JP2010114071A - Flat alkaline primary battery and its cathode mixture - Google Patents

Flat alkaline primary battery and its cathode mixture Download PDF

Info

Publication number
JP2010114071A
JP2010114071A JP2009229833A JP2009229833A JP2010114071A JP 2010114071 A JP2010114071 A JP 2010114071A JP 2009229833 A JP2009229833 A JP 2009229833A JP 2009229833 A JP2009229833 A JP 2009229833A JP 2010114071 A JP2010114071 A JP 2010114071A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
primary battery
oxyhydroxide
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009229833A
Other languages
Japanese (ja)
Other versions
JP5464651B2 (en
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009229833A priority Critical patent/JP5464651B2/en
Priority to CN200910179489.2A priority patent/CN101719551B/en
Publication of JP2010114071A publication Critical patent/JP2010114071A/en
Application granted granted Critical
Publication of JP5464651B2 publication Critical patent/JP5464651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive flat alkaline primary battery having superior electric capacity and a capacity retention property, and also provide its cathode mixture. <P>SOLUTION: In the flat alkaline primary battery formed by separating the cathode mixture 5 and an anode mixture 7 by a separator 6, and housing them in a case 8, the cathode mixture 5 contains silver oxide as the main cathode active material, and nickel oxyhydroxide and silver-nickel complex oxide as a cathode sub-active material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平形アルカリ一次電池及びその正極合剤に関する。   The present invention relates to a flat alkaline primary battery and a positive electrode mixture thereof.

電子腕時計、携帯用電子計算機等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形アルカリ一次電池は、扁平形のケース内に正極合剤と負極合剤とを備えている。ケース内に収容された正極合剤及び負極合剤は、セパレータを介して対向し、正極合剤、負極合剤及びセパレータには電解液が充填されている。   2. Description of the Related Art A flat alkaline primary battery such as a coin shape or a button shape used in a small electronic device such as an electronic wristwatch or a portable electronic calculator has a positive electrode mixture and a negative electrode mixture in a flat case. The positive electrode mixture and the negative electrode mixture housed in the case face each other via a separator, and the positive electrode mixture, the negative electrode mixture, and the separator are filled with an electrolytic solution.

この扁平形アルカリ一次電池として、主正極活物質として酸化銀を用いた酸化銀電池が既に一般市場に出回っている。酸化銀電池は、体積エネルギー密度が高い利点を有し、負極活物質を亜鉛とした場合に、その電池電圧が1.56ボルト付近で平坦である。このため、酸素銀電池は、主に終止電圧が1.2ボルト以上の電子腕時計、携帯用電子計算機等の小型電子機器用の電源に適している。しかしながら、酸化銀は、貴金属である銀が主成分であるため高価であり、銀相場により価格が変動し、製造原価の低減や安定を図る上で使用し難い物質である。   As this flat alkaline primary battery, a silver oxide battery using silver oxide as a main cathode active material has already been put on the general market. Silver oxide batteries have the advantage of high volumetric energy density, and when the negative electrode active material is zinc, the battery voltage is flat around 1.56 volts. For this reason, the oxygen silver battery is suitable for a power source for small electronic devices such as electronic wristwatches and portable electronic computers whose end voltage is 1.2 volts or more. However, silver oxide is expensive because silver, which is a noble metal, is the main component, and the price fluctuates depending on the silver market price, and is a substance that is difficult to use in order to reduce and stabilize manufacturing costs.

このため、活物質の一部に安価な二酸化マンガンを用いた酸化銀電池も作製されている。しかし、二酸化マンガンを活物質とした電池は、体積エネルギー密度が低く、放電に伴い電圧が大幅に低下する問題を有している。上記のように酸化銀に二酸化マンガンを添加した電池でも、放電に伴い電圧が大きく低下する。このため、終止電圧が高めに設定されている機器においては、二酸化マンガンの放電に伴う電圧降下から、機器の使用時間が極端に短くなってしまうという問題がある。   For this reason, a silver oxide battery using inexpensive manganese dioxide as a part of the active material has also been produced. However, a battery using manganese dioxide as an active material has a problem that the volume energy density is low, and the voltage is greatly lowered with discharge. Even in a battery in which manganese dioxide is added to silver oxide as described above, the voltage greatly decreases with discharge. For this reason, in the apparatus in which the end voltage is set high, there exists a problem that the usage time of an apparatus will become extremely short from the voltage drop accompanying discharge of manganese dioxide.

