JP2010123523A - 放電灯点灯装置及び照明器具 - Google Patents

放電灯点灯装置及び照明器具 Download PDF

Info

Publication number
JP2010123523A
JP2010123523A JP2008298578A JP2008298578A JP2010123523A JP 2010123523 A JP2010123523 A JP 2010123523A JP 2008298578 A JP2008298578 A JP 2008298578A JP 2008298578 A JP2008298578 A JP 2008298578A JP 2010123523 A JP2010123523 A JP 2010123523A
Authority
JP
Japan
Prior art keywords
frequency
circuit
discharge lamp
resonance
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008298578A
Other languages
English (en)
Inventor
Shinji Makimura
紳司 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008298578A priority Critical patent/JP2010123523A/ja
Publication of JP2010123523A publication Critical patent/JP2010123523A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】 共振周波数の変動に応じた動作周波数の補正が自動的に行われる放電灯点灯装置及び照明器具を提供する。
【解決手段】 始動時、出力の周波数fを徐々に低下させて放電灯を始動させる始動スイープ動作t4〜t5の前には、放電灯を含む共振回路の放電灯が点灯した状態での共振周波数が取りうる範囲に対する高周波数側と低周波数側とでそれぞれ出力の周波数fを徐々に変化させるとともに出力電圧Vxの振幅と出力の周波数fとの組のデータを複数組得るプレスイープ動作t0〜t1,t2〜t3と、プレスイープ動作中に得られた出力電圧Vxの振幅と周波数fとの組のデータに基いて上記共振周波数を推定する共振周波数推定動作とが行われる。始動スイープ動作の終了時及び終了後の出力の周波数feは、共振周波数推定動作で推定された共振周波数とされる。
【選択図】図1

