JP2010112743A - Iation detector and method of manufacturing the same - Google Patents

Iation detector and method of manufacturing the same Download PDF

Info

Publication number
JP2010112743A
JP2010112743A JP2008283300A JP2008283300A JP2010112743A JP 2010112743 A JP2010112743 A JP 2010112743A JP 2008283300 A JP2008283300 A JP 2008283300A JP 2008283300 A JP2008283300 A JP 2008283300A JP 2010112743 A JP2010112743 A JP 2010112743A
Authority
JP
Japan
Prior art keywords
cover
scintillator layer
base
external force
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283300A
Other languages
Japanese (ja)
Other versions
JP5461823B2 (en
Inventor
Hiroshi Horiuchi
弘 堀内
Shirofumi Yamagishi
城文 山岸
Shinji Suzuki
慎二 鈴木
Hiroyuki Aida
博之 會田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2008283300A priority Critical patent/JP5461823B2/en
Publication of JP2010112743A publication Critical patent/JP2010112743A/en
Application granted granted Critical
Publication of JP5461823B2 publication Critical patent/JP5461823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray detector 11 improving reliability, achieving reduction in size, and improving various characteristics. <P>SOLUTION: An X-ray detector body 12 including a photo detection substrate 21 and a scintillator layer 24 is housed in a case 13 including a base 31 and a cover 32. A gap 40 is formed between the cover 32 and an X-ray incident surface 29 of the scintillator layer 24. The size of the gap 40 is equal to or less than the maximum bending amount in an elastic deformation region of the cover 32 with respect to the external force. The external force applied to the outer surface of the cover 32 is received by the cover 32. The bending in the elastic deformation region is generated in the cover 32 to which the external force is applied, the cover 32 is in contact with the X-ray incident surface 29 of the scintillator layer 24, and the external force is also received by the entire scintillator layer 24. Accordingly, the stress is dispersed to the entire X-ray detector 11, and the stress concentration is reduced by the scintillator layer 24 to improve reliability, to achieve reduction in size, and to improve various characteristics. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放射線を検出する放射線検出器およびその製造方法に関する。   The present invention relates to a radiation detector for detecting radiation and a method for manufacturing the same.

新世代のX線診断用画像検出器として、アクティブマトリクスや固体撮像素子(CCDやCMOS等)を用いた平面形のX線検出器が注目を集めている。このX線検出器にX線を照射することにより、X線撮影像またはリアルタイムのX線画像がデジタル信号として出力される。このX線検出器は、固体検出器であることから、画質性能や安定性の面においても極めて期待が大きく、多くの研究開発が進められている。   As a new generation image detector for X-ray diagnosis, a planar X-ray detector using an active matrix or a solid-state imaging device (CCD, CMOS, etc.) is attracting attention. By irradiating the X-ray detector with X-rays, an X-ray image or a real-time X-ray image is output as a digital signal. Since this X-ray detector is a solid state detector, it is highly expected in terms of image quality performance and stability, and a lot of research and development is being conducted.

アクティブマトリクスを用いたX線検出器の主な用途としては、比較的大きな線量で静止画像を収集する胸部あるいは一般撮影用に開発され、近年商品化されている。より高性能で、透視線量下において30フレーム/sec以上のリアルタイム動画を実現させる必要のある循環器、消化器分野への応用に対しても近い将来に商品化が予想される。この動画用途に対しては、S/Nの改善や微小信号のリアルタイム処理技術等が重要な開発項目となっている。   The main application of an X-ray detector using an active matrix has been developed for breast imaging or general imaging for collecting still images with a relatively large dose, and has been commercialized in recent years. Commercialization is expected in the near future for applications in the fields of circulatory organs and digestive organs that require higher performance and real-time moving images of 30 frames / sec or more under fluoroscopic dose. For this video application, improvement of S / N, real-time processing technology of minute signals, and the like are important development items.

また、固体撮像素子(CCDやCMOS等)を用いたX線検出器の主な用途としては、大きな線量で静止画像を収集する工業用の非破壊検査や口腔内に挿入して静止画像を収集する歯科用等が近年商品化されているが、動画用途への対応も含めて、S/Nの改善、微小信号のリアルタイム処理、X線検出器の小型化、信頼性の改善等が重要な開発項目となっている。   The main applications of X-ray detectors using solid-state image sensors (CCD, CMOS, etc.) are industrial nondestructive inspections that collect still images with large doses, and still images that are inserted into the oral cavity. In recent years, dentistry and other products have been commercialized, but it is important to improve S / N, real-time processing of minute signals, miniaturization of X-ray detectors, improvement of reliability, including support for moving images. It is a development item.

X線検出器は、直接方式と間接方式との2方式に大別される。直接方式は、X線をa−Se等の光導電膜により直接電荷信号に変換し、電荷蓄積用キャパシタに導く方式であり、X線により発生した光導電電荷を高電界により直接的に電荷蓄積用キャパシタに導くため、略アクティブマトリクスの画素電極ピッチで規定される解像度特性が得られる。一方、間接方式は、シンチレータ層によりX線を一旦可視光に変換し、可視光をa−Siフォトダイオード、CCD、CMOS等により信号電荷に変換して電荷蓄積用キャパシタに導く方式であるため、シンチレータ層からの可視光がフォトダイオード、CCD、CMOSに到達する迄の光学的な拡散及び散乱により解像度特性の劣化が生じる。   X-ray detectors are roughly classified into two methods, a direct method and an indirect method. The direct method is a method in which X-rays are directly converted into a charge signal by a photoconductive film such as a-Se and led to a charge storage capacitor, and the photoconductive charge generated by the X-rays is directly stored by a high electric field. Therefore, the resolution characteristic defined by the pixel electrode pitch of the active matrix can be obtained. On the other hand, the indirect method is a method in which X-rays are once converted into visible light by the scintillator layer, and the visible light is converted into signal charges by an a-Si photodiode, CCD, CMOS, etc., and led to the charge storage capacitor. Resolution characteristics are degraded by optical diffusion and scattering until visible light from the scintillator layer reaches the photodiode, CCD, and CMOS.