これに対し、特許文献1には、正極活物質として、酸化銀及び二酸化マンガンの他に、オキシ水酸化ニッケルを用いた電池が記載されている。オキシ水酸化ニッケルは、その電池電圧が酸化銀より高く、正極合剤に添加することにより放電に伴う大幅な電圧降下を抑制することができる。   On the other hand, Patent Document 1 describes a battery using nickel oxyhydroxide as a positive electrode active material in addition to silver oxide and manganese dioxide. Nickel oxyhydroxide has a battery voltage higher than that of silver oxide, and can be added to the positive electrode mixture to suppress a significant voltage drop caused by discharge.

特開2006−24447号公報JP 2006-24447 A

しかし、オキシ水酸化ニッケルの単位質量当りの理論電気容量は、292mAh/gであり、二酸化マンガン308mAh/g(マンガン1価当り)よりも小さい。また、オキシ水酸化ニッケル自身の導電性は低く、且つ放電反応でオキシ水酸化ニッケルが還元されて生成する水酸化ニッケルは殆ど導電性がない。さらに、オキシ水酸化ニッケルは、電解液吸収及び放電に伴い体積が増大する。これらの要因により、正極合剤にオキシ水酸化ニッケルを用いた場合、放電に伴い正極合剤中の導電剤の比率が低くなり、著しく容量及び容量保存性が低下してしまうといった問題がある。   However, the theoretical electric capacity per unit mass of nickel oxyhydroxide is 292 mAh / g, which is smaller than manganese dioxide 308 mAh / g (per manganese content). In addition, nickel oxyhydroxide itself has low conductivity, and nickel hydroxide produced by reduction of nickel oxyhydroxide by a discharge reaction has almost no conductivity. Furthermore, the volume of nickel oxyhydroxide increases with electrolyte absorption and discharge. Due to these factors, when nickel oxyhydroxide is used for the positive electrode mixture, the ratio of the conductive agent in the positive electrode mixture decreases with discharge, and there is a problem that the capacity and capacity storage stability are remarkably lowered.

本発明は、上記問題点に鑑みてなされたものであり、優れた電気容量及び容量保存性を有した安価な扁平形アルカリ一次電池及びその正極合剤を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide an inexpensive flat alkaline primary battery having an excellent electric capacity and capacity preservation and a positive electrode mixture thereof.

本発明は、正極合剤及び負極合剤をセパレータで分離してケース内に収容した扁平形アルカリ一次電池において、前記正極合剤は、主正極活物質として酸化銀を含み、副正極活物質としてオキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを含む。   The present invention provides a flat alkaline primary battery in which a positive electrode mixture and a negative electrode mixture are separated by a separator and accommodated in a case. The positive electrode mixture includes silver oxide as a main positive electrode active material, and a secondary positive electrode active material. Contains nickel oxyhydroxide coated with cobalt oxyhydroxide.

上記構成では、主正極活物質として酸化銀を用い、副正極活物質としてオキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを用いた。従って、酸化銀の比率を減らしても、オキシ水酸化ニッケルの高い放電電圧、放電に伴う放電電圧の安定性といった特性により、放電に伴う電圧降下を抑制することができる。このため、終止電圧が高めに設定されている機器に使用しても、機器の使用時間が極端に短くなることがない。また、オキシ水酸化ニッケルをオキシ水酸化コバルトで被覆することによって、導電性を向上し、正極合剤の放電に伴う膨張を抑制して、電池容量及び容量保存性を高めることができる。このため、優れた電池容量及び容量保存性を有した安価な電池を作製することができる。   In the above configuration, silver oxide was used as the main positive electrode active material, and nickel oxyhydroxide coated with cobalt oxyhydroxide was used as the auxiliary positive electrode active material. Therefore, even if the ratio of silver oxide is reduced, the voltage drop accompanying discharge can be suppressed by the characteristics such as the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying discharge. For this reason, even if it uses for the apparatus by which the end voltage is set high, the use time of an apparatus does not become extremely short. Moreover, by covering nickel oxyhydroxide with cobalt oxyhydroxide, conductivity can be improved, expansion due to discharge of the positive electrode mixture can be suppressed, and battery capacity and capacity storage can be improved. For this reason, an inexpensive battery having excellent battery capacity and capacity preservation can be produced.

この扁平形アルカリ一次電池において、前記オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの配合率は、前記正極合剤に対し、10質量%以上、50質量%未満である。   In this flat alkaline primary battery, the mixing ratio of nickel oxyhydroxide coated with cobalt oxyhydroxide is 10% by mass or more and less than 50% by mass with respect to the positive electrode mixture.

この構成によれば、オキシ水酸化ニッケルの高い放電電圧と放電に伴う放電電圧の安定性を活かせるため、安価で容量及び容量保存性に優れた電池を得ることができる。
この扁平形アルカリ一次電池において、前記オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルの平均粒径が5μm以上、20μm以下であることを要旨とする。
According to this configuration, since the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying discharge are utilized, a battery that is inexpensive and excellent in capacity and capacity storage can be obtained.
The gist of the flat alkaline primary battery is that the nickel oxyhydroxide coated with the cobalt oxyhydroxide has an average particle diameter of 5 μm or more and 20 μm or less.