Description

本発明は、放電灯点灯装置及び照明器具に関するものである。
従来から、放電灯に交流電流を供給して点灯させる放電灯点灯装置が提供されている(例えば、特許文献1参照)。
この種の放電灯点灯装置として、例えば図12に示すものがある。この放電灯点灯装置は、放電灯としての無電極放電灯42に近接配置されて無電極放電灯42とともに負荷回路4を構成する誘導コイル41と、交流電源ACから供給された交流電力を直流電力に変換する直流電源回路1と、直流電源回路1が出力した直流電力を高周波の交流電力に変換して誘導コイル41に出力する電源回路としてのインバータ回路2と、インバータ回路2の出力の周波数を制御する制御回路3とを備える。
無電極放電灯42は、例えばガラスのような透明な材料からなり中空であって例えば不活性ガスと金属蒸気とを含む放電ガスが封入されたバルブを有する。バルブの内面には紫外線を可視光に変換する蛍光体膜が塗布されており、誘導コイル41が発生させる高周波電磁界によって上記のバルブ内にアーク放電が発生すると、発生した紫外線が上記の蛍光体膜において可視光に変換されることにより、無電極放電灯42が発光する。
直流電源回路1は、交流電源ACから供給された交流電流を全波整流するダイオードブリッジDBと、ダイオードブリッジDBの出力端間に接続されたインダクタL0とダイオードD0と出力コンデンサC0との直列回路と、インダクタL0とダイオードD0との接続点とダイオードブリッジDBの低電圧側の出力端との間に接続されたスイッチング素子Q0と、出力コンデンサC0の両端電圧(すなわち直流電源回路1の出力電圧)Vdcを一定とするようなデューティ比でスイッチング素子Q0をオンオフ駆動する電圧制御部11とを備える、周知の昇圧型コンバータ(ブーストコンバータ)である。
インバータ回路2は、周知のいわゆるハーフブリッジ形であって、直流電源回路1の出力端間すなわち出力コンデンサC0の両端間に接続されたスイッチング素子Q1,Q2との直列回路と、スイッチング素子Q1,Q2の接続点に一端が接続されたインダクタLsと、インダクタLsの他端に一端が接続されて他端が誘導コイル41の一端に接続された直列コンデンサCsと、一端がインダクタLsと直列コンデンサCsとの接続点に接続され他端がスイッチング素子Q2と誘導コイル41との接続点に接続された並列コンデンサCpと、スイッチング素子Q1,Q2を交互にオンオフ駆動する駆動部21とを備える。つまり、スイッチング素子Q1,Q2が交互にオンオフされることで、インダクタLsと直列コンデンサCsと並列コンデンサCpと誘導コイル41とが構成する共振回路と直流電源回路1との接続が切り換えられ、この共振回路の共振により、直流電源回路1が出力した直流電力が高周波の交流電力に変換されて誘導コイル41に供給されるのであり、2個のスイッチング素子Q1,Q2が請求項におけるスイッチング部を構成し、インバータ回路2のコンデンサCs,CpとインダクタLsとが請求項における共振部を構成する。また、各スイッチング素子Q1,Q2はそれぞれNチャネル型のFETからなり、駆動部21は、各スイッチング素子Q1,Q2のゲートに対してそれぞれ矩形波状の駆動信号を出力することによって各スイッチング素子Q1,Q2をそれぞれオンオフ駆動する。さらに、駆動部21は、制御端子CONを有し、制御端子CONから流出する制御電流Ioが多いほど、スイッチング素子Q1,Q2をオンオフする周波数、すなわちインバータ部2の出力の周波数(以下、「動作周波数」と呼ぶ。)fを高くする。より具体的には、駆動部21は、図13に示すように、制御端子CONの電位(以下、「制御電圧」と呼ぶ。)VIに応じた周波数でスイッチング素子Q1,Q2をオンオフ駆動する周知の電圧制御発振器VCOと、定電圧源E0に一端が接続されて他端がグランドに接続された2個の抵抗Ra,Rbの直列回路とを備える。抵抗Ra,Rbの接続点は制御端子CONに接続されている。電圧制御発振器VCOは図14に示すように制御電圧VIが低いほど動作周波数fを高くするものであって、制御電流Ioが多くなると、低電圧側の抵抗Rbに流れる電流が減少して制御電圧VIが低くなることにより、動作周波数fが高くなる。
通常、図15に示すように、動作周波数fは、上述した共振回路の共振周波数(以下、単に「共振周波数」と呼ぶ。)frの設計時の想定値fr0よりも高い範囲とされており、制御電流Ioが少なくなって動作周波数fが低くなるほど、出力電圧Vxの振幅|Vx|は大きくなり、インバータ回路2から誘導コイル41に供給される電力は増加する。なお、図15において、上側の曲線A0,A1は直流電圧Vdcが定常電圧Vsであって且つ無電極放電灯42が消灯している状態での出力電圧Vxの振幅|Vx|と動作周波数fとの関係を示し、下側の曲線B0,B1は直流電圧Vdcが定常電圧Vsであって且つ無電極放電灯42が点灯している状態での出力電圧Vxの振幅|Vx|と動作周波数fとの関係を示している。また、破線A0,B0は設計時に想定された曲線を示し、実線A1,B1は実際の使用状態での曲線の例を示す。共振周波数fr及びその想定値fr0は、無電極放電灯42の点灯時と消灯時とで同じとなっている。
また、制御回路3は、無電極放電灯42の始動時に動作周波数fを徐々に低下させることによりインバータ回路2から誘導コイル41への出力電力を徐々に増加させるスイープ動作を行う始動スイープ回路31を備える。
始動スイープ回路31は、一端が定電圧源E1に接続された抵抗R1と、この抵抗R1の他端に一端が接続され他端が回路のグランドに接続された抵抗R2とコンデンサC1とスイッチSWとの並列回路とを有する。また、始動スイープ回路31は、反転入力端子が帰還抵抗R3を介して出力端子に接続されるとともに入力抵抗R4を介してグランドに接続されたオペアンプOP1を備える。また、オペアンプOP1の出力端子は、逆流防止用のダイオードD1と出力抵抗R5との直列回路を介して駆動部21の制御端子CONに接続されている。さらに、オペアンプOP1の非反転入力端子は抵抗R1とコンデンサC1との接続点に接続されている。始動スイープ回路31において、コンデンサC1の両端電圧が安定した状態での動作を考えると、スイッチSWがオンされている場合には、スイッチSWがオフされている場合に比べ、オペアンプOP1の非反転入力端子への入力電圧Vc1が低くなりオペアンプOP1の出力電圧が低くなってスイープ電流Iswが増加し動作周波数fが高くなることにより、インバータ回路2から誘導コイル41に供給される電力は少なくなる。