通常、間接方式のX線検出器においては、構造上、シンチレータ層の特性が重要となり、入射X線に対する出力信号強度を向上させるため、例えば、シンチレータ層には、CsI等のハロゲン化合物やGOS等の酸化物系化合物等から構成される高輝度蛍光物質が用いられることが多い。特にCsI等のハロゲン化合物をシンチレータ層に用いた場合には、短冊状の柱状結晶構造を有するシンチレータ層を真空蒸着法を用いて形成することにより、解像度特性の改善等を図ることができる。ただし、シンチレータ層に高輝度蛍光物質であるCsI等のハロゲン化合物を用いた場合、大気中の水分と反応してシンチレータ層が潮解する虞があるため、シンチレータ層上に保護層を形成したり、シンチレータ層を保護カバーで覆って密閉している(例えば、特許文献1参照。)。   Usually, in the indirect X-ray detector, the characteristics of the scintillator layer are important due to the structure, and in order to improve the output signal intensity with respect to incident X-rays, for example, the scintillator layer has a halogen compound such as CsI, GOS or the like. In many cases, a high-intensity fluorescent material composed of such an oxide compound is used. In particular, when a halogen compound such as CsI is used for the scintillator layer, resolution characteristics can be improved by forming the scintillator layer having a strip-like columnar crystal structure using a vacuum deposition method. However, when a halogen compound such as CsI, which is a high-intensity fluorescent material, is used for the scintillator layer, there is a risk that the scintillator layer will deliquesce by reacting with moisture in the atmosphere, so a protective layer may be formed on the scintillator layer, The scintillator layer is covered with a protective cover and sealed (for example, see Patent Document 1).

また、一般的な間接方式のX線検出器においては、外力から保護するため、シンチレータ層を含むX線検出器本体を筐体に収納している(例えば、特許文献2および3参照。)。
特表2002−518686号公報(第7頁、図1) 特開2006−58124号公報(第5−6頁、図1) 特開2008−107134号公報(第3頁、図1)
Further, in a general indirect X-ray detector, an X-ray detector main body including a scintillator layer is housed in a housing in order to protect from an external force (see, for example, Patent Documents 2 and 3).
Japanese translation of PCT publication No. 2002-518686 (7th page, FIG. 1) JP 2006-58124 A (page 5-6, FIG. 1) JP 2008-107134 A (page 3, FIG. 1)

一般的にシンチレータ層は、構造的に外力に対する強度が低いため、特に外力が加えられる可能性の高い歯科用途や工業用途のX線検出器においては、外力により筐体が塑性変形してその外力がシンチレータ層に加わると、シンチレータ層に応力集中が生じて破損してしまうため、筐体を塑性変形が生じないような堅固な構造としている。しかしながら、筐体を堅固な構造とした場合、外力に対する信頼性は向上するが、X線検出器の大型化や、X線透過特性を含む諸特性の劣化が発生する問題がある。   In general, since the scintillator layer is structurally low in strength against external force, especially in X-ray detectors for dental and industrial applications where external force is likely to be applied, the external force causes the housing to be plastically deformed. When is added to the scintillator layer, stress concentration occurs in the scintillator layer and it is damaged. Therefore, the casing has a solid structure that does not cause plastic deformation. However, when the housing has a solid structure, the reliability against external force is improved, but there are problems that the X-ray detector is enlarged and various characteristics including X-ray transmission characteristics are deteriorated.

本発明は、このような点に鑑みなされたもので、信頼性向上、小型化、諸特性の改善ができる放射線検出器およびその製造方法を提供することを目的とする。   The present invention has been made in view of these points, and an object thereof is to provide a radiation detector capable of improving reliability, downsizing, and improving various characteristics, and a method for manufacturing the same.

本発明の放射線検出器は、光を電気信号に変換する光検出基板、およびこの光検出基板上に設けられこの光検出基板側に対して反対側の面を放射線が入射する放射線入射面としこの放射線入射面から入射する放射線を光に変換するシンチレータ層を有する放射線検出器本体と、この放射線検出器本体を密閉状態に収容する筐体とを具備し、前記筐体は、前記放射線検出器本体の光検出基板を一面上に配置する基台と、前記放射線検出器本体のシンチレータ層の放射線入射面に対向する表面部、およびこの表面部の周辺部に形成された側壁部を有し、前記表面部と前記シンチレータ層の放射線入射面との間に空隙を設けるとともにこの空隙の寸法を外力に対する前記表面部の弾性変形領域内での最大撓み量以下とし、前記側壁部を前記基台の一面上に固定してその基台に対して前記表面部を支え、前記基台との間に前記放射線検出器本体を密閉するカバーとを備えているものである。   The radiation detector according to the present invention includes a light detection substrate that converts light into an electrical signal, and a radiation incident surface on the opposite side of the light detection substrate that is provided on the light detection substrate. A radiation detector body having a scintillator layer that converts radiation incident from a radiation incident surface into light; and a housing that houses the radiation detector body in a sealed state, the housing being the radiation detector body A base on which the photodetecting substrate is disposed on one surface, a surface portion facing the radiation incident surface of the scintillator layer of the radiation detector body, and a side wall portion formed on the periphery of the surface portion, A space is provided between the surface portion and the radiation incident surface of the scintillator layer, and the size of the space is set to be equal to or less than the maximum deflection amount in the elastic deformation region of the surface portion with respect to an external force, and the side wall portion is formed on the base. Fixed to the upper supporting said surface portion relative to the base, the one in which and a cover enclosing the radiation detector body between said base.