この構成によれば、オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルの平均粒径が5μm以上、20μm以下であるため、正極合剤の体積膨張を効率よく抑制することができる。従って、正極合剤の体積膨張による電子伝導の低下を防止することができる。   According to this structure, since the average particle diameter of the nickel oxyhydroxide coat | covered with the cobalt oxyhydroxide is 5 micrometers or more and 20 micrometers or less, the volume expansion of a positive mix can be suppressed efficiently. Therefore, it is possible to prevent a decrease in electronic conduction due to the volume expansion of the positive electrode mixture.

本発明は、扁平形アルカリ一次電池の正極合剤において、主正極活物質として酸化銀を含み、副正極活物質としてオキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを含む。   In the positive electrode mixture of the flat alkaline primary battery, the present invention includes nickel oxyhydroxide containing silver oxide as a main positive electrode active material and coated with cobalt oxyhydroxide as a sub positive electrode active material.

上記構成では、正極合剤に、主正極活物質として酸化銀を用い、副正極活物質としてオキシ水酸化ニッケル及び銀・ニッケル複合酸化物を用いた。従って、酸化銀の比率を減らしても、オキシ水酸化ニッケルの高い放電電圧、放電に伴う放電電圧の安定性といった特性により、放電に伴う電圧降下を抑制することができる。このため、終止電圧が高めに設定されている機器に使用しても、機器の使用時間が極端に短くなることがない。また、銀・ニッケル複合酸化物の高い導電性、高容量及び結着力といった特性により、導電性を向上し、正極合剤の放電に伴う膨張を抑制して、電池容量及び容量保存性を高めることができる。このため、優れた電池容量及び容量保存性を有した安価な電池を作製することができる。   In the above configuration, silver oxide was used as the main positive electrode active material, and nickel oxyhydroxide and silver / nickel composite oxide were used as the sub positive electrode active material in the positive electrode mixture. Therefore, even if the ratio of silver oxide is reduced, the voltage drop accompanying discharge can be suppressed by the characteristics such as the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying discharge. For this reason, even if it uses for the apparatus by which the end voltage is set high, the use time of an apparatus does not become extremely short. In addition, the high conductivity, high capacity, and binding power of the silver / nickel composite oxide improve the conductivity, suppress the expansion associated with the discharge of the positive electrode mixture, and increase the battery capacity and capacity storage stability. Can do. For this reason, an inexpensive battery having excellent battery capacity and capacity preservation can be produced.

扁平形アルカリ一次電池の概略断面図。1 is a schematic cross-sectional view of a flat alkaline primary battery.

以下、本発明を具体化した一実施形態を図1に従って説明する。
図1は、扁平形アルカリ一次電池としてのSR系の酸化銀電池1の概略断面図を示している。酸化銀電池1は、正極に酸化銀を主成分として含むボタン形電池であって、正極缶2及び負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した材質からなり、カップ状に成型されている。この正極缶2は、正極合剤5を収容するとともに、正極端子として機能する。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIG.
FIG. 1 shows a schematic cross-sectional view of an SR-based silver oxide battery 1 as a flat alkaline primary battery. The silver oxide battery 1 is a button-type battery including silver oxide as a main component in a positive electrode, and includes a positive electrode can 2 and a negative electrode can 3. The positive electrode can 2 is made of a material obtained by applying nickel plating to stainless steel (SUS), and is molded into a cup shape. The positive electrode can 2 accommodates the positive electrode mixture 5 and functions as a positive electrode terminal.

負極缶3は、ニッケルよりなる外表面層と、ステンレススチール(SUS)よりなる金属層と、銅よりなる集電体層との3層構造のクラッド材からなり、カップ状に成型されている。また、負極缶3は、その円形の開口部3aが折り返し形成されており、その開口部3aには、例えば、ナイロン製のリング状のガスケット4が装着されている。   The negative electrode can 3 is made of a clad material having a three-layer structure of an outer surface layer made of nickel, a metal layer made of stainless steel (SUS), and a current collector layer made of copper, and is molded in a cup shape. The negative electrode can 3 has a circular opening 3a formed in a folded shape, and a ring-shaped gasket 4 made of nylon, for example, is attached to the opening 3a.