また、スイッチSWがオンからオフに切り換えられたときには、抵抗R1,R2とコンデンサC1とが構成する回路の時定数により、オペアンプOP1の出力電圧が徐々に高くなりスイープ電流Iswが徐々に減少することで動作周波数fが徐々に低くされインバータ回路2から誘導コイル41への供給電力が徐々に増加する始動スイープ動作が行われる。そして、始動スイープ開始時の動作周波数(以下、「スイープ始点周波数」と呼ぶ。)fsは、出力電圧Vxの振幅|Vx|が無電極放電灯42の始動に必要な値(以下、「始動電圧」と呼ぶ。)Vthに達するときの動作周波数(以下、「始動周波数」と呼ぶ。)fiがとり得る値よりも高くされている。さらに、始動スイープ終了時の動作周波数(以下、「スイープ終点周波数」と呼ぶ。)feは、共振周波数の想定値fr0と同じ値とされ、すなわち始動周波数fiよりも低くされている。これにより、始動スイープ動作中に動作周波数fが確実に始動周波数fiに達し、そのときに出力電圧Vxの振幅|Vx|が無電極放電灯42の始動に必要な値(以下、「始動電圧」と呼ぶ。)Vthに達することにより、無電極放電灯42のバルブ内で放電が開始されて無電極放電灯42が点灯する。始動周波数fiは回路部品の特性のばらつきや周囲温度等の環境の条件によっても変動するが、上記のような始動スイープ動作により、前記変動にもかかわらず確実に無電極放電灯42の始動が可能となる。
また、上記のようなインバータ回路2の出力端には、誘導コイル41に代えて、図16に示すような熱陰極型の放電灯Laと放電灯Laのフィラメントの一端間に接続されたコンデンサCrとからなり放電灯Laの各フィラメントの他端を入力端とする負荷回路4を接続することで、放電灯Laを点灯させることもできる。
特開2003−332090号公報
ここで、インバータ回路2のローサイドのスイッチング素子Q2の両端間に接続された共振回路の共振周波数frは、コンデンサCs,Cp,CrやインダクタLs等の回路部品の経年変化などの条件によって変化する。
特に、図12の例のように無電極放電灯42の点灯に用いるためにインバータ回路2の出力端間に誘導コイル41が接続される場合、無電極放電灯42の始動には比較的に高い電圧が必要なことにより、上記共振回路のQ値は比較的に高くされる。このため、例えば誘導コイル41と周囲の反射板等の金属製品との距離などの条件による共振周波数の変化で、動作周波数f毎のインバータ回路2の出力電圧が大きく変化しやすい。さらに、図17に示すように金属製の反射板61が近接配置される場合、誘導コイル41による高周波電磁界で例えば矢印Irで示すような誘導電流が反射板61に発生することでリアクタンス成分が発生し、このリアクタンス成分は誘導コイル41と反射板61との距離によって変化するから、反射板61の変形等によって誘導コイル41と反射板61との距離が変化すると、共振周波数frがさらに想定値fr0から離れることになる。
そして、特性が図15における破線A0,B0で示すような設計時に想定された特性から、図15における実線A1,B1で示すような特性に変化し、実際の共振周波数frが想定値fr0から高周波側にずれた場合には、始動スイープ動作の終了直前には動作周波数fが共振周波数frを通り過ぎる形となって出力電圧Vxの振幅|Vx|が低下する。上記のような共振周波数frのずれが大きくなって出力電圧Vxの振幅|Vx|が小さくなると、無電極放電灯42の立ち消えが発生することも考えられる。
そこで、図12の例では、上記のような共振周波数frの変化による出力の変化を抑えるために、一端がインバータ部2の駆動部21の制御端子CONに接続され他端がグランドに接続された可変抵抗器VRが設けられている。すなわち、可変抵抗器VRを操作して制御電流Ioのうち可変抵抗器VRを流れる電流による寄与分(以下、「調整電流」と呼ぶ。)Ivrを調整することにより、上記のような出力電圧Vxの振幅|Vx|の低下を抑制することができる。しかし、上記のような可変抵抗器VRを用いる場合、効果を得るためには、人の手で可変抵抗器VRの抵抗値を変化させて調整電流Ivrを調整する必要があり、手間がかかる。
本発明は、上記事由に鑑みて為されたものであり、その目的は、共振周波数の変動に応じた動作周波数の補正が自動的に行われる放電灯点灯装置及び照明器具を提供することにある。
請求項1の発明は、直流電力を入力されて放電灯を含む負荷回路に交流電力を供給する電源回路と、電源回路の出力電圧の振幅に応じた検出電圧を出力する電圧検出回路と、電源回路の出力の周波数である動作周波数を制御する制御回路とを備え、電源回路は、負荷回路とともに共振回路を構成する共振部と、直流電力が入力される入力端と共振部との接続を切り換える少なくとも1個のスイッチング素子を備えるスイッチング部とを有し、放電灯の始動時、制御回路は、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ動作周波数を徐々に変化させるとともに検出電圧と動作周波数との組のデータを複数組得るプレスイープ動作と、プレスイープ動作中に得られた検出電圧と動作周波数との組のデータに基いて前記共振回路の前記放電灯が点灯した状態での共振周波数を推定する共振周波数推定動作と、動作周波数を徐々に低下させることにより放電灯を始動させる始動スイープ動作とを行い、始動スイープ動作の終了後には動作周波数を始動スイープ動作の終了時の値に維持するものであって、制御回路は、始動スイープ動作の終了時の動作周波数を、共振周波数推定動作で推定された共振周波数とすることを特徴とする。
この発明によれば、始動スイープ動作の終了時及び終了後の動作周波数が、共振周波数の変動に応じて自動的に補正される。また、共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ得られたデータを共振周波数の推定に用いるので、共振周波数が取りうる範囲の片側で得られたデータのみを共振周波数の推定に用いる場合に比べ、共振周波数の推定の精度の向上が可能となる。
請求項2の発明は、請求項1の発明において、制御回路は、共振周波数推定動作においては、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、プレスイープ動作中に得られた検出電圧と動作周波数との組のデータに対して所定の関数によるフィッティングを行い、前記共振回路の共振周波数が取りうる範囲の高周波数側で得られた関数のグラフと、前記共振回路の共振周波数が取りうる範囲の低周波数側で得られた関数のグラフとの交点の周波数を、前記共振回路の前記放電灯が点灯した状態での共振周波数として推定することを特徴とする。