また、本発明の放射線検出器の製造方法は、光を電気信号に変換する光検出基板上にこの光検出基板に対して反対側の放射線入射面から入射する放射線を光に変換するシンチレータ層が設けられた放射線検出器本体を、基台およびカバーを有する筐体に収容する放射線検出器の製造方法であって、前記基台の一面上に前記放射線検出器本体の光検出基板を配置する工程と、前記カバーが有する表面部と前記シンチレータ層の放射線入射面との間に空隙を設けるとともにこの空隙の寸法を外力に対する前記表面部の弾性変形領域内での最大撓み量以下とし、前記カバーの表面部の周辺部に形成された側壁部を前記基台の一面上に固定してその基台に対して前記表面部を支え、前記基台と前記カバーとの間に前記放射線検出器本体を密閉する工程とを具備しているものである。   Further, in the method for manufacturing a radiation detector according to the present invention, a scintillator layer for converting radiation incident from a radiation incident surface opposite to the light detection substrate onto the light detection substrate for converting light into an electrical signal is provided. A method of manufacturing a radiation detector for housing a provided radiation detector main body in a casing having a base and a cover, the step of arranging a light detection substrate of the radiation detector main body on one surface of the base A gap is provided between the surface portion of the cover and the radiation incident surface of the scintillator layer, and the size of the gap is set to be equal to or less than the maximum deflection amount in the elastic deformation region of the surface portion with respect to an external force. A side wall formed on the periphery of the surface portion is fixed on one surface of the base to support the surface with respect to the base, and the radiation detector main body is disposed between the base and the cover. Sealing process It is one that is equipped with a.

本発明によれば、カバーの表面部とシンチレータ層の放射線入射面との間に空隙を設けるとともにこの空隙の寸法を外力に対する表面部の弾性変形領域内での最大撓み量以下とし、カバーの側壁部を基台の一面上に固定してその基台に対して表面部を支えるため、カバーの表面部に外力が加えられた場合に、その外力をカバーで受け止めるとともに、弾性変形領域内で撓んだカバーがシンチレータ層に接して外力の一部をシンチレータ層でも受け止め、これにより放射線検出器全体に応力を分散させ、シンチレータ層での応力集中を軽減でき、信頼性向上、小型化、諸特性の改善ができる。   According to the present invention, a gap is provided between the surface portion of the cover and the radiation incident surface of the scintillator layer, and the size of the gap is set to be equal to or less than the maximum deflection amount in the elastic deformation region of the surface portion with respect to an external force. Since the part is fixed on one surface of the base and the surface part is supported against the base, when an external force is applied to the surface of the cover, the external force is received by the cover and is bent in the elastic deformation region. The cover is in contact with the scintillator layer and part of the external force is received by the scintillator layer, which distributes stress throughout the radiation detector, reducing stress concentration in the scintillator layer, improving reliability, downsizing, and various characteristics Can be improved.

以下、本発明の一実施の形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、11は放射線検出器としてのX線検出器であって、間接方式のX線平面画像検出器である。このX線検出器11は、放射線検出器本体としてのX線検出器本体12、およびこのX線検出器本体12を密閉状態に収容する筐体13を備えている。   As shown in FIG. 1, 11 is an X-ray detector as a radiation detector, which is an indirect X-ray planar image detector. The X-ray detector 11 includes an X-ray detector main body 12 as a radiation detector main body, and a housing 13 that accommodates the X-ray detector main body 12 in a sealed state.

そして、X線検出器本体12は、光を電気信号に変換する光検出基板21、およびこの光検出基板21上に設けられていて放射線としてのX線22を可視光である光23に変換するシンチレータ層24を備えている。   The X-ray detector main body 12 converts a light detection substrate 21 that converts light into an electrical signal, and converts the X-ray 22 that is provided on the light detection substrate 21 into light 23 that is visible light. A scintillator layer 24 is provided.

光検出基板21は、固体撮像素子であり、基板25上に、少なくとも複数の光電変換素子26が一次元もしくは二次元的に複数配列している受光部27、および光電変換素子26と電気的に接続されている電極パッド28が形成されている。   The light detection substrate 21 is a solid-state imaging device, and is electrically connected to the light receiving unit 27 and the photoelectric conversion device 26, in which at least a plurality of photoelectric conversion devices 26 are arranged one-dimensionally or two-dimensionally on the substrate 25. A connected electrode pad 28 is formed.

シンチレータ層24は、光検出基板21の受光部27上に形成されており、光検出基板21側に対して反対側の面をX線22が入射する放射線入射面としてのX線入射面29としている。そして、シンチレータ層24は、例えば、CsI等のハロゲン化合物やGOS等の酸化物系化合物等から構成される高輝度蛍光物質で形成されている。特にCsI等のハロゲン化合物を用いる場合には、短冊状の柱状結晶構造を有するシンチレータ層24を真空蒸着法にて形成することにより、解像度特性の改善等を図ることができる。   The scintillator layer 24 is formed on the light receiving portion 27 of the light detection substrate 21, and the surface opposite to the light detection substrate 21 side is used as an X-ray incident surface 29 as a radiation incident surface on which the X-rays 22 are incident. Yes. The scintillator layer 24 is formed of, for example, a high-intensity fluorescent material composed of a halogen compound such as CsI or an oxide compound such as GOS. In particular, when a halogen compound such as CsI is used, resolution characteristics can be improved by forming the scintillator layer 24 having a strip-like columnar crystal structure by a vacuum deposition method.

また、筐体13は、X線検出器本体12の光検出基板21を一面上に配置して固定する基台31と、この基台31との間にX線検出器本体12を密閉状態に収容するカバー32とを備えている。   The housing 13 has a base 31 on which the light detection substrate 21 of the X-ray detector main body 12 is arranged and fixed on one surface, and the X-ray detector main body 12 is hermetically sealed between the base 31. And a cover 32 for housing.

基台31の一面上には、光検出基板21が配置された側部に外部接続用電極パッド33が設けられている。光検出基板21の電極パッド28と外部接続用電極パッド33とが配線34によって電気的に接続され、これら電気接続部分が主に樹脂材料で構成される絶縁層35で覆われている。基台31の外面には、外部接続用電極パッド33と電気的に接続された電極端子36が設けられている。   On one surface of the base 31, an external connection electrode pad 33 is provided on the side where the light detection substrate 21 is disposed. The electrode pads 28 of the light detection substrate 21 and the external connection electrode pads 33 are electrically connected by wirings 34, and these electrical connection portions are covered with an insulating layer 35 mainly made of a resin material. An electrode terminal 36 electrically connected to the external connection electrode pad 33 is provided on the outer surface of the base 31.

