JP2010118429A - Electronic apparatus and manufacturing method for the same - Google Patents

Electronic apparatus and manufacturing method for the same Download PDF

Info

Publication number
JP2010118429A
JP2010118429A JP2008289574A JP2008289574A JP2010118429A JP 2010118429 A JP2010118429 A JP 2010118429A JP 2008289574 A JP2008289574 A JP 2008289574A JP 2008289574 A JP2008289574 A JP 2008289574A JP 2010118429 A JP2010118429 A JP 2010118429A
Authority
JP
Japan
Prior art keywords
electronic component
substrate
adhesion
conductive adhesive
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008289574A
Other languages
Japanese (ja)
Other versions
JP5298789B2 (en
Inventor
Takamitsu Sakai
孝充 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008289574A priority Critical patent/JP5298789B2/en
Publication of JP2010118429A publication Critical patent/JP2010118429A/en
Application granted granted Critical
Publication of JP5298789B2 publication Critical patent/JP5298789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an increase in electrical connection-resistance value between an electronic component and a substrate via a conductive adhesive even if the conductive adhesive has a temperature exceeding a glass transition point in an electronic apparatus in which the substrate and the electronic component that are connected via the conductive adhesive are sealed by a mold resin via an adhesion contributing agent. <P>SOLUTION: Each diameter of voids existing in an adhesion contributing agent 50 located around an electronic component 20 is set to ≤100,000 μm<SB>2</SB>or the film thickness of the adhesion contributing agent 50 located around the electronic component 20 is set to ≤20 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電性接着剤を介して基板と電子部品とを接続したものをモールド樹脂で封止してなる電子装置、および、そのような電子装置の製造方法に関し、特に、モールド樹脂との密着性を確保するために樹脂封止前に基板に塗布される密着寄与剤に関する。   The present invention relates to an electronic device in which a substrate and an electronic component connected via a conductive adhesive are sealed with a mold resin, and a method for manufacturing such an electronic device. The present invention relates to an adhesion contributing agent that is applied to a substrate before resin sealing in order to ensure adhesion.

従来より、この種の電子装置としては、基板の一面上に導電性接着剤を介して電子部品を搭載し、導電性接着剤を介して、電子部品と基板とを電気的に接続した後、密着寄与剤を基板および基板上の電子部品に塗布し、これをモールド樹脂で封止したものが提案されている(たとえば、特許文献1参照)。そして、このような電子装置においては、密着寄与剤は、基板の一面、電子部品および導電性接着剤とモールド樹脂との間に介在し、モールド樹脂の密着性を確保している。
特開平9−189997号公報
Conventionally, as this type of electronic device, an electronic component is mounted on one surface of a substrate via a conductive adhesive, and after electrically connecting the electronic component and the substrate via a conductive adhesive, An adhesion contribution agent is applied to a substrate and an electronic component on the substrate and sealed with a mold resin (for example, see Patent Document 1). In such an electronic device, the adhesion contributing agent is interposed between one surface of the substrate, the electronic component and the conductive adhesive, and the mold resin, thereby ensuring the adhesion of the mold resin.
JP-A-9-189997

ところで、密着寄与剤は基板とモールド樹脂との密着性向上、および、内部応力緩和のため用いられる。通常、密着寄与剤は溶剤によって希釈して用いるが、膜厚をかせぐために希釈度合は極力上げず、厚く塗布し、その後、これを硬化する。   By the way, the adhesion contributing agent is used for improving the adhesion between the substrate and the mold resin and for relaxing internal stress. Usually, the adhesion contributing agent is diluted with a solvent and used. However, in order to increase the film thickness, the degree of dilution is not increased as much as possible, and it is applied thickly and then cured.

本発明者の検討によれば、この密着寄与剤を塗布・硬化させる工程において、電子部品の接続部である導電性接着剤にも密着寄与剤が塗布されることにより、導電性接着剤の電気的な接続抵抗値が上昇する不具合が発生した。   According to the study of the present inventor, in the step of applying and curing the adhesion contributing agent, the adhesion contributing agent is also applied to the conductive adhesive that is the connection part of the electronic component, so that the electrical property of the conductive adhesive is reduced. A problem that the typical connection resistance value increased occurred.

さらに、本発明者が検討を進めた結果、上記した接続抵抗値の上昇の原因は、下記の2つの要因(a)および(b)によって、導電性接着剤と基板との界面が剥離するためであるとわかった。   Furthermore, as a result of investigation by the present inventors, the cause of the increase in the connection resistance value described above is that the interface between the conductive adhesive and the substrate peels off due to the following two factors (a) and (b). I found out.

(a)密着寄与剤の硬化により電子部品の周囲に発生する密着寄与剤内のボイドが、当該硬化の熱によって膨張し、このボイドの膨張によって電子部品を押し上げる応力が発生すること。(b)密着寄与剤の硬化温度において、導電性接着剤がガラス転移点(Tg)以上の温度となり、当該導電性接着剤の接続強度が低下すること(後述の図7〜図9参照)。   (A) The void in the adhesion contributing agent generated around the electronic component due to the curing of the adhesion contributing agent expands due to the heat of the curing, and stress that pushes up the electronic component is generated by the expansion of the void. (B) At the curing temperature of the adhesion contributing agent, the conductive adhesive becomes a temperature equal to or higher than the glass transition point (Tg), and the connection strength of the conductive adhesive is lowered (see FIGS. 7 to 9 described later).

ここで、密着寄与剤の硬化温度によって導電性接着剤の接続強度が低下することは、避けがたいことである。そこで、本発明者は、密着寄与剤の硬化温度によって導電性接着剤がガラス転移点以上になったとしても、上記した密着寄与剤による電子部品への押し上げ応力を低減することが重要であるという、新たな知見に到達した。   Here, it is inevitable that the connection strength of the conductive adhesive is lowered due to the curing temperature of the adhesion contributing agent. Therefore, the present inventor said that it is important to reduce the above-mentioned stress applied to the electronic component by the adhesion contributing agent even if the conductive adhesive becomes higher than the glass transition point due to the curing temperature of the adhesion contributing agent. Reached new findings.

本発明は、上記問題に鑑みてなされたものであり、導電性接着剤を介して基板と電子部品とを接続したものを、密着寄与剤を介してモールド樹脂で封止してなる電子装置において、導電性接着剤がガラス転移点以上になったとしても、導電性接着剤を介した電子部品と基板との電気的な接続抵抗値の上昇を抑制することを目的とする。   The present invention has been made in view of the above problems, and in an electronic device in which a substrate and an electronic component are connected via a conductive adhesive and sealed with a mold resin via an adhesion contributing agent. An object of the present invention is to suppress an increase in the electrical connection resistance value between the electronic component and the substrate via the conductive adhesive even when the conductive adhesive becomes higher than the glass transition point.

上記目的を達成するため、上記密着寄与剤による電子部品への押し上げ応力を低減する要因として、密着寄与剤内に発生する上記ボイドの大きさと、密着寄与剤の膜厚との2点に着眼し、これら2点について実験検討を行った。請求項1〜3に記載の発明は、このような実験検討の結果、得られたものである。   In order to achieve the above-mentioned purpose, the factors that reduce the stress applied to the electronic component by the adhesion contributing agent are focused on the following two points: the size of the void generated in the adhesion contributing agent and the film thickness of the adhesion contributing agent. These two points were examined experimentally. The inventions according to claims 1 to 3 have been obtained as a result of such experimental investigation.

すなわち、請求項1に記載の発明では、電子部品(20)の周囲に位置する密着寄与剤(50)の内部には、ボイドが存在しており、このボイドの径が100000μm2以下であることを特徴とする。 That is, in the invention described in claim 1, voids are present inside the adhesion contributor (50) located around the electronic component (20), and the diameter of the voids is 100000 μm 2 or less. It is characterized by.

本発明のように、電子部品(20)の周囲に位置する密着寄与剤(50)の内部に存在するボイドの径が100000μm2以下であれば(後述の図10参照)、密着寄与剤(50)の硬化温度にて導電性接着剤(30)がガラス転移点以上になったとしても、導電性接着剤(30)を介した電子部品(20)と基板(10)との電気的な接続抵抗値の上昇を抑制することができる。 As in the present invention, if the diameter of the void existing in the adhesion contributing agent (50) located around the electronic component (20) is 100000 μm 2 or less (see FIG. 10 described later), the adhesion contributing agent (50 The electrical connection between the electronic component (20) and the substrate (10) via the conductive adhesive (30) even if the conductive adhesive (30) is above the glass transition point at the curing temperature of An increase in resistance value can be suppressed.

請求項2に記載の発明では、電子部品(20)の周囲に位置する密着寄与剤(50)の膜厚が20um以下であることを特徴とする。   The invention according to claim 2 is characterized in that the film thickness of the adhesion contributing agent (50) located around the electronic component (20) is 20 μm or less.

本発明のように、電子部品(20)の周囲に位置する密着寄与剤(50)の膜厚が20um以下であれば(後述の図11参照)、密着寄与剤(50)の硬化温度にて導電性接着剤(30)がガラス転移点以上になったとしても、導電性接着剤(30)を介した電子部品(20)と基板(10)との電気的な接続抵抗値の上昇を抑制することができる。   If the film thickness of the adhesion contributing agent (50) located around the electronic component (20) is 20 μm or less as in the present invention (see FIG. 11 described later), the curing temperature of the adhesion contribution agent (50) is used. Even if the conductive adhesive (30) becomes higher than the glass transition point, an increase in electrical connection resistance value between the electronic component (20) and the substrate (10) via the conductive adhesive (30) is suppressed. can do.

請求項3に記載の発明は、製造方法に係るものであり、モールド樹脂(40)による封止前に、塗布される密着寄与剤(50)の希釈率を、原液1に対して希釈剤2の重量比以上とするものであり、さらに、当該原液は、ポリエーテルアミドイミドをジグライムに溶解させたものであって、これらポリエーテルアミドイミドとジグライムとの重量比が10:90〜20:80の溶液であり、当該希釈剤はジグライムであることを特徴とする。   Invention of Claim 3 concerns on a manufacturing method, and before sealing with mold resin (40), the dilution rate of the adhesion | attachment contribution agent (50) apply | coated is diluent 2 with respect to stock solution 1. Further, the stock solution is obtained by dissolving polyetheramideimide in diglyme, and the weight ratio of these polyetheramideimide and diglyme is 10:90 to 20:80. And the diluent is diglyme.

本発明のように、塗布される密着寄与剤(50)を、このような原液と希釈剤よりなるものとし、その希釈率を、原液1に対して希釈剤2の重量比以上とすれば、電子部品(20)の周囲に位置する密着寄与剤(50)の内部に存在するボイドの径を100000μm2以下とすること、および、当該密着寄与剤(50)の膜厚を20um以下とすることを、適切に実現できるから、密着寄与剤(50)の硬化温度にて導電性接着剤(30)がガラス転移点以上になったとしても、導電性接着剤(30)を介した電子部品(20)と基板(10)との電気的な接続抵抗値の上昇を抑制することができる。 As in the present invention, the adhesion contribution agent (50) to be applied is composed of such a stock solution and a diluent, and the dilution rate is equal to or greater than the weight ratio of the diluent 2 to the stock solution 1. The diameter of the void existing inside the adhesion contributing agent (50) located around the electronic component (20) should be 100000 μm 2 or less, and the film thickness of the adhesion contribution agent (50) should be 20 μm or less. Therefore, even if the conductive adhesive (30) becomes a glass transition point or higher at the curing temperature of the adhesion contributing agent (50), the electronic component (30) via the conductive adhesive (30) 20) and the increase in the electrical connection resistance value between the substrate (10) can be suppressed.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, parts that are the same or equivalent to each other are given the same reference numerals in the drawings for the sake of simplicity.

図1は、本発明の実施形態に係る電子装置の概略断面構成を示す図である。本実施形態の電子装置は、たとえば自動車のECUなどに用いられるもので、大きくは、基板10と、基10に搭載された電子部品20と、電子部品20と基板10とを電気的に接続する導電性接着剤30と、これら部材10〜30を封止するモールド樹脂40と、当該部材10〜30とモールド樹脂40との密着性を確保する密着寄与剤50とを備えて構成されている。   FIG. 1 is a diagram showing a schematic cross-sectional configuration of an electronic device according to an embodiment of the present invention. The electronic device of the present embodiment is used, for example, in an ECU of an automobile, and is largely connected to the substrate 10, the electronic component 20 mounted on the base 10, and the electronic component 20 and the substrate 10. The conductive adhesive 30 includes a mold resin 40 that seals the members 10 to 30, and an adhesion contributing agent 50 that ensures adhesion between the members 10 to 30 and the mold resin 40.

基板10としては、特に限定されるものではないが、セラミック基板や、プリント基板などの各種の回路基板、配線基板が挙げられる。電子部品20は、この基板10の一面(図1中の上面)に導電性接着剤30によって表面実装されるものであれば、何でもよいが、たとえば、電子部品20としては、ICチップ、ダイオード、コンデンサ、抵抗などが挙げられる。   Although it does not specifically limit as the board | substrate 10, Various circuit boards, such as a ceramic board | substrate and a printed circuit board, and a wiring board are mentioned. The electronic component 20 may be anything as long as it is surface-mounted by the conductive adhesive 30 on one surface (the upper surface in FIG. 1) of the substrate 10. For example, as the electronic component 20, an IC chip, a diode, Examples include capacitors and resistors.

導電性接着剤30は、この種の一般的なものであり、具体的には、エポキシなどのバインダ樹脂とAgなどの導電性フィラーとからなる組成物である。モールド樹脂40は、一般的なエポキシ樹脂などのモールド材料であり、トランスファーモールド法などにより、成型されたものである。   The conductive adhesive 30 is a general one of this type, and specifically, a composition comprising a binder resin such as epoxy and a conductive filler such as Ag. The mold resin 40 is a mold material such as a general epoxy resin, and is molded by a transfer mold method or the like.

また、密着寄与剤50はモールド樹脂40のプライマとして用いられる。この密着寄与剤50の機能は、基板10とモールド樹脂40との密着性の向上、および、内部応力の緩和である。   Further, the adhesion contributing agent 50 is used as a primer for the mold resin 40. The function of the adhesion contributing agent 50 is to improve the adhesion between the substrate 10 and the mold resin 40 and to relieve internal stress.

たとえば、密着寄与剤50としては、ポリエーテルアミドイミド(PAI)、ポリアミド(PA)、ポリイミド(PI)などの熱硬化性樹脂があり、一般に高分子樹脂が用いられる。この密着寄与剤50は、液状のものをポッティングや印刷などにより、塗布し、これを硬化させることで配置される。   For example, as the adhesion contributing agent 50, there are thermosetting resins such as polyetheramide imide (PAI), polyamide (PA), and polyimide (PI), and a polymer resin is generally used. The adhesion contributing agent 50 is disposed by applying a liquid material by potting or printing and curing it.

ここで、塗布される密着寄与剤50については、上記したPAIなどの高分子樹脂をジグライムやNMPなどの溶剤に溶解させた溶液が、原液として用いられるが、ここでは、ジグライムやNMPなどを希釈剤とし、この原液を更に当該希釈剤で希釈した液を塗布するようにする。   Here, for the adhesion contribution agent 50 to be applied, a solution obtained by dissolving a polymer resin such as PAI in a solvent such as diglyme or NMP is used as a stock solution, but here, diglyme or NMP is diluted. A solution obtained by diluting the stock solution with the diluent is applied.

かかる電子装置は、基板10の一面に、導電性接着剤30を介して電子部品20を搭載し、導電性接着剤30による接着を行った後、その上から密着寄与剤50を塗布・硬化して配置し、その後、モールド樹脂40による封止を行うことにより製造される。   In such an electronic device, the electronic component 20 is mounted on one surface of the substrate 10 via the conductive adhesive 30, and after bonding with the conductive adhesive 30, the adhesion contributing agent 50 is applied and cured thereon. And then, sealing with mold resin 40 is performed.

そして、本実施形態では、この完成後の電子装置において、電子部品20の周囲に位置する密着寄与剤50において、その内部に存在するボイドの径が100000μm2以下とされている。 In this embodiment, in the completed electronic device, in the adhesion contributing agent 50 positioned around the electronic component 20, the diameter of the void existing therein is set to 100000 μm 2 or less.

密着寄与剤50は、上述のように、液状のものを塗布・硬化させて形成されるため、その内部には、希釈剤が気化したボイドが存在する。このボイドは、当該希釈剤が気化して発生するものであり、当然ながら球状をなすため、ボイドの径とは、ボイドの直径のことである。   Since the adhesion contributing agent 50 is formed by applying and curing a liquid material as described above, voids in which the diluent is vaporized are present in the inside. The void is generated by vaporization of the diluent, and naturally forms a spherical shape. Therefore, the diameter of the void is the diameter of the void.

また、本実施形態では、完成後の電子装置において、電子部品20の周囲に位置する密着寄与剤50の膜厚が20um以下とされている。ここで、本実施形態では、この膜厚20μm以下の構成と、上述したボイド径100000μm2以下の構成とは、両立していてもよいが、どちらか一方の構成のみが実現されていてもよい。これら構成は、本発明者が行った実験を根拠とするものであり、この検討について、次に述べる。 Moreover, in this embodiment, the film thickness of the adhesion | attachment contribution agent 50 located in the circumference | surroundings of the electronic component 20 is 20 um or less in the electronic device after completion. Here, in this embodiment, the configuration having a film thickness of 20 μm or less and the configuration having the void diameter of 100000 μm 2 or less may be compatible, but only one of the configurations may be realized. . These configurations are based on experiments conducted by the present inventors, and this examination will be described next.

図2は、本発明者が行った実験に用いたサンプルを示す概略平面図であり、図3は、同サンプルの部分概略断面図である。ここでは、基板10としてセラミック基板10を用いた。   FIG. 2 is a schematic plan view showing a sample used in an experiment conducted by the present inventor, and FIG. 3 is a partial schematic cross-sectional view of the sample. Here, the ceramic substrate 10 was used as the substrate 10.

まず、図2、図3に示されるように、セラミック基板10と電子部品20とを導電性接着剤30で接続した。セラミック基板10は、サイズが1インチ□で厚さ1mm、材質はアルミナであり、電子部品20が搭載される一面にAuメッキ11が施されている。電子部品20は積層セラミックコンデンサであり、サイズは3.2×1.6×1.25mmで、電極材質はAg/Pdである。   First, as shown in FIGS. 2 and 3, the ceramic substrate 10 and the electronic component 20 were connected by a conductive adhesive 30. The ceramic substrate 10 has a size of 1 inch □, a thickness of 1 mm, a material of alumina, and an Au plating 11 is applied to one surface on which the electronic component 20 is mounted. The electronic component 20 is a multilayer ceramic capacitor, the size is 3.2 × 1.6 × 1.25 mm, and the electrode material is Ag / Pd.

<接着剤硬化>:印刷パターンを開口した図示しないメタルマスクを用いて、基板10に導電性接着剤30を印刷し、電子部品20を無荷重で搭載した後、恒温槽にて導電性接着剤30を硬化させる。導電性接着剤30の印刷膜厚は60umであり、硬化条件は150℃×30分硬化である。   <Adhesive curing>: A conductive adhesive 30 is printed on the substrate 10 using a metal mask (not shown) having a printed pattern opened, and the electronic component 20 is mounted with no load. 30 is cured. The printed film thickness of the conductive adhesive 30 is 60 μm, and the curing condition is 150 ° C. × 30 minutes curing.

<接続抵抗測定1回目>:この導電性接着剤30の硬化後に、接続抵抗測定の1回目を行う。図4は、導電性接着剤30を介した電子部品20と基板10との電気的な接続抵抗値、つまり接続抵抗の測定方法を示す概略断面図である。   <First connection resistance measurement>: After the conductive adhesive 30 is cured, a first connection resistance measurement is performed. FIG. 4 is a schematic cross-sectional view showing a method for measuring an electrical connection resistance value between the electronic component 20 and the substrate 10 via the conductive adhesive 30, that is, a connection resistance.

図4に示されるように、定電流源K1とデジタルマルチメータK2を用い、4端子法で測定する。電流は10mAを流して電圧を測定し、R=V/Iの関係から抵抗値を求める。これを導電性接着剤30の接続抵抗とする。この方法で、作製したサンプルについて、1回目の接続抵抗すなわち初期接続抵抗を測定する。   As shown in FIG. 4, measurement is performed by a four-terminal method using a constant current source K1 and a digital multimeter K2. The current is 10 mA, the voltage is measured, and the resistance value is obtained from the relationship of R = V / I. This is the connection resistance of the conductive adhesive 30. With this method, the first connection resistance, that is, the initial connection resistance is measured for the manufactured sample.

この測定が終わったサンプルには、図5に示されるように、耐熱テープMを貼り付け、マスキングをする。図5は、耐熱テープMの貼り付け状態を示す概略平面図である。基板10の一面の金メッキ11のうち上記4端子法における端子を当てる部位には、接続抵抗を測定するために、耐熱テープMを貼り付けて被覆し、密着寄与剤50が塗布されないようにする。   As shown in FIG. 5, the heat-resistant tape M is applied to the sample after the measurement, and masking is performed. FIG. 5 is a schematic plan view showing a state where the heat-resistant tape M is attached. In order to measure the connection resistance, a part of the gold plating 11 on one surface of the substrate 10 to which the terminal is applied is covered with a heat-resistant tape M so that the adhesion contributing agent 50 is not applied.

<密着寄与剤塗布>:次に、基板10の一面、電子部品20および導電性接着剤30の表面に密着寄与剤50として、PAIを塗布する。ここで、塗布されるPAIは、ジグライム溶解させた原液を、さらに希釈剤であるジグライムで希釈したものであり、具体的には、原液として、日立化成製のHL1210−ND5(商品名、重量比PAI:ジグライム=10:90〜20:80)を用いた。   <Adhesion Contribution Agent Application>: Next, PAI is applied as an adhesion contribution agent 50 to one surface of the substrate 10, the electronic component 20, and the surface of the conductive adhesive 30. Here, the PAI to be applied is obtained by further diluting a stock solution in which diglyme is dissolved with diglyme as a diluent. Specifically, as a stock solution, HL1210-ND5 (trade name, weight ratio manufactured by Hitachi Chemical Co., Ltd.) is used. PAI: diglyme = 10: 90 to 20:80) was used.

そして、原液と希釈剤(ジグライム)との重量比である希釈率としては、原液:希釈剤として、原液(希釈なし)、1:1、1:2、1:3の4種類を用いた。このような希釈率を有する密着寄与剤50を、ディスペンスにより、上記図2に示される基板10の中央に少量ずつ塗布し、図6に示されるように、電子部品20の周囲に回り込ませる。   And as a dilution rate which is a weight ratio of an undiluted solution and a diluent (diglyme), four types, undiluted solution, 1: 1, 1: 2, and 1: 3 were used as undiluted solution: diluent. The adhesion contributing agent 50 having such a dilution rate is applied little by little to the center of the substrate 10 shown in FIG. 2 by dispensing, and is wrapped around the electronic component 20 as shown in FIG.

<放置>:こうして密着寄与剤50の塗布が終了した後、ワークを1時間、大気中にて放置する。   <Left>: After the application of the adhesion contributing agent 50 is completed, the workpiece is left in the air for 1 hour.

<1次硬化(乾燥)>:そして、上記放置後、密着寄与剤50を乾燥させることを目的として、1次硬化を行う。条件は、熱板上で80℃×30分である。   <Primary curing (drying)>: After the standing, the primary curing is performed for the purpose of drying the adhesion contributing agent 50. The condition is 80 ° C. × 30 minutes on a hot plate.

<接続抵抗測定2回目>:この1次硬化後、耐熱テープMを剥し、基板10の金メッキ11のうち密着寄与剤50の付いていないところにプローブを当て、上記4端子法によって、2回目の接続抵抗を測定する。   <Second measurement of connection resistance>: After this primary curing, the heat-resistant tape M is peeled off, the probe is applied to the gold plating 11 of the substrate 10 where the adhesion contributing agent 50 is not attached, and the second time by the above four-terminal method. Measure the connection resistance.

<2次硬化(本硬化)>:次に、密着寄与剤50を本硬化させることを目的として、2次硬化を行う。条件は、恒温槽で150℃×3時間である。   <Secondary curing (main curing)>: Next, secondary curing is performed for the purpose of main curing the adhesion contributing agent 50. The condition is 150 ° C. × 3 hours in a thermostatic bath.

<接続抵抗測定3回目>:この2次硬化後、基板10の金メッキ11のうち密着寄与剤50の付いていないところにプローブを当て、上記4端子法によって、3回目の接続抵抗を測定する。   <Connection resistance measurement third time>: After this secondary curing, a probe is applied to the gold plating 11 of the substrate 10 where the adhesion contributing agent 50 is not attached, and the third connection resistance is measured by the above four-terminal method.

図7は、密着寄与剤50の希釈率毎に、上記接着剤硬化後の接続抵抗(初期接続抵抗)、1次硬化後の接続抵抗(2回目の接続抵抗)、2次硬化後の接続抵抗(3回目の接続抵抗)の測定結果を示す図である。   FIG. 7 shows the connection resistance after the adhesive curing (initial connection resistance), the connection resistance after primary curing (second connection resistance), and the connection resistance after secondary curing for each dilution ratio of the adhesion contributing agent 50. It is a figure which shows the measurement result of (3rd connection resistance).

図7に示されるように、密着寄与剤50として原液を塗布した場合では、2次硬化後に接続抵抗値が大きく上昇した。また、希釈率が大きくなるに従って、接続抵抗値の上昇はなくなった。   As shown in FIG. 7, when the stock solution was applied as the adhesion contributing agent 50, the connection resistance value greatly increased after the secondary curing. Further, the connection resistance value did not increase as the dilution rate increased.

<密着寄与剤の硬化挙動観察>:また、密着寄与剤50の硬化挙動を調べるため、電子部品20を導電性接着剤30で接続しない状態でセラミック基板10の一面上に置き、そこに上記同様のPAIよりなる密着寄与剤50を塗布し、上記同様に1次硬化(80℃×30分)、2次硬化(150℃×3時間)を続けて行い、この工程における硬化挙動を目視で観察した。   <Observation of Hardening Behavior of Adhesion Contributing Agent>: Further, in order to examine the curing behavior of the adhesion contributing agent 50, the electronic component 20 is placed on one surface of the ceramic substrate 10 without being connected by the conductive adhesive 30, and the same as described above. Adhesion-contributing agent 50 made of PAI was applied, and primary curing (80 ° C. × 30 minutes) and secondary curing (150 ° C. × 3 hours) were performed in the same manner as described above, and the curing behavior in this step was visually observed. did.

その結果、1次硬化にて、電子部品20の周囲に位置する密着寄与剤50中にボイドが発生し、2次硬化にて、当該ボイドが膨張することがわかった。さらに、1次硬化のボイド発生により電子部品20に位置ずれが起こり、2次硬化のボイド膨張によって応力が発生し、電子部品20が持ち上げられていることが確認された。   As a result, it was found that voids were generated in the adhesion contribution agent 50 located around the electronic component 20 by primary curing, and the voids were expanded by secondary curing. Further, it was confirmed that the electronic component 20 was displaced due to the generation of voids in the primary curing, the stress was generated by the void expansion in the secondary curing, and the electronic components 20 were lifted.

<高温せん断強度試験>:上記図7および硬化挙動観察に示されるように、接続抵抗の上昇が2次硬化後に発生していることから、2次硬化の際に何らかの現象が起きていると考えられる。そこで、密着寄与剤の未塗布サンプルについて高温せん断試験を行った。この未塗布サンプルは、導電性接着剤硬化後のサンプルに対して密着寄与剤の塗布を行わないもの、すなわち上記図3に示したものである。   <High-temperature shear strength test>: As shown in FIG. 7 and the observation of curing behavior, an increase in connection resistance occurs after secondary curing, so it is considered that some phenomenon has occurred during secondary curing. It is done. Therefore, a high temperature shear test was performed on an uncoated sample of the adhesion contributing agent. This uncoated sample is one in which the adhesion contributing agent is not applied to the sample after curing of the conductive adhesive, that is, as shown in FIG.

図8は、この未塗布サンプルについて、初期接続抵抗、130℃での接続抵抗、150℃での接続抵抗、170℃での接続抵抗をそれぞれ、上記4端子法によって測定した結果を示す図である。温度上昇にともない、導電性接着剤30のせん断強度が低下していることがわかる。   FIG. 8 is a diagram showing the results of measuring the initial connection resistance, the connection resistance at 130 ° C., the connection resistance at 150 ° C., and the connection resistance at 170 ° C. by the above four-terminal method for this uncoated sample. . It can be seen that the shear strength of the conductive adhesive 30 decreases as the temperature rises.

また、上記した未塗布サンプルに対して、さらに、ジグライムに浸漬したもの、PAI原液を塗布したもの、PAIを1:2で希釈し塗布したもの、という3種類のサンプルについても、常温でのせん断強度試験を行った。その結果を図9に示す。図9では、いずれのサンプルについても、初期とは接続抵抗が実質的に変化していない。   In addition, the above-mentioned uncoated samples were further sheared at room temperature for three types of samples: those immersed in diglyme, coated with PAI stock solution, and coated with PAI diluted 1: 2. A strength test was performed. The result is shown in FIG. In FIG. 9, the connection resistance does not substantially change from the initial stage for any sample.

これら図8、図9に示される結果から、導電性接着剤30のせん断強度の低下はジグライムに浸漬、PAIを塗布したことによる導電性接着剤30の物性変動ではなく、150℃の高温にすることで、導電性接着剤30がそのガラス転移点温度(Tg)を超えたため導電性接着剤30の接着力が低下したことによると推定される。   From the results shown in FIGS. 8 and 9, the decrease in the shear strength of the conductive adhesive 30 is not a change in the physical properties of the conductive adhesive 30 due to immersion in diglyme and application of PAI, but a high temperature of 150 ° C. Therefore, it is presumed that the adhesive strength of the conductive adhesive 30 was lowered because the conductive adhesive 30 exceeded its glass transition temperature (Tg).

<断面精査>:また、接続抵抗値上昇の原因を調査するため、顕微鏡観察による断面精査を行った。密着寄与剤50として原液を塗布し、接続抵抗値が上昇したサンプルと、希釈率が高く、接続抵抗値が上昇しなかったサンプルと、上記した未塗布サンプルとについて、断面精査を行った。   <Cross-section examination>: Further, in order to investigate the cause of the increase in the connection resistance value, a cross-section examination by microscopic observation was performed. The cross-sectional examination was performed about the sample which applied undiluted | stock solution as the adhesion | attachment contribution agent 50, the connection resistance value increased, the sample whose dilution rate was high and the connection resistance value did not increase, and the above-mentioned uncoated sample.

図10は、断面精査の結果を模式的に示す断面図である。原液を塗布し、接続抵抗値が上昇したサンプルについては、導電性接着剤30と基板10との界面に剥離Hが発生し、また、電子部品20の周囲に位置する密着寄与剤50の内部に巨大なボイドBが存在することが確認された。   FIG. 10 is a cross-sectional view schematically showing the result of cross-sectional examination. For the sample in which the stock solution is applied and the connection resistance value is increased, peeling H occurs at the interface between the conductive adhesive 30 and the substrate 10, and in the adhesion contributing agent 50 located around the electronic component 20. It was confirmed that a huge void B was present.

以上のような本発明者の実験から、接続抵抗上昇の原因は、1次硬化にて、密着寄与剤50の表面にPAI膜が形成され、2次硬化にて、温度が導電性接着剤30のTg以上になることにより導電性接着剤30による接続強度が低下し、1次硬化にて形成されたPAI膜のため揮発しきれない希釈剤などの溶剤成分がボイドとなり、これが電子部品20の周囲に発生し、電子部品20を押上げる応力を発生させたことによると推定される。   From the inventors' experiments as described above, the cause of the increase in the connection resistance is that the PAI film is formed on the surface of the adhesion contributing agent 50 in the primary curing, and the temperature of the conductive adhesive 30 is increased in the secondary curing. Since the Pg film formed by the primary curing reduces the connection strength due to the conductive adhesive 30, solvent components such as a diluent that cannot be volatilized become voids. It is presumed that this is caused by the generation of stress that occurs around and pushes up the electronic component 20.

そこで、密着寄与剤50の硬化温度によって、導電性接着剤30の密着力が低下することは避けられないから、密着寄与剤50による応力を低減することに着目した。そして、その要因として、上記ボイドBの大きさと、密着寄与剤50の膜厚との2点に着眼し、これらについて調査した。   Therefore, since it is inevitable that the adhesion force of the conductive adhesive 30 is reduced due to the curing temperature of the adhesion contributing agent 50, attention was focused on reducing the stress caused by the adhesion contributing agent 50. And as the factor, we focused on two points, the size of the void B and the film thickness of the adhesion contributing agent 50, and investigated them.

上記実験と同様のサンプルを用いて、接続抵抗値が上昇しない密着寄与剤50の塗布・硬化条件を見極めるため、密着寄与剤50の希釈率を変えて塗布・硬化を行い、電子部品20の周囲に発生するボイドBの大きさおよび密着寄与剤50の膜厚と、接続抵抗値との関係を調査した。   In order to determine the application / curing conditions of the adhesion contributing agent 50 in which the connection resistance value does not increase using the same sample as in the above experiment, the application / curing is performed by changing the dilution rate of the adhesion contributing agent 50, and the surroundings of the electronic component 20 The relationship between the size of the void B generated in the film and the film thickness of the adhesion contributing agent 50 and the connection resistance value was investigated.

図11は、ボイドの大きさと接続抵抗値との関係を示す図であり、図12は、密着寄与剤50の膜厚と接続抵抗値との関係を示す図である。   FIG. 11 is a diagram showing the relationship between the void size and the connection resistance value, and FIG. 12 is a diagram showing the relationship between the film thickness of the adhesion contributing agent 50 and the connection resistance value.

図11および図12ともに、希釈率についてはプロットの種類を変えて示してあり、丸プロット(希釈なしの原液)、三角プロット(原液:希釈剤=1:1)、ひし形プロット(原液:希釈剤=1:2)、正方形プロット(原液:希釈剤=1:3)としてある。また、各希釈率について、n数は30であるが、すべての結果を記すと見にくくなるので、図11、図12ではプロット数を減らして典型的な値についてプロットしてある。   In both FIG. 11 and FIG. 12, the dilution rate is shown by changing the type of the plot, a round plot (stock solution without dilution), a triangular plot (stock solution: diluent = 1: 1), and a rhombus plot (stock solution: diluent). = 1: 2), square plot (stock solution: diluent = 1: 3). For each dilution rate, the n number is 30, but it is difficult to see all the results. Therefore, in FIG. 11 and FIG. 12, the number of plots is reduced and typical values are plotted.

図11に示されるように、電子部品20の周囲に位置する密着寄与剤50において、その内部に存在するボイドの径が100000μm2以下ならば、接続抵抗値はほとんど上昇しないことがわかった。 As shown in FIG. 11, in the adhesion contribution agent 50 positioned around the electronic component 20, it has been found that the connection resistance value hardly increases if the diameter of the void existing therein is 100000 μm 2 or less.

また、図12に示されるように、2次硬化後の密着寄与剤50の膜厚が20um以下であれば、接続抵抗値はほとんど上昇しないことがわかった。以上が本発明者の行った検討であり、これらの実験結果に基づいて、本実施形態の電子装置では、上述のようにボイド径や密着寄与剤50の膜厚を規定している。   Further, as shown in FIG. 12, it was found that the connection resistance value hardly increased when the film thickness of the adhesion contributing agent 50 after the secondary curing was 20 μm or less. The above is a study conducted by the present inventors. Based on the results of these experiments, the electronic device of this embodiment defines the void diameter and the film thickness of the adhesion contributing agent 50 as described above.

また、図11、図12に示されるように、塗布される密着寄与剤50の希釈率が、原液1に対して希釈剤2の重量比以上であれば、上記ボイド径100000μm2以下の構成、上記膜厚20μm以下の構成が、ほぼ確実に実現されている。 Moreover, as shown in FIG. 11 and FIG. 12, if the dilution ratio of the adhesion contribution agent 50 to be applied is equal to or greater than the weight ratio of the diluent 2 to the stock solution 1, the void diameter is 100,000 μm 2 or less. The configuration with the film thickness of 20 μm or less is almost certainly realized.

このことから、本実施形態の製造方法としては、塗布される密着寄与剤50として、ポリエーテルアミドイミドをジグライムに溶解させたものであって当該ポリエーテルアミドイミドとジグライムとの重量比が10:90〜20:80の溶液である原液を、希釈剤であるジグライムによってさらに希釈してなるものとし、その希釈率は、当該原液1に対して希釈剤2以上の重量比とすることがよい。   From this, as a manufacturing method of this embodiment, as the adhesion contribution agent 50 to be applied, polyetheramideimide is dissolved in diglyme, and the weight ratio of the polyetheramideimide and diglyme is 10: The stock solution that is a 90-20: 80 solution is further diluted with diglyme, which is a diluent, and the dilution ratio is preferably a weight ratio of diluent 2 or more with respect to the stock solution 1.

なお、上記した例では、硬化条件は1次硬化80℃×30分、2次硬化150℃×3時間としているが、ボイドの発生をさらに抑えるためには、1次硬化の時間を長くするとよい。例えば30分を3時間にする。1次硬化において低温で加熱時間を長くすることで、残留溶剤を少なくすることができる。また、その場合、2次硬化の時間は短くてもよい。例えば3時間は30分にする。   In the above example, the curing conditions are primary curing 80 ° C. × 30 minutes, secondary curing 150 ° C. × 3 hours, but in order to further suppress the generation of voids, the primary curing time may be increased. . For example, 30 minutes is changed to 3 hours. Residual solvent can be reduced by lengthening the heating time at a low temperature in the primary curing. In that case, the secondary curing time may be short. For example, 3 hours is 30 minutes.

本発明の実施形態に係る電子装置の概略断面図である。It is a schematic sectional drawing of the electronic device which concerns on embodiment of this invention. 本発明者が行った実験に用いたサンプルを示す概略平面図である。It is a schematic plan view which shows the sample used for the experiment which this inventor conducted. 図2に示されるサンプルの部分概略断面図である。FIG. 3 is a partial schematic cross-sectional view of the sample shown in FIG. 2. 接続抵抗の測定方法を示す概略断面図である。It is a schematic sectional drawing which shows the measuring method of connection resistance. 耐熱テープの貼り付け状態を示す概略平面図である。It is a schematic plan view which shows the affixing state of a heat resistant tape. 密着寄与剤塗布後のサンプルの状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the sample after adhesion | attachment contribution agent application | coating. 密着寄与剤の希釈率を変えた時の接着剤硬化後、1次硬化後、2次硬化後の各接続抵抗の測定結果を示す図である。It is a figure which shows the measurement result of each connection resistance after adhesive hardening at the time of changing the dilution rate of adhesion contribution agent, after primary hardening, and after secondary hardening. 未塗布サンプルについて、初期、130℃、150℃、170℃の各接続抵抗を測定した結果を示す図である。It is a figure which shows the result of having measured each connection resistance of an initial stage, 130 degreeC, 150 degreeC, and 170 degreeC about an uncoated sample. 常温せん断強度試験の結果を示す図である。It is a figure which shows the result of a normal temperature shear strength test. 断面精査の結果を示す概略断面図である。It is a schematic sectional drawing which shows the result of a cross-sectional examination. ボイドの大きさと接続抵抗値との関係を示す図である。It is a figure which shows the relationship between the magnitude | size of a void and a connection resistance value. 密着寄与剤の膜厚と接続抵抗値との関係を示す図である。It is a figure which shows the relationship between the film thickness of an adhesion | attachment contribution agent, and a connection resistance value.

符号の説明Explanation of symbols

10 基板
20 電子部品
30 導電性接着剤
40 モールド樹脂
50 密着寄与剤
DESCRIPTION OF SYMBOLS 10 Board | substrate 20 Electronic component 30 Conductive adhesive 40 Mold resin 50 Adhesion contribution agent

Claims (3)

基板(10)と、
前記基板(10)の一面に搭載された電子部品(20)と、
前記電子部品(20)と前記基板(10)の一面との間に介在し、これら両部材(10、20)を電気的に接続する導電性接着剤(30)と、
前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)を封止するモールド樹脂(40)と、
前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)と前記モールド樹脂(40)との間に介在し、前記モールド樹脂(40)の密着性を確保する密着寄与剤(50)とを備える電子装置において、
前記電子部品(20)の周囲に位置する前記密着寄与剤(50)の内部には、ボイドが存在しており、このボイドの径が100000μm2以下であることを特徴とする電子装置。
A substrate (10);
An electronic component (20) mounted on one surface of the substrate (10);
A conductive adhesive (30) interposed between the electronic component (20) and one surface of the substrate (10) to electrically connect these members (10, 20);
A mold resin (40) for sealing one surface of the substrate (10), the electronic component (20) and the conductive adhesive (30);
Adhering between one surface of the substrate (10), the electronic component (20) and the conductive adhesive (30) and the mold resin (40) to ensure adhesion of the mold resin (40) In an electronic device comprising a contributor (50),
An electronic device, wherein a void is present inside the adhesion contributing agent (50) located around the electronic component (20), and the diameter of the void is 100000 μm 2 or less.
基板(10)と、
前記基板(10)の一面に搭載された電子部品(20)と、
前記電子部品(20)と前記基板(10)の一面との間に介在し、これら両部材(10、20)を電気的に接続する導電性接着剤(30)と、
前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)を封止するモールド樹脂(40)と、
前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)と前記モールド樹脂(40)との間に介在し、前記モールド樹脂(40)の密着性を確保する密着寄与剤(50)とを備える電子装置において、
前記電子部品(20)の周囲に位置する前記密着寄与剤(50)の膜厚が20um以下であることを特徴とする電子装置。
A substrate (10);
An electronic component (20) mounted on one surface of the substrate (10);
A conductive adhesive (30) interposed between the electronic component (20) and one surface of the substrate (10) to electrically connect these members (10, 20);
A mold resin (40) for sealing one surface of the substrate (10), the electronic component (20) and the conductive adhesive (30);
Adhering between one surface of the substrate (10), the electronic component (20) and the conductive adhesive (30) and the mold resin (40) to ensure adhesion of the mold resin (40) In an electronic device comprising a contributor (50),
The electronic device according to claim 1, wherein a film thickness of the adhesion contributing agent (50) positioned around the electronic component (20) is 20 um or less.
基板(10)の一面に導電性接着剤(30)を介して電子部品(20)を電気的に接続した後、前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)の表面にモールド樹脂(40)の密着性を確保する密着寄与剤(50)を塗布してこれを硬化し、続いて、前記基板(10)の一面、前記電子部品(20)および前記導電性接着剤(30)を前記モールド樹脂(40)で封止するようにした電子装置の製造方法において、
前記塗布される密着寄与剤(50)の希釈率を、原液1に対して希釈剤2の重量比以上とするものであり、
さらに、前記原液は、ポリエーテルアミドイミドをジグライムに溶解させたものであって、これらポリエーテルアミドイミドとジグライムとの重量比が10:90〜20:80の溶液であり、前記希釈剤はジグライムであることを特徴とする電子装置の製造方法。
After electrically connecting the electronic component (20) to the one surface of the substrate (10) via the conductive adhesive (30), the one surface of the substrate (10), the electronic component (20), and the conductive adhesive An adhesion contributing agent (50) that secures the adhesion of the mold resin (40) is applied to the surface of (30) and cured, and then one surface of the substrate (10), the electronic component (20), and In the method of manufacturing an electronic device in which the conductive adhesive (30) is sealed with the mold resin (40),
The dilution ratio of the applied adhesion contributing agent (50) is not less than the weight ratio of the diluent 2 to the stock solution 1,
Further, the stock solution is obtained by dissolving polyetheramideimide in diglyme, and the weight ratio of these polyetheramideimide and diglyme is 10:90 to 20:80, and the diluent is diglyme. A method for manufacturing an electronic device, wherein:
JP2008289574A 2008-11-12 2008-11-12 Electronic device and manufacturing method thereof Expired - Fee Related JP5298789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289574A JP5298789B2 (en) 2008-11-12 2008-11-12 Electronic device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289574A JP5298789B2 (en) 2008-11-12 2008-11-12 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010118429A true JP2010118429A (en) 2010-05-27
JP5298789B2 JP5298789B2 (en) 2013-09-25

Family

ID=42305931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289574A Expired - Fee Related JP5298789B2 (en) 2008-11-12 2008-11-12 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5298789B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111569A (en) * 1984-11-06 1986-05-29 Shin Etsu Chem Co Ltd Resin-sealed semiconductor device
JPH0541469A (en) * 1991-08-06 1993-02-19 Nec Corp Resin sealed semiconductor device
JPH0595058A (en) * 1991-02-26 1993-04-16 Philips Gloeilampenfab:Nv Semiconductor device
JPH098181A (en) * 1995-06-20 1997-01-10 Nitto Denko Corp Semiconductor device
JP2002373961A (en) * 2001-06-15 2002-12-26 Denso Corp Resin sealed electronic device
JP2007184315A (en) * 2006-01-04 2007-07-19 Hitachi Ltd Resin-sealed power semiconductor module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111569A (en) * 1984-11-06 1986-05-29 Shin Etsu Chem Co Ltd Resin-sealed semiconductor device
JPH0595058A (en) * 1991-02-26 1993-04-16 Philips Gloeilampenfab:Nv Semiconductor device
JPH0541469A (en) * 1991-08-06 1993-02-19 Nec Corp Resin sealed semiconductor device
JPH098181A (en) * 1995-06-20 1997-01-10 Nitto Denko Corp Semiconductor device
JP2002373961A (en) * 2001-06-15 2002-12-26 Denso Corp Resin sealed electronic device
JP2007184315A (en) * 2006-01-04 2007-07-19 Hitachi Ltd Resin-sealed power semiconductor module

Also Published As

Publication number Publication date
JP5298789B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
US7141878B2 (en) Semiconductor device and manufacturing method thereof
KR101163436B1 (en) Insulation-coated electroconductive particles
JP2009238969A (en) Structure of packaging electronic component and method for manufacturing electronic component packaging body
JP2003298196A (en) Dielectric film for printed wiring board, multilayer printed board and semiconductor device
KR20010082747A (en) Semiconductor apparatus
KR20020012479A (en) Semiconductor device and manufacturing method thereof
JP5337520B2 (en) Press-fit pin, press-fit pin connection structure, and manufacturing method thereof
JP4053744B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
CN105702432B (en) Electronic component and board having the same
JPH05102645A (en) Hybrid integrated circuit
JP2006272886A (en) Flexible metal laminate and flexible printed circuit board
JP5228847B2 (en) Electronic device and manufacturing method thereof
JP5298789B2 (en) Electronic device and manufacturing method thereof
JP2006265484A (en) Adhesive resin composition and electronic apparatus
Xiao et al. Conductive ink for through hole application
JP2007126498A (en) Method for producing insulating resin adhesive sheet and method for producing printed wiring board using insulating resin adhesive sheet
JP2002043723A (en) Wiring board and electronic parts module using the same
Zhang et al. Research on the contact resistance, reliability, and degradation mechanisms of anisotropically conductive film interconnection for flip-chip-on-flex applications
JP5082296B2 (en) Adhesive with wiring and circuit connection structure
KR100526624B1 (en) Adhesive tape for semiconductor apparatus
JPH07183646A (en) Wiring board and mounting method using it
JP2000164645A (en) Electronic part mounting film carrier tape and manufacture thereof
Pippola et al. Effect of protective casting materials on product level reliability under accelerated test conditions
KR100515747B1 (en) Heat-resistance adhesive tape for electronic components
JPH0821763B2 (en) Electronic circuit parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5298789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees