JP2011058964A - X-ray plane detector, and method for manufacturing the same - Google Patents

X-ray plane detector, and method for manufacturing the same Download PDF

Info

Publication number
JP2011058964A
JP2011058964A JP2009209220A JP2009209220A JP2011058964A JP 2011058964 A JP2011058964 A JP 2011058964A JP 2009209220 A JP2009209220 A JP 2009209220A JP 2009209220 A JP2009209220 A JP 2009209220A JP 2011058964 A JP2011058964 A JP 2011058964A
Authority
JP
Japan
Prior art keywords
electrode pad
flat panel
protective layer
ray flat
panel detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009209220A
Other languages
Japanese (ja)
Inventor
Hiroshi Horiuchi
弘 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2009209220A priority Critical patent/JP2011058964A/en
Publication of JP2011058964A publication Critical patent/JP2011058964A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray plane detector of high reliability, which can be made high performance and compact. <P>SOLUTION: The X-ray plane detector 10 includes: a solid imaging element 4 having a light receiving part 2 on which a plurality of photoelectric conversion elements 1 are arrayed, and an electrode pad 3; a base 8 having an electrode pad 6 for external connection provided on the front surface side, and having an electrode terminal 7 connected electrically to the pad 6 and arranged on the rear surface side; wiring 9 for connecting electrically the electrode pad 3 to the electrode pad 6 for external connection; a scintillator layer 5 for converting an X-ray entering from the outside into light; and a protection layer 25. The protection layer 25 is formed continuously to cover integrally at least the front surface, the rear surface and the side surface of the scintillator layer 5, the light receiving part 2, the electrode pad 3, the electrode pad 6 for external connection, and the wiring 9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、間接方式のX線平面検出器及びその製造方法に係り、更に詳しくは、信頼性が高く、かつ高性能化、小型化が可能なX線平面検出器、及び、そのX線平面検出器を生産効率良く、低コストで製造できる製造方法に関する。   The present invention relates to an indirect X-ray flat panel detector and a method for manufacturing the indirect X-ray flat panel detector, and more particularly, an X-ray flat panel detector having high reliability, high performance and miniaturization, and the X-ray flat panel. The present invention relates to a manufacturing method capable of manufacturing a detector with high production efficiency and at low cost.

新世代のX線診断用画像検出器として、アクティブマトリックスや、CCD、CMOS等の固体撮像素子を用いたX線平面検出器が大きな注目を集めている。このX線平面検出器にX線を照射することにより、X線撮影像またはリアルタイムのX線画像がデジタル信号として出力できる。このため、画質性能や安定性の面に於いても極めて期待が大きく、多くの大学やメーカー等が研究開発に取り組んでいる。   As a new generation image detector for X-ray diagnosis, an X-ray flat panel detector using an active matrix, a solid-state imaging device such as a CCD, a CMOS or the like has attracted a great deal of attention. By irradiating the X-ray flat detector with X-rays, an X-ray image or a real-time X-ray image can be output as a digital signal. For this reason, there are great expectations in terms of image quality and stability, and many universities and manufacturers are engaged in research and development.

アクティブマトリックスを用いたX線平面検出器は、比較的大きな線量で静止画像を収集する胸部・一般撮影用に開発され、近年商品化されている。より高い技術的なハードルをクリアし、透視線量下に於いて30Frame/sec以上のリアルタイム動画を実現させる必要のある循環器、消化器分野への応用に対しても、近い将来に商品化が予想される。この動画用途に対しては、S/Nの改善や微小信号のリアルタイム処理技術等が重要な開発項目となっている。   X-ray flat panel detectors using an active matrix have been developed for chest and general radiography that collect still images with a relatively large dose, and have been commercialized in recent years. Commercialization is expected in the near future for applications in the circulatory and digestive fields that need to clear higher technical hurdles and realize real-time video of 30 frames / sec or more under fluoroscopic dose. Is done. For this video application, improvement of S / N, real-time processing technology of minute signals, and the like are important development items.

また、CCDやCMOS等の固体撮像素子を用いたX線平面検出器は、大きな線量で静止画像を収集する工業用の非破壊検査や口腔内に挿入して静止画像を収集する歯科用途等で近年商品化されている。このX線平面検出器では、動画用途への対応も含めて、S/Nの改善、微小信号のリアルタイム処理、検出器の小型化、信頼性の改善等が重要な開発項目となっている。   In addition, X-ray flat panel detectors using solid-state image sensors such as CCD and CMOS are used in industrial non-destructive inspections that collect still images with a large dose and dental applications that are inserted into the oral cavity to collect still images. Recently commercialized. In this X-ray flat panel detector, improvement of S / N, real-time processing of minute signals, downsizing of the detector, improvement of reliability, etc. are important development items including correspondence to moving image applications.

ところで、X線平面検出器は、直接方式と間接方式の2方式に大別される。   By the way, X-ray flat panel detectors are roughly classified into two methods, a direct method and an indirect method.

直接方式は、X線をa−Se等の光導電膜により直接電荷信号に変換し、電荷蓄積用キャパシタに導く方式である。この直接方式は、X線により発生した光導電電荷を高電界により直接的に電荷蓄積用キャパシタに導くため、ほぼアクティブマトリックスの画素電極ピッチで規定される解像度特性が得られる。   The direct method is a method in which X-rays are directly converted into a charge signal by a photoconductive film such as a-Se and led to a charge storage capacitor. In this direct method, the photoconductive charge generated by X-rays is directly guided to the charge storage capacitor by a high electric field, so that a resolution characteristic almost defined by the pixel electrode pitch of the active matrix can be obtained.

一方、間接方式は、シンチレータ層によりX線を一旦可視光に変換し、可視光をa−Siフォトダイオード、CCD、CMOS等により信号電荷に変換して電荷蓄積用キャパシタに導く方式である。このため、シンチレータ層からの可視光がフォトダイオード、CCD、CMOSに到達する迄の光学的な拡散及び散乱により解像度特性の劣化が生じる。   On the other hand, the indirect method is a method in which X-rays are once converted into visible light by the scintillator layer, and the visible light is converted into signal charges by an a-Si photodiode, CCD, CMOS or the like and led to the charge storage capacitor. For this reason, degradation of resolution characteristics occurs due to optical diffusion and scattering until visible light from the scintillator layer reaches the photodiode, CCD, and CMOS.

固体撮像素子を用いた従来の間接方式によるX線平面検出器の基本構成を図5及び図6に示す。   5 and 6 show the basic configuration of a conventional indirect X-ray flat panel detector using a solid-state imaging device.