カバー32は、シンチレータ層24のX線入射面29に対向する表面部38、およびこの表面部38の周辺部から基台31の方向へ向けて一体に突出形成された側壁部39を有している。   The cover 32 has a surface portion 38 that faces the X-ray incident surface 29 of the scintillator layer 24 and a side wall portion 39 that integrally protrudes from the peripheral portion of the surface portion 38 toward the base 31. Yes.

カバー32の表面部38は、シンチレータ層24のX線入射面29との間に、カバー32の外力に対する弾性変形領域内における最大撓み量以下とする空隙40をあけて配置されている。カバー32の側壁部39の先端部は、基台31の一面上に固定されてその基台31に対して表面部38を支える。 The surface portion 38 of the cover 32 is disposed between the X-ray incident surface 29 of the scintillator layer 24 with a gap 40 that is less than or equal to the maximum deflection amount in the elastic deformation region with respect to the external force of the cover 32. The front end portion of the side wall portion 39 of the cover 32 is fixed on one surface of the base 31 and supports the surface portion 38 with respect to the base 31.

そして、X線検出器11を製造するには、基台31上にX線検出器本体12を配置して固定し、この基台31上にカバー32を配置し、このカバー32の側壁部39の先端と基台31との間を例えばエポキシ系樹脂の接合層45で密閉状態に固定する。   In order to manufacture the X-ray detector 11, the X-ray detector main body 12 is disposed and fixed on the base 31, the cover 32 is disposed on the base 31, and the side wall 39 of the cover 32 is provided. For example, an epoxy resin bonding layer 45 is used to fix the front end of the base plate 31 to the base 31 in a sealed state.

このように構成されたX線検出器11では、入射するX線22によりシンチレータ層24で変換された光23が光検出基板21の光電変換素子26に到達することにより、光電変換素子26で電荷に変換されて蓄積される。光電変換素子26に蓄積された電荷は、各光電変換素子26に対応した図示しない信号ラインから、各光電変換素子26に対応した電極パッド28、配線34、基台31の外部接続用電極パッド33および電極端子36を経由して、順次出力信号として読み出される。読み出された出力信号を所定の信号処理回路等にてデジタル画像信号に変換する。   In the X-ray detector 11 configured as described above, the light 23 converted by the scintillator layer 24 by the incident X-rays 22 reaches the photoelectric conversion element 26 of the light detection substrate 21, whereby the photoelectric conversion element 26 charges. Is converted and stored. The charges accumulated in the photoelectric conversion elements 26 are transmitted from the signal lines (not shown) corresponding to the photoelectric conversion elements 26 to the electrode pads 28 corresponding to the photoelectric conversion elements 26, the wiring 34, and the electrode pads 33 for external connection of the base 31. And sequentially read out as an output signal via the electrode terminal 36. The read output signal is converted into a digital image signal by a predetermined signal processing circuit or the like.

そして、X線検出器11では、カバー32の表面部38とシンチレータ層24のX線入射面29との間に空隙40を設けるとともにこの空隙40の寸法を外力に対する表面部38の弾性変形領域内での最大撓み量以下とし、カバー32の側壁部39を基台31の一面上に固定してその基台31に対して表面部38を支えるため、カバー32の表面部38に外力が加えられた場合に、その外力をカバー32で受け止めるとともに、弾性変形領域内で撓んだカバー32がシンチレータ層24に接して外力の一部をシンチレータ層24でも受け止め、これによりX線検出器11の全体に応力を分散させ、シンチレータ層24での応力集中を軽減でき、信頼性向上、小型化、諸特性の改善ができる。   In the X-ray detector 11, a gap 40 is provided between the surface portion 38 of the cover 32 and the X-ray incident surface 29 of the scintillator layer 24, and the size of the gap 40 is set within the elastic deformation region of the surface portion 38 with respect to external force. In order to fix the side wall portion 39 of the cover 32 on one surface of the base 31 and support the surface portion 38 against the base 31, an external force is applied to the surface portion 38 of the cover 32. In this case, the external force is received by the cover 32, and the cover 32 bent in the elastic deformation region is in contact with the scintillator layer 24 and a part of the external force is also received by the scintillator layer 24, whereby the entire X-ray detector 11 is The stress can be dispersed to reduce the stress concentration in the scintillator layer 24, improving reliability, downsizing, and improving various characteristics.

また、X線検出器11に外力が加えられた場合、材料力学的にカバー32は一様分布荷重の4辺固定モデルで近似可能であることから、カバー32の外力に対する最大撓み量をωmax、最大曲げ応力をσmaxとすると、
ωmax=α・p・a4/E・h3 …(1)
σmax=β・p・a2/h2 …(2)
α:構造体の最大撓み係数
β:構造体の最大応力係数
p:単位面積当りの荷重
E:構造体のヤング率
a:構造体の短辺長
h:構造体の板厚
となる。そのため、カバー32に外力に対する弾性変形領域内における最大撓みを生じさせる単位面積当りの荷重をpe、カバー32に外力に対する弾性変形領域内における最大撓み量をωeとすると、(1)式および(2)式から、
ωe=α・pe・a4/E・h3 …(3)
e=σe・h2/β・a2 …(4)
となり、これら(3)式および(4)式から、
ωe=α・σe・a2/β・E・h …(5)
α:構造体の最大撓み係数
β:構造体の最大応力係数
σe:構造体の耐力
E:構造体のヤング率
a:構造体の短辺長
h:構造体の板厚
で表される。
Further, when an external force is applied to the X-ray detector 11, the cover 32 can be approximated by a four-sided fixed model with uniform distribution load in terms of material mechanics. If the maximum bending stress is σmax,
ωmax = α · p · a 4 / E · h 3 (1)
σmax = β · p · a 2 / h 2 (2)
α: Maximum bending coefficient of structure β: Maximum stress coefficient of structure p: Load per unit area E: Young's modulus of structure a: Short side length of structure h: Thickness of structure. Therefore, when the load per unit area that causes the cover 32 to cause the maximum deflection in the elastic deformation region with respect to the external force is p e and the maximum deflection amount in the elastic deformation region with respect to the external force of the cover 32 is ω e , From equation (2)
ω e = α · pe · a 4 / E · h 3 (3)
p e = σ e · h 2 / β · a 2 ... (4)
From these equations (3) and (4),
ω e = α · σ e · a 2 / β · E · h (5)
α: Maximum bending coefficient of structure β: Maximum stress coefficient of structure σ e : Strength of structure E: Young's modulus of structure a: Short side length of structure h: Thickness of structure.

