JP2010121939A - 材料試験機 - Google Patents

材料試験機 Download PDF

Info

Publication number
JP2010121939A
JP2010121939A JP2008292986A JP2008292986A JP2010121939A JP 2010121939 A JP2010121939 A JP 2010121939A JP 2008292986 A JP2008292986 A JP 2008292986A JP 2008292986 A JP2008292986 A JP 2008292986A JP 2010121939 A JP2010121939 A JP 2010121939A
Authority
JP
Japan
Prior art keywords
frequency
change
test
testing machine
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008292986A
Other languages
English (en)
Inventor
Takatsuna Baba
崇綱 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008292986A priority Critical patent/JP2010121939A/ja
Publication of JP2010121939A publication Critical patent/JP2010121939A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】試験中における試験体の特性変化を、より早くより確実にオペレータに報知することができる材料試験機の提供。
【解決手段】試験体1を加振してその特性変化、例えば、共振周波数やバネ定数の変化を検出し、検出された特性変化の変化状況に応じて警報音を報知器14により発生する際に、警報音の周波数および音量の少なくとも一方を変化させることで、オペレータの注意を惹きやすい警報音とすることができる。その結果、オペレータが警報を見逃すことが無く、より早く特性変化を知らせることができる。
【選択図】図1

Description

本発明は、警報を発生する材料試験機に関する。
材料試験では、プラスチック、ゴム、金属、新素材など、様々な材料や部品を試験対象とし、これら試験体に試験力を繰り返し加えながら材料の強度特性や耐久時間、回数を測定する。試験体の強度特性を解析するには、クラックが入り始めた時間または回数を計測し、クラックが入り始めた時の試験体を得る必要がある。そのため、試験体が破断した場合や、所望の変形量を示した場合に、それらを速やかに検出して試験を自動停止する装置が知られている(例えば、特許文献1参照)。
特開昭61−130853号公報
しかしながら、クラックの入り始めにおける変形を捉えるのは難しいため、上述した装置においても、破断時点のデータ、または、クラックが大きく進行した時点でのデータとなってしまう。そのため、強度解析に必要なクラックが入った直後の試験体が得られないという問題があった。
本発明による材料試験機は、試験体を加振する加振手段と、試験体の特性変化を検出する特性変化検出手段と、特性変化検出手段で検出された特性変化の変化状況に応じて警報音を発生する報知手段とを備え、報知手段は、警報音の周波数および音量の少なくとも一方を変化させるようにしたことを特徴とする。
例えば、周波数であれば、高・低・高・低を繰り返すように変化させ、音量であれば、大・小・大・小を繰り返すように変化させる。
特性変化として、試験体の共振周波数の変化を用いても良い。
また、特性変化として、試験体の共振周波数の変化、および、試験体のバネ定数の変化を用い、共振周波数の変化およびバネ定数の変化のいずれか一方が特性変化検出手段により検出されると、警報音を発生するようにしても良い。
さらにまた、加振手段は、前記試験体の共振周波数に相当する基準周波数で該試験体を加振するものであって、試験体の加速度振幅を検出する加速度検出手段と、加振手段による試験周波数を基準周波数に対して所定の周期で変動させる周波数変動手段と、周波数変動手段により試験周波数を変動させた際の加速度検出手段による検出結果に基づき、基準周波数を変更する変更手段とを備えるようにしても良い。
本発明によれば、試験中における試験体の特性変化を、より早くより確実にオペレータに報知することができる。
以下、図を参照して本発明を実施するための最良の形態について説明する。耐久試験の一つとして、共振周波数追従試験がある。以下では、共振周波数追従試験に用いられる材料試験機を例に本発明を説明する。共振周波数追従試験では、共振周波数で試験体を加振して負荷を与え、所定の時間や回数に耐えられるか、または、耐えられる時間や回数を測定する。
図1は、共振周波数追従試験に用いられる試験装置の概略構成を示す図である。試験体1には加振点P1を介してアクチュエータ2により加振力が負荷され、この加振力の負荷によって共振点P2における共振周波数を検出する。アクチュエータ2は例えば高周波数で駆動可能な油圧シリンダであり、コントローラ10からサーボバルブ3へ出力される制御信号(加振信号)によりアクチュエータ2の駆動が制御される。なお、アクチュエータ2を電磁力により駆動する電磁アクチュエータとして構成することもできる。
試験体1の加振点P1の近傍には加速度計4が装着され、加速度計4により加振点P1の加速度a1が検出される。共振点P2には加速度計5が装着され、加速度計5により共振点P2の加速度a2が検出される。加速度計4,5からの信号はコントローラ10に入力され、この入力信号に基づき後述するように試験体1に共振周波数の加振力を負荷する。なお、以下では加速度計4,5で検出された振幅(加速度振幅)|a1|,|a2|をそれぞれA1、A2で表す。