従来の間接方式のX線平面検出器50では、図5に示すように、平面基板16上に、可視光を電気信号に変換する複数の光電変換素子1を有する受光部2が形成され、この受光部2より外側に光電変換素子1に電気的に接続されている電極パッド3が設けられ、固体撮像素子4を構成している。また、放射線を透過する支持基板13にシンチレータ層5が形成されたシンチレータパネル17が、接合層14を介して固体撮像素子4の受光部2と接合されて、検出器部19を構成している。   In the conventional indirect X-ray flat panel detector 50, as shown in FIG. 5, a light receiving section 2 having a plurality of photoelectric conversion elements 1 for converting visible light into electrical signals is formed on a flat substrate 16, and this An electrode pad 3 that is electrically connected to the photoelectric conversion element 1 is provided on the outer side of the light receiving unit 2, and constitutes a solid-state imaging element 4. Further, a scintillator panel 17 in which the scintillator layer 5 is formed on the support substrate 13 that transmits radiation is joined to the light receiving unit 2 of the solid-state imaging device 4 via the joining layer 14 to constitute a detector unit 19. .

この検出器部19が、表面側に外部接続用電極パッド6が形成され裏面側にその外部接続用電極パッド6と電気的に接続された電極端子7を有する基台8上に固定されている。   This detector section 19 is fixed on a base 8 having an electrode terminal 7 formed on the front surface side with an external connection electrode pad 6 and electrically connected to the external connection electrode pad 6 on the back surface side. .

更に、固体撮像素子4上の電極パッド3と基台8上の外部接続用電極パッド6とが配線9により電気的に接続されている(例えば、特許文献1参照)。   Furthermore, the electrode pad 3 on the solid-state imaging device 4 and the external connection electrode pad 6 on the base 8 are electrically connected by a wiring 9 (see, for example, Patent Document 1).

従来のこの間接方式のX線平面検出器の基本動作原理としては、入射X線11によりシンチレータ層5で変換された可視光12が固体撮像素子4上に形成された光電変換素子1に到達することにより電荷に変換され、一定時間光電変換素子1に蓄積される。光電変換素子1に蓄積された電荷は、各光電変換素子1に対応した図示していない信号ラインから、各光電変換素子1に対応した固体撮像素子4上の電極パッド3、配線9、外部接続用電極パッド6を経由し、各電極端子7から順次出力信号として読み出され、所定の信号処理回路等にてデジタル画像信号に変換される。   As a basic operation principle of this conventional indirect X-ray flat panel detector, visible light 12 converted by the scintillator layer 5 by incident X-rays 11 reaches the photoelectric conversion element 1 formed on the solid-state imaging element 4. As a result, it is converted into electric charge and accumulated in the photoelectric conversion element 1 for a certain time. The charges accumulated in the photoelectric conversion elements 1 are transmitted from signal lines (not shown) corresponding to the respective photoelectric conversion elements 1 to the electrode pads 3 on the solid-state imaging element 4 corresponding to the respective photoelectric conversion elements 1, wirings 9, and external connections. The output signals are sequentially read out from the electrode terminals 7 via the electrode pads 6 and converted into digital image signals by a predetermined signal processing circuit or the like.

特開2008−261651号公報JP 2008-261651 A

しかしながら、図5に示すようなシンチレータパネル17を用いたX線平面検出器50の基本構成では、
(1)支持基板13における入射X線11の吸収(入射X線11に対する出力信号強度の劣化)、
(2)支持基板13の導入によるX線平面検出器のサイズの拡大、
(3)部品点数(支持基板13)及び工程数(接合層14の形成)の増加による生産性の低下、
(4)接合層14における光学的な拡散及び散乱(画像特性の劣化)、
(5)外力に対する検出器の信頼性の低下、
等の課題がある。
However, in the basic configuration of the X-ray flat panel detector 50 using the scintillator panel 17 as shown in FIG.
(1) Absorption of incident X-rays 11 in the support substrate 13 (deterioration of output signal intensity with respect to incident X-rays 11),
(2) Expansion of the size of the X-ray flat panel detector by introducing the support substrate 13;
(3) Decrease in productivity due to an increase in the number of parts (support substrate 13) and the number of processes (formation of the bonding layer 14),
(4) Optical diffusion and scattering (deterioration of image characteristics) in the bonding layer 14;
(5) Decrease in detector reliability against external force,
There are issues such as.

上記(1)〜(5)の課題を解決し、検出器のより高性能化、小型化、信頼性向上、生産性向上を図るべく、図6に示すようなX線平面検出器を用いることができる。   An X-ray flat panel detector as shown in FIG. 6 is used in order to solve the above problems (1) to (5) and improve the performance, size, reliability, and productivity of the detector. Can do.

このX線平面検出器60では、図6に示すように、平面基板16上に、可視光を電気信号に変換する複数の光電変換素子1を有する受光部2が形成され、この受光部2より外側に光電変換素子1に電気的に接続されている電極パッド3が設けられ、固体撮像素子4を構成している点は図5のX線平面検出器50と同様である。しかし、X線平面検出器60では、固体撮像素子4の受光部2上に、X線を可視光に変換するシンチレータ層5が直接形成される。   In this X-ray flat panel detector 60, as shown in FIG. 6, a light receiving unit 2 having a plurality of photoelectric conversion elements 1 that convert visible light into an electrical signal is formed on a flat substrate 16. The electrode pad 3 that is electrically connected to the photoelectric conversion element 1 is provided on the outside, and the solid-state image pickup element 4 is configured in the same manner as the X-ray flat panel detector 50 of FIG. However, in the X-ray flat panel detector 60, the scintillator layer 5 that converts X-rays into visible light is directly formed on the light receiving unit 2 of the solid-state imaging device 4.

このシンチレータ層5上には、変換された可視光の利用効率を高めるために反射層(図示せず)を形成する場合もある。更に、シンチレータ層5を保護するために、シンチレータ層5の表面全体が保護層15で被覆される。   A reflective layer (not shown) may be formed on the scintillator layer 5 in order to increase the utilization efficiency of the converted visible light. Furthermore, in order to protect the scintillator layer 5, the entire surface of the scintillator layer 5 is covered with a protective layer 15.

このシンチレータ層5が形成された固体撮像素子4が、図5のX線平面検出器50と同様、表面側に外部接続用電極パッド6が形成され裏面側にその外部接続用電極パッド6と電気的に接続された電極端子7を有する基台8上に固定され、更に、電極パッド3と外部接続用電極パッド6とが配線9により電気的に接続される。   In the solid-state imaging device 4 on which the scintillator layer 5 is formed, the external connection electrode pad 6 is formed on the front surface side and the external connection electrode pad 6 is electrically connected to the back surface side in the same manner as the X-ray flat panel detector 50 of FIG. The electrode pad 3 and the external connection electrode pad 6 are electrically connected to each other by the wiring 9.