請求項3の発明は、請求項1の発明において、制御回路は、共振周波数推定動作においては、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、検出電圧が所定の基準電圧となるときの動作周波数を得て、得られた2個の動作周波数をそれぞれfd1,fd2として0<n<1である定数nを用いた式(n−1)fd1+nfd2で表される周波数を、前記共振回路の前記放電灯が点灯した状態での共振周波数として推定することを特徴とする。
請求項4の発明は、請求項1〜3のいずれかの発明において、制御回路は、プレスイープ動作中、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、検出電圧を所定の目標電圧に近づけるような比例制御を行うことを特徴とする。
この発明によれば、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ動作周波数の範囲を一定とする場合に比べ、プレスイープ動作中の動作周波数を前記共振周波数により近付けることができる。また、比例制御により、プレスイープ動作中、検出電圧が目標電圧に近いほど動作周波数の変化が遅くなることになるから、動作周波数の変化速度を一定とする場合に比べ、より共振周波数に近い位置での測定データがより多く得られやすくなる。以上により、共振周波数推定動作での共振周波数の推定の精度の向上が可能となる。
請求項5の発明は、請求項1〜4のいずれかの発明において、制御回路は、外部から入力される信号に従って放電灯の点灯・消灯を交互に切り換える調光動作が可能であって、調光動作中、放電灯の再点灯毎に、終了時の動作周波数を共振周波数推定動作で推定された共振周波数とするような始動スイープ動作を行うことを特徴とする。
請求項6の発明は、請求項1〜5のいずれかの発明において、負荷回路は、電源回路の出力端間に接続された誘導コイルと、透光性を有する材料からなるバルブに放電ガスが封入されてなり誘導コイルに近接配置された無電極放電灯とからなることを特徴とする。
請求項7の発明は、請求項1〜6のいずれか1項に記載の放電灯点灯装置と、放電灯点灯装置と負荷回路とをそれぞれ保持する器具本体とを備えることを特徴とする。
請求項1の発明によれば、放電灯の始動時、制御回路は、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ動作周波数を徐々に変化させるとともに検出電圧と動作周波数との組のデータを複数組得るプレスイープ動作と、プレスイープ動作中に得られた検出電圧と動作周波数との組のデータに基いて前記共振回路の前記放電灯が点灯した状態での共振周波数を推定する共振周波数推定動作と、動作周波数を徐々に低下させることにより放電灯を始動させる始動スイープ動作とを行い、始動スイープ動作の終了後には動作周波数を始動スイープ動作の終了時の値に維持するものであって、制御回路は、始動スイープ動作の終了時の動作周波数を、共振周波数推定動作で推定された共振周波数とするので、始動スイープ動作の終了時及び終了後の動作周波数が、共振周波数の変動に応じて自動的に補正される。また、共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ得られたデータを共振周波数の推定に用いるので、共振周波数が取りうる範囲の片側で得られたデータのみを共振周波数の推定に用いる場合に比べ、共振周波数の推定の精度の向上が可能となる。
請求項4の発明によれば、制御回路は、プレスイープ動作中、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、検出電圧を所定の目標電圧に近づけるような比例制御を行うので、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ動作周波数の範囲を一定とする場合に比べ、プレスイープ動作中の動作周波数を前記共振周波数により近付けることができる。また、比例制御により、プレスイープ動作中、検出電圧が目標電圧に近いほど動作周波数の変化が遅くなることになるから、動作周波数の変化速度を一定とする場合に比べ、より共振周波数に近い位置での測定データがより多く得られやすくなる。以上により、共振周波数推定動作での共振周波数の推定の精度の向上が可能となる。
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
本実施形態の基本構成は図12〜図15で説明した従来例と共通であるので、共通する部分については同じ符号を付して図示並びに詳細な説明は省略する。
本実施形態は、図2に示すように、インバータ回路2が誘導コイル41に出力する電圧(以下、「出力電圧」と呼ぶ。)Vxの振幅が大きいほど高い電圧値の直流電圧である検出電圧Vxsを出力する電圧検出回路5を備える。電圧検出回路5は、整流用のダイオードと分圧用の抵抗と平滑用のコンデンサとで構成されている。
また、制御回路3は、プレスイープ回路32及び終点補正回路33を備える。プレスイープ回路32と終点補正回路33とは、それぞれ、アノードがインバータ回路2の駆動部21の制御端子CONに接続されたダイオードと、このダイオードのカソードに一端が接続された抵抗と、この抵抗の他端に出力端子が接続されるとともに反転入力端子が出力端子に接続されてボルテージホロワを構成するコンパレータとからなる。さらに、制御回路3は、MPUからなりプレスイープ回路32と終点補正回路33とのオペアンプの非反転入力端子にそれぞれD/A変換器34aを介して接続された演算回路34を備える。また、演算回路34は、A/D変換器34bを介して電圧検出回路5の出力端に接続されている。さらに、演算回路34には、外部から入力されて無電極放電灯42の点灯・消灯を指示する制御信号が入力される。また、演算回路34は、始動スイープ回路31のオペアンプOP1の出力端子にも接続されてスイープ電流Iswを検出している。さらに、演算回路34は、インバータ回路2の駆動部21において制御端子CONとは別途に設けられた停止用端子CON2に接続されており、各スイッチング素子Q1,Q2をともにオフ状態として負荷回路4(誘導コイル41及び無電極放電灯42)への給電を停止させるような制御も上記の停止用端子CON2への入力電圧によって可能となっている。
