JP2010123336A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010123336A
JP2010123336A JP2008294583A JP2008294583A JP2010123336A JP 2010123336 A JP2010123336 A JP 2010123336A JP 2008294583 A JP2008294583 A JP 2008294583A JP 2008294583 A JP2008294583 A JP 2008294583A JP 2010123336 A JP2010123336 A JP 2010123336A
Authority
JP
Japan
Prior art keywords
dew point
fuel cell
pipe
gas
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008294583A
Other languages
English (en)
Other versions
JP5408969B2 (ja
Inventor
Shigeki Hasegawa
茂樹 長谷川
Kimiko Yoneya
貴美子 米谷
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyo Corp
Original Assignee
Toyota Motor Corp
Toyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyo Corp filed Critical Toyota Motor Corp
Priority to JP2008294583A priority Critical patent/JP5408969B2/ja
Publication of JP2010123336A publication Critical patent/JP2010123336A/ja
Application granted granted Critical
Publication of JP5408969B2 publication Critical patent/JP5408969B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池システムにおいてガスの露点温度を計測するためのセンサ素子が劣化してしまうことを抑制する技術を提供する。
【解決手段】燃料電池評価システム1000は、評価対象である燃料電池FCと接続される供給配管201に設けられ、互いに並列に分岐した第1と第2の分岐配管10,20と、第1の分岐配管10に流入する計測対象ガスの露点温度を検出する露点計13とを備える。第2の分岐配管20は、第1の分岐配管10から計測対象ガスの一部または全部をバイパスさせるためのバイパス配管として機能する。
【選択図】図2

Description

この発明は、燃料電池システムに関する。
燃料電池に用いられる電解質膜は、湿潤状態で良好なプロトン伝導性を示す。そのため、発電中の燃料電池の内部は、適度な湿潤状態に保持されていることが好ましい。そこで、燃料電池システムにおいては、燃料電池に加湿した反応ガスを供給しつつ、その加湿量を制御するために反応ガスの露点温度を検出するものがある(特許文献1等)。
特開2004−047154号公報 特開2003−346855号公報
ところで、一般に、反応ガスの露点温度を検出するためには、反応ガスの温度をその露点温度よりある程度(例えば20℃)高い状態にした上で検出する。しかし、反応ガスの温度が露点温度より著しく高くなる場合(例えば、露点温度より30℃程度高くなる場合)には、当該センサ素子が反応ガスからの熱により劣化する可能性がある。なお、こうした問題は、燃料電池に供給される反応ガスの露点温度を計測する場合に限られず、気体の露点温度を計測する場合に共通する問題であった。しかし、これまで、こうした問題に対して十分な工夫がなされていなかったのが実情であった。
本発明は、燃料電池システムにおいてガスの露点温度を計測するためのセンサ素子が劣化してしまうことを抑制する技術を提供することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
燃料電池システムであって、燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部とを備え、前記第2の分岐配管は、前記第1の分岐配管から前記計測対象ガスの一部または全部をバイパスさせるためのバイパス配管として機能する、燃料電池システム。
この燃料電池システムによれば、露点温度検出部に供給される計測対象ガスのガス量を、第2の分岐配管にバイパスさせる分だけ低減できる。従って、露点温度検出部が、計測対象ガスから受ける負荷を低減できるため、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
[適用例2]
適用例1に記載の燃料電池システムであって、さらに、前記第1と第2の分岐配管に流入するガス量を調整するための流量調整弁と、前記計測対象ガスの温度を検出するガス温度検出部と、前記流量調整弁を制御する制御部とを備え、前記制御部は、前記温度検出部の検出温度が許容温度範囲にある場合には、前記計測対象ガスの全てを前記第1の分岐配管に流入させ、前記検出温度が前記許容温度範囲から外れている場合には、前記計測対象ガスの一部または全部を前記第2の分岐配管にバイパスさせるバイパス処理を実行する、燃料電池システム。
この燃料電池システムによれば、許容温度範囲から外れる温度を有する計測対象ガスの一部または全部を第2の分岐配管にバイパスできる。従って、露点温度検出部が、許容温度範囲から外れる温度を有する計測対象ガスから受ける負荷を低減できるため、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
[適用例3]
適用例2に記載の燃料電池システムであって、前記ガス配管は、前記燃料電池の供給側に接続される供給用ガス配管であり、前記露点温度検出部は、前記燃料電池の供給側における前記計測対象ガスの露点温度を検出する供給側露点温度検出部であり、前記燃料電池システムは、さらに、前記燃料電池の排出側に接続される排出用ガス配管に設けられ、互いに並列な第3と第4の分岐配管と、前記第3の分岐配管に流入する前記燃料電池の排出側における前記計測対象ガスの露点温度を検出する排出側露点温度検出部とを備え、前記制御部は、前記供給側露点温度検出部の検出値と、前記排出側露点温度検出部の検出値とを用いて前記燃料電池における水分収支を示す指標値を算出する特性評価を実行する、燃料電池システム。
この燃料電池の特性評価をするための燃料電池評価システムによれば、燃料電池の特性評価において、供給側露点温度検出部及び排出側露点温度検出部が計測対象ガスから受ける負荷を低減できる。従って、燃料電池評価システムにおいて、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
[適用例4]
適用例2または適用例3に記載の燃料電池システムであって、前記計測対象ガスは、前記燃料電池システム内の水分をパージするためのパージ処理に用いられるパージガスを含み、前記制御部は、前記燃料電池システムの停止前に前記パージ処理を実行するとともに、前記パージ処理の際には、前記温度検出部の検出温度に拘わらず、前記露点温度検出部の検出値が室温より高い場合には、前記パージガスを前記第1の分岐配管に流入させ、前記露点温度検出部の検出値が室温以下である場合には、前記パージガスを前記第2の分岐配管にバイパスさせるバイパス処理を実行する、燃料電池システム。
この燃料電池システムによれば、第1の分岐配管に流れるパージガスが許容露点温度以下となったときにパージ処理の対象を第2の分岐配管に切り替えることができる。従って、第1の分岐配管に対してパージ処理が必要以上に実行されることを抑制でき、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
[適用例5]
適用例3に記載の燃料電池システムであって、さらに、前記第2の分岐配管に設けられ、前記供給側露点温度検出部とは計測範囲が異なる第2の供給側露点温度検出部と、前記第4の分岐配管に設けられ、前記排出側露点温度検出部とは計測範囲が異なる第2の排出側露点温度検出部とを備える、燃料電池システム。
この燃料電池システムによれば、計測範囲(計測レンジ)の異なる露点温度検出部を備えた2以上の並列な計測用配管が設けられているため、計測対象ガスの状態に応じて、計測対象ガスが流入する計測用配管を切り替えることができる。これによって、各露点温度検出部に対応した状態の計測対象ガスを適切に供給できるため、露点計が受ける負荷を軽減でき、その劣化を抑制できる。
[適用例6]
燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部とを備える燃料電池システムの起動方法であって、