ここで、間接方式のX線平面検出器の構造上、シンチレータ層5の特性が重要となる。シンチレータ層5には、入射したX線に対する出力信号強度を向上させるため、主として、CsI等のハロゲン化合物やGOS等の酸化物系化合物等から構成される高輝度蛍光物質が用いられる。シンチレータ層は一般的に高密度であり、固体撮像素子4上に、真空蒸着法、スパッタリング法、CVD法等の気相成長法を用いて一様に形成される。特に、CsI等のハロゲン化合物をシンチレータ層5に用いた場合には、短冊状の柱状結晶構造を有するシンチレータ層5を真空蒸着法によって形成することにより、解像度特性の改善等を図ることも行われる。   Here, the characteristics of the scintillator layer 5 are important in the structure of the indirect X-ray flat panel detector. The scintillator layer 5 is mainly made of a high-intensity fluorescent material composed of a halogen compound such as CsI or an oxide compound such as GOS in order to improve the output signal intensity for incident X-rays. The scintillator layer generally has a high density and is uniformly formed on the solid-state imaging device 4 by using a vapor phase growth method such as a vacuum deposition method, a sputtering method, or a CVD method. In particular, when a halogen compound such as CsI is used for the scintillator layer 5, the resolution characteristics can be improved by forming the scintillator layer 5 having a strip-like columnar crystal structure by a vacuum deposition method. .

しかしながら、シンチレータ層5に高輝度蛍光物質であるCsI等のハロゲン化合物を用いた場合、沃素等のハロゲン元素の反応性が高いため、このシンチレータ層5と接触する光電変換素子1や、電極パッド3、外部接続用電極パッド6、及びこれらパッド3,6を電気的に接続する配線9の中の陽性元素等と反応し、これら光電変換素子1等が腐食し、X線平面検出器60の諸特性および信頼性が劣化する場合がある。   However, when a halogen compound such as CsI, which is a high-intensity fluorescent material, is used for the scintillator layer 5, the reactivity of a halogen element such as iodine is high. Therefore, the photoelectric conversion element 1 in contact with the scintillator layer 5 and the electrode pad 3 Reacting with positive elements in the external connection electrode pad 6 and the wiring 9 electrically connecting the pads 3 and 6, the photoelectric conversion element 1 and the like corrode, and the X-ray flat panel detector 60 Characteristics and reliability may be degraded.

このため、図6に示すように、X線平面検出器の信頼性を目的として、固体撮像素子4上の電極パッド3、基台8上の外部接続用電極パッド6、電極パッド3及び外部接続用電極パッド6を電気的に接続する配線9を被覆すべく、主に樹脂材料からなる保護層18が設けられる。更に、接合層21を介して保護カバー22が形成される。   Therefore, as shown in FIG. 6, for the purpose of reliability of the X-ray flat panel detector, the electrode pad 3 on the solid-state imaging device 4, the electrode pad 6 for external connection on the base 8, the electrode pad 3, and the external connection A protective layer 18 mainly made of a resin material is provided to cover the wiring 9 that electrically connects the electrode pad 6 for use. Further, a protective cover 22 is formed via the bonding layer 21.

しかし、電極パッド3、外部接続用電極パッド6、及びこれらパッド3,6を電気的に接続する配線9を保護層18で被覆する場合、シンチレータ層5が形成されている受光部2と電極パッド3との間に保護層18の形成に伴うクリアランスを確保する必要があるため、X線平面検出器60の小形化もしくは受光部2の拡大に対する障害となるおそれがある。   However, when the electrode pad 3, the external connection electrode pad 6, and the wiring 9 that electrically connects these pads 3 and 6 are covered with the protective layer 18, the light receiving unit 2 and the electrode pad on which the scintillator layer 5 is formed. 3, the clearance accompanying the formation of the protective layer 18 needs to be secured, which may be an obstacle to downsizing the X-ray flat panel detector 60 or expanding the light receiving unit 2.

更に、保護層18は主に樹脂材料で構成されるため、X線吸収率がシンチレータ層5に比べて低く、X線耐性に伴う信頼性の低下に繋がる可能性がある。   Furthermore, since the protective layer 18 is mainly composed of a resin material, the X-ray absorption rate is lower than that of the scintillator layer 5, which may lead to a decrease in reliability associated with X-ray resistance.

従って、本発明は、このような点に鑑みなされたもので、信頼性が高く、かつ高性能化、小型化が可能なX線平面検出器、及び生産性向上と生産コストの低減可能なX線平面検出器の製造方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above points, and is an X-ray flat panel detector that is highly reliable and capable of high performance and miniaturization, and X that can improve productivity and reduce production costs. An object of the present invention is to provide a method for manufacturing a line flat detector.

上述の目的を達成するため、本発明のX線平面検出器は、平面基板上に複数の光電変換素子が一次元若しくは二次元的に複数配列している受光部が形成されるとともに、当該受光部の周囲に前記光電変換素子と電気的に接続されている電極パッドを有する固体撮像素子と、前記固体撮像素子を固定するとともに、当該固体撮像素子を固定する面側でその固定部分の外側に外部接続用電極パッドが設けられる一方、反対の面側に前記外部接続用電極パッドと電気的に接続されている電極端子が配された基台と、前記電極パッドと前記外部接続用電極パッドとを電気的に接続する配線と、前記固体撮像素子の受光部上に設けられ、外部から入射したX線を光に変換するシンチレータ層と、少なくとも前記シンチレータ層の表面、裏面、及び側面、前記受光部、前記電極パッド、前記外部接続用電極パッド、及び前記配線を一体的に被覆するように連続的に形成された保護層と、を具備することを特徴とする。   In order to achieve the above-described object, the X-ray flat panel detector of the present invention has a light receiving section in which a plurality of photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on a flat substrate, A solid-state imaging device having an electrode pad electrically connected to the photoelectric conversion device around the portion, and fixing the solid-state imaging device, and on the outer side of the fixed portion on the surface side where the solid-state imaging device is fixed A base on which an electrode terminal electrically connected to the external connection electrode pad is disposed on the opposite surface side, and the electrode pad and the external connection electrode pad; Wiring for electrically connecting, a scintillator layer that is provided on the light receiving portion of the solid-state imaging device and converts X-rays incident from the outside into light, and at least the front, back, and side surfaces of the scintillator layer, Serial receiving unit, the electrode pads, characterized by including the external connection electrode pads, and a protective layer which is continuously formed so as to cover integrally the wiring.

また、本発明のX線平面検出器の製造方法は、平面基板上に、複数の光電変換素子が一次元若しくは二次元的に複数配列した受光部、及び前記光電変換素子と電気的に接続されている電極パッドを設けて固体撮像素子を形成する工程と、表面側に外部接続用電極パッドを形成するとともに、裏面側に前記外部接続用電極パッドと電気的に接続された電極端子を形成した基台の表面上に、前記固体撮像素子を固定する工程と、前記電極パッド及び前記外部接続用電極パッドを配線により電気的に接続する工程と、少なくとも、前記受光部、前記電極パッド、前記外部接続用電極パッド、及び前記配線を一体的に被覆するように第1の保護層を気相成長法により形成する工程と、前記受光部上に、外部から入射したX線を光に変換するシンチレータ層を形成する工程と、前記シンチレータ層上に、前記第1の保護層と同一物質で形成された第2の保護層を気相成長法により第1の保護層と連続的に形成する工程と、を備えることを特徴とする。   The X-ray flat panel detector manufacturing method of the present invention is electrically connected to a light receiving unit in which a plurality of photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on a flat substrate, and the photoelectric conversion elements. Forming a solid-state imaging device by providing the electrode pads, and forming external connection electrode pads on the front surface side and forming electrode terminals electrically connected to the external connection electrode pads on the back surface side A step of fixing the solid-state imaging device on a surface of a base; a step of electrically connecting the electrode pad and the electrode pad for external connection by wiring; and at least the light receiving unit, the electrode pad, and the external A step of forming a first protective layer by vapor deposition so as to integrally cover the connection electrode pad and the wiring; and a scintillator for converting X-rays incident from the outside into light on the light receiving portion. A step of forming a layer, and a step of continuously forming a second protective layer formed of the same material as the first protective layer on the scintillator layer with the first protective layer by vapor deposition. It is characterized by providing.