以下、本実施形態の制御回路3の動作を説明する。本実施形態の制御回路3は、制御信号が入力されたとき、始動スイープ回路31による始動スイープ動作を開始する前に、インバータ部2のスイッチング素子Q2の両端間に接続された共振回路(以下、単に「共振回路」と呼ぶ。)の共振周波数(以下、単に「共振周波数」と呼ぶ。)を推定するための測定データを得るプレスイープ動作と、プレスイープ動作中に得られた測定データに基いて共振回路の共振周波数を推定する共振周波数推定動作とを行い、続く始動スイープ動作では、共振周波数推定動作で推定された共振周波数を、動作周波数fの範囲の下限とする。
本実施形態の動作について具体的に説明する。演算回路34は、図1に示すように、外部から入力される制御信号VstがHレベルとなったタイミングt0にプレスイープ動作を開始する。制御信号Vstは所定の始動時間だけHレベルに維持された後のタイミングt4にLレベルに戻るものであって、始動スイープ回路31のスイッチSWは、制御信号VstがHレベルからLレベルとなったタイミングt4にオフされ、このとき始動スイープ動作が開始される。すなわち、プレスイープ動作と共振周波数推定動作とはそれぞれ制御信号Vstが最初にHレベルとなってからLレベルとなるまでの期間t0〜t4中に行われる。
プレスイープ動作では、演算回路34は、プレスイープ回路32への出力電圧を変化させて駆動部21からプレスイープ回路32への流入電流Idを徐々に変化させることにより、共振周波数がとり得る範囲よりも高周波数側と低周波数側とで、それぞれ、無電極放電灯42が始動しない(つまり放電が開始されない)範囲、すなわち従来例で説明した始動電圧Vthに出力電圧Vxの振幅|Vx|が達しない範囲で動作周波数fを徐々に変化させ、その間、動作周波数fと検出電圧Vxsとの組を上記の高周波数側と低周波数側とで複数組ずつ、測定データとして記憶する。図1の例では、所定の第1始点周波数fs1から、第1始点周波数fs1よりも低く且つ共振周波数がとり得る範囲に対して無電極放電灯42が始動しない程度に(つまり、出力電圧Vxの振幅|Vx|が始動電圧Vthとなるような始動検出電圧Vtsに検出電圧Vxsが達しない程度に)十分に高い第1終点周波数fe1にかけて、所定時間t0〜t1をかけて徐々に動作周波数fを低下させる高周波側スイープ動作を行った後、所定時間t1〜t2にわたって各スイッチング素子Q1,Q2をそれぞれオフさせる休止動作を行い、その後、所定の第2始点周波数fs2から、第2始点周波数fs2よりも高く且つ共振周波数がとり得る範囲に対して無電極放電灯42が始動しない程度に(つまり、出力電圧Vxの振幅|Vx|が始動電圧Vthとなるような始動検出電圧Vtsに検出電圧Vxsが達しない程度に)十分に低い第2終点周波数fe2にかけて、所定時間t2〜t3をかけて徐々に動作周波数fを上昇させる低周波側スイープ動作を行っている。また、測定データの取得は、高周波側スイープ動作中と低周波側スイープ動作中とにそれぞれ複数回(例えば3回)ずつ行われている。なお、プレスイープ動作中に動作周波数fを変化させる方向は上記に限られず、例えば図3に示すように、第2始点周波数fs2を第2終点周波数fe2よりも低い周波数とすることで、低周波側スイープ動作でも徐々に動作周波数fを低下させるようにしてもよい。図3の例での第2始点周波数fs2は、図1の例での第2終点周波数fe2と同様にして決定することができる。
次の共振周波数推定動作では、演算回路34は、共振周波数がとり得る範囲よりも高周波数側と低周波数側との両方について、それぞれ、プレスイープ動作中に得られた測定データに基いて動作周波数fと検出電圧Vxsとの関係を推定するとともに、共振周波数がとり得る範囲の高周波数側で得られた上記の関係と、低周波数側で得られた上記の関係とに基いて、共振周波数を推定する。具体的には、例えば図4に示すように、動作周波数fと検出電圧Vxsとの関係を一次関数に近似し、高周波側スイープ動作中に得られた測定データに対するフィッティングで得られた一次関数のグラフ(直線)と、低周波側スイープ動作中に得られた測定データに対するフィッティングで得られた一次関数のグラフ(直線)との交点の動作周波数fを、共振周波数であると推定する。上記のフィッティングには例えば最小2乗法のような周知の方法を用いることができる。なお、近似する関数(フィッティングに用いる関数)としては上記のような一次関数に限られず、例えば、検出電圧Vxsを、動作周波数fの二次関数af+bf+cに近似してもよいし、動作周波数fを指数とする数ebfの一次関数aebf+cに近似してもよいし、動作周波数fの逆数1/fの一次関数a/f+bに近似してもよい。ここで、上記のa,b,cはそれぞれ測定データへのフィッティングによって決定される数である。上記のようにグラフが曲線となる関数に近似した場合にも、図5に示すように、高周波数側で得られた関数のグラフと低周波数側で得られた関数のグラフとの交点の周波数を共振周波数であると推定することができる。
そして、演算回路34は、始動スイープ動作の開始後、終点補正回路33に流入する電流(以下、「補正電流」と呼ぶ。)Icを終点補正回路33への出力電圧によって制御し、これによって制御電流Ioを補正することで、始動スイープ動作の終了時t6の動作周波数(すなわち始動スイープ動作中の動作周波数fの最小値。以下、「スイープ終点周波数」と呼ぶ。)feを、共振周波数推定動作で推定された共振周波数とする。図1の例では、演算回路34は、所定時間t4〜t6をかけて補正電流Icを徐々に増加させ、その後は、補正電流Icを、共振周波数推定動作で推定された共振周波数に応じた一定値(以下、「定常補正電流」と呼ぶ。)Icsに保っている。この結果、始動スイープ動作の開始時t4の動作周波数(以下、「スイープ始点周波数」と呼ぶ)fsは破線で示すように補正電流Icを0とした場合と同じとなる一方、スイープ終点周波数feは、補正電流Icを0とした場合でのスイープ終点周波数fe0に対して定常補正電流Icsに応じた値だけ高くなっている。本実施形態では、スイープ始点周波数fsは第1始点周波数fs1と等しい周波数とされている。
さらに、図1の例では、制御信号Vstは、最初にHレベルからLレベルに低下した後、所定のオン時間だけLレベルとなった後に所定のオフ時間だけHレベルとなるという変化を、動作周波数fよりも十分に低い周波数で繰り返している。制御信号VstがHレベルとなったときt7,t10,t13に始動スイープ回路31のスイッチSWがオンされることで動作周波数fが高くなって無電極放電灯42が消灯され、次に制御信号VstがLレベルとなったときt8,t11に再び始動スイープ回路31のスイッチSWがオフされることで始動スイープ動作が開始され、この始動スイープ動作中に動作周波数fが始動周波数fiに達したタイミングt9,t12で無電極放電灯42が再点灯する。すなわち、上記の点灯と消灯との繰り返しにより無電極放電灯42の光出力の制御(調光)が行われているのであり、制御信号VstによるPWM制御が行われている。上記のような制御信号Vstの周波数は人の目にちらつきが認識されない程度に高いことが望ましく、例えば100Hz以上とする。また、上記の2回目以降の始動スイープ動作では、最初から補正電流Icが定常補正電流Icsに達していることにより、補正電流Icを0とした場合(図1の破線)に比べた動作周波数fの上昇幅は始動スイープ動作の全体にわたって一定となっている。