(a)前記計測対象ガスのガス温度を検出する工程と、
(b)前記ガス温度が許容温度範囲にある場合には、前記第1の分岐配管へ前記計測対象ガスの全てを流入させ、前記ガス温度が前記許容温度範囲から外れる場合には、前記第2の分岐配管に前記計測対象ガスの一部または全部をバイパスさせる工程と、
を備える、燃料電池システムの起動方法。
この燃料電池システムの起動方法によれば、システム起動時に、露点温度検出部に対して、許容温度範囲から外れる計測対象ガスの全部が供給されてしまうことを抑制できる。従って、露点温度検出部が計測対象ガスから受ける負荷を軽減できるため、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
[適用例7]
燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部とを備える燃料電池システムの停止方法であって、
(a)前記第1の分岐配管をドライパージする工程と、
(b)前記露点温度検出部により、前記工程(a)のドライパージに用いられるパージガスの露点温度を検出する工程と、
(c)前記パージガスの露点温度が許容露点温度以下である場合には、前記第2の分岐配管に前記パージガスをバイパスさせて前記第2の分岐配管をドライパージする工程と、
を備える、燃料電池システムの停止方法。
この燃料電池システムの停止方法によれば、露点温度検出部の検出した露点温度が許容露点温度以下である場合には、ドライパージの対象である配管を第2の分岐配管に切り替える。従って、許容露点温度に到達した後も第1の分岐配管に対してパージガスが供給され続けることを抑制でき、パージガスによって露点温度検出部が受ける負荷を低減でき、露点温度を計測するためのセンサ素子が劣化してしまうことを抑制できる。
なお、本発明は、種々の形態で実現することが可能であり、例えば、ガスの露点温度を計測する露点計測部を備える燃料電池システムや燃料電池評価システム、燃料電池システムや燃料電池評価システムの制御方法および制御装置、それらの制御方法または制御装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の形態で実現することができる。
A.第1実施例:
図1は本発明の一実施例としての燃料電池評価システムの構成を示すブロック図である。図1は、燃料電池評価システム1000に、評価対象である固体高分子型の燃料電池FCが接続された状態を示している。この燃料電池評価システム1000は、ユーザから入力された運転条件に従って燃料電池FCを運転し、その運転状態に関する各種の計測値から燃料電池FCの特性を示す指標値を算出するシステムである。燃料電池評価システム1000は、ユーザインタフェース100と、アノードガス供給部200及びカソードガス供給部300と、アノード排ガス排出部400及びカソード排ガス排出部500と、制御部600とを備える。
ユーザインタフェース100は、入力部110と表示部120とを備え、ユーザと制御部600とのやりとりを仲介する。入力部110は、例えば、キーボードやタッチパネルによって構成することができ、ユーザから燃料電池FCの運転条件(後述)の入力を受け付ける。表示部120は、例えば、モニタディスプレイにより構成され、制御部600の指示により、ユーザに対して燃料電池FCの特性に関する計測結果やシステムの操作に関する情報等を表示する。
アノードガス供給部200は、燃料電池FCのアノード側に接続された供給配管201を介して燃料電池FCに燃料ガス(水素)を供給する。供給配管201には、その上流側から、燃料ガス供給源210と、加湿部220と、供給側露点計測部230と、入口側圧力計240とが設けられている。燃料ガス供給源210は、例えば、水素タンクによって構成でき、制御部600の指示により、供給配管201に水素を導入する。なお、燃料ガス供給源210は、図示せざるレギュレータやマスフロメータ、逆止弁などを備えており、供給水素の圧力や流量を制御部600の指示に応じて調整できる。
加湿部220は、制御部600の指示に応じて燃料電池FCに供給される水素を加湿する。加湿部220は、制御部600により温度制御された温水221に加湿対象であるガスを通過させて加湿するバブラー方式の加湿器により構成される。加湿部220には、温水221の温度を検出する加湿温度検出部225が設けられている。加湿温度検出部225は、検出値を制御部600へと送信する。なお、加湿部220を通過した直後の反応ガスは、加湿温度に対する飽和水蒸気に近い水蒸気量を含んでいる。
供給側露点計測部230は、加湿後の反応ガスの露点温度の実測値を検出し、制御部600へと送信する。供給側露点計測部230の詳細な構成については後述する。入口側圧力計240は、燃料電池FCの入口側の水素の圧力を計測し、その実測値を制御部600へと送信する。
カソードガス供給部300は、燃料電池FCのカソード側に接続された供給配管301を介して燃料電池FCに酸化ガス(酸素)を供給する。供給配管301には、その上流側から、酸化ガス供給源310と、加湿部320と、供給側露点計測部330と、入口側圧力計340とが接続されている。酸化ガス供給源310は、例えば、エアコンプレッサによって構成され、制御部600の指示により圧力制御された高圧空気を供給配管301に導入する。また、酸化ガス供給源310は、マスフロメータ(図示せず)を備えており、制御部600の指示により、高圧空気の配管301への導入量を制御する。加湿部320は、アノードガス供給部200の加湿部320と同様な構成であり、加湿に用いられる温水321と、その温度を検出する加湿温度検出部325とを備えている。なお、供給側露点計測部330及び入口側圧力計340についても、アノードガス供給部200の供給側露点計測部230及び入口側圧力計240と同様な構成である。
アノード排ガス排出部400及びカソード排ガス排出部500はそれぞれ、燃料電池FCのアノード側及びカソード側に接続された排出配管401,501を介して反応に供されることのなかった反応ガスを含む排ガスを燃料電池FCの外部に排出する。アノード排ガス排出部400の排出配管401には上流側から、燃料電池FCの排出側のガスの圧力(背圧)の実測値を計測するための出口側圧力計410と、排ガスの露点温度を計測するための排出側露点温度計測部420と、制御部600の指示に従って背圧を調整するための背圧調整弁430とが設けられている。出口側圧力計410及び排出側露点計測部420はその計測値を制御部600に送信する。
カソード排ガス排出部500は、燃料電池FCのカソード側に接続された排出配管501を介して反応に供されることのなかった酸化ガスを含むカソード排ガスを燃料電池FCの外部に排出する。カソード排ガス排出部500の排出配管501には上流側から、出口側圧力計510と、排出側露点温度計測部520と、背圧調整弁530とが設けられている。出口側圧力計510及び排出側露点温度計測部520、背圧調整弁530については、アノード排ガス排出部400の出口側圧力計410及び排出側露点温度計測部420、背圧調整弁430と同様であるため説明を省略する。
なお、本明細書中において、システム内を流通し、ガス供給部200,300や排ガス排出部400,500において圧力や露点温度の計測対象となるガスを「計測対象ガス」と呼ぶ。本実施例では、この計測対象ガスには、燃料電池FCに供給される反応ガス及びアノード排ガス、カソード排ガスが含まれる。
制御部600は、中央演算処理装置及び主記憶装置を備えるマイクロコンピュータによって構成することができる。制御部600は、ユーザが入力部110を介して入力した運転条件に応じて、上述のガス供給部200,300や排ガス排出部400,500を制御し、燃料電池FCに供給される反応ガスの状態を変化させつつ、燃料電池FCに発電させる。また、制御部600は、計測対象ガスの流量や圧力、露点温度などのガス状態値を用いて、燃料電池FCの特性を示す指標値を算出する。具体的には、制御部600は、供給側露点計測部230,330の計測値と排出側露点計測部420,520の計測値との差を用いて燃料電池FCにおける水分収支を示す指標値を算出することができる。より具体的には、例えば、アノードとカソードとの間の水分の移動量を算出することができる。さらに、制御部600は、入口側圧力計240,340の計測値と出口側圧力計410,510の計測値とを用いて燃料電池FCにおける計測対象ガスの圧力損失を算出することができる。なお、制御部600は、これらの算出結果を表示部120に表示する。
なお、この燃料電池評価システム1000の燃料電池FCと供給側露点計測部230,330との間には、反応ガスの温度を制御するための入口側ガス温度制御機構が設けられているものとしても良い。また、燃料電池FCと出口側圧力計410,510との間には、排ガス中に含まれる水蒸気の結露を抑制するために排ガスを加熱する排ガス温度制御機構が設けられているものとしても良い。