このため、カバー32とシンチレータ層24のX線入射面29との間の空隙40の寸法をωe以下とすれば、X線検出器11に加えられた外力が除去された場合、カバー32の形状は、X線検出器11に外力が加えられる前の状態に戻るため、カバー32とシンチレータ層24のX線検出器11との間の空隙40が維持されることから、カバー32がシンチレータ層24のX線入射面29に直接的に接することによる光学的な影響を受けないため、安定したX線検出器11の諸特性が得られることとなる。 For this reason, if the dimension of the gap 40 between the cover 32 and the X-ray incident surface 29 of the scintillator layer 24 is equal to or less than ω e, the external force applied to the X-ray detector 11 is removed. Since the shape returns to the state before the external force is applied to the X-ray detector 11, the gap 40 between the cover 32 and the X-ray detector 11 of the scintillator layer 24 is maintained. Since it is not optically affected by direct contact with the 24 X-ray incident surfaces 29, stable characteristics of the X-ray detector 11 can be obtained.

また、カバー32は、シンチレータ層24のX線入射面29に対向する表面部38、およびこの表面部38の周辺部に一体に形成された側壁部39を有し、この側壁部39が基台31の一面上に固定されてその基台31に対して表面部38を支えるため、外力に対するカバー32の剛性を高めることができる。   The cover 32 has a surface portion 38 facing the X-ray incident surface 29 of the scintillator layer 24, and a side wall portion 39 formed integrally with the peripheral portion of the surface portion 38. The side wall portion 39 is a base. Since it is fixed on one surface 31 and supports the surface portion 38 against the base 31, the rigidity of the cover 32 against external force can be increased.

カバー32の材質をX線透過率の高いAl等の軽元素から成る金属とした場合、X線検出器11の外力に対する信頼性と電磁波に対する信頼性の向上が得られ、さらに、カバー32の水蒸気透過率をゼロとすることが可能となるため、特に潮解性のあるCsI等のハロゲン化合物をシンチレータ層24として用いた場合においてもX線検出器11の諸特性の劣化が生じるのを防止できる。   When the material of the cover 32 is a metal made of a light element such as Al having a high X-ray transmittance, the reliability of the X-ray detector 11 with respect to external force and the reliability of electromagnetic waves can be improved. Since the transmittance can be made zero, it is possible to prevent deterioration of various characteristics of the X-ray detector 11 even when a halogen compound such as CsI having deliquescence is used as the scintillator layer 24.

なお、X線検出器11のカバー32の構成および製造方法は、図1に示した第1の実施の形態に限らず、図2に示す第2の実施の形態のようにしてもよい。   The configuration and manufacturing method of the cover 32 of the X-ray detector 11 are not limited to the first embodiment shown in FIG. 1, but may be the second embodiment shown in FIG.

すなわち、図2に示す第2の実施の形態では、X線検出器本体12を固定した基台31上にカバー32を配置し、接合層45の液体状の接合材料を、基台31とカバー32との間に注入し、接合材料を硬化させる。このとき、基台31とカバー32との間に注入する接合材料の注入量を調整することにより、接合材料がシンチレータ層24のX線入射面29に接触して含浸するのを防止できる。   That is, in the second embodiment shown in FIG. 2, the cover 32 is disposed on the base 31 to which the X-ray detector main body 12 is fixed, and the liquid bonding material of the bonding layer 45 is replaced with the base 31 and the cover. Pour between 32 and cure the bonding material. At this time, by adjusting the injection amount of the bonding material injected between the base 31 and the cover 32, the bonding material can be prevented from coming into contact with and impregnating the X-ray incident surface 29 of the scintillator layer 24.

この第2の実施の形態においても、上述した第1の実施の形態と同様の作用効果を奏する。   In the second embodiment, the same operational effects as those of the first embodiment described above can be obtained.

また、図3および図4にそれぞれ示す第3および第4の実施の形態のように、シンチレータ層24の全体を覆う保護層51を形成してもよい。この保護層51は、水蒸気遮断性を有する例えばポリパラキシリレン等の材質で形成されている。   Further, as in the third and fourth embodiments shown in FIGS. 3 and 4, respectively, a protective layer 51 covering the entire scintillator layer 24 may be formed. The protective layer 51 is formed of a material such as polyparaxylylene having water vapor barrier properties.

カバー32とシンチレータ層24のX線入射面29を覆う保護層51との間に、カバー32の外力に対する弾性変形領域内における最大撓み量以下とする空隙40が形成されている。   Between the cover 32 and the protective layer 51 that covers the X-ray incident surface 29 of the scintillator layer 24, a gap 40 that is equal to or less than the maximum deflection amount in the elastic deformation region with respect to the external force of the cover 32 is formed.

図3および図4にそれぞれ示す第3および第4の実施の形態におけるX線検出器11の構成および製造方法は、上述した図1および図2にそれぞれ示す第1および第2の実施の形態と同様である。   The configuration and manufacturing method of the X-ray detector 11 in the third and fourth embodiments shown in FIGS. 3 and 4 are the same as those of the first and second embodiments shown in FIGS. 1 and 2, respectively. It is the same.

したがって、これら第3および第4の実施の形態においても、上述した第1の実施の形態と同様の作用効果を奏する。   Therefore, also in these 3rd and 4th embodiment, there exists an effect similar to 1st Embodiment mentioned above.