上記構成によれば、始動スイープ動作の終了時t6以後の動作周波数であるスイープ終点周波数feを、プレスイープ動作で得られた測定データに基いて共振周波数推定動作で推定された共振周波数とするので、部品の経年変化や周囲温度等による共振周波数の変動に合わせてスイープ終点周波数feが補正されることになって始動スイープ動作の終了時t6以後にも無電極放電灯42への供給電力が確保され、立ち消えが抑制される。また、スイープ終点周波数feの変更すなわち定常補正電流Icsの変更は自動的に行われるから、図12の従来例における可変抵抗VRのような素子を用いて手動で調整を行う場合と違って手間がかからない。
また、共振周波数がとり得る範囲の両側でそれぞれ得た測定データを共振周波数の推定に用いていることにより、共振周波数がとり得る範囲の片側で得た測定データのみを共振周波数の推定に用いる場合に比べ、共振周波数の推定の精度の向上が可能となる。
なお、プレスイープ動作において、上記のように第1終点周波数fe1や第2終点周波数fe2を一定とする代わりに、図6に示すように、高周波側スイープ動作と低周波側スイープ動作とで、それぞれ検出電圧Vxsを所定の目標電圧Vtgに近づけるような比例制御を動作周波数fに対して行ってもよい。ここで、第1終点周波数fe1や第2終点周波数fe2を一定とする場合には、プレスイープ動作中の無電極放電灯42を確実に避けようとすると、共振周波数の変動を考慮して第1終点周波数fe1や第2終点周波数fe2と共振周波数との差を比較的に大きくする必要がある。これに対し、上記のような比例制御を採用すれば、プレスイープ動作中の無電極放電灯42を確実に避けながらも、第1終点周波数fe1や第2終点周波数fe2を共振周波数により近くすることができる。また、図7に示すように、高周波側スイープ動作と低周波側スイープ動作とのそれぞれにおいて、動作周波数fが共振周波数から離れた開始時よりも、動作周波数fが共振周波数により近い終了時に動作周波数fの変化が遅くなるから、動作周波数fの変化速度を一定とする場合に比べ、より共振周波数に近い位置での測定データがより多く得られやすくなる。以上により、共振周波数推定動作での共振周波数の推定の精度が向上する。さらに、図7の例では、始動スイープ動作の開始時から終了時にかけて動作周波数fの変化速度を徐々に遅くしている。このような動作は周知技術で実現可能であるので、詳細な説明は省略する。
また、共振周波数推定動作は上記のようなものに限られず、例えば、図8に示すように、検出電圧Vxsが所定の基準電圧Vdとなるときの動作周波数(以下、「基準周波数」と呼ぶ。)fd1,fd2を高周波側スイープ動作と低周波側スイープ動作とでそれぞれ得て、共振周波数推定動作では基準周波数fd1,fd2に基いて共振周波数を推定してもよい。具体的には、0<n<1である定数nを用いて、基準周波数fd1,fd2の加重和(1−n)fd1+nfd2を共振周波数と推定し、これをスイープ終点周波数feとする。上記の定数nは実際の回路の特性に応じて適宜選択すればよく、例えば動作周波数fと検出電圧Vxsとの関係を示す図8のようなグラフの形状が共振周波数に関して対称である場合には上記の定数nは0.5となる。
さらに、回路構成は図2のようなものに限られず、例えば図9に示すように、制御回路3において始動スイープ回路31とプレスイープ回路32とをそれぞれ省略し、補正電流Icのみで制御電流Ioが決定されるようにしてもよい。この場合、動作周波数fは演算回路34から終点補正回路33への出力電圧のみによって決定される。この構成を採用すれば、演算回路34のプログラムによって図1と同様の動作が実現可能でありながらも、部品点数を削減することができる。
また、従来例で説明した始動電圧Vthや始動周波数fiは周囲温度によって変動するので、周囲温度を検出する温度検出部(図示せず)を設けるとともに、温度検出部によって検出された温度に応じて制御回路3が始点周波数fs1,fs2や終点周波数fe1,fe2や目標電圧Vtgを変更してもよい。上記のような温度検出部は周知技術によって実現可能であるので、図示並びに説明は省略する。
上記各種の放電灯点灯装置は、図10や図11に示すような照明器具6に用いることができる。上記の各照明器具6は、それぞれ、直流電源回路1とインバータ回路2と制御回路3と誘導コイル41と無電極放電灯42とをそれぞれ収納した器具本体60を備える。図10の照明器具6は路傍に配設され、図11の照明器具6は電柱POに対して固定されるといったように、上記の各照明器具6はそれぞれ屋外に設置して用いられるものであって、器具本体60は防水性を有する。上記のような照明器具6は周知技術で実現可能であるので、詳細な図示並びに説明は省略する。
本発明の実施形態において出力電圧と動作周波数と制御信号と補正電流との波形の例を示す説明図である。 同上を示す回路ブロック図である。 プレスイープ動作の別の例を示す説明図である。 共振周波数推定動作の一例を示す説明図である。 共振周波数推定動作の別の例を示す説明図である。 プレスイープ動作の更に別の例を示す説明図である。 図6のプレスイープ動作による動作周波数の変化を示す説明図である。 共振周波数推定動作の更に別の例を示す説明図である。 同上の変更例を示す回路ブロック図である。 同上を用いた照明器具の一例を示す、一部破断した正面図である。 同上を用いた照明器具の別の例を示す正面図である。 従来例を示す回路ブロック図である。 同上におけるインバータ回路の駆動部を示す回路ブロック図である。 同上における制御電圧と動作周波数との関係を示す説明図である。 同上の動作を示す説明図である。 負荷回路の別の例を示す回路図である。 無電極放電灯を用いる場合に発生する課題を示す説明図である。
符号の説明
2 インバータ回路(請求項における電源回路)
3 制御回路
4 負荷回路
5 電圧検出回路
6 照明器具
41 誘導コイル
42 無電極放電灯
60 器具本体
La 放電灯
Q1,Q2 スイッチング素子