図2は、アノードガス供給部200の供給側露点計測部230の構成を示す概略図である。なお、他の露点計測部330,420,520の構成も図2に示す構成と同様であるため、説明を省略する。供給側露点計測部230は、供給配管201から上流側三方弁202によって分岐した第1の分岐配管10と第2の分岐配管20とを有する。第1と第2の分岐配管10,20はそれぞれ、下流側三方弁203によって下流側において再び供給配管201と合流する。
第1の分岐配管10には上流側から、温度検出部12と、露点計13と、圧力計14と、流量計15とが設けられている。ところで、露点計13の上流側の供給配管201及び第1の分岐配管10には電熱線を巻き付けることにより、配管ヒータ11が設けられている。配管ヒータ11は、制御部600の指示により供給配管201や第1の分岐配管10に流入する計測対象ガスを加熱する。配管ヒータ11によって計測対象ガスを加熱する理由は後述する。なお、配管ヒータ11は、他の部位の配管にも設けられるものとしても良い。配管ヒータ11は少なくとも、露点計13の入口側近傍に設けられていることが好ましい。
温度検出部12は、配管ヒータ11によって加熱された露点計13の近傍における計測対象ガスの温度の実測値を検出し、制御部600へと送信する。露点計13は、例えば、高分子容量式露点計によって構成できる。ここで、高分子容量式露点計とは、露点温度を計測するためのセンサ素子が、高分子膜を誘電体とした一種のコンデンサとして形成された露点計である。高分子容量式露点計は、高分子膜の湿潤状態に応じた静電容量の変化を露点温度の変化として計測する。圧力計14及び流量計15は、第1の分岐配管10に流入する計測対象ガスの圧力と流量とを計測する。露点計13及び圧力計14、流量計15の計測値はいずれも制御部600へと送信される。圧力計14の計測値は、計測対象ガス中の水蒸気量を算出する際に用いられ、流量計15の計測値は計測用配管10へ流入する反応ガスの流量の制御に用いられる。以後、この第1の分岐配管10を「計測用配管10」と呼ぶ。
第2の分岐配管20には流量調整弁22が設けられている。流量調整弁22は、例えば、ボールバルブによって構成することができる。制御部600は、計測用配管10の流量計15の実測値に基づいて、この流量調整弁22の開度を制御することにより、第1と第2の分岐配管10,20のそれぞれに流入する計測対象ガスのガス流量の比率を制御する。即ち、制御部600は、供給側露点計測部230に供給された計測対象ガスの一部または全部を、第2の分岐配管20に流入させることにより、第1の分岐配管10からバイパスさせることができる。以後、この第2の分岐配管20を「バイパス配管20」と呼ぶ。
図3(A),(B),(C)は、露点計測部230の計測用配管10及びバイパス配管20における計測対象ガスの流れを説明するための説明図である。図3(A),(B),(C)はそれぞれ、計測対象ガスの流れを示す矢印が図示されており、計測対象ガスが導通していない配管を破線で図示している点以外は、図2とほぼ同じである。
図3(A)は、2つの三方弁202,203の全てのポートが開放されることにより、計測対象ガスの一部をバイパス配管20へとバイパスさせた状態を示している。以後、この状態を「バイパス配管20が接続された状態」と呼ぶ。なお、このように計測対象ガスをバイパスさせる理由については後述する。一方、図3(B)は、2つの三方弁202,203のバイパス配管20と接続されたポートを閉じることにより、計測対象ガスの全部が計測用配管10に流入している状態を示している。以後、この状態を「バイパス配管20が遮断された状態」と呼ぶ。図3(C)は、2つの三方弁202,203の計測用配管10との接続ポートを閉じるとともに、バイパス配管20の接続ポートを開き、計測対象ガスの全てがバイパス配管20に流入する状態を示している。この状態を「計測用配管10が遮断された状態」と呼ぶ。
図4は、燃料電池評価システム1000の起動時における制御部600の処理手順を示すフローチャートである。この燃料電池評価システム1000では、システム起動時であって、燃料電池FCの特性評価のための計測処理を実行する前に、以下に説明するシステム起動処理を実行する。なお、以下の説明において、制御部600が実行する供給側露点計測部230に対する制御は、他の露点計測部330,420,520に対しても同様に実行されるが、その説明は省略する。
ステップS100では、制御部600は、供給側露点計測部230の計測用配管10が接続された状態であるか否かを判定する。計測用配管10が接続されている場合には、制御部600は、2つの三方弁202,203のポートの開閉を制御して、計測用配管10を遮断するとともに、バイパス配管20が供給配管201に接続された状態とする(ステップS110:図3(C))。一方、計測用配管10が遮断された状態である場合には、制御部600は、そのままステップS120の処理を実行する。
ステップS120では、制御部600は、入力部110を介してユーザからの燃料電池FCの運転条件の入力を受け付ける。本実施例においては、燃料電池FCの運転条件として、計測対象ガスの流量と、各加湿部220,320における計測対象ガスの加湿温度と、計測対象ガスの背圧とが入力・設定される。ステップS130では、制御部600は、入力された運転条件に従って、各加湿部220,320の温水221,321(図1)の温度を上昇させるとともに、配管ヒータ11(図2)の温度を上昇させる。なお、制御部600は、配管ヒータ11による加熱温度を、加湿部220,320の加湿温度より高く制御することが好ましい。また、制御部600は、計測対象ガスの昇温を効果的に実行するために、流量計15の実測値が大きいほど配管ヒータ11による加熱温度を高く制御することが好ましい。
ここで、配管ヒータ11によって計測対象ガスを加熱する理由は、配管ヒータ11により計測対象ガスの温度を露点計測のための好適な温度範囲に調整するためである。計測対象ガスの温度がその露点温度(加湿温度)より低下すると、計測対象ガス中に含まれる水蒸気は結露を始める。特に、露点計13の近傍で結露による液水が発生すると、センサ素子が水没して露点温度を正常に計測できない。また、排出側露点計測部420,520において結露による液水が発生した場合には、計測対象ガス中に燃料電池FC内部で混入した酸性の不純物が当該液水に含まれる可能性があり、その不純物の付着が計測素子の劣化を引き起こすおそれがある。一方、計測対象ガスの温度がその露点温度に対して高くなりすぎると、露点計13の高分子膜が極度の乾燥状態に至り、不可逆的に劣化してしまう可能性がある。そこで、一般には、露点計13の計測対象ガスの温度Tgは、計測対象ガスの露点温度Tdに対して下記の不等式(1)の範囲にあることが好ましい。
Td≦Tg≦Td+20℃ …(1)
ステップS140では、制御部600は、温度検出部12の計測値を配管ヒータ11による計測用配管10の加熱温度として検出する。また、制御部600は、加湿温度検出部225により計測対象ガスの加湿温度を検出する。制御部600は、温度検出部12の実測値を、計測用配管10に流入したときの計測対象ガスの温度Tgの予測値として用い、加湿温度の実測値を露点温度Tdの予測値として用いて、温度検出部12の計測値が上記不等式(1)に示された許容範囲にあるか否かを判定する。制御部600は、温度検出部12の計測値がこの許容範囲から外れる場合には、配管ヒータ11によって計測対象ガスを十分に加熱できないため、露点計13によって露点計測を開始するには不適当な温度であると判定する。
この場合には、制御部600は、加湿部220の加湿温度及び配管ヒータ11の加熱温度の昇温工程を継続する(ステップS130)。即ち、ステップS130〜S140の処理ループにおいて、露点計13を通過する計測対象ガスの温度及び加湿温度の調整が継続される。なお、この処理ループの間には、計測対象ガスは、計測用配管10に流入しないため、上記の不等式(1)の範囲から外れる温度の計測対象ガスによって露点計13のセンサ素子が負荷を受けることを抑制できる。
なお、温度検出部12の計測値が上記許容範囲の下限値より低い場合には、制御部600は、配管ヒータ11による加熱温度をさらに上昇させる処理を実行するものとしても良い。また、温度検出部12の計測値が上記許容範囲の上限値より高い場合には、制御部600は、配管ヒータ11による加熱温度を低下させる処理を実行するものとしても良い。これによって、反応ガスの温度をより適切に調整することが可能である。
ステップS140において、温度検出部12の計測値が許容範囲内にあると判定された場合には、制御部600は、計測用配管10が接続された状態(図3(A))とする(ステップS150)。これによって、温度調整された計測対象ガスの一部が計測用配管10の露点計13に供給される。なお、この状態では、計測対象ガスの一部がバイパス配管20により計測用配管10からバイパスされている分だけ露点計13のセンサ素子が計測対象ガスから受ける負荷は軽減されている。