また、本発明の実施の形態として、例えば図4に示す第4の実施の形態のX線検出器11において、カバー32の材質をAl(5052−H32)、カバー32の板厚を0.5mm、空隙40の寸法を0.1mm、接合層45の材質をエポキシ系樹脂、シンチレータ層24の材質をCsI(Tl Dope)、保護層51の材質をポリパラキシリレン、カバー32の外形寸法を45mm(L)×35mm(W)、シンチレータ層24の外形寸法を40mm(L)×30mm(W)とした構成例について考察する。   As an embodiment of the present invention, for example, in the X-ray detector 11 of the fourth embodiment shown in FIG. 4, the cover 32 is made of Al (5052-H32), and the cover 32 has a thickness of 0.5 mm. The dimension of the gap 40 is 0.1 mm, the material of the bonding layer 45 is epoxy resin, the material of the scintillator layer 24 is CsI (Tl Dope), the material of the protective layer 51 is polyparaxylylene, and the outer dimension of the cover 32 is 45 mm. Consider a configuration example in which (L) × 35 mm (W) and the external dimensions of the scintillator layer 24 are 40 mm (L) × 30 mm (W).

本実施の形態の構成例におけるωeは、シンチレータ層24の短辺長、カバー32の最も外側のカバー32の板厚、Al(5052−H32)の機械的特性から、α=0.03、β=0.5、σe=195N/mm2、E=70kN/mm2、a=30mm、h=0.5mmを上記(5)式に代入して、ωe≒0.3mmとなる。 In the configuration example of the present embodiment, ω e is α = 0.03 from the short side length of the scintillator layer 24, the plate thickness of the outermost cover 32 of the cover 32, and the mechanical properties of Al (5052-H32). By substituting β = 0.5, σ e = 195 N / mm 2 , E = 70 kN / mm 2 , a = 30 mm, and h = 0.5 mm into the above equation (5), ω e ≈0.3 mm.

ここで、本実施の形態の構成例におけるωeの値(0.3mm)は、カバー32とシンチレータ層24のX線入射面29との間の空隙40の値(0.1mm)よりも大きいことから、X線検出器11に外力が加えられた場合、カバー32に弾性変形領域内の撓みが発生し、このカバー32がシンチレータ層24のX線入射面29と接することとなるため、X線検出器11全体に均一に外力が加えられる形となる。 Here, the value of ω e (0.3 mm) in the configuration example of the present embodiment is larger than the value of the gap 40 (0.1 mm) between the cover 32 and the X-ray incident surface 29 of the scintillator layer 24. Therefore, when an external force is applied to the X-ray detector 11, the cover 32 is bent in the elastic deformation region, and the cover 32 comes into contact with the X-ray incident surface 29 of the scintillator layer 24. The external force is uniformly applied to the entire line detector 11.

これにより、構造的に外力に対する強度が低いシンチレータ層24に応力集中が発生しないため、X線検出器11の外力に対する信頼性が確保され、かつ、X線検出器11に加えられた外力が除去された場合、カバー32の形状は、X線検出器11に外力が加えられる前の状態に戻るため、カバー32とシンチレータ層24のX線入射面29との間の空隙40が維持されることから、カバー32がシンチレータ層24のX線入射面29に直接的もしくは間接的に接することによる光学的な影響を受けないため、安定したX線検出器11の諸特性が得られることとなる。
次に、本実施の形態の構成例に対する比較例として、図6の構成例を示す(なお、本発明の実施の形態と同様の構造については、同一符号を用いる)。図6に示す比較例のX線検出器11においては、カバー32の材質をAl(5052−H32)、カバー32の板厚を0.5mm、空隙40を0.5mm、接合層45の材質をエポキシ系樹脂、シンチレータ層24の材質をCsI(Tl Dope)、保護層51の材質をポリパラキシリレン、カバー32の外形寸法を45mm(L)×35mm(W)、シンチレータ層24の外形寸法を40mm(L)×30mm(W)とした。
As a result, stress concentration does not occur in the scintillator layer 24 that is structurally low in strength against external force, so that reliability of the external force of the X-ray detector 11 is ensured and the external force applied to the X-ray detector 11 is removed. In this case, since the shape of the cover 32 returns to the state before the external force is applied to the X-ray detector 11, the gap 40 between the cover 32 and the X-ray incident surface 29 of the scintillator layer 24 is maintained. Therefore, since the cover 32 is not optically affected by direct or indirect contact with the X-ray incident surface 29 of the scintillator layer 24, various characteristics of the X-ray detector 11 can be obtained stably.
Next, as a comparative example with respect to the configuration example of the present embodiment, the configuration example of FIG. 6 is shown (the same reference numerals are used for the same structures as those of the embodiment of the present invention). In the X-ray detector 11 of the comparative example shown in FIG. 6, the material of the cover 32 is Al (5052-H32), the thickness of the cover 32 is 0.5 mm, the gap 40 is 0.5 mm, and the material of the bonding layer 45 is The material of the epoxy resin, the scintillator layer 24 is CsI (Tl Dope), the material of the protective layer 51 is polyparaxylylene, the outer dimension of the cover 32 is 45 mm (L) × 35 mm (W), and the outer dimension of the scintillator layer 24 is 40 mm (L) × 30 mm (W).

この比較例におけるωeは、シンチレータ層24の短辺長、カバー32の板厚、Al(5052−H32)の機械的特性から、α=0.03、β=0.5、σe=195N/mm2、E=70kN/mm2、a=35mm、h=0.5mmを上記(5)式に代入して、ωe≒0.4mmとなる。 In this comparative example, ω e is α = 0.03, β = 0.5, σ e = 195 N from the short side length of the scintillator layer 24, the plate thickness of the cover 32, and the mechanical characteristics of Al (5052-H32). Substituting / mm 2 , E = 70 kN / mm 2 , a = 35 mm, and h = 0.5 mm into the above equation (5), ω e ≈0.4 mm.