Claims (7)

  1. 直流電力を入力されて放電灯を含む負荷回路に交流電力を供給する電源回路と、
    電源回路の出力電圧の振幅に応じた検出電圧を出力する電圧検出回路と、
    電源回路の出力の周波数である動作周波数を制御する制御回路とを備え、
    電源回路は、負荷回路とともに共振回路を構成する共振部と、直流電力が入力される入力端と共振部との接続を切り換える少なくとも1個のスイッチング素子を備えるスイッチング部とを有し、
    放電灯の始動時、制御回路は、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ動作周波数を徐々に変化させるとともに検出電圧と動作周波数との組のデータを複数組得るプレスイープ動作と、プレスイープ動作中に得られた検出電圧と動作周波数との組のデータに基いて前記共振回路の前記放電灯が点灯した状態での共振周波数を推定する共振周波数推定動作と、動作周波数を徐々に低下させることにより放電灯を始動させる始動スイープ動作とを行い、始動スイープ動作の終了後には動作周波数を始動スイープ動作の終了時の値に維持するものであって、
    制御回路は、始動スイープ動作の終了時の動作周波数を、共振周波数推定動作で推定された共振周波数とすることを特徴とする放電灯点灯装置。
  2. 制御回路は、共振周波数推定動作においては、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、プレスイープ動作中に得られた検出電圧と動作周波数との組のデータに対して所定の関数によるフィッティングを行い、前記共振回路の共振周波数が取りうる範囲の高周波数側で得られた関数のグラフと、前記共振回路の共振周波数が取りうる範囲の低周波数側で得られた関数のグラフとの交点の周波数を、前記共振回路の前記放電灯が点灯した状態での共振周波数として推定することを特徴とする請求項1記載の放電灯点灯装置。
  3. 制御回路は、共振周波数推定動作においては、前記共振回路の共振周波数が取りうる範囲の高周波数側と低周波数側とでそれぞれ、検出電圧が所定の基準電圧となるときの動作周波数を得て、得られた2個の動作周波数をそれぞれfd1,fd2として0<n<1である定数nを用いた式(n−1)fd1+nfd2で表される周波数を、前記共振回路の前記放電灯が点灯した状態での共振周波数として推定することを特徴とする請求項1記載の放電灯点灯装置。
  4. 制御回路は、プレスイープ動作中、検出電圧を所定の目標電圧に近づけるような比例制御を行うことを特徴とする請求項1〜3のいずれか1項に記載の放電灯点灯装置。
  5. 制御回路は、外部から入力される信号に従って放電灯の点灯・消灯を交互に切り換える調光動作が可能であって、調光動作中、放電灯の再点灯毎に、終了時の動作周波数を共振周波数推定動作で推定された共振周波数とするような始動スイープ動作を行うことを特徴とする請求項1〜4のいずれか1項に記載の放電灯点灯装置。
  6. 負荷回路は、電源回路の出力端間に接続された誘導コイルと、透光性を有する材料からなるバルブに放電ガスが封入されてなり誘導コイルに近接配置された無電極放電灯とからなることを特徴とする請求項1〜5のいずれか1項に記載の放電灯点灯装置。
  7. 請求項1〜6のいずれか1項に記載の放電灯点灯装置と、放電灯点灯装置と負荷回路とをそれぞれ保持する器具本体とを備えることを特徴とする照明器具。
JP2008298578A 2008-11-21 2008-11-21 放電灯点灯装置及び照明器具 Withdrawn JP2010123523A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298578A JP2010123523A (ja) 2008-11-21 2008-11-21 放電灯点灯装置及び照明器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298578A JP2010123523A (ja) 2008-11-21 2008-11-21 放電灯点灯装置及び照明器具