さらに、制御部600は、温度検出部12によって計測対象ガスの温度を検出する。制御部600は、計測対象ガスの温度の実測値を上記不等式(1)の温度Tgとし、露点計13の計測値を露点温度Tdとして用いて、計測対象ガスの温度が上記不等式(1)に示された許容範囲にあるか否かを判定する(ステップS160)。制御部600は、計測対象ガスの温度が許容範囲内にあるときには、バイパス配管20を遮断し(図3(B))、全ての計測対象ガスを計測用配管10へと流入させる(ステップS170)。制御部600は、このシステム起動処理実行後、燃料電池FCの特性評価のための計測処理の実行を開始する。一方、ステップS160において、計測対象ガスの温度が許容範囲から外れる場合には、制御部600は、計測対象ガスの温度が許容範囲内に入るまで、計測用配管10とバイパス配管20との両方に計測対象ガスが流入する状態を継続する。なお、制御部600は、計測対象ガスの温度が許容範囲となるまで、配管ヒータ11の温度及び加湿器120の加湿温度を制御して計測対象ガスの状態を調整する。
このように、本実施例の燃料電池評価システム1000では、計測対象ガスの温度及び露点温度の調整が比較的不安定であるシステム起動時において、配管ヒータ11によって計測用配管10が十分に加熱されるまで、計測対象ガスを露点計13に供給しない。また、計測対象ガスの温度が許容範囲内となるまで、露点計13に対する計測対象ガスの供給量が低減される。従って、温度が露点計測に好適な許容範囲にない計測対象ガスの供給により、露点計13が液水に水没したり、劣化してしまったりすることを抑制できる。また、計測対象ガスの温度が許容範囲内にあるときに、露点温度の計測を開始することができるため、より適切な計測結果を得ることができる。
図5は、燃料電池評価システム1000の停止時における制御部600の処理手順を示すフローチャートである。燃料電池評価システム1000の動作時にシステム内を流通する計測対象ガスには多量の水分が含まれている。そのため、システム停止後に、システム内にその水分が残存した場合には、当該水分がシステム内の計測機器や配管などの各構成部の劣化を引き起こす可能性がある。そこで、この燃料電池評価システム1000では、システム停止時に、以下に説明するシステム停止処理を実行することによって、システム停止後にシステム内に水分が残存してしまうことを抑制する。なお、以下の説明において、制御部600が実行する供給側露点計測部230に対する制御は、他の露点計測部330,420,520に対しても同様に実行されるが、その説明は省略する。
ステップS210では、制御部600は加湿部220,320(図1)を停止する。具体的には、温水221,321の温度制御を停止するとともに、温水221,321への配管の接続を解除するとともに、加湿部220,320内の配管222,322を接続する。これにより、加湿部220,320に供給されるガスは、加湿されることなく、加湿部220,320を通過する。
ステップS220では、制御部600は、ドライパージ処理を実行する。具体的には、燃料ガス供給源210及び酸化ガス供給源310のそれぞれから、計測処理実行時にシステム内に流通された計測対象ガスよりも圧力を低下させ、流量を増大したパージガスをシステム内に流通させて、システム内のガス系統における水分をパージする。
パージガスは、露点計測部230,330,420,520において配管ヒータ11(図2)により加熱される。ところで、このシステム停止処理が実行されるのは、計測処理実行後である。そのため、このステップS220では、供給側露点計測部230は、バイパス配管20が遮断された状態であり(図3(B))、パージガスの全てが計測用配管10に流れる。
ステップS230では、制御部600はドライパージが完了したか否かを判定する。具体的には、供給側露点計測部230の露点計13により、パージガスの露点温度を計測する。制御部600は、パージガスの露点温度が室温より高い場合には、システム停止後に室温状態となったときに計測用配管10内において水蒸気が結露する可能性があるため、ドライパージ処理(ステップS220)を続行して露点温度を低下させる。一方、パージガスの露点温度が室温より低い場合には、システム停止後の室温状態において結露が発生する可能性がほとんどないため、ドライパージ処理を完了する。即ち、このシステム停止処理においては、パージガスが露点計13の計測対象ガスとなる。
このように、計測用配管10に対するドライパージ処理を、結露の可能性がほとんどなくなるまで確実に実行することができる。従って、システム停止後に結露によって発生した液水により露点計13が劣化してしまうことを抑制できる。また、結露の可能性がほとんどなくなったと判定されたときにドライパージ処理を終了するため、十分に水分がパージされた後にも無駄にパージガスが計測用配管10に流れることを抑制できる。従って、露点計13がパージガスの熱に曝される余剰時間を低減でき、システム停止処理実行中に露点計13が劣化してしまう可能性を低減できる。
ステップS230では、制御部600は、供給側露点計測部230の配管接続を切り替えて、計測用配管10が遮断された状態とする(図3(C))。ステップS240では、再び、所定の時間(例えば5分程度)だけドライパージ処理を実行する。即ち、ステップS220のドライパージ処理では、計測用配管10をパージしていたが、このステップS240のドライパージ処理では、パージガスの全てをバイパス配管20に流入させて、バイパス配管20をパージする。バイパス配管20に対するドライパージ処理が完了した後に、制御部600は、配管ヒータ11による加熱を停止し(ステップS260)、システムを停止状態とする。
このように、この燃料電池評価システム1000によれば、システムの起動時や停止時において、露点計13の劣化の原因となる状態のガスの全部または一部を、バイパス配管20にバイパスさせることができる。従って、露点計13への負荷を低減することができ、その劣化を抑制することができる。
B.第2実施例:
図6(A)は、本発明の第2実施例としての燃料電池評価システムの露点計測部230A,330A,420A,520Aの構成を示す概略図である。図6(A)は、高分子容量式の露点計13に換えて鏡面式露点計13Aが図示されている点以外は、ほぼ図2と同じである。なお、第2実施例の燃料電池評価システムの全体構成は、露点計測部230,330,420,520に換えて、この露点計測部230A,330A,420A,520Aが用いられている点以外は、第1実施例の燃料電池評価システム1000とほぼ同じである(図1)。
図6(B)は、鏡面式露点計13Aの構成を示す概略図である。鏡面式露点計13Aは、発光素子1と、受光素子2と、ミラー3と、ペルチェ素子4とを備える。発光素子1及び受光素子2は、計測対象ガスが供給される計測空間MSを挟んで、ミラー3と対向するように配置されている。より具体的には、発光素子1は、ミラー3の鏡面に向かって光を射出可能なように配置されており、受光素子2は、ミラー3の鏡面によって反射された発光素子1の射出光を受光できるように配置されている。ミラー3は、その鏡面が計測空間MSに供給された反応ガスに曝されるように配置されている。ミラー3の鏡面とは反対側の面には、ペルチェ素子4が配置されている。ペルチェ素子4は、制御部600の指示によりミラー3を冷却する。鏡面式露点計13Aは、ペルチェ素子4によって冷却されるミラー3の鏡面に、計測対象ガス中の水蒸気が結露するのを発光素子1及び受光素子2によって光学的に検出する。そして、そのときのミラー3の鏡面温度を、計測対象ガスの露点温度として検出する。
ところで、鏡面式露点計13Aを用いて計測する場合に、計測対象ガスの温度がその露点温度より低い場合には、第1実施例で説明した高分子容量式の露点計13と同様に、ガス中の水蒸気の結露により発生した液水により水没してしまう可能性がある。また、計測対象ガスの温度が高すぎる場合(例えば、150℃以上の場合)には、ペルチェ素子4がミラー3を冷却するために高出力で動作し続けることとなり、鏡面式露点計13Aの劣化を促進する可能性がある。そこで、この第2実施例の燃料電池評価システムでは、一般に計測対象ガスの温度制御が不安定な状態であるシステム起動時に、鏡面式露点計13Aに対する負荷を軽減できるシステム起動処理を実行する。
図7は、第2実施例の燃料電池評価システムにおけるシステム起動処理の処理手順を示すフローチャートである。図7は、ステップS100,S110に換えてステップS111,S112,S114,が追加されている点と、ステップS150,S160に換えて、ステップS142,S144,S146が追加されている点以外は、図4と同様である。なお、以下の説明において、制御部600が実行する供給側露点計測部230Aに対する制御は、他の露点計測部330A,420A,520Aに対しても同様に実行されるが、その説明は省略する。
制御部600は、ステップS111において、供給側露点計測部230Aのバイパ配管20が供給配管201に接続された状態とし、計測用配管10及びバイパス配管20のそれぞれに計測対象ガスが流入可能な状態とする(図3(A))。制御部600は、ステップS112においてペルチェ素子4の作動状況を確認し、作動状態にある場合には停止させる(ステップS114)。ステップS120では、ユーザから燃料電池FCの運転条件の入力を受け付け、その運転条件に従って、配管ヒータ11及び加湿部220,320の加湿温度の昇温を開始する(ステップS130)。