ここで、比較例におけるωeの値(0.4mm)は、カバー32とシンチレータ層24のX線入射面29との間の空隙40の値(0.5mm)よりも小さいことから、X線検出器11に一定以上の外力が印加された場合、カバー32に塑性変形領域の撓みが発生するため、X線検出器11に加えられた外力が除去されてもカバー32には撓みが残留することから、カバー32とシンチレータ層24のX線入射面29との間の空隙40が維持されないため、X線検出器11の外力に対する信頼性が確保できないこととなる。 Here, since the value of ω e (0.4 mm) in the comparative example is smaller than the value of the gap 40 (0.5 mm) between the cover 32 and the X-ray incident surface 29 of the scintillator layer 24, the X-ray When an external force of a certain level or more is applied to the detector 11, the plastic deformation region of the cover 32 is bent. Therefore, even if the external force applied to the X-ray detector 11 is removed, the cover 32 remains bent. For this reason, since the gap 40 between the cover 32 and the X-ray incident surface 29 of the scintillator layer 24 is not maintained, the reliability against the external force of the X-ray detector 11 cannot be ensured.

そして、図5には、本実施の形態のX線検出器11と比較例のX線検出器11とにおいて、カバー32の表面部38の全体に5kg/cm2、10kg/cm2、15kg/cm2、20kg/cm2の各圧力を加えた場合に、それら各圧力に対するX線検出器11の破損の有無を検査した結果を示す。 FIG. 5 shows that the entire surface portion 38 of the cover 32 is 5 kg / cm 2 , 10 kg / cm 2 , 15 kg / cm in the X-ray detector 11 of the present embodiment and the X-ray detector 11 of the comparative example. The results of inspecting whether or not the X-ray detector 11 is damaged for each pressure when each pressure of cm 2 and 20 kg / cm 2 is applied are shown.

比較例のX線検出器11では、カバー32に加えられた圧力で、カバー32が塑性変形したり、基台31が破損し、それによってシンチレータ層24に応力集中が生じて破損する影響が生じ、X線検出器11の外力に対する信頼性が確保できない結果となった。   In the X-ray detector 11 of the comparative example, the pressure applied to the cover 32 causes the cover 32 to be plastically deformed or the base 31 to be damaged, thereby causing stress concentration in the scintillator layer 24 and causing damage. As a result, the reliability with respect to the external force of the X-ray detector 11 cannot be secured.

それに対して、本実施の形態のX線検出器11では、カバー32や基台31、シンチレータ層24には変形や破損がなく、X線検出器11の外力に対する信頼性が確保できた結果となった。   On the other hand, in the X-ray detector 11 of the present embodiment, the cover 32, the base 31, and the scintillator layer 24 are not deformed or damaged, and the reliability with respect to the external force of the X-ray detector 11 can be secured. became.

このため、本実施の形態のX線検出器11であれば、X線検出器11全体に外力が印加されるホットメルトモールディング等のモールド手法でもパッケージが可能となるため、使用環境が厳しく、高い信頼性と小サイズ化が要求される歯科用途や工業用途のX線検出器11に用いることができる。   For this reason, the X-ray detector 11 according to the present embodiment can be packaged even by a molding technique such as hot melt molding in which an external force is applied to the entire X-ray detector 11, so that the use environment is severe and high. It can be used for X-ray detectors 11 for dental and industrial applications that require reliability and downsizing.

本発明の第1の実施の形態を示す放射線検出器の断面図である。It is sectional drawing of the radiation detector which shows the 1st Embodiment of this invention. 本発明の第2の実施の形態を示す放射線検出器の断面図である。It is sectional drawing of the radiation detector which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す放射線検出器の断面図である。It is sectional drawing of the radiation detector which shows the 3rd Embodiment of this invention. 本発明の第4の実施の形態を示す放射線検出器の断面図である。It is sectional drawing of the radiation detector which shows the 4th Embodiment of this invention. 本発明の第3の実施の形態の放射線検出器と比較例の放射線検出器とにおいて、圧力に対する破損の有無を検査した結果を示す表である。It is a table | surface which shows the result of having test | inspected the presence or absence of the damage with respect to the pressure in the radiation detector of the 3rd Embodiment of this invention, and the radiation detector of a comparative example. 比較例の放射線検出器を示す断面図である。It is sectional drawing which shows the radiation detector of a comparative example.

符号の説明Explanation of symbols

11 放射線検出器としてのX線検出器
12 放射線検出器本体としてのX線検出器本体
13 筐体
21 光検出基板
22 放射線としてのX線
23 光
24 シンチレータ層
29 放射線入射面としてのX線入射面
31 基台
32 カバー
38 表面部
39 側壁部
40 空隙
11 X-ray detectors as radiation detectors
12 X-ray detector body as a radiation detector body
13 Enclosure
21 Light detection board
22 X-rays as radiation
23 Light
24 Scintillator layer
29 X-ray entrance surface as radiation entrance surface
31 base
32 Cover
38 Surface
39 Side wall
40 Air gap

Claims (2)

光を電気信号に変換する光検出基板、およびこの光検出基板上に設けられこの光検出基板側に対して反対側の面を放射線が入射する放射線入射面としこの放射線入射面から入射する放射線を光に変換するシンチレータ層を有する放射線検出器本体と、
この放射線検出器本体を密閉状態に収容する筐体とを具備し、
前記筐体は、
前記放射線検出器本体の光検出基板を一面上に配置する基台と、
前記放射線検出器本体のシンチレータ層の放射線入射面に対向する表面部、およびこの表面部の周辺部に形成された側壁部を有し、前記表面部と前記シンチレータ層の放射線入射面との間に空隙を設けるとともにこの空隙の寸法を外力に対する前記表面部の弾性変形領域内での最大撓み量以下とし、前記側壁部を前記基台の一面上に固定してその基台に対して前記表面部を支え、前記基台との間に前記放射線検出器本体を密閉するカバーとを備えている
ことを特徴とする放射線検出器。
A light detection substrate that converts light into an electrical signal, and a radiation incident surface on which the radiation is incident on a surface opposite to the light detection substrate that is provided on the light detection substrate. A radiation detector body having a scintillator layer for converting to light;
A housing for housing the radiation detector body in a sealed state;
The housing is
A base on which a light detection substrate of the radiation detector body is arranged on one surface;
A surface portion facing the radiation incident surface of the scintillator layer of the radiation detector main body, and a side wall portion formed in a peripheral portion of the surface portion, and between the surface portion and the radiation incident surface of the scintillator layer A space is provided, and the size of the space is set to be equal to or less than the maximum deflection amount in the elastic deformation region of the surface portion with respect to an external force, and the side wall portion is fixed on one surface of the base, and the surface portion with respect to the base And a cover that seals the main body of the radiation detector between the base and the base.
光を電気信号に変換する光検出基板上にこの光検出基板に対して反対側の放射線入射面から入射する放射線を光に変換するシンチレータ層が設けられた放射線検出器本体を、基台およびカバーを有する筐体に収容する放射線検出器の製造方法であって、
前記基台の一面上に前記放射線検出器本体の光検出基板を配置する工程と、
前記カバーが有する表面部と前記シンチレータ層の放射線入射面との間に空隙を設けるとともにこの空隙の寸法を外力に対する前記表面部の弾性変形領域内での最大撓み量以下とし、前記カバーの表面部の周辺部に形成された側壁部を前記基台の一面上に固定してその基台に対して前記表面部を支え、前記基台と前記カバーとの間に前記放射線検出器本体を密閉する工程と
を具備していることを特徴とする放射線検出器の製造方法。
A radiation detector main body provided with a scintillator layer for converting radiation incident on a light detection substrate that converts light into an electrical signal into light from a radiation incident surface opposite to the light detection substrate. A method of manufacturing a radiation detector housed in a housing having
Placing the light detection substrate of the radiation detector body on one surface of the base;
A space is provided between the surface portion of the cover and the radiation incident surface of the scintillator layer, and the size of the space is not more than the maximum deflection amount in the elastic deformation region of the surface portion with respect to an external force. A side wall formed on the periphery of the base is fixed on one surface of the base to support the surface with respect to the base, and the radiation detector main body is sealed between the base and the cover. And a process for producing a radiation detector.
JP2008283300A 2008-11-04 2008-11-04 Radiation detector and manufacturing method thereof Expired - Fee Related JP5461823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283300A JP5461823B2 (en) 2008-11-04 2008-11-04 Radiation detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283300A JP5461823B2 (en) 2008-11-04 2008-11-04 Radiation detector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010112743A true JP2010112743A (en) 2010-05-20
JP5461823B2 JP5461823B2 (en) 2014-04-02

Family

ID=42301418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283300A Expired - Fee Related JP5461823B2 (en) 2008-11-04 2008-11-04 Radiation detector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5461823B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019690A (en) * 2011-07-07 2013-01-31 Toshiba Corp Radiation detector
JP2013019691A (en) * 2011-07-07 2013-01-31 Toshiba Corp Radiation detector
JP2015021898A (en) * 2013-07-22 2015-02-02 株式会社東芝 Radiation detector and manufacturing method of the same
KR20160018138A (en) * 2014-08-08 2016-02-17 주식회사 레이언스 Intraoral sensor apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284909A (en) * 1998-01-28 1999-10-15 Canon Inc Two-dimensional image pickup device
JP2002014170A (en) * 2000-06-27 2002-01-18 Canon Inc Input device for x-ray image
JP2004085456A (en) * 2002-08-28 2004-03-18 Canon Inc Radiation imaging device and radiation imaging system
JP2006058124A (en) * 2004-08-19 2006-03-02 Canon Inc Cassette-type x-ray image photographing device
JP2006311575A (en) * 1998-01-28 2006-11-09 Canon Inc Two-dimensional image pickup apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284909A (en) * 1998-01-28 1999-10-15 Canon Inc Two-dimensional image pickup device
JP2006311575A (en) * 1998-01-28 2006-11-09 Canon Inc Two-dimensional image pickup apparatus
JP2002014170A (en) * 2000-06-27 2002-01-18 Canon Inc Input device for x-ray image
JP2004085456A (en) * 2002-08-28 2004-03-18 Canon Inc Radiation imaging device and radiation imaging system
JP2006058124A (en) * 2004-08-19 2006-03-02 Canon Inc Cassette-type x-ray image photographing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019690A (en) * 2011-07-07 2013-01-31 Toshiba Corp Radiation detector
JP2013019691A (en) * 2011-07-07 2013-01-31 Toshiba Corp Radiation detector
JP2015021898A (en) * 2013-07-22 2015-02-02 株式会社東芝 Radiation detector and manufacturing method of the same
KR20160018138A (en) * 2014-08-08 2016-02-17 주식회사 레이언스 Intraoral sensor apparatus
KR102294934B1 (en) 2014-08-08 2021-08-30 주식회사 레이언스 Intraoral sensor apparatus

Also Published As

Publication number Publication date
JP5461823B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
TWI447924B (en) Radiation photography device
JP4497663B2 (en) Radiation imaging equipment
JP4455534B2 (en) Radiation detector and manufacturing method thereof
EP2128651A1 (en) Radiation detector
JP5461823B2 (en) Radiation detector and manufacturing method thereof
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
US20140367578A1 (en) X-ray image sensor
EP2169719B1 (en) X-ray detector and its method of fabrication
WO2019208224A1 (en) Radiation detector, radiation detector manufacturing method, and image processing method
JP4191459B2 (en) Radiation imaging device
JP2011058964A (en) X-ray plane detector, and method for manufacturing the same
US9024269B2 (en) High yield complementary metal-oxide semiconductor X-ray detector
JP2010112742A (en) Radiation detector and method of manufacturing same
JP5368058B2 (en) Radiation detector
JP2010164881A (en) Cassette for radiographing radiation image
JP2010112741A (en) Radiation detector and method of manufacturing the same
JP2008089459A (en) X-ray detector, scintillator panel, method for manufacturing x-ray detector, and method for manufacturing scintillator panel
JP2004177217A (en) Radiation imaging apparatus
JP6731757B2 (en) Radiation imaging apparatus and radiation imaging system
JP2013231671A (en) Radiation detector and method of manufacturing the same
JP2012018074A (en) Radiation detector and manufacturing method thereof
JP7370950B2 (en) Radiographic imaging device
JP2013231670A (en) Radiation detector and method of manufacturing the same
US11137504B2 (en) Tiled radiation detector
JP2023117956A (en) Sensor substrate, radiation imaging apparatus, radiation imaging system, and method for manufacturing sensor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees