

Country Status (1)

Country Link
JP (1) JP3011378B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426457B1 (en) * 1998-04-27 2002-07-30 Sony Corporation Apparatus and method for shielding electromagnetic wave
JP2007009090A (en) * 2005-06-30 2007-01-18 Jfe Techno Research Corp Conductive plastic material
JP2007121238A (en) * 2005-10-31 2007-05-17 Gifu Univ Visualization device for radio wave
JP2010123645A (en) * 2008-11-18 2010-06-03 Jinko Cho Fine-particle material for preventing electromagnetic wave
CN115537972A (en) * 2022-11-04 2022-12-30 南开大学 Preparation method of mechanically interlocked high-performance titanium carbide composite conductive fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070024B2 (en) 2007-12-17 2012-11-07 株式会社日立製作所 Information storage device and storage medium
JP5211174B2 (en) 2008-10-30 2013-06-12 株式会社日立製作所 Information processing apparatus and storage medium
JP5286246B2 (en) 2009-12-28 2013-09-11 株式会社日立製作所 Information processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426457B1 (en) * 1998-04-27 2002-07-30 Sony Corporation Apparatus and method for shielding electromagnetic wave
JP2007009090A (en) * 2005-06-30 2007-01-18 Jfe Techno Research Corp Conductive plastic material
JP2007121238A (en) * 2005-10-31 2007-05-17 Gifu Univ Visualization device for radio wave
JP2010123645A (en) * 2008-11-18 2010-06-03 Jinko Cho Fine-particle material for preventing electromagnetic wave
CN115537972A (en) * 2022-11-04 2022-12-30 南开大学 Preparation method of mechanically interlocked high-performance titanium carbide composite conductive fiber
CN115537972B (en) * 2022-11-04 2023-09-19 南开大学 Preparation method of mechanically-interlocked high-performance titanium carbide composite conductive fiber

Also Published As

Publication number Publication date
JP3011378B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
EP2607518B1 (en) Nanostructured antennas
Munir Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review
Bigg et al. Plastic composites for electromagnetic interference shielding applications
US9111658B2 (en) CNS-shielded wires
Devi et al. Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review
US10373739B2 (en) Carbon nanotube shielding for transmission cables
JPH0521984A (en) Electromagnetic wave shield composite material
CA2758568A1 (en) Cnt-infused emi shielding composite and coating
AU2013246279A1 (en) CNS-shielded wires
Yuan et al. Design and fabrication of carbon fiber/carbonyl iron core–shell structure composites as high-performance microwave absorbers
KR101914424B1 (en) Em-absorbing/heat-conducting sheet and method for manufacturing em-absorbing/heat-conducting sheet
JP2013076198A (en) Cnt/carbon fiber composite material, fiber-reinforced molded article using the composite material and method for producing composite material
Song et al. Microstructure and electromagnetic wave absorption property of reduced graphene oxide-SiCnw/SiBCN composite ceramics
Wang et al. Dielectric response and microwave absorption properties of SiC whisker-coated carbon fibers
Kang et al. Enhancement of shielding effectiveness for electromagnetic wave radiation using carbon nanocoil-carbon microcoil hybrid materials
Zhou et al. Polymer‐derived Fe x Si y/SiC@ SiOC ceramic nanocomposites with tunable microwave absorption behavior
Wang et al. Magnetic carbon nanotubes-based microwave absorbents: Review and perspective
Wei et al. In-situ grown CNTs decorated SiCNWs for enhancing electromagnetic wave absorption efficiency
CN100494270C (en) Nano wave-absorbing plastic material , and method for producing products made from the material
Shen et al. Preparation and characterization of CNT films/silicone rubber composite with improved microwave absorption performance
JP2002538581A (en) Cable shield made of fiber composite material
CN100494264C (en) Nano composite wave-absorbing rubber material and method for fabricating products from the material
Li et al. Facile fabrication of novel high-performance electromagnetic interference shielding nickel foam
US2966643A (en) Electromagnetic wave guide structure
JP4005222B2 (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081210

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081210

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12