ステップS130で所定の時間(例えば10分程度)だけ昇温処理を継続した後、制御部600は、ステップS140において、加湿温度検出部225の計測値を計測対象ガスの露点温度の予測値として用いて、温度検出部12による計測対象ガスの検出温度が、第1実施例で説明した許容範囲内(不等式(1))にあるか否かを判定する。温度検出部12の計測値が許容範囲から外れている場合には、配管ヒータ11による計測用配管10の加熱が十分でないものとして、加湿部220,320の加湿温度及び配管ヒータ11の昇温処理を継続する(ステップS130)。
一方、温度検出部12の計測値が許容範囲内であった場合には、制御部600は、現時点における計測対象ガスの露点温度を計測するためにペルチェ素子4を作動させる(ステップS142)。計測対象ガスの露点温度が、ユーザにより入力された運転条件に従って設定された露点温度の目標値に到達していない場合には、制御部600は、ペルチェ素子4の作動を停止する(ステップS146)。そして、ステップS130において、加湿部220,320の加湿温度及び配管ヒータ11の昇温処理を継続して、計測対象ガスの露点温度を上昇させる。即ち、ステップS146でペルチェ素子4の作動を停止することにより、ステップS130における計測対象ガスの昇温に応じてペルチェ素子4が過剰に冷却作動を続けてしまうことを回避することができる。
ステップS140において計測対象ガスの温度が許容範囲内であり、かつ、ステップS144において計測対象ガスの露点温度が目標値に到達していた場合には、制御部600は、ステップS170において配管の接続を切り替える。即ち、制御部600は、供給側露点計測部230Aのバイパス配管20を遮断された状態とする(図3(B))。これにより、計測対象ガスの全てが計測用配管10へと流入可能な状態となる。この後、制御部600は、燃料電池評価システムによる計測処理を開始する。
このように、第2実施例の燃料電池評価装置におけるシステム起動処理によれば、配管ヒータ11による計測対象ガスの加熱が十分でない場合や、過剰である場合には、ペルチェ素子4の作動を停止する。また、計測対象ガスが目標露点温度に到達していない場合にも、ペルチェ素子4の作動を停止する。従って、ペルチェ素子4が配管ヒータ11による加熱温度に応じて過剰に作動し続けて鏡面式露点計13Aの劣化が促進されることを抑制できる。また、計測対象ガスの温度が露点温度に比較して著しく低い場合に、ペルチェ素子4が作動することによって、ミラー3が液水により水没してしまうことを抑制できる。
ところで、第2実施例の燃料電池評価システムでも、第1実施例の燃料電池評価システム1000と同様に、システム停止後のシステムのガス系統内に余分な水分が残存しないようにドライパージ処理を実行する。しかし、ペルチェ素子4が作動した状態で鏡面式露点計13Aのミラー3が高温(例えば100℃以上)なパージガスに長時間に渡って曝されると、ペルチェ素子4に対する負荷が大きくなり、その劣化を促進する可能性がある。そこで、第2実施例の燃料電池評価システムでは、そのシステム停止時に以下に説明するシステム停止処理を実行する。
図8は、第2実施例の燃料電池評価システムのシステム停止時に実行されるシステム停止処理の処理手順を示すフローチャートである。図8は、ステップS212,S214,S222,S224,S235が追加されている点以外は、図5とほぼ同じである。なお、以下の説明において、制御部600が実行する供給側露点計測部230Aに対する制御は、他の露点計測部330A,420A,520Aに対しても同様に実行されるが、その説明は省略する。
制御部600は、ステップS210で加湿部220,320を駆動停止させる。また、制御部600は、ステップS212,S214において、図7のステップS112,S114で説明したのと同様の手順で、ペルチェ素子4の作動を停止させる。ステップS220では、制御部600は、ドライパージ処理を実行する。なお、このステップS220におけるドライパージ処理では、供給側露点計測部230Aのバイパス配管20は遮断されており、計測用配管10に対してドライパージ処理が実行される。このように、ペルチェ素子4の作動を停止した状態で鏡面式露点計13Aにパージガスが供給されるため、パージガスによるペルチェ素子4に対する負荷が軽減され、鏡面式露点計13Aの劣化が抑制される。
制御部600は、ステップS220のドライパージ処理を所定の時間(例えば10分程度)だけ継続する。その後、制御部600は、ステップS222〜S230において計測用配管10に対するドライパージ処理の完了を判定するための処理を実行する。具体的には、制御部600は、ステップS222において配管ヒータ11の温度を所定の温度(例えば、50℃程度)まで低下させ、ステップS224においてペルチェ素子4を作動させる。ステップS222で配管ヒータ11の温度を低下させるのは、パージガスの温度を低下させて、ペルチェ素子4に対する負荷を軽減するためである。ステップS240では、制御部600は、鏡面式露点計13Aにパージガスの露点温度を検出させ、検出されたパージガスの露点温度が室温以下である場合に、計測用配管10に対するドライパージ処理が完了したと判定する。
ステップS230において、ドライパージ処理が完了したと判定された場合には、制御部600は、ステップS240,S250において、バイパス配管20に対するドライパージ処理を実行する。バイパス配管20に対するドライパージ処理の後、制御部600は、配管ヒータ11の加熱を停止し(ステップS260)、燃料電池評価システム全体を停止させる。一方、ステップS230において、計測用配管10に対するドライパージ処理が完了していないと判定された場合には、制御部600は、配管ヒータ11の温度を再びドライパージ処理実行時の温度にまで上昇させ(ステップS235)、ペルチェ素子4を作動停止させるとともに(ステップS214)、計測用配管10に対するドライパージ処理を再開する(ステップS220)。
このシステム停止処理によれば、第1実施例と同様に、鏡面式露点計13Aを備える計測用配管10に対するドライパージ処理の完了をパージガスの露点温度を計測して判定する。そのため、第1実施例と同様に、計測用配管10にパージガスが供給される余剰時間を低減でき、パージガスによる鏡面式露点計13Aに対する負荷が軽減される。また、ドライパージ処理の完了判定処理実行時以外は、鏡面式露点計13Aのペルチェ素子4の作動を停止させるため、ペルチェ素子4がパージガスの温度に応じて高出力で作動してしまうことを抑制でき、その劣化を抑制できる。
このように、第2実施例の燃料電池評価システムによれば、システムの起動時において、計測対象ガスの温度が許容範囲から外れている場合や、計測対象ガスが目標露点温度に到達していない場合に、ペルチェ素子4が必要以上に作動してしまうことを抑制できる。従って、過負荷による鏡面式露点計13Aの劣化を抑制することができる。また、ドライパージ処理実行時にも、適切にペルチェ素子4の作動を制御するため、鏡面式露点計13Aの劣化を抑制できる。
C.第3実施例:
図9は、本発明の第3実施例としての燃料電池評価システムの露点計測部230B,330B,420B,520Bの構成を示す概略図である。図9は、第2のバイパス配管30が追加されている点以外は、図2とほぼ同じである。以下においては、上記実施例で説明したバイパス配管20を、便宜上、「第1のバイパス配管20」と呼ぶ。また、以下において、供給側露点計測部230Bについて説明するが、他の露点計測部330B,420B,520Bについても同様であるため、説明は省略する。なお、第3実施例の燃料電池評価システムの全体構成は、各露点計測部220,320,420,520に換えて、この各露点計測部230B,330B,420B,520Bが用いられる点以外は、第1実施例と同様である(図1)。
第2のバイパス配管30は、2つの三方弁202,203によって、供給配管201から分岐して、計測用配管10及び第1のバイパス配管20と並列に接続されている。即ち、この供給側露点計測部230Bでは、計測用配管10及び第1と第2のバイパス配管20,30が、第1と第2のバイパス配管20,30のそれぞれに設けられた三方弁202,203によって互いに連結されている。なお、配管ヒータ11は、露点計13の上流側の供給配管201から露点計13の入口までの配管に設けられている。この供給側露点計測部230Bでは、このような構成により、多様な配管接続態様を実現できる。
図10(A),(B),(C),(D)は、供給側露点計測部230Bの各配管10,20,30の接続態様の例を説明するための説明図である。図10(A),(B),(C),(D)はそれぞれ、計測対象ガスの流れを示す矢印が図示されており、計測対象ガスが導通していない配管を破線で図示している点以外は、図9とほぼ同じである。
図10(A)は、第2のバイパス配管30が遮断され、計測用配管10と第1のバイパス配管20とが供給配管201に接続された状態を示している。図10(B)は、計測用配管10と第1のバイパス配管20とが遮断され、第2のバイパス配管30が供給配管201と接続された状態を示している。図10(C)は、計測用配管10と第2のバイパス配管30とが遮断され、第1のバイパス配管20のみが供給配管201と接続された状態を示している。図10(D)は、計測用配管10のみが供給配管201と接続され、第1と第2のバイパス配管20,30が遮断された状態を示している。