図2は、加振点P1に加速度振幅一定(A1一定)の加振力を負荷した場合の共振点P2における加速度振幅A2の変化を示す図である。加速度振幅A2は、周波数faのときに最大となっており、この点が共振周波数に相当する。この共振周波数faは試験体1に固有の値であるが、例えば疲労試験の途中で試験体1にクラックが発生したような場合には、共振周波数faが試験の途中で変化するおそれがある。この場合に周波数一定で疲労試験を行っていたのでは、共振周波数faからずれた周波数で試験が行われ、所望の疲労試験結果を得ることができない。そこで、本実施の形態では、以下のように共振周波数faの変化に加振信号の周波数(以下、試験周波数Fと呼ぶ)を追従させる。
図1に示すコントローラ10は、CPU,ROM,RAM,その他の周辺回路を含んで構成される。コントローラ10は、試験周波数を制御する周波数制御部11と、加振振幅Aを制御する振幅制御部12を有する。
周波数制御部11では、所定時間T毎に試験周波数を変化させて、そのときの共振点P2の加速度検出値a2に基づき、試験体1がその共振周波数faで加振されるように試験周波数を制御する。振幅制御部12では、共振点P2の加速度振幅A2が一定の目標加速度振幅A0となるように加振点P1の振幅を制御する。
コントローラ10には、設定器13、報知器14および表示装置15が接続されている。コントローラ10には試験条件として各種設定値が入力されるが、それらは設定器13を介して入力される。例えば、上記所定時間T、目標加速度振幅A0の他、目標試験時間あるいは目標サイクル数、試験体1の初期の共振周波数f0、試験周波数を変化させる場合の上げ幅Δf1および下げ幅Δf2、試験周波数の許容最大変化量Δfmax等が設定される。なお、共振周波数f0は予め実験等により求められ、目標周波数fの初期値としてセットされる。
報知器14は、試験体1にクラックが発生したこと、または、発生のおそれがあることをオペレータに知らせる装置である。本実施の形態の場合には、音声で報知する。表示装置15には、各種設定条件、試験中の測定データ、試験結果等が表示される。
図3は、コントローラ10内のCPUで実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、例えば試験開始スイッチ(不図示)のオンによりスタートする。
ステップS1では、アクチュエータ2に周波数f0の加振信号を出力し、試験体1が初期の共振周波数f0で加振されるように加振点P1に加振力を負荷するとともに、共振点P2の加速度振幅A2を目標加速度振幅A0に制御する。例えば加速度振幅A2が増加した場合には、加振点P1の加振力を小さくして加振振幅を減少させ、加速度振幅A2を目標加速度振幅A0に近づける。基準周波数fは初期状態ではf0であり、この基準周波数fは後述の処理(ステップS7,ステップS24など)によって変更される。
ステップS2では、基準周波数fで加振してから所定時間Tが経過したか否かを判定する。ステップS2が肯定されるとステップS3に進み、否定されるとステップS1に戻る。ステップS3では、フラグの値を判定する。初期状態ではフラグは0であり、フラグ0と判定されるとステップS4に進む。ステップS4では、試験周波数Fを基準周波数fよりも所定量Δf1だけ増加させた加振信号を生成し、アクチュエータ2に出力する。
ステップS5では、加速度計5からの信号に基づき共振点P2の振幅A2が増大したか否かを判定する。この場合、振幅A2が安定するまで所定時間ΔT待ってから振幅A2の増大を判定する。所定時間A2内の振幅の平均値をとって振幅A2の増大を判定してもよい。ΔTはステップS2の所定時間Tに比べ無視できるほどの微小な時間である。ステップS5が肯定されるとステップS6に進み、基準周波数fから初期周波数f0を減算した値、すなわち基準周波数fの初期状態からの変化量(f−f0)が許容最大変化量Δfmaxより大きいか否かを判定する。ステップS6が肯定されるとステップS8に進み、否定されるとステップS7に進む。
ステップS7では、現在の試験周波数F(=f+Δf1)を新たに基準周波数fとして設定する(f=f+Δf1)。ステップS8では、試験周波数の上限を制限するため、基準周波数fを(f0+Δfmax)に設定する。ステップS9ではフラグ0をセットし、ステップS10に進む。
一方、ステップS5において、共振点P2の振幅A2が減少あるいは変化なしと判定された場合には、ステップS13に進む。ステップS13では、フラグ1をセットし、ステップS10に進む。この場合、基準周波数fはそのままである。
ステップS10では、現在の基準周波数fの設定が初期周波数f0と異なる否かを判定する。ステップS10で「f≠f0」と判定されると、ステップS11へ進んで警報を開始し、さらにステップS12へ進む。なお、警報の形態については後述する。一方、ステップS10で「f=f0」と判定されると、ステップS11をスキップしてステップS12に進む。ステップS12では、試験終了か否かを判定し、否定されるとステップS1に戻り、肯定されると処理を終了する。
一方、ステップS3でフラグ1と判定されるとステップS21に進む。ステップS21では、試験周波数Fを基準周波数fよりも所定量Δf2だけ減少させた加振信号でアクチュエータ2を駆動する。
ステップS22では、加速度計5からの信号に基づき共振点P2の振幅A2が増大したか否かを判定する。この場合、ステップS5と同様、振幅A2が安定するまで所定時間ΔT待ってから振幅A2の増大を判定する。ステップS22が肯定されるとステップS23に進み、初期周波数f0から基準周波数fを減算した値、すなわち基準周波数fの初期状態からの変化量(f0−f)が許容最大変化量Δfmaxより大きいか否かを判定する。ステップS23が肯定されるとステップS25に進み、否定されるとステップS24に進む。
ステップS24では、現在の試験周波数F(=f−Δf2)を基準周波数fとして設定する(f=f−Δf2)。ステップS25では、試験周波数の下限を制限するため、基準周波数fを(f0−Δfmax)に設定する。ステップS26ではフラグ1をセットし、ステップS10に進む。
ステップS22で、共振点P2の振幅A2が減少あるいは変化なしと判定されるとステップS27に進む。ステップS27では、フラグ0をセットし、ステップS10に進む。この場合、基準周波数fはそのままである。
図4は、共振点P2における加速度振幅A2と試験周波数Fの変化を示すタイムチャートである。この図4を参照して追従動作について説明する。設定器13を介して各種試験条件を入力した後、試験開始スイッチをオンすると、アクチュエータ2は試験周波数F=f0で、すなわち初期の共振周波数f0で試験体1を加振する。このとき、共振点P2の加速度振幅がA0となるようにアクチュエータ2の駆動が制御される(ステップS1)。
図4(a)に示すように試験開始後、所定時間Tが経過すると(時点t1)、試験周波数Fが所定量Δf1だけ増加する(ステップS4)。このとき、加速度振幅A2が減少する場合、あるいは変化しない場合は、共振周波数faが初期状態f0から増加していないと判断できる。この場合は、試験周波数Fが元の値f0に戻され(時点t2)、繰り返しの処理において、試験体1は試験周波数f0で加振される(ステップS13→ステップS1)。
この状態から再び所定時間Tが経過すると(時点t3)、試験周波数Fが所定量Δf2だけ減少する(ステップS21)。このとき、加速度振幅A2が減少する場合、あるいは変化しない場合は、共振周波数faが初期状態f0から減少していないと判断できる。この場合は、試験周波数Fが元の値f0に戻され(時点t4)、繰り返しの処理において、試験体1は再度所定時間T、試験周波数F=f0で加振される(ステップS27→ステップS1)。以降、同様の動作が繰り返される。
一方、図4(b)の時点t5において試験周波数Fを増加させた際に加速度振幅A2が増大すると、共振周波数faが初期状態f0から増加したと判断できる。この場合は、基準周波数fが所定量Δf1だけ高く設定され、繰り返しの処理において、試験体1は所定時間T、試験周波数F(=f0+Δf1)で加振される(ステップS7→ステップ1)。このとき、加速度振幅A2が目標加速度振幅A0となるようにアクチュエータ2による加振力が制御される。
この状態から所定時間Tが経過すると(時点t6)、試験周波数Fがさらに所定量Δf1だけ増加する(ステップS4)。このとき、加速度振幅A2が増大すると、基準周波数f(=f0+Δf1)が共振周波数faよりも低いと判断できる。この場合は、基準周波数fが所定量Δf1だけ高く設定され、繰り返しの処理において、試験体1は所定時間Tだけ試験周波数F(=f0+2×Δf1)で加振される。
以上の動作は、試験周波数Fを増加させた際に振幅A2が増加しなくなるまで繰り返され、振幅A2が増加しなくなった後は、図4(a)に示したように試験周波数Fの増減動作が繰り返される。これにより基準周波数fを共振周波数faに近づけることができる。なお、基準周波数fの上限は、所定値(f0+Δfmax)に制限される(ステップS8)。
図4(c)に示すように時点t7で試験周波数Fを増加させ、基準周波数f0に戻した後、時点t8において試験周波数Fを所定量Δf2減少させた際に加速度振幅A2が増大すると、共振周波数faが初期状態f0から減少したと判断できる。この場合は、基準周波数fが所定量Δf2だけ低く設定され、繰り返しの処理において、試験体1は所定時間T、試験周波数F(=f0−Δf2)で加振される(ステップS24→ステップ1)。このとき、加速度振幅A2が目標加速度振幅A0となるようにアクチュエータ2による加振力が制御される。
この状態から所定時間Tが経過すると(時点t6)、試験周波数Fがさらに所定量Δf1だけ減少する(ステップS21)。このとき、加速度振幅A2が増大すると、基準周波数fが所定量Δf2だけ低く設定され、繰り返しの処理において、試験体1は所定時間Tだけ試験周波数F(=f0−2×Δf2)で加振される。
以上の動作は、試験周波数Fを減少させた際に振幅A2が増加しなくなるまで繰り返され、振幅A2が増加しなくなった後は、図4(a)に示したように試験周波数Fの増減動作が繰り返される。これにより基準周波数fを共振周波数faに近づけることができる。なお、基準周波数fの下限は、所定値(f0−Δfmax)に制限される(ステップS25)。
図5は、図4のステップS11で開始される警報動作の一例を説明する図である。試験体の強度特性を解析するには、クラックの入り始めを捉える必要がある。しかし、耐久試験では試験力を繰り返し与える回数が10〜10回と多く、試験が長時間にわたるため、これを目視でチェックしようとすることは困難である。そのため、チェックする間隔が空いてしまい、その間で、試験体の破壊が進行してしまう場合がある。また、たまたまクラックの入り始めに計器を観測していた場合であっても、波形の変化や計測データの変化は微小であるため、変化を見逃してしまい、試験体の破壊が進行してしまうおそれがある。
そこで、本実施の形態では警報装置15を備え、図5に示すような警報動作を行うことでクラックの入り始め、または、その直前をオペレータに知らせるようにした。図5(a)は試験体1の共振周波数の時間的な変化を示す図であり、図5(b)は、共振周波数の時間的変化に応じた警報音の周波数変化を示したものである。
図5(a)は、クラックの発生により共振周波数が高くなる方向に変化する場合を示しており、上述した追従動作の結果、共振周波数はΔf1ずつ階段状に変化している。クラックの発生をより早く検知するためには、共振周波数の変化である所定量Δf1、Δf2をノイズや誤差の影響を受けない範囲でできるだけ小さくするのが好ましく、例えば、0.1Hzとする。これらの値は試験体1によってそれぞれ異なるので、例えば、予備実験を行う等して、試験体1に最適な値を入力設定する。
一方、警報音に関しては、共振周波数の変化に応じて警報音の周波数を変化させるようにした。共振周波数の変化(所定量Δf1、Δf2)は比較的に小さい値なので、その変化の度合いをそのまま警報音の周波数変化に反映させるのではなく、変化の度合いを拡大して警報音の周波数を変化させる。図5(b)に示す例では、図示左側から高、低、高、低・・・のように警報音の周波数を設定している。また、2番目の周波数は1番目の約1/7、3番目の周波数は2番目の約9倍のように、共振周波数の変化の度合いよりも大きくなっている。このように周波数の高・低を繰り返して音色の変化をめまぐるしくすることで、オペレータが他の作業に没頭しているような場合でも、警報音に気付きやすいようにしている。もちろん、試験体1の共振周波数の帯域と、警報音の周波数帯域とは異なっており、警報音には注意を引きやすい周波数帯域が用いられる。
また、警報音の周波数を順に高くするようにしても良いし、図5(b)のように周波数を階段状に不連続に変化させる代わりに、連続的に上下に変化させるようにしてもよい。さらに、共振周波数に応じて音量を大きく大・小・大・小のように変化させるようにしても良い。このように、警報音に変化を付けることにより、一定の音色や音量で警報する場合に比べて、試験状況の変化を気付きやすい。なお、警報音の出し方としては、上述したように、共振周波数変化で初めて警報音を発生するようにしても良いし、試験開始とともに報知器14から一定周波数の音声を発生し、共振周波数変化により警報音の周波数を変化させるようにしても良い。この場合、周波数変化の開始が警報開始となる。
上述した実施形態では、試験体1にクラックが生じた際の特性変化として共振周波数の変化を取り上げたが、バネ定数の変化からクラックの発生を検知することもできる。バネ定数は、「(試験体に与えた加重)/(試験体の変位量)」から求めることができる。共振周波数の場合と同様に、バネ定数もクラックが発生する前はほぼ一定となっており、クラックが入り始めると値が変化し始める。その際の変化の傾向も、共振周波数の場合と同様である。よって、上述した共振周波数の変化に代えて、バネ定数の変化を用いるようにしても同様の効果を得ることができる。
また、共振周波数とバネ定数の両方を用いるようにしても良い。その場合、バネ定数kの変化に対して、検知可能な最小変化量Δkを設定する。試験中に、共振周波数およびバネ定数のいずれかの変化を検出したならば、報知器14から警報を発生するようにする。試験体によって、クラック発生に対する共振周波数とバネ定数では微小な変化の傾向が異なるので、このように複数の特性値(共振周波数およびバネ定数)を用いることで、クラック発生に対してより敏感な方の特性変化を検知することにより、より早くクラック発生を検知することができる。
以上説明したように、本実施の形態によれば次のような作用効果を奏する。
(1)試験体を加振してその特性変化、例えば、共振周波数やバネ定数の変化を検出し、検出された特性変化の変化状況に応じて警報音を報知器14により発生する際に、警報音の周波数および音量の少なくとも一方を変化させることで、オペレータの注意を惹きやすい警報音となる。例えば、周波数であれば、高・低・高・低を繰り返すように変化させ、音量であれば、大・小・大・小を繰り返すように変化させる。その結果、オペレータが警報を見逃すことが無く、より早く特性変化を知らせることができる。
(2)また、共振周波数およびバネ定数のどちらに敏感に反映されるかは試験体によって異なるので、特性変化として共振周波数の変化と試験体のバネ定数の変化とを検出し、共振周波数の変化およびバネ定数の変化のいずれか一方が検出されたら警報音を発生することで、より早くクラックの発生を検出するし、オペレータに知らせることができる。
(3)周波数変動手段により試験周波数を変動させ、その際の加速度検出手段による検出結果に基づき基準周波数を変更する共振周波数追従型の材料試験機では、共振周波数やバネ定数の変化を検出することができるので、コストアップを抑制しつつ警報機能を付加することができる。
上述した実施の形態では、音声により特性変化を報知する構成としたが、視覚的に報知するようにしても良い。例えば、表示装置15を用いても良いし、警告灯を設けても良い。表示装置15を用いて警報する場合、通常の表示色で表示する表示形態と例えば全体を赤色で表示する表示形態とを交互に繰り返し表示することで、オペレータに特性変化を気付かせることができる。
また、報知器14として携帯態電子機器を利用しても良い。すなわち、音声や表示による警報をオペレータが所持する携帯態電子機器に無線で指令し、携帯電子機器の音声機能および表示機能を利用して報知する。携帯電子機器がバイブレータ機能を有していれば、バイブレータの振動により報知しても良い。
なお、以上の説明はあくまでも一例であり、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。例えば、報知手段として、音声、表示、振動を組み合わせても良い。また、上述した実施形態では、共振周波数に追従して試験を行う材料試験機を例に説明したが、追従型でない材料試験機であっても同様に適用できる。すなわち、周波数検出装置で試験体1の共振周波数をモニタし、共振周波数が変化したならば、警報を発生するように構成すれば良い。
本発明による材料試験機の一実施の形態を示す図である。 共振点における加速度振幅の変化を示す図である。 共振周波数追従および警報の動作を説明するフローチャートである。 共振周波数追従の一例を示すタイムチャートである。 警報音の周波数パターンの一例を示す図である。
符号の説明
1:試験体、2:アクチュエータ、4,5:加速度計、10:コントローラ、11:周波数制御部、14:報知器、15:表示装置

Claims (5)

  1. 試験体を加振する加振手段と、
    前記試験体の特性変化を検出する特性変化検出手段と、
    前記特性変化検出手段で検出された特性変化の変化状況に応じて警報音を発生する報知手段とを備え、
    前記報知手段は、前記警報音の周波数および音量の少なくとも一方を変化させることを特徴とする材料試験機。
  2. 請求項1に記載の材料試験機において、
    前記周波数を変化させる場合には、周波数が高・低・高・低を繰り返すように変化させ、前記音量を変化させる場合には、音量が大・小・大・小を繰り返すように変化させることを特徴とする材料試験機。
  3. 請求項1または2に記載の材料試験機において、
    前記特性変化は前記試験体の共振周波数の変化であることを特徴とする材料試験機。
  4. 請求項1または2に記載の材料試験機において、
    前記特性変化は、前記試験体の共振周波数の変化、および、前記試験体のバネ定数の変化であって、
    前記報知手段は、前記共振周波数の変化および前記バネ定数の変化のいずれか一方が前記特性変化検出手段により検出されると、前記警報音を発生することを特徴とする材料試験機。
  5. 請求項1〜4のいずれか一項に記載の材料試験機において、
    前記加振手段は、前記試験体の共振周波数に相当する基準周波数で該試験体を加振するものであって、
    前記試験体の加速度振幅を検出する加速度検出手段と、
    前記加振手段による試験周波数を前記基準周波数に対して所定の周期で変動させる周波数変動手段と、
    前記周波数変動手段により試験周波数を変動させた際の前記加速度検出手段による検出結果に基づき、前記基準周波数を変更する変更手段とを備えることを特徴とする材料試験機。
JP2008292986A 2008-11-17 2008-11-17 材料試験機 Pending JP2010121939A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292986A JP2010121939A (ja) 2008-11-17 2008-11-17 材料試験機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292986A JP2010121939A (ja) 2008-11-17 2008-11-17 材料試験機

Publications (1)

Publication Number Publication Date
JP2010121939A true JP2010121939A (ja) 2010-06-03

Family

ID=42323424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292986A Pending JP2010121939A (ja) 2008-11-17 2008-11-17 材料試験機

Country Status (1)

Country Link
JP (1) JP2010121939A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126342A (ja) * 2011-12-15 2013-06-24 Toshiba Corp 電動機の制御装置
CN103308265A (zh) * 2013-06-14 2013-09-18 江苏万工科技集团有限公司 一种回综弹簧动刚度频变特性的测量装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126342A (ja) * 2011-12-15 2013-06-24 Toshiba Corp 電動機の制御装置
CN103308265A (zh) * 2013-06-14 2013-09-18 江苏万工科技集团有限公司 一种回综弹簧动刚度频变特性的测量装置和方法

Similar Documents

Publication Publication Date Title
JP4480640B2 (ja) 超音波疲労試験装置及び超音波疲労試験方法
JP4875589B2 (ja) パネルの検査装置及び検査方法
US9933699B2 (en) Pellicle aging estimation and particle removal from pellicle via acoustic waves
JP4694879B2 (ja) 構造物検査装置
CN101918850A (zh) 用于校准加速度和力传感器的方法和装置
WO2014087538A1 (ja) 超音波疲労試験機および超音波疲労試験方法
JP2018100948A (ja) 振動試験方法及び振動試験装置
JP2012237634A (ja) 振動試験装置及びその制御方法
JP2008128665A (ja) 振動試験方法、振動試験補助装置、及び振動試験システム
JP4906897B2 (ja) クラック検知支援装置、及び、クラック検知支援方法
JP6165908B1 (ja) 複合材料の損傷評価方法と装置
JP7321433B2 (ja) ねじの締結状況の試験方法及び装置
KR20160038493A (ko) 음향 공진 비파괴 검사 시스템
JP2019152538A (ja) 締付けボルトの締付けトルク特定装置と締付けトルク特定方法
US11226312B1 (en) In-process, layer-by-layer non-destructive testing of additive manufactured components using linear and nonlinear vibrational resonance
JP2022516440A (ja) 試験対象物の機械的特性を求めるための装置及び方法
JP2010121939A (ja) 材料試験機
JP3981740B1 (ja) コンクリート構造物の診断システム及び診断方法
JP6616936B2 (ja) 測定装置、測定方法、および測定装置を備える電子機器
JP2010008151A (ja) 締結状態の検査装置及び方法
JP2010048599A (ja) 微小構造体の検査装置および微小構造体の検査方法
JP2001324420A (ja) 回転機械の翼の振動予測方法及びその装置
JP5040755B2 (ja) 材料試験機および材料試験方法
JP2014001948A (ja) 疲労試験装置
JP6079652B2 (ja) 超音波疲労試験機