そして、正極缶2の円形の開口部2aに、負極缶3を、ガスケット4を装着した開口部3a側から嵌合させ、該正極缶2の開口部2aを該ガスケット4に向かってかしめて封口することによって、円盤状(ボタン形又はコイン形)のケース8が形成される。該ケース8の内部には、密閉空間Sが形成される。   Then, the negative electrode can 3 is fitted into the circular opening 2a of the positive electrode can 2 from the opening 3a side where the gasket 4 is mounted, and the opening 2a of the positive electrode can 2 is caulked toward the gasket 4 to seal it. By doing so, a disk-shaped (button-shaped or coin-shaped) case 8 is formed. A sealed space S is formed inside the case 8.

この密閉空間Sには、正極合剤5、セパレータ6、負極合剤7が収容され、セパレータ6を挟んで正極缶2側に正極合剤5、負極缶3側に負極合剤7がそれぞれ配置されている。
(正極合剤)
次に、正極合剤5について説明する。正極合剤5は、主正極活物質として酸化銀、副正極活物質としてγ−オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルを含む。主正極活物質である酸化銀は、正極合剤5に対して50質量%以上含まれる。
In this sealed space S, the positive electrode mixture 5, the separator 6, and the negative electrode mixture 7 are accommodated, and the positive electrode mixture 5 is disposed on the positive electrode can 2 side and the negative electrode mixture 7 is disposed on the negative electrode can 3 side with the separator 6 interposed therebetween. Has been.
(Positive electrode mixture)
Next, the positive electrode mixture 5 will be described. The positive electrode mixture 5 contains nickel oxyhydroxide coated with silver oxide as a main positive electrode active material and γ-cobalt oxyhydroxide as a sub positive electrode active material. Silver oxide as the main positive electrode active material is contained in an amount of 50% by mass or more with respect to the positive electrode mixture 5.

オキシ水酸化ニッケルは、高い放電電圧と、放電に伴う電池電圧の安定性を有している。従って、副正極活物質として二酸化マンガン等を用いる場合に比べ、終止電圧が高めに設定されている機器に使用しても、放電に伴う電圧降下を抑制することができるため、良好な電池寿命を得ることができる。   Nickel oxyhydroxide has high discharge voltage and stability of battery voltage accompanying discharge. Therefore, compared with the case where manganese dioxide or the like is used as the sub-positive electrode active material, even if it is used in a device whose end voltage is set higher, the voltage drop accompanying the discharge can be suppressed. Obtainable.

オキシ水酸化ニッケルは、放電反応により還元されて水酸化ニッケルとなるが、オキシ水酸化ニッケル自身の導電性も低く、放電反応により生成される水酸化ニッケルは殆ど導電性がない。また、水酸化ニッケルは、オキシ水酸化ニッケルよりも体積が大きいため、水酸化ニッケルの比率が増大するにつれ正極合剤5は膨張する。さらに、正極合剤5が過度に膨張すると、正極合剤中の体積当たりの導電剤の比率が低くなり、容量及び容量保存性が低下してしまう。   Nickel oxyhydroxide is reduced to nickel hydroxide by a discharge reaction, but the conductivity of the nickel oxyhydroxide itself is low, and the nickel hydroxide produced by the discharge reaction has almost no conductivity. Further, since nickel hydroxide has a larger volume than nickel oxyhydroxide, the positive electrode mixture 5 expands as the proportion of nickel hydroxide increases. Furthermore, when the positive electrode mixture 5 expands excessively, the ratio of the conductive agent per volume in the positive electrode mixture decreases, and the capacity and capacity storage stability are reduced.

これに対し、本発明では、オキシ水酸化ニッケルの粒子の表面をγ−オキシ水酸化コバルトで被覆している。これにより、γ−オキシ水酸化コバルトの被覆層が、オキシ水酸化ニッケル粒子の外殻として作用し、体積膨張を抑制することができる。また、γ−オキシ水酸化コバルトは、高い導電性を有するため、導電剤の比率も向上させることができる。従って、嵩密度の低いグラファイト等を加える必要が無いため、活物質充填量を大きくすることができる。尚、上記被覆層は、β−オキシ水酸化コバルト、α−オキシ水酸化コバルトを主成分としてもよいが、高い導電性を有するγ−オキシ水酸化コバルトであることが好ましい。   On the other hand, in the present invention, the surface of nickel oxyhydroxide particles is coated with γ-cobalt oxyhydroxide. Thereby, the coating layer of γ-cobalt oxyhydroxide acts as an outer shell of the nickel oxyhydroxide particles, and can suppress volume expansion. Moreover, since (gamma) -cobalt oxyhydroxide has high electroconductivity, the ratio of a electrically conductive agent can also be improved. Therefore, it is not necessary to add graphite or the like having a low bulk density, so that the active material filling amount can be increased. The coating layer may contain β-cobalt oxyhydroxide and α-cobalt oxyhydroxide as main components, but is preferably γ-cobalt oxyhydroxide having high conductivity.