制御部600は、図10(A)に示す配管接続態様で燃料電池評価システムの計測処理を実行する。この配管接続態様では、第1のバイパス配管20の流量調整弁22によって、計測用配管10に流れるガス量を制御できる。即ち、第1のバイパス配管20は、燃料電池FCの特性を評価する計測処理において、計測用配管10への計測対象ガスの流量を調整する流量調整配管として機能する。制御部600は、計測用配管10へと供給される計測対象ガスの流量を調整して、露点計13が計測対象ガスから受ける負荷を軽減させつつ、露点温度の計測処理を実行することができる。
また、この燃料電池評価システムでは、システム起動時に、第1実施例で説明したシステム起動処理と同様な処理を実行する(図4)。具体的には、制御部600は、ステップS100〜S140では、計測用配管10及び第1のバイパス配管20を遮断し、第2のバイパス配管30に計測対象ガスを流入させて各処理工程を実行する。即ち、図10(B)の配管接続態様でステップS100〜S140が実行される。そして、ステップS150では、第2のバイパス配管30を遮断して、図10(A)に示す配管接続態様へと切り替える。即ち、この場合には、計測用配管10及び第1のバイパス配管20が、計測処理において計測に用いられる計測用配管として機能し、第2のバイパス配管30が当該計測用配管に対するバイパス配管として機能していると解釈できる。その後、ステップS170では、図10(A)の配管接続態様から図10(D)の配管接続態様へと切り替えられる。これによって、計測用配管10に全ての計測対象ガスが流入した状態で計測処理が開始される。
さらに、この燃料電池評価システムでは、システム停止時に、第1実施例で説明したシステム停止処理におけるドライパージ処理(図5;ステップS220,S250)と同様な処理を実行する。具体的には、図10(B)〜図10(D)に示した配管接続態様を順に切り替えることにより、第2のバイパス30、第2のバイパス配管20,計測用配管10の順に、各配管10,20,30ごとにドライパージ処理が実行される。なお、計測用配管10に対するドライパージ処理が実行される場合には、図5のステップS230と同様なドライパージ処理の完了判定処理が実行される。
このように、第1と第2のバイパス配管20,30のように、計測用配管10と並列な2以上のバイパス配管を設けることにより、計測用配管10の露点計13に供給されるガス量をより適切に制御することができる。従って、さらに、露点計13の劣化を抑制できる。
D.第4実施例:
図11は、本発明の第4実施例としての燃料電池評価システムの露点計測部230C,330C,420C,520Cの構成を示す概略図である。図11は、第1のバイパス配管20と第2のバイパス配管30との間に、第2の計測用配管40が追加されている点以外は、図9とほぼ同じである。以下においては、上記実施例で説明した計測用配管10を、便宜上、「第1の計測用配管10」と呼ぶ。また、以下において、供給側露点計測部230Cについて説明するが、他の露点計測部330C,420C,520Cも同様であるため、説明は省略する。なお、第3実施例の燃料電池評価システムの全体構成は、各露点計測部220,320,420,520に換えて、この各露点計測部230B,330B,420B,520Bが用いられる点以外は、第1実施例と同様である(図1)。
第2の計測用配管40は、第1の計測用配管10や第1と第2のバイパス配管20,30と同様に、供給配管201から分岐した配管である。具体的には、第1と第2のバイパス配管20,30の間において三方弁202,203によって連結されている。第2の計測用配管40は、露点計13に換えて露点計13Cが設けられている点と、流量計15がない点以外は、第1の計測用配管10と同様である。なお、配管ヒータ11も、第1の計測用配管10と同様に、第2の計測用配管40において、露点計13Cの入口まで設けられている。
ここで、第1の計測用配管10の露点計13と第2の計測用配管40の露点計13Cとはそれぞれ計測レンジが異なる露点計である。具体的には、第1の計測用配管10の露点計13は、高温(70℃以上)の露点温度の計測に対応でき、第2の計測用配管40の露点計13Cは、低温(例えば90℃以下)の露点温度の計測に対応できる。なお、以下において第1の計測用配管10の露点計13を「高露点計測用露点計13」と呼び、第2の計測用配管40の露点計13Cを「低露点計測用露点計13C」と呼ぶ。
図12(A),(B)は、供給側露点計測部230Cにおける配管接続態様を説明するための説明図である。図12(A),(B)はそれぞれ、計測対象ガスの流れを示す矢印が図示されている点と、計測対象ガスが導通しない配管を破線で示してある点以外は、図11とほぼ同じである。
図12(A)は、計測対象ガスの露点温度が低温である場合の配管接続態様であり、図12(B)は、計測対象ガスの露点温度が高温である場合の配管接続態様である。即ち、制御部600は、計測対象ガスの露点温度が、許容露点温度(例えば80℃)に到達するまで、供給側露点計測部230Cを図12(A)に示す低露点温度計測時の配管接続態様とする。また、制御部600は、計測対象ガスの露点温度が許容露点温度に到達し、高温となった場合には、供給側露点計測部230Cを、図12(A)に示す高露点温度計測時の配管接続態様へと切り替える。なお、図12(A)では、第1のバイパス配管20は、第2の計測用配管40に対する計測対象ガスの流量を調整する流量調整用配管として機能する。一方、図12(B)では、第1のバイパス配管20は、第1の計測用配管10に対する計測対象ガスの流量を調整する流量調整用配管として機能する。
この燃料電池評価システムでは、システム起動時に、第1実施例で説明したシステム起動処理と同様な処理を実行する(図4)。ただし、制御部600は、システムの起動当初には、第1の計測用配管10を遮断し、第2の計測用配管40と、第1と第2のバイパス配管20,30とが接続された状態で、ステップS100〜S140の工程を実行する。そして、制御部600は、ステップS130〜S140の処理ループにおいて、加湿部220,320における加湿温度の実測値が80℃に到達した場合には、第2の計測用配管40を遮断し、第1の計測用配管10を接続する。なお、制御部600は、配管ヒータ11の温度が許容範囲である場合には、第2のバイパス配管30を遮断して、燃料電池FCの特性評価のための計測処理へと移行する。
また、この燃料電池評価システムでは、システム停止時に、第1実施例で説明したシステム停止処理におけるドライパージ処理(図5;ステップS220,S250)と同様な処理を実行する。具体的には、第2のバイパス30、第2のバイパス配管20,第2の計測用配管40,第1の計測用配管10の順に、各配管10,20,30,40ごとにドライパージ処理が実行される。なお、第1と第2の計測用配管10,40に対するドライパージ処理が実行される場合には、図5のステップS230と同様なドライパージ処理の完了判定処理が実行される。
このように、第4実施例の燃料電池評価システムでは、露点計測部に計測レンジの異なる露点計を備えた2以上の並列な計測用配管を設け、計測対象ガスの露点温度に応じて、各計測用配管の接続を切り替える。これによって、各露点計の計測レンジに対応した状態の計測対象ガスを適切に供給できるため、露点計が受ける負荷を軽減でき、その劣化を抑制できる。
E.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。例えば、燃料電池評価システムを燃料電池評価装置として実施することも可能である。また、他に、次のような変形も可能である。
E1.変形例1:
上記実施例において、燃料電池評価システムの評価対象である燃料電池FCは固体高分子型燃料電池であったが、他の種類の燃料電池を評価対象とするものとしても良い。
E2.変形例2:
上記実施例において、燃料電池評価システム1000が計測用配管10及びバイパス配管20を備えていた。しかし、計測用配管10及びバイパス配管20は、燃料電池評価システム以外の燃料電池を備える他の燃料電池システムに設けられているものとしても良い。例えば、燃料電池に供給される反応ガスの露点温度を制御しつつ、燃料電池を運転する燃料電池システムに用いられるものとしても良い。
E3.変形例3:
上記実施例において、計測用配管10に設けられた圧力計14及び流量計15や、バイパス配管に設けられた流量調整弁22は省略されるものとしても良い。また、上記実施例では、システム起動時及びシステム停止時に三方弁202,203によって、計測用配管10またはバイパス配管20のいずれかを遮断する制御を実行していた。しかし、そうした制御を行うことなく、システムの起動時及び停止時には常時、計測用配管10及びバイパス配管20のいずれにもガスが導通されるように制御されるものとしても良い。このような構成であっても、システム起動時及びドライパージ処理実行時に露点計13に供給されるガス流量を低減できるため、露点計13の劣化を抑制できる。