Publications (1)

Publication Number Publication Date
JP2010123523A true JP2010123523A (ja) 2010-06-03

Family

ID=42324672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298578A Withdrawn JP2010123523A (ja) 2008-11-21 2008-11-21 放電灯点灯装置及び照明器具

Country Status (1)

Country Link
JP (1) JP2010123523A (ja)

Similar Documents

Publication Publication Date Title
JP2010198880A (ja) 放電灯点灯装置及び照明器具
JP4702038B2 (ja) 高輝度放電ランプ点灯装置及びプロジェクタ
JP2013026208A (ja) 放電ランプシステム及びその制御方法
KR101114490B1 (ko) 방전 램프용 전자 밸러스트
JP2006202775A (ja) 高圧放電灯点灯装置
JP2010123523A (ja) 放電灯点灯装置及び照明器具
KR100675515B1 (ko) 무전극 유도 방전램프 조광장치
JP6244806B2 (ja) 放電ランプ点灯装置、放電ランプ点灯方法及びプロジェクター
JP2009266601A (ja) 放電灯点灯装置及び照明器具
JP5447959B2 (ja) 放電灯点灯装置およびその点灯制御方法
JP2010123522A (ja) 無電極放電灯点灯装置及び照明器具
JP6558018B2 (ja) 放電灯駆動装置、光源装置、プロジェクター、および放電灯駆動方法
JP3329172B2 (ja) 放電ランプ点灯装置
JP2009032471A (ja) 放電灯点灯装置及び照明器具
JP4543646B2 (ja) 高圧放電ランプ点灯装置および照明装置
JP2007087821A (ja) 高圧放電ランプ点灯装置及び照明装置
JP2002043082A (ja) 無電極放電灯点灯装置
JPWO2006114965A1 (ja) 放電灯点灯装置及び放電灯点灯制御方法
JP2005071921A (ja) 高圧放電ランプ点灯装置および照明器具
JP4608804B2 (ja) 無電極放電灯点灯装置
JP2009176679A (ja) 放電灯点灯装置および照明器具
JP4697114B2 (ja) 無電極放電灯点灯装置及びその照明器具
JP2011044313A (ja) 無電極放電灯点灯装置及び照明器具
JP2007066596A (ja) 放電灯点灯装置
JP4966122B2 (ja) 放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100715

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120411