本発明のX線平面検出器によれば、固体撮像素子を用いた間接方式のX線平面画像検出器においても小型化、高性能化、信頼性向上が可能となる。   According to the X-ray flat panel detector of the present invention, an indirect X-ray flat panel image detector using a solid-state imaging device can be downsized, improved in performance, and improved in reliability.

また、本発明のX線平面検出器の製造方法によれば、信頼性に優れ、小型で高性能化が可能なX線平面検出器を生産性が高く低コストで提供することができる。   In addition, according to the method of manufacturing an X-ray flat panel detector of the present invention, an X-ray flat panel detector that is excellent in reliability, small in size and high in performance can be provided with high productivity and low cost.

本発明の第1の実施の形態に係るX線平面検出器を示す断面図である。It is sectional drawing which shows the X-ray flat panel detector which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るX線平面検出器を示す断面図である。It is sectional drawing which shows the X-ray flat panel detector which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るX線平面検出器を示す断面図である。It is sectional drawing which shows the X-ray flat panel detector which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るX線平面検出器を示す断面図である。It is sectional drawing which shows the X-ray flat panel detector which concerns on the 4th Embodiment of this invention. 従来のX線平面検出器を示す断面図である。It is sectional drawing which shows the conventional X-ray flat panel detector. 従来の他のX線平面検出器を示す断面図である。It is sectional drawing which shows the other conventional X-ray flat panel detector.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
[本実施の形態に係るX線平面検出器の構成]
図1に本発明の第1の実施の形態に係るX線平面検出器の構成について示す。
(First embodiment)
[Configuration of X-ray flat panel detector according to this embodiment]
FIG. 1 shows the configuration of the X-ray flat panel detector according to the first embodiment of the present invention.

X線平面検出器10は、間接方式の平面画像検出器であり、可視光を電気信号に変換するアクティブマトリクス光電変換基板である固体撮像素子4を備えている。   The X-ray flat detector 10 is an indirect type flat image detector, and includes a solid-state imaging device 4 that is an active matrix photoelectric conversion substrate that converts visible light into an electric signal.

固体撮像素子4の表面の中央域には、可視光を電気信号に変換するフォトダイオードなどの複数の光電変換素子1が二次元的でマトリクス状に配列された受光部2が形成されている。固体撮像素子4の表面の周縁域には、各光電変換素子1と電気的に接続されて各光電変換素子1によって変換された電気信号を取り出す複数の電極パッド3が配列されている。   In the central region of the surface of the solid-state imaging device 4, a light receiving section 2 is formed in which a plurality of photoelectric conversion elements 1 such as photodiodes that convert visible light into electric signals are arranged in a two-dimensional matrix. A plurality of electrode pads 3 that are electrically connected to the photoelectric conversion elements 1 and extract electric signals converted by the photoelectric conversion elements 1 are arranged in the peripheral area of the surface of the solid-state imaging element 4.

また、X線平面検出器10は、固体撮像素子4を固定する基台8を備えている。この基台8の表面側には、固体撮像素子4の各電極パッド3と電気的に接続される複数の外部接続用電極パッド6が配設され、基台8の裏面側には各外部接続用電極パッド6に電気的に接続された外部接続用の複数の電極端子7が配設されている。   In addition, the X-ray flat panel detector 10 includes a base 8 that fixes the solid-state imaging device 4. A plurality of external connection electrode pads 6 that are electrically connected to the electrode pads 3 of the solid-state imaging device 4 are disposed on the front surface side of the base 8, and each external connection is provided on the back side of the base 8. A plurality of electrode terminals 7 for external connection that are electrically connected to the electrode pads 6 are provided.

更に、固体撮像素子4の各電極パッド3と基台8の各外部接続用電極パッド6とがワイヤ等の複数の配線9によって電気的に接続されている。   Furthermore, each electrode pad 3 of the solid-state imaging device 4 and each external connection electrode pad 6 of the base 8 are electrically connected by a plurality of wires 9 such as wires.

また、基台8の表面側に配置された固体撮像素子4の受光部2、電極パッド3、外部接続用電極パッド6、および配線9を含む基台8の表面全体に、それらを連続的、一体的に被覆する第1の保護層25aが形成されている。   Moreover, they are continuously applied to the entire surface of the base 8 including the light receiving portion 2 of the solid-state imaging device 4, the electrode pad 3, the external connection electrode pad 6, and the wiring 9 disposed on the surface side of the base 8. A first protective layer 25a that integrally covers is formed.

また、固体撮像素子4上の第1の保護層25aの表面側を含む基台8上には、X線を可視光に変換するシンチレータ層5が形成されている。このシンチレータ層5には、高輝度蛍光物質であるヨウ化セシウム(CsI)等のハロゲン化合物やガドリニウム硫酸化物(GOS)等の酸化物系化合物等の蛍光体が用いられ、真空蒸着法、スパッタリング法、CVD法等の気相成長法で形成される。   A scintillator layer 5 that converts X-rays into visible light is formed on the base 8 including the surface side of the first protective layer 25 a on the solid-state imaging device 4. The scintillator layer 5 is made of a phosphor such as a halogen compound such as cesium iodide (CsI) or an oxide compound such as gadolinium sulfate (GOS), which is a high-intensity fluorescent material. , Formed by a vapor phase growth method such as a CVD method.

更に、シンチレータ層5の表面を覆って、第1の保護層25aと同一の物質かつ同様の形成方法にて第2の保護層25bが形成されている。   Further, the second protective layer 25b is formed by covering the surface of the scintillator layer 5 with the same material and the same formation method as the first protective layer 25a.

第1の保護層25a及び第2の保護層25bからなる保護層25は、絶縁性、水蒸気遮断性、シンチレータ層5の発光に対する透過性、シンチレータ層5を構成する物質に対する耐腐食性を有する物質であって、ポリパラキシリレンを主成分とする有機物、もしくはダイヤモンド結晶からなる炭素結晶及び珪素を含む炭素結晶を主成分とする無機物を好適に用いることができる。この保護層25の形成には、固体撮像素子4及び基台8の凹凸部や段差部への連続的な被膜形成が必要となるため、真空蒸着法、スパッタリング法、CVD法等の気相成長法やメッキ法が用いられるが、特に形状一致性の高くかつ配線9の裏面側にも被膜形成が可能なように低温でのCVD法を用いることが好ましい。   The protective layer 25 composed of the first protective layer 25a and the second protective layer 25b is a substance having insulating properties, water vapor barrier properties, permeability to the light emitted from the scintillator layer 5, and corrosion resistance to the substances constituting the scintillator layer 5. In addition, an organic substance containing polyparaxylylene as a main component, or a carbon crystal made of diamond crystal and an inorganic substance containing a carbon crystal containing silicon as a main component can be preferably used. The formation of the protective layer 25 requires continuous film formation on the concavo-convex portions and step portions of the solid-state imaging device 4 and the base 8, so that vapor phase growth such as vacuum deposition, sputtering, or CVD is used. Although a method and a plating method are used, it is preferable to use a CVD method at a low temperature so that the shape matching is particularly high and a film can be formed on the back side of the wiring 9.

[本実施の形態に係るX線平面検出器の製造方法]
先ず、複数の光電変換素子1が二次元的に複数配列された受光部2と電極パッド3とが形成された固体撮像素子4を基台8に配置して固定し、固体撮像素子4の各電極パッド3と基台8の各外部接続用電極パッド6とを複数の配線9によって電気的に接続する。
[Manufacturing method of X-ray flat panel detector according to the present embodiment]
First, a solid-state image sensor 4 in which a plurality of photoelectric conversion elements 1 are two-dimensionally arranged and a light receiving unit 2 and electrode pads 3 are formed is arranged and fixed on a base 8, and each solid-state image sensor 4 is fixed. The electrode pad 3 and each external connection electrode pad 6 of the base 8 are electrically connected by a plurality of wirings 9.

次に、少なくとも基台8の表面側に配置された固体撮像素子4の受光部2、電極パッド3、外部接続用電極パッド6、及び配線9を含む基台8の内面全体に、それらを連続的、一体的に被覆する第1の保護層25aを例えば低温でのCVD法にて形成する。   Next, at least the entire inner surface of the base 8 including the light receiving unit 2, the electrode pad 3, the external connection electrode pad 6, and the wiring 9 of the solid-state imaging device 4 disposed on the surface side of the base 8 is continuously provided. First, the first protective layer 25a that is integrally covered is formed by, for example, a CVD method at a low temperature.

更に、第1の保護層25aの表面側を含む基台8にシンチレータ層5を形成し、シンチレータ層5の表面側に第2の保護層25bを例えば低温でのCVD法にて形成する。   Further, the scintillator layer 5 is formed on the base 8 including the surface side of the first protective layer 25a, and the second protective layer 25b is formed on the surface side of the scintillator layer 5 by, for example, a CVD method at a low temperature.

[本実施の形態に係るX線平面検出器の作用]
X線平面検出器10のシンチレータ層5へと入射したX線11はこのシンチレータ層5にて可視光12に変換される。
[Operation of X-ray flat panel detector according to this embodiment]
X-rays 11 incident on the scintillator layer 5 of the X-ray flat panel detector 10 are converted into visible light 12 by the scintillator layer 5.

この可視光12はシンチレータ層5を通じて固体撮像素子4の受光部2の光電変換素子1に到達して電気信号に変換される。光電変換素子1で変換された電気信号は、読出動作により、電極パッド3、配線9、外部接続用電極パッド6及び電極端子7を通じて外部に出力される。   The visible light 12 reaches the photoelectric conversion element 1 of the light receiving unit 2 of the solid-state imaging element 4 through the scintillator layer 5 and is converted into an electric signal. The electrical signal converted by the photoelectric conversion element 1 is output to the outside through the electrode pad 3, the wiring 9, the external connection electrode pad 6, and the electrode terminal 7 by a reading operation.

[本実施の形態に係るX線平面検出器の効果]
(1)固体撮像素子4の受光部2及び電極パッド3、シンチレータ層5、基台8上の外部接続用電極パッド6、及び、固体撮像素子4上の電極パッド3と外部接続用電極パッド6とを電気的に接続する配線9が、保護層25により連続的かつ一体的に被覆された構造を有することから、これらがシンチレータ層5と直接的に接触しない構造となり、かつシンチレータ層5も保護層25により密閉された構造となる。このため、シンチレータ層5に高輝度蛍光物質であるCsI等のハロゲン化合物を用いた場合においても光電変換素子1の腐食を防止することが可能となる。また、シンチレータ層5が大気中の水分と反応して潮解するのを防止でき、耐食性を向上させることができる。
[Effect of X-ray flat panel detector according to this embodiment]
(1) The light receiving unit 2 and the electrode pad 3 of the solid-state image sensor 4, the scintillator layer 5, the external connection electrode pad 6 on the base 8, and the electrode pad 3 and the external connection electrode pad 6 on the solid-state image sensor 4 Since the wiring 9 that electrically connects the two has a structure in which the protective layer 25 is continuously and integrally covered with the protective layer 25, the wiring 9 is not in direct contact with the scintillator layer 5, and the scintillator layer 5 is also protected. The structure is sealed by the layer 25. For this reason, even when a halogen compound such as CsI which is a high-intensity fluorescent material is used for the scintillator layer 5, corrosion of the photoelectric conversion element 1 can be prevented. Moreover, it can prevent that the scintillator layer 5 reacts with the water | moisture content in air | atmosphere, and deliquesces, and can improve corrosion resistance.

(2)図6に示す従来のX線平面検出器60とは異なり、電極パッド3、外部接続用電極パッド6、配線9を被覆する保護層18を形成していないので、これらの上にシンチレータ層5を形成してもX線平面検出器10の信頼性の維持が可能となる。このため、間接方式のX線平面検出器において、検出器の高性能化、信頼性向上が可能となる。また、シンチレータパネルを用いない方式であるため、支持基板13の部品数の削減による生産コストの低減と、接合層14の形成工程の削減による生産性の向上が可能となる。   (2) Unlike the conventional X-ray flat panel detector 60 shown in FIG. 6, the protective layer 18 that covers the electrode pad 3, the external connection electrode pad 6, and the wiring 9 is not formed. Even if the layer 5 is formed, the reliability of the X-ray flat panel detector 10 can be maintained. For this reason, in an indirect X-ray flat panel detector, it is possible to improve the performance and reliability of the detector. In addition, since the scintillator panel is not used, the production cost can be reduced by reducing the number of parts of the support substrate 13 and the productivity can be improved by reducing the formation process of the bonding layer 14.

(3)電極パッド3、外部接続用電極パッド6、配線9に保護層18を形成せず、これらの上にもシンチレータ層5を形成することが可能になるため、保護層18の形成に伴うクリアランスの確保が不要となる。このため、検出器の小型化、受光部2の拡大も可能となる。   (3) Since the protective layer 18 is not formed on the electrode pad 3, the external connection electrode pad 6, and the wiring 9, and the scintillator layer 5 can be formed on the protective layer 18, it is accompanied by the formation of the protective layer 18. It is not necessary to secure clearance. For this reason, downsizing of the detector and enlargement of the light receiving unit 2 are possible.

(4)固体撮像素子4上に保護層25が形成されるため、固体撮像素子4の平坦性の改善が可能となる。このため、その上に形成されるシンチレータ層5の結晶性が向上し、その結晶性向上に伴う特性改善(画像特性)が得られる。   (4) Since the protective layer 25 is formed on the solid-state imaging device 4, the flatness of the solid-state imaging device 4 can be improved. For this reason, the crystallinity of the scintillator layer 5 formed thereon is improved, and characteristic improvement (image characteristics) accompanying the crystallinity improvement is obtained.

(5)シンチレータ層5が保護層25を介して固体撮像素子4と接触する構造となることから、固体撮像素子4とシンチレータ層5の熱膨張係数差に起因する応力を緩和することが可能になり、信頼性が向上する。   (5) Since the scintillator layer 5 is in contact with the solid-state imaging device 4 via the protective layer 25, it is possible to relieve stress caused by the difference in thermal expansion coefficient between the solid-state imaging device 4 and the scintillator layer 5. And reliability is improved.

(第2の実施の形態)
図2に本発明の第2の実施の形態に係るX線平面検出器の構成について示す。
(Second Embodiment)
FIG. 2 shows the configuration of an X-ray flat panel detector according to the second embodiment of the present invention.

本実施の形態に係るX線平面検出器20は、基台8の端部に形成された接合層21を介して、固体撮像素子4とシンチレータ層5を保護するための保護カバー22が形成されている以外は、第1の実施の形態に係るX線平面検出器10と同様に形成されている。   In the X-ray flat panel detector 20 according to the present embodiment, a protective cover 22 for protecting the solid-state imaging device 4 and the scintillator layer 5 is formed via a bonding layer 21 formed at the end of the base 8. Except for this, it is formed in the same manner as the X-ray flat panel detector 10 according to the first embodiment.

本実施の形態に係るX線平面検出器20においても、第1の実施の形態に係るX線平面検出器10と同様の作用効果を奏する他、保護カバー22によりシンチレータ層を確実に密閉、保護することが出来、且つ外力に対する検出器の信頼性の確保も可能となる。   In the X-ray flat panel detector 20 according to the present embodiment, the same effect as the X-ray flat panel detector 10 according to the first embodiment is obtained, and the scintillator layer is reliably sealed and protected by the protective cover 22. The reliability of the detector against external force can be ensured.

(第3の実施の形態)
図3に本発明の第3の実施の形態に係るX線平面検出器の構成について示す。
(Third embodiment)
FIG. 3 shows the configuration of an X-ray flat panel detector according to the third embodiment of the present invention.

本実施の形態に係るX線平面検出器30は、シンチレータ層5の表面に、シンチレータ層5で変換された可視光の利用効率を高めるための反射層27が形成されている以外は、第1の実施の形態に係るX線平面検出器10と同様に形成されている。   The X-ray flat panel detector 30 according to the present embodiment is the first except that a reflective layer 27 is formed on the surface of the scintillator layer 5 in order to increase the use efficiency of visible light converted by the scintillator layer 5. It is formed similarly to the X-ray flat panel detector 10 according to the embodiment.

本実施の形態に係るX線平面検出器30においても、第1の実施の形態に係るX線平面検出器10と同様の作用効果を奏する他、反射層27により、シンチレータ層5で変換された可視光の利用効率をより高めることができる。   The X-ray flat detector 30 according to the present embodiment also has the same effects as the X-ray flat detector 10 according to the first embodiment, and is converted by the scintillator layer 5 by the reflective layer 27. The utilization efficiency of visible light can be further increased.

(第4の実施の形態)
図4に本発明の第4の実施の形態に係るX線平面検出器の構成について示す。
(Fourth embodiment)
FIG. 4 shows the configuration of an X-ray flat panel detector according to the fourth embodiment of the present invention.

本実施の形態に係るX線平面検出器40は、基台8の端部に形成された接合層21を介して、固体撮像素子4とシンチレータ層5を保護するための保護カバー22が形成されている以外は、第3の実施の形態に係るX線平面検出器10と同様に形成されている。   In the X-ray flat panel detector 40 according to the present embodiment, a protective cover 22 for protecting the solid-state imaging device 4 and the scintillator layer 5 is formed via a bonding layer 21 formed at the end of the base 8. Except for this, it is formed in the same manner as the X-ray flat panel detector 10 according to the third embodiment.

本実施の形態に係るX線平面検出器40においても、第3の実施の形態に係るX線平面検出器30と同様の作用効果を奏する他、保護カバー22によりシンチレータ層を確実に密閉、保護することが出来、且つ外力に対する検出器の信頼性の確保も可能となる。   The X-ray flat panel detector 40 according to the present embodiment also has the same effects as the X-ray flat panel detector 30 according to the third embodiment, and the scintillator layer is reliably sealed and protected by the protective cover 22. The reliability of the detector against external force can be ensured.

図2に示す第2の実施の形態に係るX線平面検出器20において、固体撮像素子4をCMOS、電極パッド3の材質をAl、基台8の材料をAlセラミック、外部接続用電極パッド6の材料をAu、配線9の材質をAu、保護層25の構成物質をポリパラキシリレン、保護層25の膜厚を5μm、シンチレータ層5の高輝度蛍光物質をCsI(Tlドープ)、保護カバー22の材質をAl、接合層21の構成物質をエポキシ系樹脂として、X線平面検出器20を製造した。 In the X-ray flat panel detector 20 according to the second embodiment shown in FIG. 2, the solid-state imaging device 4 is CMOS, the material of the electrode pad 3 is Al, the material of the base 8 is Al 2 O 3 ceramic, and for external connection The material of the electrode pad 6 is Au, the material of the wiring 9 is Au, the constituent material of the protective layer 25 is polyparaxylylene, the thickness of the protective layer 25 is 5 μm, and the high brightness fluorescent material of the scintillator layer 5 is CsI (Tl doped). The X-ray flat panel detector 20 was manufactured using Al as the material of the protective cover 22 and the epoxy resin as the constituent material of the bonding layer 21.

これに対して、比較例として、図6に示す従来例のX線平面検出器60において、固体撮像素子4をCMOS、電極パッド3の材質をAl、基台8の材料をAlセラミック、外部接続用電極パッド6の材料をAu、配線9の材質をAu、保護層18の材質をエポキシ系樹脂、保護層15の構成物質をポリパラキシリレン、保護層15の膜厚を5μm、シンチレータ層層5の高輝度蛍光物質をCsI(Tlドープ)、保護カバー17の材質をAl、接合層21の構成物質をエポキシ系樹脂として、X線平面検出器60を製造した。 On the other hand, as a comparative example, in the conventional X-ray flat panel detector 60 shown in FIG. 6, the solid-state imaging device 4 is CMOS, the electrode pad 3 is made of Al, and the base 8 is made of Al 2 O 3 ceramic. The material of the external connection electrode pad 6 is Au, the material of the wiring 9 is Au, the material of the protective layer 18 is an epoxy resin, the constituent material of the protective layer 15 is polyparaxylylene, the film thickness of the protective layer 15 is 5 μm, The X-ray flat panel detector 60 was manufactured using CsI (Tl doped) as the high-luminance fluorescent material for the scintillator layer 5, Al as the material for the protective cover 17, and epoxy resin as the constituent material for the bonding layer 21.

これらのX線平面検出器20とX線平面検出器60について、同一条件下(管電圧:60kV、管電流:0.4mA、SID:300mm、X線照射時間:0.1s)で感度、解像度(MTF)を測定し、比較例の値を1とした場合の比率を求めた。結果を表1に示す。

Figure 2011058964
For these X-ray flat detector 20 and X-ray flat detector 60, sensitivity and resolution under the same conditions (tube voltage: 60 kV, tube current: 0.4 mA, SID: 300 mm, X-ray irradiation time: 0.1 s). (MTF) was measured and the ratio when the value of the comparative example was 1 was determined. The results are shown in Table 1.
Figure 2011058964

表1の結果より、実施例に係るX線平面検出器の画像特性は、比較例に係るX線平面検出器の画像特性と比較して1〜3割程度向上することが判明した。これより、X線平面検出器の高性能化に対する本発明の効果が明確であるといえる。   From the results in Table 1, it was found that the image characteristics of the X-ray flat panel detector according to the example are improved by about 10 to 30% compared with the image characteristics of the X-ray flat panel detector according to the comparative example. Thus, it can be said that the effect of the present invention on the enhancement of the performance of the X-ray flat panel detector is clear.

また、上記実施例では、保護層25としてポリパラキシリレンを用いた場合の結果を示したが、ダイヤモンド結晶からなる炭素結晶を主成分とするダイヤモンドライクカーボン(DLC)や珪素を含む炭素結晶を主成分とするSiC(炭化珪素)を用いた場合も同様の効果が得られると推定される。   Moreover, in the said Example, although the result at the time of using a polyparaxylylene as the protective layer 25 was shown, the diamond-like carbon (DLC) which has a carbon crystal consisting of a diamond crystal as a main component, and the carbon crystal containing silicon. It is estimated that the same effect can be obtained when SiC (silicon carbide) as a main component is used.

1:光電変換素子、2:受光部、3:電極パッド、4:固体撮像素子、5:シンチレータ層、6:外部接続用電極パッド、7:電極端子、8:基台、9:配線、10:X線平面検出器、11:入射X線、12:可視光、13:支持基板、14:接合層、15:保護層、16:平面基板、17:シンチレータパネル、18:保護層、19:検出器部、20:X線平面検出器、21:接合層、22:保護カバー、25:保護層、25a:第1の保護層、25b:第2の保護層、27:反射層、30、40:X線平面検出器   DESCRIPTION OF SYMBOLS 1: Photoelectric conversion element, 2: Light-receiving part, 3: Electrode pad, 4: Solid-state image sensor, 5: Scintillator layer, 6: Electrode pad for external connection, 7: Electrode terminal, 8: Base, 9: Wiring, 10 : X-ray flat detector, 11: incident X-ray, 12: visible light, 13: support substrate, 14: bonding layer, 15: protective layer, 16: flat substrate, 17: scintillator panel, 18: protective layer, 19: Detector unit, 20: X-ray flat detector, 21: bonding layer, 22: protective cover, 25: protective layer, 25a: first protective layer, 25b: second protective layer, 27: reflective layer, 30, 40: X-ray flat panel detector

Claims (10)

平面基板上に複数の光電変換素子が一次元若しくは二次元的に複数配列している受光部が形成されるとともに、当該受光部の周囲に前記光電変換素子と電気的に接続されている電極パッドを有する固体撮像素子と、
前記固体撮像素子を固定するとともに、当該固体撮像素子を固定する面側でその固定部分の外側に外部接続用電極パッドが設けられる一方、反対の面側に前記外部接続用電極パッドと電気的に接続されている電極端子が配された基台と、
前記電極パッドと前記外部接続用電極パッドとを電気的に接続する配線と、
前記固体撮像素子の受光部上に設けられ、外部から入射したX線を光に変換するシンチレータ層と、
少なくとも前記シンチレータ層の表面、裏面、及び側面、前記受光部、前記電極パッド、前記外部接続用電極パッド、及び前記配線を一体的に被覆するように連続的に形成された保護層と、
を具備することを特徴とするX線平面検出器。
An electrode pad in which a light receiving portion in which a plurality of photoelectric conversion elements are arrayed one-dimensionally or two-dimensionally is formed on a flat substrate, and is electrically connected to the photoelectric conversion element around the light receiving portion A solid-state imaging device having
While fixing the solid-state imaging device, an external connection electrode pad is provided outside the fixed portion on the surface side on which the solid-state imaging device is fixed, and electrically connected to the external connection electrode pad on the opposite surface side. A base on which connected electrode terminals are arranged;
Wiring for electrically connecting the electrode pad and the external connection electrode pad;
A scintillator layer that is provided on the light receiving portion of the solid-state imaging device and converts X-rays incident from the outside into light;
A protective layer continuously formed so as to integrally cover at least the front surface, back surface, and side surface of the scintillator layer, the light receiving unit, the electrode pad, the external connection electrode pad, and the wiring;
An X-ray flat panel detector characterized by comprising:
前記保護層は、前記シンチレータ層の結晶性を改善するとともに、前記シンチレータ層と前記固体撮像素子との間の熱膨張係数の差に起因する応力を緩和する第1の保護層と、前記シンチレータ層の表面及び側面を被覆し、水蒸気を遮断するとともに、前記シンチレータ層を構成する物質に対する耐腐食性を付与する第2の保護層とを有し、前記第1の保護層と前記第2の保護層とが同一物質により形成されていることを特徴とする請求項1記載のX線平面検出器。   The protective layer includes a first protective layer that improves the crystallinity of the scintillator layer and relieves stress caused by a difference in thermal expansion coefficient between the scintillator layer and the solid-state imaging device; and the scintillator layer A first protective layer and a second protective layer that cover the surface and side surfaces of the first protective layer, block water vapor, and provide corrosion resistance to a substance constituting the scintillator layer. 2. The X-ray flat panel detector according to claim 1, wherein the layers are made of the same material. 前記保護層は、絶縁性、水蒸気遮断性、前記シンチレータ層の発光に対する透過性、前記シンチレータ層を構成する物質に対する耐腐食性を有する物質により構成されていることを特徴とする請求項1又は2記載のX線平面検出器。   The said protective layer is comprised by the substance which has insulation, water vapor | steam barrier | blocking property, the permeability | transmittance with respect to the light emission of the said scintillator layer, and the corrosion resistance with respect to the substance which comprises the said scintillator layer, It is characterized by the above-mentioned. The described X-ray flat panel detector. 前記保護層が、ポリパラキシリレンで形成されていることを特徴とする請求項3記載のX線平面検出器。   The X-ray flat panel detector according to claim 3, wherein the protective layer is made of polyparaxylylene. 前記保護層が、ダイヤモンド・ライク・カーボンで形成されていることを特徴とする請求項3記載のX線平面検出器。   The X-ray flat panel detector according to claim 3, wherein the protective layer is formed of diamond-like carbon. 前記保護層が、炭化珪素で形成されていることを特徴とする請求項3記載のX線平面検出器。   The X-ray flat panel detector according to claim 3, wherein the protective layer is made of silicon carbide. 前記シンチレータ層が、少なくともハロゲン化合物を含む高輝度蛍光物質で形成されていることを特徴とする請求項1乃至6のいずれか1項記載のX線平面検出器。   The X-ray flat panel detector according to any one of claims 1 to 6, wherein the scintillator layer is formed of a high-intensity fluorescent material containing at least a halogen compound. 前記シンチレータ層上に、前記シンチレータ層に接して反射層が設けられていることを特徴とする請求項1乃至7のいずれか1項記載のX線平面検出器。   The X-ray flat panel detector according to any one of claims 1 to 7, wherein a reflection layer is provided on the scintillator layer so as to be in contact with the scintillator layer. 前記保護層全体を被覆するように、保護カバーが前記基台の上方に形成されていることを特徴とする請求項1乃至8のいずれか1項記載のX線平面検出器。   The X-ray flat panel detector according to any one of claims 1 to 8, wherein a protective cover is formed above the base so as to cover the entire protective layer. 平面基板上に、複数の光電変換素子が一次元若しくは二次元的に複数配列した受光部、及び前記光電変換素子と電気的に接続されている電極パッドを設けて固体撮像素子を形成する工程と、
表面側に外部接続用電極パッドを形成するとともに、裏面側に前記外部接続用電極パッドと電気的に接続された電極端子を形成した基台の表面上に、前記固体撮像素子を固定する工程と、
前記電極パッド及び前記外部接続用電極パッドを配線により電気的に接続する工程と、
少なくとも、前記受光部、前記電極パッド、前記外部接続用電極パッド、及び前記配線を一体的に被覆するように第1の保護層を気相成長法により形成する工程と、
前記受光部上に、外部から入射したX線を光に変換するシンチレータ層を形成する工程と、
前記シンチレータ層上に、前記第1の保護層と同一物質で形成された第2の保護層を気相成長法により第1の保護層と連続的に形成する工程と、を備えることを特徴とするX線平面検出器の製造方法。
A step of forming a solid-state imaging device by providing a light receiving portion in which a plurality of photoelectric conversion elements are arranged one-dimensionally or two-dimensionally on a flat substrate and an electrode pad electrically connected to the photoelectric conversion elements; ,
Fixing the solid-state imaging element on the surface of the base on which the external connection electrode pad is formed on the front surface side and the electrode terminal electrically connected to the external connection electrode pad is formed on the back surface side; ,
Electrically connecting the electrode pads and the external connection electrode pads by wiring;
Forming a first protective layer by vapor deposition so as to integrally cover at least the light receiving portion, the electrode pad, the external connection electrode pad, and the wiring;
Forming a scintillator layer for converting X-rays incident from the outside into light on the light receiving unit;
Forming a second protective layer formed of the same material as the first protective layer on the scintillator layer continuously with the first protective layer by vapor deposition. A method for manufacturing an X-ray flat panel detector.
JP2009209220A 2009-09-10 2009-09-10 X-ray plane detector, and method for manufacturing the same Pending JP2011058964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209220A JP2011058964A (en) 2009-09-10 2009-09-10 X-ray plane detector, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209220A JP2011058964A (en) 2009-09-10 2009-09-10 X-ray plane detector, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011058964A true JP2011058964A (en) 2011-03-24

Family

ID=43946768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209220A Pending JP2011058964A (en) 2009-09-10 2009-09-10 X-ray plane detector, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011058964A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072649A (en) * 2011-09-26 2013-04-22 Toshiba Corp Radiation detector and radioactive dust monitor
JP2014181994A (en) * 2013-03-19 2014-09-29 Canon Inc Radiation detection device and radiation detection system
CN109085635A (en) * 2017-06-13 2018-12-25 三星电子株式会社 X-ray detector and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330674A (en) * 2000-05-19 2001-11-30 Hamamatsu Photonics Kk Radiation detector
JP2003172782A (en) * 2001-12-06 2003-06-20 Hamamatsu Photonics Kk Radiogram imaging device and its manufacturing method
JP2004045420A (en) * 2003-09-16 2004-02-12 Canon Inc Radiographic device and its manufacturing method
JP2007303875A (en) * 2006-05-09 2007-11-22 Toshiba Corp Radiation detector and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330674A (en) * 2000-05-19 2001-11-30 Hamamatsu Photonics Kk Radiation detector
JP2003172782A (en) * 2001-12-06 2003-06-20 Hamamatsu Photonics Kk Radiogram imaging device and its manufacturing method
JP2004045420A (en) * 2003-09-16 2004-02-12 Canon Inc Radiographic device and its manufacturing method
JP2007303875A (en) * 2006-05-09 2007-11-22 Toshiba Corp Radiation detector and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072649A (en) * 2011-09-26 2013-04-22 Toshiba Corp Radiation detector and radioactive dust monitor
JP2014181994A (en) * 2013-03-19 2014-09-29 Canon Inc Radiation detection device and radiation detection system
CN109085635A (en) * 2017-06-13 2018-12-25 三星电子株式会社 X-ray detector and its manufacturing method
CN109085635B (en) * 2017-06-13 2023-09-08 三星电子株式会社 X-ray detector and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4455534B2 (en) Radiation detector and manufacturing method thereof
TWI447924B (en) Radiation photography device
JP4510453B2 (en) Solid X-ray detector
US20180064405A1 (en) Intraoral Dental Radiological Imaging Sensor
EP1481264A1 (en) X-ray imaging device
JPWO2017145578A1 (en) Imaging device, imaging display system, and display device
JP6576064B2 (en) Radiation detection apparatus, radiation imaging system, and method of manufacturing radiation detection apparatus
JP2011058964A (en) X-ray plane detector, and method for manufacturing the same
US20140367578A1 (en) X-ray image sensor
JP5461823B2 (en) Radiation detector and manufacturing method thereof
JP4443421B2 (en) Solid X-ray detector
US7910892B2 (en) Method for manufacturing X-ray detector and X-ray detector
JP2007192807A (en) X-ray detector and method for manufacturing the same
JP4191459B2 (en) Radiation imaging device
JP2013113756A (en) Radiation detector and manufacturing method thereof
JP2008032407A (en) Scintillator panel and radiation detector
JP2008089459A (en) X-ray detector, scintillator panel, method for manufacturing x-ray detector, and method for manufacturing scintillator panel
JP4234305B2 (en) Radiation detector
JP2012018074A (en) Radiation detector and manufacturing method thereof
JP2007303876A (en) Radiation detector
JP2004177217A (en) Radiation imaging apparatus
JP2010112741A (en) Radiation detector and method of manufacturing the same
JP2010112742A (en) Radiation detector and method of manufacturing same
JP5368058B2 (en) Radiation detector
JP2013231670A (en) Radiation detector and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131007