E4.変形例4:
上記実施例において、制御部600は、システム起動時及びシステム停止時に、計測対象ガスの温度(露点温度を含む)が許容範囲から外れる場合に、バイパス配管に計測対象ガスの一部または全部を流すバイパス処理を実行していた。しかし、システム起動時やシステム停止時以外にも、バイパス処理が実行されるものとしても良い。例えば、計測処理実行中に、何らかの原因で計測対象ガスの温度が予め設定された許容範囲から外れた場合に、計測処理を中止して、バイパス処理を実行し、露点計13に対する過負荷を回避するものとしても良い。
E5.変形例5:
上記実施例において、燃料電池FCに接続される各配管201,301,401,501のそれぞれについて、計測用配管10とバイパス配管20とを備える露点温度計測部220,320,420,520が設けられていた。しかし、計測用配管10とバイパス配管20のような分岐配管を備える露点温度計測部は、各配管201,301,401,501の全てに設けられている必要はなく、例えば、供給側の配管201,301にのみ設けられているものとしても良い。
E6.変形例6:
上記第1実施例のシステム起動処理において、計測対象ガスの温度許容範囲を上記不等式(1)に示された範囲としていたが、許容範囲は、さらに広範な範囲で設定されても良いし、狭い範囲に設定されるものとしても良い。また、計測対象ガスの温度許容範囲は、露点温度の予測値を用いることなく設定されるものとしても良い。
E7.変形例7:
上記第1実施例のシステム停止処理において、制御部600は、パージガスの露点温度が室温以下となったときに、ドライパージ処理を完了していた。しかし、ドライパージ処理の完了条件は、他の条件であるものとしても良い。例えば、制御部600は、露点温度が10℃以下のときにドライパージ処理を完了するものとしても良い。
E8.変形例8:
上記第1実施例のシステム停止処理において、制御部600は、計測用配管10に流れるパージガスの温度を温度検出部12によって検出し、パージガスの温度をその許容範囲内となるように制御するものとしても良い。これによって、ドライパージ処理実行時にパージガスから露点計13が受ける負荷を軽減できる。
E9.変形例9:
上記第1実施例において、計測用配管10に流入させる計測対象ガスの一部をバイパス配管20にバイパスさせていた(図4;ステップS150〜S160)。しかし、ステップS150〜S160の工程は省略されるものとしても良く、ステップS140の後に、全ての計測対象ガスが計測用配管10に流入されるものとしても良い。
E10.変形例10:
上記第2実施例において、ステップS111及びステップS170において、計測用配管10またはバイパス配管20の接続切替処理が実行されていた。しかし、ステップS111やステップS170は実行されなくとも良く、計測用配管10に計測対象ガスの全てが流入する状態で、ペルチェ素子4の作動制御(ステップS114,S140,S146)が実行されるものとしても良い。ただし、バイパス配管20に計測対象ガスの一部をバイパスさせることにより、鏡面式露点計13Aが計測対象ガスから受ける負荷を軽減できるため、上記第2実施例の処理手順で実行されることが好ましい。
燃料電池評価システムの構成を示す概略図。 露点計測部の構成を示す概略図。 露点計測部におけるガスの流れを説明するための説明図。 第1実施例における燃料電池評価システムの起動処理の処理手順を示すフローチャート。 第1実施例における燃料電池評価システムの停止処理の処理手順を示すフローチャート。 第2実施例における鏡面式露点計の構成を示す概略図。 第2実施例における燃料電池評価システムの起動処理の処理手順を示すフローチャート。 第2実施例における燃料電池評価システムの停止処理の処理手順を示すフローチャート。 第3実施例における露点計測部の構成を示す概略図。 第3実施例における露点計測部の配管接続態様の例を示す概略図。 第4実施例における露点計測部の構成を示す概略図。 第4実施例における露点計測部の配管接続態様を説明するための概略図。
符号の説明
1…発光素子
2…受光素子
3…ミラー
4…ペルチェ素子
10…計測用配管(第1の分岐配管)
11…配管ヒータ
12…温度検出部
13…露点計(高露点計測用露点計)
13A…鏡面式露点計
13C…低露点計測用露点計
14…圧力計
15…流量計
20…バイパス配管(第2の分岐配管、第1のバイパス配管)
22…流量調整弁
30…第2のバイパス配管
40…第2の計測用配管
100…ユーザインタフェース
110…入力部
120…表示部
200…アノードガス供給部
202…上流側三方弁
203…下流側三方弁
210…燃料ガス供給源
300…カソードガス供給部
310…酸化ガス供給源
201,301…供給配管
220,320…加湿部
221,321…温水
222,322…配管
225,325…加湿温度検出部
230,330,230A,330A,230B,330B,220C,330C…供給側露点計測部
240,340…入口側圧力計
400,500…排ガス排出部
401,501…排出配管
410,510…出口側圧力計
420,520,420A,520A,420B,520B,420C,520C…排出側露点計測部
430,530…背圧調整弁
500…カソード排ガス排出部
600…制御部
1000…燃料電池評価システム
FC…燃料電池
MS…計測空間

Claims (7)

  1. 燃料電池システムであって、
    燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、
    前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部と、
    を備え、
    前記第2の分岐配管は、前記第1の分岐配管から前記計測対象ガスの一部または全部をバイパスさせるためのバイパス配管として機能する、燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、さらに、
    前記第1と第2の分岐配管に流入するガス量を調整するための流量調整弁と、
    前記計測対象ガスの温度を検出するガス温度検出部と、
    前記流量調整弁を制御する制御部と、
    を備え、
    前記制御部は、前記温度検出部の検出温度が許容温度範囲にある場合には、前記計測対象ガスの全てを前記第1の分岐配管に流入させ、前記検出温度が前記許容温度範囲から外れている場合には、前記計測対象ガスの一部または全部を前記第2の分岐配管にバイパスさせるバイパス処理を実行する、燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記ガス配管は、前記燃料電池の供給側に接続される供給用ガス配管であり、
    前記露点温度検出部は、前記燃料電池の供給側における前記計測対象ガスの露点温度を検出する供給側露点温度検出部であり、
    前記燃料電池システムは、さらに、
    前記燃料電池の排出側に接続される排出用ガス配管に設けられ、互いに並列な第3と第4の分岐配管と、
    前記第3の分岐配管に流入する前記燃料電池の排出側における前記計測対象ガスの露点温度を検出する排出側露点温度検出部と、
    を備え、
    前記制御部は、前記供給側露点温度検出部の検出値と、前記排出側露点温度検出部の検出値とを用いて前記燃料電池における水分収支を示す指標値を算出する特性評価を実行する、燃料電池システム。
  4. 請求項2または請求項3に記載の燃料電池システムであって、
    前記計測対象ガスは、前記燃料電池システム内の水分をパージするためのパージ処理に用いられるパージガスを含み、
    前記制御部は、前記燃料電池システムの停止前に前記パージ処理を実行するとともに、前記パージ処理の際には、前記温度検出部の検出温度に拘わらず、前記露点温度検出部の検出値が室温より高い場合には、前記パージガスを前記第1の分岐配管に流入させ、前記露点温度検出部の検出値が室温以下である場合には、前記パージガスを前記第2の分岐配管にバイパスさせるバイパス処理を実行する、燃料電池システム。
  5. 請求項3に記載の燃料電池システムであって、さらに、
    前記第2の分岐配管に設けられ、前記供給側露点温度検出部とは計測範囲が異なる第2の供給側露点温度検出部と、
    前記第4の分岐配管に設けられ、前記排出側露点温度検出部とは計測範囲が異なる第2の排出側露点温度検出部と、
    を備える、燃料電池システム。
  6. 燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部とを備える燃料電池システムの起動方法であって、
    (a)前記計測対象ガスのガス温度を検出する工程と、
    (b)前記ガス温度が許容温度範囲にある場合には、前記第1の分岐配管へ前記計測対象ガスの全てを流入させ、前記ガス温度が前記許容温度範囲から外れる場合には、前記第2の分岐配管に前記計測対象ガスの一部または全部をバイパスさせる工程と、
    を備える、燃料電池システムの起動方法。
  7. 燃料電池と接続されるガス配管に設けられ、互いに並列に分岐した第1と第2の分岐配管と、前記第1の分岐配管に流入する計測対象ガスの露点温度を検出する露点温度検出部とを備える燃料電池システムの停止方法であって、
    (a)前記第1の分岐配管をドライパージする工程と、
    (b)前記露点温度検出部により、前記工程(a)のドライパージに用いられるパージガスの露点温度を検出する工程と、
    (c)前記パージガスの露点温度が許容露点温度以下である場合には、前記第2の分岐配管に前記パージガスをバイパスさせて前記第2の分岐配管をドライパージする工程と、
    を備える、燃料電池システムの停止方法。
JP2008294583A 2008-11-18 2008-11-18 燃料電池システム Active JP5408969B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294583A JP5408969B2 (ja) 2008-11-18 2008-11-18 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294583A JP5408969B2 (ja) 2008-11-18 2008-11-18 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010123336A true JP2010123336A (ja) 2010-06-03
JP5408969B2 JP5408969B2 (ja) 2014-02-05

Family

ID=42324510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294583A Active JP5408969B2 (ja) 2008-11-18 2008-11-18 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5408969B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044915A (ja) * 2014-08-25 2016-04-04 中部電力株式会社 気化式加湿器及びその運転方法
US20220102744A1 (en) * 2020-09-30 2022-03-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436685A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Humidity control of fuel gas of coke oven
JPH08504270A (ja) * 1992-12-04 1996-05-07 プロティメーター・パブリック・リミテッド・カンパニー 湿度測定器具
JPH10148604A (ja) * 1996-11-18 1998-06-02 Babcock Hitachi Kk 露点温度計測装置及び方法
JP2000357525A (ja) * 1999-06-15 2000-12-26 Isuzu Motors Ltd 燃料電池
JP2002343398A (ja) * 2001-05-16 2002-11-29 Honda Motor Co Ltd 燃料電池の運転停止方法
JP2005293906A (ja) * 2004-03-31 2005-10-20 Fc Kaihatsu Kk 燃料電池システムおよび燃料電池システムの温度制御方法、並びに結露検知装置
JP2007005064A (ja) * 2005-06-22 2007-01-11 Toyota Motor Corp 燃料電池システム
JP2008027606A (ja) * 2006-07-18 2008-02-07 Toyota Motor Corp 燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436685A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Humidity control of fuel gas of coke oven
JPH08504270A (ja) * 1992-12-04 1996-05-07 プロティメーター・パブリック・リミテッド・カンパニー 湿度測定器具
JPH10148604A (ja) * 1996-11-18 1998-06-02 Babcock Hitachi Kk 露点温度計測装置及び方法
JP2000357525A (ja) * 1999-06-15 2000-12-26 Isuzu Motors Ltd 燃料電池
JP2002343398A (ja) * 2001-05-16 2002-11-29 Honda Motor Co Ltd 燃料電池の運転停止方法
JP2005293906A (ja) * 2004-03-31 2005-10-20 Fc Kaihatsu Kk 燃料電池システムおよび燃料電池システムの温度制御方法、並びに結露検知装置
JP2007005064A (ja) * 2005-06-22 2007-01-11 Toyota Motor Corp 燃料電池システム
JP2008027606A (ja) * 2006-07-18 2008-02-07 Toyota Motor Corp 燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044915A (ja) * 2014-08-25 2016-04-04 中部電力株式会社 気化式加湿器及びその運転方法
US20220102744A1 (en) * 2020-09-30 2022-03-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US11881604B2 (en) * 2020-09-30 2024-01-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP5408969B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5106702B1 (ja) 燃料電池システム
JP6766638B2 (ja) 燃料電池冷却システム
JP6886914B2 (ja) 燃料電池システム及びその制御方法
JP2007052937A (ja) 燃料電池システム及びその運転方法
JP2007052936A (ja) 燃料電池システム
US20130089801A1 (en) Fuel cell system and method of controlling fuel cell system
KR20180050617A (ko) 연료 전지 시스템
JP2006351506A (ja) 燃料電池システム
KR102614135B1 (ko) 연료전지의 공기 공급 제어방법 및 제어시스템
JP5168859B2 (ja) 燃料電池システム
JP5151057B2 (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の協調制御方法
JP5168719B2 (ja) 燃料電池システム
JP5408969B2 (ja) 燃料電池システム
JP2013114850A (ja) 燃料電池システム
JP2007280800A (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の異常検出方法
JP2008071539A (ja) 燃料電池システム及び燃料電池スタックの流体配分方法
JP5309558B2 (ja) 燃料電池システム
KR20230018241A (ko) 수소 오프 가스 배출 시 공기 유량 보상 제어 방법 및 장치
JP5060105B2 (ja) 燃料電池システム
US10811704B2 (en) Fuel cell system with valve control for discharging anode off gas, and method of operating the same
JP2012178358A (ja) 燃料電池システム
JP6028347B2 (ja) 燃料電池システム
JP2009094000A (ja) 燃料電池システム
JP2007220527A (ja) 燃料電池システム
JP5189792B2 (ja) 燃料電池用改質器の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R151 Written notification of patent or utility model registration

Ref document number: 5408969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250