また、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの平均粒径(D50)を、5μm以上、20μm以下とすることが好ましい。オキシ水酸化ニッケルの平均粒径が、5μmを下回ると、充填性やハンドリング性の点で好ましくない。また、平均粒径が大きくなると、電解液吸収及び放電に伴う体積膨張率が大きくなり、20μmを上回ると優れた容量及び容量保存性が得られなくなる。   Moreover, it is preferable that the average particle diameter (D50) of the nickel oxyhydroxide coat | covered with (gamma) -cobalt oxyhydroxide shall be 5 micrometers or more and 20 micrometers or less. When the average particle diameter of nickel oxyhydroxide is less than 5 μm, it is not preferable in terms of filling properties and handling properties. Further, when the average particle size is increased, the volume expansion coefficient associated with electrolyte absorption and discharge is increased, and when it exceeds 20 μm, excellent capacity and capacity storage stability cannot be obtained.

オキシ水酸化ニッケルの正極合剤5における配合率は、10質量%以上、50質量%未満とすることが好ましい。これは、オキシ水酸化ニッケルの正極合剤5における配合率が10質量%を下回ると、オキシ水酸化ニッケルの高い放電電圧と放電に伴う放電電圧の安定性が得られないためである。さらに、オキシ水酸化ニッケルの配合率が10質量%を下
回ると、材料費の低減効果も小さくなる。また、酸化銀は正極合剤中において50質量%以上含まれるため、他に微量添加される組成物を加味すると、オキシ水酸化ニッケルの配合率は50質量未満以下となる。
The mixing ratio of nickel oxyhydroxide in the positive electrode mixture 5 is preferably 10% by mass or more and less than 50% by mass. This is because if the mixing ratio of the nickel oxyhydroxide in the positive electrode mixture 5 is less than 10% by mass, the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying the discharge cannot be obtained. Furthermore, when the mixing ratio of nickel oxyhydroxide is less than 10% by mass, the effect of reducing the material cost is also reduced. Further, since silver oxide is contained in an amount of 50% by mass or more in the positive electrode mixture, the addition ratio of nickel oxyhydroxide is less than 50% or less when a trace amount of other composition is added.

このように、正極活物質を、主成分である酸化銀の他、オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルから構成することにより、安価な電池を作製することができる。また、副正極活物質として、被覆層を有するオキシ水酸化ニッケルを添加することにより、放電電圧、放電に伴う放電電圧の安定性を向上することができる。さらに、オキシ水酸化ニッケルは、高導電性を有するγ−オキシ水酸化コバルトで被覆されているため、容量及び容量保存性の低下を防止することができる。このため、電池特性を低下させることなく、安価な酸化銀電池1を作製することができる。   Thus, an inexpensive battery can be produced by forming the positive electrode active material from nickel oxyhydroxide coated with cobalt oxyhydroxide in addition to silver oxide as a main component. Moreover, the stability of the discharge voltage and the discharge voltage accompanying discharge can be improved by adding nickel oxyhydroxide having a coating layer as the sub-positive electrode active material. Furthermore, since nickel oxyhydroxide is coated with γ-cobalt oxyhydroxide having high conductivity, it is possible to prevent a decrease in capacity and capacity storage stability. For this reason, the cheap silver oxide battery 1 can be produced, without reducing a battery characteristic.

次に、正極合剤5の組成を変更した実施例及び比較例を行い、当該発明の効果を検証した。
(実施例1)
図1で示す電池構造で、負極缶3を、厚さが0.15mmの上記クラッド材をプレス加工して成型した。
Next, the Example and the comparative example which changed the composition of the positive mix 5 were performed, and the effect of the said invention was verified.
Example 1
In the battery structure shown in FIG. 1, the negative electrode can 3 was molded by pressing the clad material having a thickness of 0.15 mm.

正極合剤5は、酸化銀59質量%、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケル40質量%、結着剤としての樹脂粉末1質量%からなる組成とした。これらの組成物をブレンダーで混合した後、打錠機にてペレット状に成型して正極合剤5を作製した。そして、その正極合剤5を正極缶2内に挿入し、水酸化カリウムを含むアルカリ電解液を注入して、正極合剤5にアルカリ電解液を吸収させた。   The positive electrode mixture 5 was composed of 59% by mass of silver oxide, 40% by mass of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide, and 1% by mass of resin powder as a binder. After mixing these compositions with a blender, the mixture was molded into pellets with a tableting machine to produce a positive electrode mixture 5. Then, the positive electrode mixture 5 was inserted into the positive electrode can 2, and an alkaline electrolyte containing potassium hydroxide was injected to cause the positive electrode mixture 5 to absorb the alkaline electrolyte.

さらに、正極合剤5上に、微多孔膜6aと不織布6bの2層構造の円形状に打ち抜いたセパレータ6を装填し、37%水酸化カリウム水溶液を含むアルカリ電解液を滴下して含浸させた。   Furthermore, on the positive electrode mixture 5, a separator 6 punched in a circular shape having a two-layer structure of a microporous membrane 6a and a nonwoven fabric 6b was loaded, and an alkaline electrolyte containing a 37% aqueous potassium hydroxide solution was dropped and impregnated. .

また、負極合剤7を、負極活物質として亜鉛合金粉61質量%、酸化亜鉛2.68質量%、活物質安定剤として高架橋型ポリアクリル酸ソーダ1.47質量%、及び増粘剤としてカルボキシメチルセルロース1.48質量%、電解液として45%水酸化カリウム水溶液33.37質量%を混合して形成した。そして、この負極合剤7を、セパレータ6上に載置した。さらに、負極缶3と正極缶2とを、ガスケット4を介してかしめることで密封して、酸化銀電池1を作製した。
(実施例2)
実施例2は、実施例1と同様な構成にするものの、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの平均粒径を5μmとした。
(実施例3)
実施例3は、実施例1と同様な構成にするものの、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの平均粒径を20μmとした。
(実施例4)
実施例4は、実施例1と同様な構成にするものの、酸化銀の配合率を89質量%、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの配合率を10質量%とした。
(実施例5)
実施例5は、実施例1と同様な構成にするものの、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの平均粒径を1μmとした。
(実施例6)
実施例6は、実施例1と同様な構成にするものの、酸化銀の配合率を49質量%、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの配合率を50質量%とした。
(比較例)
比較例は、正極合剤5に、副正極活物質として表面をγオキシ水酸化コバルトで被覆していないオキシ水酸化ニッケルを37質量%配合し、導電剤としてグラファイトを3質量%配合した。
<検証>
そして、上記した実施例1〜6、比較例の扁平形アルカリ一次電池をそれぞれ40個ずつ作製し、以下の検証を行った。
<検証1>
実施例1〜6及び比較例のそれぞれ20個の電池に対し、30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を調べた。その結果を表1に示す。
<検証2>
実施例1〜6及び比較例のそれぞれ20個の電池に対し、温度60℃、湿度ドライの環境下で100日保存した後、30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を調べた。その結果を表1に示す。
Further, the negative electrode mixture 7 was composed of 61% by mass of zinc alloy powder as a negative electrode active material, 2.68% by mass of zinc oxide, 1.47% by mass of highly crosslinked sodium polyacrylate as an active material stabilizer, and carboxy as a thickener. It was formed by mixing 1.48% by mass of methylcellulose and 33.37% by mass of 45% potassium hydroxide aqueous solution as the electrolyte. Then, this negative electrode mixture 7 was placed on the separator 6. Further, the negative electrode can 3 and the positive electrode can 2 were sealed by caulking through a gasket 4 to produce a silver oxide battery 1.
(Example 2)
In Example 2, the same structure as in Example 1 was used, but the average particle diameter of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was 5 μm.
(Example 3)
In Example 3, the same structure as in Example 1 was used, but the average particle diameter of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was 20 μm.
Example 4
In Example 4, the composition was the same as in Example 1, but the blending ratio of silver oxide was 89% by mass, and the blending ratio of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was 10% by mass.
(Example 5)
In Example 5, the same structure as in Example 1 was used, but the average particle diameter of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was 1 μm.
(Example 6)
In Example 6, the composition was the same as in Example 1, but the blending ratio of silver oxide was 49% by mass, and the blending ratio of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was 50% by mass.
(Comparative example)
In the comparative example, 37% by mass of nickel oxyhydroxide whose surface was not coated with γ-cobalt oxyhydroxide as a secondary positive electrode active material was blended in the positive electrode mixture 5, and 3% by mass of graphite was blended as a conductive agent.
<Verification>
Then, each of the flat alkaline primary batteries of Examples 1 to 6 and Comparative Example described above were prepared for 40 each, and the following verification was performed.
<Verification 1>
For each of the 20 batteries of Examples 1 to 6 and the comparative example, a constant resistance discharge was performed at 30 kΩ, and the discharge capacity [mAh] when the final voltage was 1.2 V was examined. The results are shown in Table 1.
<Verification 2>
For each of the 20 batteries of Examples 1 to 6 and Comparative Example, after being stored for 100 days in a dry environment at a temperature of 60 ° C., a constant resistance discharge was performed at 30 kΩ to obtain a final voltage of 1.2V. The discharge capacity [mAh] was examined. The results are shown in Table 1.

Figure 2010114071
はじめに、この表1より、実施例1〜6と比較例とを比較するに、正極合剤の副正極活物質として少なくとも表面をγ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを用いることによって、容量および容量保存性に優れた電池を得ることができることが判る。
Figure 2010114071
First, from Table 1, in order to compare Examples 1 to 6 and Comparative Example, by using nickel oxyhydroxide having at least the surface coated with γ-cobalt oxyhydroxide as the sub-positive electrode active material of the positive electrode mixture. It can be seen that a battery excellent in capacity and capacity storage can be obtained.

また、実施例1〜3と実施例5とを比較するに、オキシ水酸化ニッケルの平均粒径を5μm以上、20μm以下とすることにより、容量保存性に優れた電池を得ることができることが示唆された。   Moreover, when Examples 1-3 are compared with Example 5, it is suggested that the battery excellent in capacity | capacitance preservability can be obtained by making the average particle diameter of nickel oxyhydroxide into 5 micrometers or more and 20 micrometers or less. It was done.

さらに、実施例4と実施例6とにより、副正極活物質であるオキシ水酸化ニッケルの配合比を10質量%以上、50質量%以下としても、容量および容量保存性に優れた電池を作製できることが示唆された。   Furthermore, according to Example 4 and Example 6, even when the mixing ratio of nickel oxyhydroxide, which is the secondary cathode active material, is 10% by mass or more and 50% by mass or less, a battery excellent in capacity and capacity storage can be produced. Was suggested.

上記実施形態によれば、以下のような効果を得ることができる。
(1)上記実施形態では、主正極活物質として酸化銀を用い、副正極活物質としてγ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを用いた。従って、価格の面で不利な酸化銀の比率を低減しても、オキシ水酸化ニッケルの高い放電電圧、放電に伴う放電電圧の安定性といった特性により、放電に伴う電圧降下を抑制することができる。このため、終止電圧が高めに設定されている機器に使用しても、機器の使用時間が極端に短くなることがない。また、γ−オキシ水酸化コバルトでオキシ水酸化ニッケルの表面を被覆す
ることにより、正極合剤5の放電に伴う膨張を抑制して、容量及び容量保存性を高めることができる。このため、優れた容量及び容量保存性を有した安価な酸化銀電池1を作製することができる。
According to the above embodiment, the following effects can be obtained.
(1) In the above embodiment, silver oxide was used as the main cathode active material, and nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was used as the sub cathode active material. Therefore, even if the ratio of silver oxide, which is disadvantageous in terms of price, is reduced, the voltage drop associated with discharge can be suppressed by the characteristics such as the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying discharge. . For this reason, even if it uses for the apparatus by which the end voltage is set high, the use time of an apparatus does not become extremely short. Moreover, by covering the surface of nickel oxyhydroxide with γ-cobalt oxyhydroxide, the expansion accompanying the discharge of the positive electrode mixture 5 can be suppressed, and the capacity and capacity preservation can be improved. Therefore, an inexpensive silver oxide battery 1 having excellent capacity and capacity storage can be produced.

(2)上記実施形態では、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの配合率を、正極合剤5に対し、10質量%以上、50質量%未満とした。このため、オキシ水酸化ニッケルの高い放電電圧と放電に伴う放電電圧の安定性を活かせるため、安価で容量及び容量保存性に優れた電池を得ることができる。   (2) In the above embodiment, the blending ratio of nickel oxyhydroxide coated with γ-cobalt oxyhydroxide was set to 10 mass% or more and less than 50 mass% with respect to the positive electrode mixture 5. For this reason, since the high discharge voltage of nickel oxyhydroxide and the stability of the discharge voltage accompanying discharge can be utilized, a battery that is inexpensive and excellent in capacity and capacity storage can be obtained.

(3)上記実施形態では、γ−オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの平均粒径を、5μm以上、20μm以下とした。このため、正極合剤5の体積膨張を抑制できるため、電子伝導の低下を防止することができる。   (3) In the said embodiment, the average particle diameter of the nickel oxyhydroxide coat | covered with (gamma) -cobalt oxyhydroxide was 5 micrometers or more and 20 micrometers or less. For this reason, since the volume expansion of the positive electrode mixture 5 can be suppressed, a decrease in electronic conduction can be prevented.

1…扁平形アルカリ一次電池、5…正極合剤、6…セパレータ、7…負極合剤、8…ケース。   DESCRIPTION OF SYMBOLS 1 ... Flat alkaline primary battery, 5 ... Positive electrode mixture, 6 ... Separator, 7 ... Negative electrode mixture, 8 ... Case.

Claims (4)

正極合剤及び負極合剤をセパレータで分離してケース内に収容した扁平形アルカリ一次電池において、
前記正極合剤は、主正極活物質として酸化銀を含み、副正極活物質としてオキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを含むことを特徴とする扁平形アルカリ一次電池。
In the flat alkaline primary battery in which the positive electrode mixture and the negative electrode mixture are separated by a separator and accommodated in a case,
2. The flat alkaline primary battery according to claim 1, wherein the positive electrode mixture includes silver oxide as a main positive electrode active material and nickel oxyhydroxide coated with cobalt oxyhydroxide as a sub positive electrode active material.
請求項1に記載の扁平形アルカリ一次電池において、
前記オキシ水酸化コバルトで被覆したオキシ水酸化ニッケルの配合率は、前記正極合剤に対し、10質量%以上、50質量%未満であることを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to claim 1,
A flat alkaline primary battery characterized in that the mixing ratio of the nickel oxyhydroxide coated with cobalt oxyhydroxide is 10% by mass or more and less than 50% by mass with respect to the positive electrode mixture.
請求項1又は2に記載の扁平形アルカリ一次電池において、
前記オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルの平均粒径が5μm以上、20μm以下であることを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to claim 1 or 2,
A flat alkaline primary battery characterized in that the nickel oxyhydroxide coated with cobalt oxyhydroxide has an average particle diameter of 5 μm or more and 20 μm or less.
扁平形アルカリ一次電池の正極合剤において、
主正極活物質として酸化銀を含み、副正極活物質としてオキシ水酸化コバルトで被覆したオキシ水酸化ニッケルを含むことを特徴とする扁平形アルカリ一次電池の正極合剤。
In the positive electrode mixture of flat alkaline primary battery,
A positive electrode mixture for a flat alkaline primary battery comprising silver oxide as a main positive electrode active material and nickel oxyhydroxide coated with cobalt oxyhydroxide as a sub positive electrode active material.
JP2009229833A 2008-10-09 2009-10-01 Flat alkaline primary battery and positive electrode mixture thereof Expired - Fee Related JP5464651B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009229833A JP5464651B2 (en) 2008-10-09 2009-10-01 Flat alkaline primary battery and positive electrode mixture thereof
CN200910179489.2A CN101719551B (en) 2008-10-09 2009-10-09 Flat alkaline primary battery and anode mixture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008263011 2008-10-09
JP2008263011 2008-10-09
JP2009229833A JP5464651B2 (en) 2008-10-09 2009-10-01 Flat alkaline primary battery and positive electrode mixture thereof

Publications (2)

Publication Number Publication Date
JP2010114071A true JP2010114071A (en) 2010-05-20
JP5464651B2 JP5464651B2 (en) 2014-04-09

Family

ID=42302456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229833A Expired - Fee Related JP5464651B2 (en) 2008-10-09 2009-10-01 Flat alkaline primary battery and positive electrode mixture thereof

Country Status (2)

Country Link
JP (1) JP5464651B2 (en)
CN (1) CN101719551B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346794A (en) * 2002-05-31 2003-12-05 Hitachi Maxell Ltd Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP2005243602A (en) * 2003-06-09 2005-09-08 Hitachi Maxell Ltd Positive electrode for alkaline battery, and alkaline battery
JP2008502121A (en) * 2004-06-09 2008-01-24 ザ ジレット カンパニー Alkaline battery with planar housing and nickel oxohydroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346794A (en) * 2002-05-31 2003-12-05 Hitachi Maxell Ltd Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP2005243602A (en) * 2003-06-09 2005-09-08 Hitachi Maxell Ltd Positive electrode for alkaline battery, and alkaline battery
JP2008502121A (en) * 2004-06-09 2008-01-24 ザ ジレット カンパニー Alkaline battery with planar housing and nickel oxohydroxide

Also Published As

Publication number Publication date
JP5464651B2 (en) 2014-04-09
CN101719551A (en) 2010-06-02
CN101719551B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2006302597A (en) Button type alkaline battery
JP5447772B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP5464651B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP6434826B2 (en) Flat alkaline primary battery and method for manufacturing the same
JP2008041490A (en) Alkaline battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP2008210720A (en) Flat alkaline primary battery
JP6883441B2 (en) Flat alkaline primary battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery
JP5019634B2 (en) Alkaline battery
JP2009283252A (en) Flat alkaline primary cell
JP2002117859A (en) Alkaline battery
US20120070739A1 (en) Galvanic element having a mercury-free negative electrode
JP2019160672A (en) Flat type alkaline primary battery
JP2010033962A (en) Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell
EP2096694B1 (en) Flat alkaline primary battery
JP5135579B2 (en) Flat alkaline battery
JP2010040291A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP2009193706A (en) Flat alkaline primary battery, and manufacturing method of flat alkaline primary battery
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2010170908A (en) Manufacturing method for flat primary battery, and flat primary battery
JP2008210719A (en) Flat alkaline primary battery
JP2009104996A (en) Flat alkaline primary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5464651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees