JP2010112223A - ターボチャージャ - Google Patents
ターボチャージャ Download PDFInfo
- Publication number
- JP2010112223A JP2010112223A JP2008284141A JP2008284141A JP2010112223A JP 2010112223 A JP2010112223 A JP 2010112223A JP 2008284141 A JP2008284141 A JP 2008284141A JP 2008284141 A JP2008284141 A JP 2008284141A JP 2010112223 A JP2010112223 A JP 2010112223A
- Authority
- JP
- Japan
- Prior art keywords
- pressure side
- nozzle
- exhaust
- nozzle vane
- widened portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- Control Of Turbines (AREA)
Abstract
【課題】タービン効率の低下を抑制することができ、かつノズルベーンの開閉角度が制限されることを防止できるターボチャージャを提供する。
【解決手段】ノズルベーン10の第1の排気導入壁12aに対向する端部には、ノズルベーン10の厚さ方向の幅が中央部よりも拡大された第1の拡幅部10cが設けられ、第1の拡幅部10cの高圧側PSと低圧側SSの少なくとも一方の端部には、排気ノズル8の開閉時に隣接するノズルベーン10との接触を回避する切欠き部(高圧側切欠き部10d、低圧側切欠き部10e)が形成されていることを特徴とする。
【選択図】図3
【解決手段】ノズルベーン10の第1の排気導入壁12aに対向する端部には、ノズルベーン10の厚さ方向の幅が中央部よりも拡大された第1の拡幅部10cが設けられ、第1の拡幅部10cの高圧側PSと低圧側SSの少なくとも一方の端部には、排気ノズル8の開閉時に隣接するノズルベーン10との接触を回避する切欠き部(高圧側切欠き部10d、低圧側切欠き部10e)が形成されていることを特徴とする。
【選択図】図3
Description
この発明は、ターボチャージャに関するものである。
従来から、タービンインペラを回転可能に支持する軸受けハウジングと、タービンインペラに排気ガスを供給するスクロール流路が形成されたタービンハウジングと、スクロール流路内からタービンインペラ側に供給される排気ガスの流速および流れ角度を可変とする排気ノズルと、を備えた可変容量型のターボチャージャが知られている(例えば、特許文献1参照)。特許文献1のターボチャージャは、ノズル羽根と平行壁との間の隙間流れを抑制し、タービン効率の低下を抑制するものである。
特許文献1の可変容量型のターボチャージャの排気ノズルは、渦巻室(スクロール流路)と羽根車(タービンインペラ)との間の一対の平行壁(排気導入壁)に、可動のノズル羽根(ノズルベーン)を備えている。そして、排気導入壁に対面するノズルベーンの両端部を中央部より厚肉に形成し、その両端部の端面を排気導入壁に平行に形成している。
これにより、ノズルベーンの厚さ方向の幅を大きくでき、十分なシール長が得られると共に、隙間流れも抑制できる。
特開平11−229815号公報
これにより、ノズルベーンの厚さ方向の幅を大きくでき、十分なシール長が得られると共に、隙間流れも抑制できる。
しかしながら、特許文献1のターボチャージャは、ノズルベーンの両端部の厚さ方向の幅が中央部よりも大きく形成されているため、排気ノズルの開閉時に隣接するノズルベーン同士が干渉してノズルベーンの開閉角度が制限されるという課題がある。
図4(a)に示すように、特許文献1のターボチャージャは、ノズルベーン100の開度が十分に大きい場合には、幅が大きく形成されたノズルベーンの端部100e同士が接触することがない。したがって、ノズルベーン100の端部100eと双方の排気導入壁との間のシール性を向上させ、タービン効率の低下を防止できるという優れた効果を発揮することができる。
しかし、図4(b)に示すように、ノズルベーン100の開度が小さくなると、隣接するノズルベーン100の端部100e同士が接触してしまう。すると、ノズルベーン100の開度を十分に小さくすることができず、タービンインペラを回転させる排気ガスの流速が低下して、タービン効率が低下してしまう。
また、図4(a)に示すように、ノズルベーン100の開度が大きくなると、ノズルベーン100の端部100eとタービンインペラ2とが接触してしまう虞がある。したがって、このような接触を防止するためにノズルベーン100の開度を十分に大きくすることができず、タービンインペラ2を回転させる排気ガスの流量を制限してしまう。(つまり所定の流量を流すことができない。)
そこで、この発明は、ノズルベーンと排気導入壁との間の隙間を流れる排気ガスの流量を低減してタービン効率の低下を抑制することができ、かつノズルベーンの開閉角度が制限されることを防止できるターボチャージャを提供するものである。
上記の課題を解決するために、本発明のターボチャージャは、タービンインペラを回転可能に支持する軸受けハウジングと、前記タービンインペラに排気ガスを供給するスクロール流路が形成されたタービンハウジングと、前記スクロール流路内から前記タービンインペラ側に供給される前記排気ガスの流速および流れ角度を可変とする排気ノズルと、を備えた可変容量型のターボチャージャにおいて、前記排気ノズルは、前記タービンハウジング側に設けられた第1の排気導入壁と、該第1の排気導入壁と対向して前記軸受けハウジング側に設けられた第2の排気導入壁と、前記第1の排気導入壁と前記第2の排気導入壁との間に配置され前記タービンインペラの周囲に回動可能に支持された複数のノズルベーンと、を備え、前記ノズルベーンの前記第1の排気導入壁に対向する端部には、前記ノズルベーンの厚さ方向の幅が中央部よりも拡大された第1の拡幅部が設けられ、前記第1の拡幅部の高圧側と低圧側の少なくとも一方の端部には、前記排気ノズルの開閉時に隣接する前記ノズルベーンとの接触を回避する切欠き部が形成されていることを特徴とする。
また、本発明のターボチャージャは、前記ノズルベーンの前記第2の排気導入壁に対向する端部には、前記ノズルベーンの厚さ方向の幅が中央部よりも拡大された第2の拡幅部が設けられ、前記第2の拡幅部の前記高圧側と前記低圧側の少なくとも一方の端部には、前記排気ノズルの開閉時に隣接する前記ノズルベーンとの接触を回避する切欠き部が形成されていることを特徴とする。
また、本発明のターボチャージャは、前記第1の拡幅部の前記幅が、前記第2の拡幅部の前記幅と同等かまたは前記幅よりも大きいことを特徴とする。
また、本発明のターボチャージャは、前記拡幅部は、前記ノズルベーンの低圧側壁面からの突出幅と高圧側壁面からの突出幅とが均等に形成されていることを特徴とする。
また、本発明のターボチャージャは、前記ノズルベーンは、後縁が前縁よりも前記タービンインペラに近接しかつ前記タービンインペラの回転方向の前方側に位置するように設けられ、前記後縁の前記高圧側に設けられた前記拡幅部には、前記回転方向の前方側に隣接する前記ノズルベーンの前記前縁との接触を回避する高圧側切欠き部が設けられていることを特徴とする。
また、本発明のターボチャージャは、前記前縁の前記低圧側に設けられた前記拡幅部には、前記回転方向の後方側に隣接する前記ノズルベーンの前記後縁との接触を回避する低圧側切欠き部が設けられていることを特徴とする。
また、本発明のターボチャージャは、前記後縁の前記低圧側に設けられた前記拡幅部には、前記排気ノズルの内縁の前記タービンインペラ側への侵出を防止する低圧側傾斜部が設けられていることを特徴とする。
また、本発明のターボチャージャは、前記前縁の前記高圧側に設けられた前記拡幅部には、前記排気ノズルの外縁の前記スクロール流路側への侵出を防止する高圧側傾斜部が設けられていることを特徴とする。
本発明によれば、タービンハウジング側に設けられた第1の排気導入壁に対向するノズルベーンの端部に厚さ方向の幅が中央部よりも拡大された第1の拡幅部が設けられている。そのため、第1の排気導入壁とノズルベーンとの間を流れる排気ガスに対する抵抗を増加させ、第1の排気導入壁とノズルベーンとの隙間を流れる排気ガスを低減することができる。これにより、排気ガスによってタービンインペラをより効率よく回転させ、タービン効率が低下することを防止することができる。
また、拡幅部には、排気ノズルの開閉時に隣接するノズルベーンとの接触を回避する切欠き部が形成されている。そのため、拡幅部と隣接するノズルベーンとが衝突してノズルベーンの開閉角度が制限されることを防止できる。
また、拡幅部には、排気ノズルの開閉時に隣接するノズルベーンとの接触を回避する切欠き部が形成されている。そのため、拡幅部と隣接するノズルベーンとが衝突してノズルベーンの開閉角度が制限されることを防止できる。
以下、本発明の実施の形態について図面を参照して説明する。
本実施形態のターボチャージャは、例えば自動車のエンジンの回転数の増減に基づいてタービンインペラに供給する排気ガスの流速および流れ角度を調整可能な可変容量型のターボチャージャである。なお、以下の各図面では、各部材を図面上で認識可能な程度の大きさとするため、部材毎に縮尺を適宜変更している。
図1は、本実施形態のターボチャージャの断面図の部分拡大図である。
本実施形態のターボチャージャは、例えば自動車のエンジンの回転数の増減に基づいてタービンインペラに供給する排気ガスの流速および流れ角度を調整可能な可変容量型のターボチャージャである。なお、以下の各図面では、各部材を図面上で認識可能な程度の大きさとするため、部材毎に縮尺を適宜変更している。
図1は、本実施形態のターボチャージャの断面図の部分拡大図である。
図1に示すように、本実施形態のターボチャージャ1は、タービンインペラ2を回転可能に支持するベアリングハウジング(軸受けハウジング)3を備えている。ベアリングハウジング3の片側には、複数のボルト4によりタービンハウジング5が一体的に取り付けられている。また、ベアリングハウジング3のタービンハウジング5と反対側には、複数のボルトによりコンプレッサハウジング(図示略)が一体的に取り付けられている。
タービンハウジング5は、タービンインペラ2に排気ガスを供給するスクロール流路5aと、スクロール流路5a内からタービンインペラ2側に供給される排気ガスの流速および流れ角度を調整する排気ノズル8と、を備えている。
スクロール流路5aには、例えばエンジンのシリンダ等に接続された排気ガス取入口(図示略)が設けられている。
スクロール流路5aには、例えばエンジンのシリンダ等に接続された排気ガス取入口(図示略)が設けられている。
排気ノズル8は、排気ガスの流路を形成する第1の排気導入壁12aと第2の排気導入壁12bとを備えている。
第1の排気導入壁12aは、タービンインペラ2の周囲にリング状に形成され、タービンハウジング5側に配置されている。
第2の排気導入壁12bは、同様にタービンインペラ2の周囲にリング状に形成され、第1の排気導入壁12aに対向してベアリングハウジング3側に配置されている。
第1の排気導入壁12aと第2の排気導入壁12bは、連結ピン13により一体的に連結されている。
第1の排気導入壁12aは、タービンインペラ2の周囲にリング状に形成され、タービンハウジング5側に配置されている。
第2の排気導入壁12bは、同様にタービンインペラ2の周囲にリング状に形成され、第1の排気導入壁12aに対向してベアリングハウジング3側に配置されている。
第1の排気導入壁12aと第2の排気導入壁12bは、連結ピン13により一体的に連結されている。
また、排気ノズル8は、第1の排気導入壁12aと第2の排気導入壁12bとの間に配置された複数のノズルベーン10を備えている。
ノズルベーン10は、タービンインペラ2の周囲に均等に配置され、タービンインペラ2の軸2aと略平行に設けられた支持軸9a,9bによって回動可能に支持されている。
ノズルベーン10は、タービンインペラ2の周囲に均等に配置され、タービンインペラ2の軸2aと略平行に設けられた支持軸9a,9bによって回動可能に支持されている。
支持軸9a,9bは、ノズルベーン10の第1の排気導入壁12aに対向する端部と第2の排気導入壁12bに対向する端部とにそれぞれ固定され、ノズルベーン10と一体的に設けられている。
第1の排気導入壁12a及び第2の排気導入壁12bには、支持軸9a,9bを回動可能に支持する支持穴11a,11bが形成されている。
支持軸9bは、アクチュエータ(不図示)の動力を支持軸9bに伝達して回動させるリンク機構20に連結されている。
第1の排気導入壁12a及び第2の排気導入壁12bには、支持軸9a,9bを回動可能に支持する支持穴11a,11bが形成されている。
支持軸9bは、アクチュエータ(不図示)の動力を支持軸9bに伝達して回動させるリンク機構20に連結されている。
図2(a)は、図1のA−A線に沿う排気ノズル8の矢視断面図である。図2(b)は、図2(a)のB−B’線に沿うノズルベーン10の矢視断面図である。なお、図2では連結ピン13の図示を省略している。
図2(a)に示すように、ノズルベーン10は、平面視で後縁10aの厚みが薄く前縁10bの厚みが厚い流線型の翼状の形状に形成されている。
図2(a)に示すように、ノズルベーン10は、平面視で後縁10aの厚みが薄く前縁10bの厚みが厚い流線型の翼状の形状に形成されている。
ノズルベーン10は、排気ガスの下流側になる後縁10aが、排気ガスの上流側になる前縁10bよりも、タービンインペラ2に近接するように設けられている。また、後縁10aが、前縁10bよりもタービンインペラ2の回転方向Rの前方側に位置するように設けられている。
図1に示すように、排気ノズル8の外側のスクロール流路5a側が排気ガスの高圧側PSとなり、排気ノズル8の内側のタービンインペラ2側が排気ガスの低圧側SSとなる。そのため、図2(a)及び図2(b)に示すように、ノズルベーン10のタービンインペラ2と反対側が排気ガスの高圧側PSとなり、タービンインペラ2側が排気ガスの低圧側SSとなっている。
図2(a)及び図2(b)に示すように、ノズルベーン10の第1の排気導入壁12aに対向する端部には、ノズルベーン10の中央部の厚さ方向の幅Wcよりも、ノズルベーン10の厚さ方向の幅W1が拡大された第1の拡幅部10cが設けられている。
図2(a)に示すように、第1の拡幅部10cの高圧側PSで、ノズルベーン10の後縁10a側の端部には、後述する高圧側切欠き部(切欠き部)10dが形成されている。同様に、第1の拡幅部10cの低圧側SSで、ノズルベーン10の前縁10b側の端部にも、後述する低圧側切欠き部(切欠き部)10eが形成されている。
図2(a)に示すように、第1の拡幅部10cの高圧側PSで、ノズルベーン10の後縁10a側の端部には、後述する高圧側切欠き部(切欠き部)10dが形成されている。同様に、第1の拡幅部10cの低圧側SSで、ノズルベーン10の前縁10b側の端部にも、後述する低圧側切欠き部(切欠き部)10eが形成されている。
図2(b)に示すように、ノズルベーン10の第2の排気導入壁12bに対向する端部には、ノズルベーン10の中央部の厚さ方向の幅Wcよりも、ノズルベーン10の厚さ方向の幅W2が拡大された第2の拡幅部10fが設けられている。
第2の拡幅部10fの高圧側PSで、ノズルベーン10の後縁10a側の端部には、第1の拡幅部10cと同様の高圧側切欠き部(図示略)が形成されている。同様に、第2の拡幅部10fの低圧側SSで、ノズルベーン10の前縁10b側の端部にも、第1の拡幅部10cと同様の低圧側切欠き部(図示略)が形成されている。
第2の拡幅部10fの高圧側PSで、ノズルベーン10の後縁10a側の端部には、第1の拡幅部10cと同様の高圧側切欠き部(図示略)が形成されている。同様に、第2の拡幅部10fの低圧側SSで、ノズルベーン10の前縁10b側の端部にも、第1の拡幅部10cと同様の低圧側切欠き部(図示略)が形成されている。
ここで、図2(b)に示すように、第1の拡幅部10cの幅W1は、第2の拡幅部10fの幅W2よりも大きくなるように形成されている。
また、第1の拡幅部10cは、ノズルベーン10の低圧側壁面10sからの突出幅Ws1と、高圧側壁面10pからの突出幅Wp1と、が均等になるように形成されている。同様に、第2の拡幅部10fは、ノズルベーン10の低圧側壁面10sからの突出幅Ws2と、高圧側壁面10pからの突出幅Wp2と、が均等になるように形成されている。
また、第1の拡幅部10cは、ノズルベーン10の低圧側壁面10sからの突出幅Ws1と、高圧側壁面10pからの突出幅Wp1と、が均等になるように形成されている。同様に、第2の拡幅部10fは、ノズルベーン10の低圧側壁面10sからの突出幅Ws2と、高圧側壁面10pからの突出幅Wp2と、が均等になるように形成されている。
本実施形態では、突出幅Wp1の最大値と突出幅Ws1の最大値とが等しく、かつ突出幅Wp2の最大値と突出幅Ws2の最大値とが等しくなっている。
また、第1の拡幅部10c及び第2の拡幅部10fは、低圧側SSに突出させた面積と高圧側PSに突出させた面積とが略等しくなるように形成してもよい。
また、第1の拡幅部10c及び第2の拡幅部10fは、低圧側SSに突出させた面積と高圧側PSに突出させた面積とが略等しくなるように形成してもよい。
図3(a)及び図3(b)は、図2(a)に示すノズルベーン10近傍の拡大図である。
図3(a)は、排気ノズル8の開度が最大となったときのノズルベーン10の状態を示している。図3(b)は、ノズルベーンの排気ノズル8の開度が最小となったときのノズルベーン10の状態を示している。
図3(a)は、排気ノズル8の開度が最大となったときのノズルベーン10の状態を示している。図3(b)は、ノズルベーンの排気ノズル8の開度が最小となったときのノズルベーン10の状態を示している。
図3(a)に示すように、本実施形態のノズルベーン10の後縁10aは、排気ノズル8の最大開度において、第2の排気導入壁12b(図1参照)の内周円(排気ノズル8の内縁)12cと平面視で重なるように設けられている。このとき、内周円12cの接線TLと、ノズルベーン10の後縁10aから前縁10bへ向かう中心線CLとがなす角度を、角度θ1とする。
ここで、ノズルベーン10の後縁10aは、第2の排気導入壁12bの内周円12cのやや外側(第1の排気導入壁12aと第2の排気導入壁12bとの間)に設けられていてもよい。
また、ノズルベーン10は、例えば連結ピン13等と接触することにより、角度θ1以上の角度に回転することが制限されている。
また、ノズルベーン10は、例えば連結ピン13等と接触することにより、角度θ1以上の角度に回転することが制限されている。
ノズルベーン10の後縁10aの低圧側SSに設けられた第1の拡幅部10cには、第1の拡幅部10cが内周円12cのタービンインペラ2側へ侵出することを防止する低圧側傾斜部10gが設けられている。
低圧側傾斜部10gは、ノズルベーン10の中心線CLと、例えば上記の角度θ1をなすように形成されている。
低圧側傾斜部10gは、ノズルベーン10の中心線CLと、例えば上記の角度θ1をなすように形成されている。
ノズルベーン10の前縁10bの高圧側PSに設けられた第1の拡幅部10cには、第1の拡幅部10cが排気ノズル8の外縁のスクロール流路5a側(図1参照)へ侵出することを防止する高圧側傾斜部10hが設けられている。
高圧側傾斜部10hは、排気ノズル8の最大開度において、例えば排気ノズル8の外縁よりもタービンインペラ2側に設定された所定の外周円12dに沿うように形成されている。ここで、外周円12dは、排気ノズル8の外縁と重なっていてもよい。
高圧側傾斜部10hは、排気ノズル8の最大開度において、例えば排気ノズル8の外縁よりもタービンインペラ2側に設定された所定の外周円12dに沿うように形成されている。ここで、外周円12dは、排気ノズル8の外縁と重なっていてもよい。
図3(b)に示すように、高圧側切欠き部10dは、排気ノズル8の最小開度において、第1の拡幅部10cの高圧側PSがタービンインペラ2の回転方向Rの前方側に隣接するノズルベーン10の前縁10bと接触するのを回避するように設けられている。すなわち、本実施形態では、第1の拡幅部10cを高圧側PSの突出幅Wp1がノズルベーン10の後縁10aに近づくにつれて徐々に減少するような滑らかな形状に形成している。これにより、回転方向Rの後方側に位置するノズルベーン10の後縁10aの高圧側壁面10pが、回転方向Rの前方側に位置するノズルベーン10と接触するようになっている。
また、低圧側切欠き部10eは、排気ノズル8の最小開度において、第1の拡幅部10cの低圧側SSがタービンインペラ2の回転方向Rの後方側に隣接するノズルベーン10の後縁10aと接触するのを回避するように設けられている。すなわち、本実施形態では、第1の拡幅部10cを低圧側SSの突出幅Ws1がノズルベーン10の前縁10bに近づくにつれて徐々に減少するような滑らかな形状に形成している。これにより、回転方向Rの前方側に位置するノズルベーン10の前縁10bの低圧側壁面10sが、回転方向Rの後方側に位置するノズルベーン10と接触するようになっている。
したがって、本実施形態では、各々のノズルベーン10は、高圧側切欠き部10d及び低圧側切欠き部10eにより、排気ノズル8の開閉時に、第1の拡幅部10cと隣接するノズルベーン10とが接触することを回避するように設けられている。また、排気ノズル8の最小開度において、回転方向Rの前方側に位置するノズルベーン10の低圧側壁面10sと、回転方向Rの後方側に位置するノズルベーン10の高圧側壁面10pと、が接触するよう設けられている。
また、図示は省略するが、本実施形態では、図2(b)に示す第2の排気導入壁12b側の端部に設けられた第2の拡幅部10fにも、第1の拡幅部10cと同様に、高圧側切欠き部、低圧側切欠き部、高圧側傾斜部、及び低圧側傾斜部が設けられている。
なお、第2の拡幅部10fが第1の拡幅部10cよりも十分に小さく、図3(a)に示す排気ノズル8の最大開度において、ノズルベーン10の低圧側SSに設けられた第2の拡幅部10fが、第2の排気導入壁12bの内周円12cよりもタービンインペラ2側に突出しない場合には、第2の拡幅部10fに低圧側傾斜部を設けなくてもよい。同様に、ノズルベーン10の高圧側PSに設けられた第2の拡幅部10fが、外周円12dの外側に突出しない場合には、第2の拡幅部10fに高圧側傾斜部を設けなくてもよい。
なお、第2の拡幅部10fが第1の拡幅部10cよりも十分に小さく、図3(a)に示す排気ノズル8の最大開度において、ノズルベーン10の低圧側SSに設けられた第2の拡幅部10fが、第2の排気導入壁12bの内周円12cよりもタービンインペラ2側に突出しない場合には、第2の拡幅部10fに低圧側傾斜部を設けなくてもよい。同様に、ノズルベーン10の高圧側PSに設けられた第2の拡幅部10fが、外周円12dの外側に突出しない場合には、第2の拡幅部10fに高圧側傾斜部を設けなくてもよい。
図1に示すように、ノズルベーン10の支持軸9bを回動させるリンク機構20は、リンク機構20及び排気ノズル8を支持する保持部材21を備えている。保持部材21は、底部の中央部が開口された深皿状のリング形状に形成され、外縁部が折り曲げられてベアリングハウジング3とタービンハウジング5との間に挟持されている。保持部材21の内縁部は、連結ピン13によって第2の排気導入壁12bに固定されている。これにより、保持部材21は、排気ノズル8をタービンインペラ2の周囲に保持している。
リンク機構20は、アクチュエータ(図示略)等の動力をリンク部材22およびリンク板23等により伝達して支持軸9bを回動させ、タービンインペラ2の周囲に配置された複数のノズルベーン10を連動して回動させるように構成されている。
ベアリングハウジング3のタービンハウジング5と反対側には、上述のようにコンプレッサハウジング(図示略)が取り付けられている。そして、タービンインペラ2の軸2aのコンプレッサハウジング側には、コンプレッサインペラが軸2aに一体的に連結されている。
ベアリングハウジング3のタービンハウジング5と反対側には、上述のようにコンプレッサハウジング(図示略)が取り付けられている。そして、タービンインペラ2の軸2aのコンプレッサハウジング側には、コンプレッサインペラが軸2aに一体的に連結されている。
コンプレッサハウジングは、コンプレッサインペラへ供給する空気を取り入れる空気取入口を備えている。また、コンプレッサハウジングには、コンプレッサインペラの周囲に、コンプレッサインペラ側から供給された空気を昇圧する環状のディフューザ流路が設けられている。ディフューザ流路の周囲には、ディフューザ流路の外周部に連通するコンプレッサスクロール流路が形成されている。コンプレッサスクロール流路には、コンプレッサスクロール流路内の空気を、例えばエンジンのシリンダに供給するための空気排出口が設けられている。
以上の構成により、本実施形態のターボチャージャ1は、例えばエンジンのシリンダから排出された排気ガスをタービンハウジング5のスクロール流路5aに取り込んで、排気ノズル8を介してタービンインペラ2に供給する。これにより、タービンインペラ2が回転して、軸2aを回転させ、コンプレッサインペラが回転する。
空気取入口から取り入れられ、コンプレッサインペラの回転により圧縮された空気は、ディフューザ流路を通過する過程で動圧エネルギーを静圧に変換し、コンプレッサスクロール流路に供給される。そして、コンプレッサスクロール流路内の昇圧された空気は、空気排出口から、例えばエンジンのシリンダに供給される。
ここで、本実施形態のターボチャージャ1は、例えばエンジンの回転数等に基づいて、タービンインペラ2に供給する排気ガスの流速および流れ角度を調整する排気ノズル8を備えている。排気ノズル8により排気ガスの流速および流れ角度を調整する際には、まず、アクチュエータ等の動力源によりリンク機構20を駆動して、ノズルベーンの支持軸9bを回転させる。すると、複数のノズルベーン10が、各々の支持軸9bを中心として同期して回動する。
このとき、ノズルベーン10の回転角度を、図3(a)に示す最大開度と、図3(b)に示す最小開度との間で調整し、タービンインペラ2に供給する排気ガスの流速および流れ角度を調整することができる。
排気ノズル8の第1の排気導入壁12aと第2の排気導入壁12bとの間を通過する排気ガスは、タービンインペラ2の羽根に沿って流れ、流速および流れ角度が調整された状態でタービンインペラ2を図2に示す回転方向Rに回転させる。
排気ノズル8の第1の排気導入壁12aと第2の排気導入壁12bとの間を通過する排気ガスは、タービンインペラ2の羽根に沿って流れ、流速および流れ角度が調整された状態でタービンインペラ2を図2に示す回転方向Rに回転させる。
次に、この実施の形態の作用について説明する。
本実施形態のターボチャージャ1は、タービンハウジング5側に設けられた第1の排気導入壁12aに対向するノズルベーン10の端部に、中央部の厚さ方向の幅Wcよりも厚さ方向の幅W1が拡大された第1の拡幅部10cが設けられている。
本実施形態のターボチャージャ1は、タービンハウジング5側に設けられた第1の排気導入壁12aに対向するノズルベーン10の端部に、中央部の厚さ方向の幅Wcよりも厚さ方向の幅W1が拡大された第1の拡幅部10cが設けられている。
そのため、第1の拡幅部10cが設けられていない場合と比較して、第1の排気導入壁12aとノズルベーン10との間の隙間S1を流れる排気ガスに対する抵抗が増加する。隙間S1を流れる排気ガスに対する抵抗が増加すると、隙間S1を流れる排気ガスの流量が減少する。これにより、ノズルベーン10の中央部(第1の拡幅部10cと第2の拡幅部10fとの間)を流れる排気ガスの流量が増加する。
ノズルベーン10の中央部を通過する排気ガスは、第1の排気導入壁12aとノズルベーン10との間の隙間S1を通過する排気ガスと比較して、タービンインペラ2がより大きな出力を取り出せるような流速および流れ角度となる。そのため、ノズルベーン10の中央部を通過する排気ガスを増加させることで、排気ガスのエネルギーをより効率よくタービンインペラ2の回転運動に変換することが可能になる。すなわち、排気ガスによってタービンインペラ2をより効率よく回転させることができる。
したがって、本実施形態のターボチャージャ1によれば、隙間S1を流れる排気ガスの流量を減少させ、タービン効率が低下することを防止できる。
したがって、本実施形態のターボチャージャ1によれば、隙間S1を流れる排気ガスの流量を減少させ、タービン効率が低下することを防止できる。
また、第1の拡幅部10cには、排気ノズル8の開閉時に、隣接するノズルベーン10との接触を防止する高圧側切欠き部10d及び低圧側切欠き部10eが形成されている。また、第2の拡幅部10fも同様に形成されている。これにより、図3(a)及び図3(b)に示すように、排気ノズル8の開閉時に、第1の拡幅部10c及び第2の拡幅部10fが、隣接するノズルベーン10の第1の拡幅部10c及び第2の拡幅部10fと干渉することを防止できる。したがって、ノズルベーン10を最大角度から最小角度までの開閉角度θの範囲で制限なく回転させることができる。
そのため、図4(b)に示す従来のノズルベーン100のように、隣接するノズルベーン100と衝突してノズルベーン100の開閉角度θ´が制限されることを防止できる。これにより、排気ノズル8を、図3(a)に示す最大開度から、図3(b)に示す最小開度まで自由に開閉させることができる。
したがって、本実施形態のターボチャージャ1によれば、ノズルベーン10の開閉角度が隣接するノズルベーン10との干渉によって制限されることを防止できる。
したがって、本実施形態のターボチャージャ1によれば、ノズルベーン10の開閉角度が隣接するノズルベーン10との干渉によって制限されることを防止できる。
また、図2(b)に示すように、ノズルベーン10の第2の排気導入壁12bに対向する端部に、第2の拡幅部10fが設けられている。
そのため、第2の拡幅部10fが設けられていない場合と比較して、第2の排気導入壁12bとノズルベーン10との隙間S2を流れる排気ガスに対する抵抗が増加する。隙間S2を流れる排気ガスに対する抵抗が増加すると、隙間S2を流れる排気ガスの流量が減少する。これにより、ノズルベーン10の中央部を流れる排気ガスの流量を増加させて排気ガスの流速を上昇させ、タービン効率を向上させることができる。
そのため、第2の拡幅部10fが設けられていない場合と比較して、第2の排気導入壁12bとノズルベーン10との隙間S2を流れる排気ガスに対する抵抗が増加する。隙間S2を流れる排気ガスに対する抵抗が増加すると、隙間S2を流れる排気ガスの流量が減少する。これにより、ノズルベーン10の中央部を流れる排気ガスの流量を増加させて排気ガスの流速を上昇させ、タービン効率を向上させることができる。
また、ノズルベーン10の第1の拡幅部10cの幅W1が、第2の拡幅部の幅W2よりも大きくなっている。
これにより、タービン効率を低下させる第1の排気導入壁12aとノズルベーン10との隙間S1を流れる排気ガスをより確実に減少させ、タービン効率の低下をより確実に防止できる。
これにより、タービン効率を低下させる第1の排気導入壁12aとノズルベーン10との隙間S1を流れる排気ガスをより確実に減少させ、タービン効率の低下をより確実に防止できる。
ノズルベーン10は、回転する際に第1の拡幅部10c及び第2の拡幅部10fが第1の排気導入壁12a及び第2の排気導入壁12bとそれぞれ摺動する場合がある。
ここで、ノズルベーン10の第1の拡幅部10cは、低圧側壁面10sからの突出幅Ws1と高圧側壁面10pからの突出幅Wp1とが均等に形成されている。また、第2の拡幅部10fも同様に形成されている。
ここで、ノズルベーン10の第1の拡幅部10cは、低圧側壁面10sからの突出幅Ws1と高圧側壁面10pからの突出幅Wp1とが均等に形成されている。また、第2の拡幅部10fも同様に形成されている。
したがって、ノズルベーン10が第1の排気導入壁12a及び第2の排気導入壁12bと摺動する際に作用する摩擦力を均一にして、ノズルベーン10を回転させるトルクを均一にすることができる。そして、ノズルベーン10が第1の排気導入壁12a及び第2の排気導入壁12bに食い込んだり引っ掛かったり(スティック)することが防止できる。
また、ノズルベーン10は、図2(a)に示すように、後縁10aが前縁10bよりもタービンインペラ2に近接し、かつ後縁10aが前縁10bよりもタービンインペラ2の回転方向Rの前方側に位置するように設けられている。
これにより、スクロール流路5a側(高圧側PS)から供給された高圧の排気ガスを、ノズルベーン10の前縁10bから後縁10aの方向に沿って流通させ、タービンインペラ2側(低圧側SS)へ供給することができる。そして、排気ガスによりタービンインペラ2を回転方向Rに回転させることができる。
これにより、スクロール流路5a側(高圧側PS)から供給された高圧の排気ガスを、ノズルベーン10の前縁10bから後縁10aの方向に沿って流通させ、タービンインペラ2側(低圧側SS)へ供給することができる。そして、排気ガスによりタービンインペラ2を回転方向Rに回転させることができる。
また、ノズルベーン10は、後縁10aの低圧側SSに設けられた第1の拡幅部10cに、第2の排気導入壁12bの内周円12cよりもタービンインペラ2側への侵出を防止する低圧側傾斜部10gが設けられている。また、第2の拡幅部10fにも同様の低圧側傾斜部が設けられている。
これにより、図1及び図3(a)に示すように、排気ノズル8の最大開度において、ノズルベーン10の第1の拡幅部10c及び第2の拡幅部10fが、第2の排気導入壁12bの内周円12cよりもタービンインペラ2側に侵出することが防止される。
これにより、図1及び図3(a)に示すように、排気ノズル8の最大開度において、ノズルベーン10の第1の拡幅部10c及び第2の拡幅部10fが、第2の排気導入壁12bの内周円12cよりもタービンインペラ2側に侵出することが防止される。
したがって、本実施形態のターボチャージャ1によれば、ノズルベーン10の第1の拡幅部10c及び第2の拡幅部10fが、図4に示す従来のノズルベーン100のように、タービンインペラ2と干渉することを防止できる。
なお、この発明は上述した実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、第1の拡幅部の幅と第2の拡幅部の幅は同等であってもよい。上述の実施形態では拡幅部の高圧側と低圧側の双方に切欠き部を形成したが、低圧側切欠き部もしくは高圧側切欠き部のいずれか一方のみを形成するようにしてもよい。また、第2の拡幅部は設けなくてもよい。
また、ノズルベーンの支持軸は、第2の排気導入壁に対向する端部にのみ設け、ノズルベーンを片持ち状に支持してもよい。また、リンク機構を排気ノズルのタービンハウジング側に設ける場合には、ノズルベーンの支持軸を第1の排気導入壁に対向する端部にのみ設け、ノズルベーンを片持ち状に支持してもよい。
1 ターボチャージャ、2 タービンインペラ、3 ベアリングハウジング(軸受けハウジング)、5 タービンハウジング、8 排気ノズル、10 ノズルベーン、10a 後縁、10b 前縁、10c 第1の拡幅部、10d 高圧側切欠き部(切欠き部)、10e 低圧側切欠き部(切欠き部)、10f 第2の拡幅部、10g 低圧側傾斜部、10h 高圧側傾斜部、10p 高圧側壁面、10s 低圧側壁面、12a 第1の排気導入壁、12b 第2の排気導入壁、12c 内周円(排気ノズルの内縁)、12d 外周円(排気ノズルの外縁)、PS 高圧側、R 回転方向、SS 低圧側、W1 幅、W2 幅、Wp1 突出幅、Wp2 突出幅、Ws1 突出幅、Ws2 突出幅
Claims (8)
- タービンインペラを回転可能に支持する軸受けハウジングと、前記タービンインペラに排気ガスを供給するスクロール流路が形成されたタービンハウジングと、前記スクロール流路内から前記タービンインペラ側に供給される前記排気ガスの流速および流れ角度を可変とする排気ノズルと、を備えた可変容量型のターボチャージャにおいて、
前記排気ノズルは、前記タービンハウジング側に設けられた第1の排気導入壁と、該第1の排気導入壁と対向して前記軸受けハウジング側に設けられた第2の排気導入壁と、前記第1の排気導入壁と前記第2の排気導入壁との間に配置され前記タービンインペラの周囲に回動可能に支持された複数のノズルベーンと、を備え、
前記ノズルベーンの前記第1の排気導入壁に対向する端部には、前記ノズルベーンの厚さ方向の幅が中央部よりも拡大された第1の拡幅部が設けられ、
前記第1の拡幅部の高圧側と低圧側の少なくとも一方の端部には、前記排気ノズルの開閉時に隣接する前記ノズルベーンとの接触を回避する切欠き部が形成されていることを特徴とするターボチャージャ。 - 前記ノズルベーンの前記第2の排気導入壁に対向する端部には、前記ノズルベーンの厚さ方向の幅が中央部よりも拡大された第2の拡幅部が設けられ、
前記第2の拡幅部の前記高圧側と前記低圧側の少なくとも一方の端部には、前記排気ノズルの開閉時に隣接する前記ノズルベーンとの接触を回避する切欠き部が形成されていることを特徴とする請求項1記載のターボチャージャ。 - 前記第1の拡幅部の前記幅が、前記第2の拡幅部の前記幅と同等かまたは前記幅よりも大きいことを特徴とする請求項2記載のターボチャージャ。
- 前記拡幅部は、前記ノズルベーンの低圧側壁面からの突出幅と高圧側壁面からの突出幅とが均等に形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載のターボチャージャ。
- 前記ノズルベーンは、後縁が前縁よりも前記タービンインペラに近接しかつ前記タービンインペラの回転方向の前方側に設けられ、
前記後縁の前記高圧側に設けられた前記拡幅部には、前記回転方向の前方側に隣接する前記ノズルベーンの前記前縁との接触を回避する高圧側切欠き部が設けられていることを特徴とする請求項1ないし請求項4のいずれか一項に記載のターボチャージャ。 - 前記前縁の前記低圧側に設けられた前記拡幅部には、前記回転方向の後方側に隣接する前記ノズルベーンの前記後縁との接触を回避する低圧側切欠き部が設けられていることを特徴とする請求項5記載のターボチャージャ。
- 前記後縁の前記低圧側に設けられた前記拡幅部には、前記排気ノズルの内縁の前記タービンインペラ側への侵出を防止する低圧側傾斜部が設けられていることを特徴とする請求項5または請求項6に記載のターボチャージャ。
- 前記前縁の前記高圧側に設けられた前記拡幅部には、前記排気ノズルの外縁の前記スクロール流路側への侵出を防止する高圧側傾斜部が設けられていることを特徴とする請求項5ないし請求項7のいずれか一項に記載のターボチャージャ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008284141A JP2010112223A (ja) | 2008-11-05 | 2008-11-05 | ターボチャージャ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008284141A JP2010112223A (ja) | 2008-11-05 | 2008-11-05 | ターボチャージャ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010112223A true JP2010112223A (ja) | 2010-05-20 |
Family
ID=42300961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008284141A Pending JP2010112223A (ja) | 2008-11-05 | 2008-11-05 | ターボチャージャ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010112223A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015100A (ja) * | 2011-07-05 | 2013-01-24 | Ihi Corp | 可変ノズルユニット及び可変容量型過給機 |
JP2015521707A (ja) * | 2012-06-19 | 2015-07-30 | ボルボ ラストバグナー アーベー | ガス流を制御するための装置、排気後処理システム、及び車両を推進するシステム |
JP2015229989A (ja) * | 2014-06-06 | 2015-12-21 | トヨタ自動車株式会社 | 可変ノズルターボチャージャー |
JP2016191382A (ja) * | 2016-05-31 | 2016-11-10 | ボルボ ラストバグナー アーベー | ガス流を制御するための装置、排気後処理システム、及び車両を推進するシステム |
WO2017168646A1 (ja) * | 2016-03-30 | 2017-10-05 | 三菱重工業株式会社 | 可変容量型ターボチャージャ |
JP2017227159A (ja) * | 2016-06-22 | 2017-12-28 | 三菱重工業株式会社 | 可変ノズルベーン及び可変容量型ターボチャージャ |
US9926938B2 (en) | 2012-02-29 | 2018-03-27 | Mitsubishi Heavy Industries, Ltd. | Variable geometry turbocharger |
US10385765B2 (en) | 2012-12-27 | 2019-08-20 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Variable geometry turbocharger |
-
2008
- 2008-11-05 JP JP2008284141A patent/JP2010112223A/ja active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013015100A (ja) * | 2011-07-05 | 2013-01-24 | Ihi Corp | 可変ノズルユニット及び可変容量型過給機 |
US9926938B2 (en) | 2012-02-29 | 2018-03-27 | Mitsubishi Heavy Industries, Ltd. | Variable geometry turbocharger |
JP2015521707A (ja) * | 2012-06-19 | 2015-07-30 | ボルボ ラストバグナー アーベー | ガス流を制御するための装置、排気後処理システム、及び車両を推進するシステム |
US9957969B2 (en) | 2012-06-19 | 2018-05-01 | Volvo Lastvagnar Ab | Device for controlling a gas flow, an exhaust aftertreatment system and a system for propelling a vehicle |
US10385765B2 (en) | 2012-12-27 | 2019-08-20 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Variable geometry turbocharger |
JP2015229989A (ja) * | 2014-06-06 | 2015-12-21 | トヨタ自動車株式会社 | 可変ノズルターボチャージャー |
US11092068B2 (en) | 2016-03-30 | 2021-08-17 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Variable geometry turbocharger |
WO2017168646A1 (ja) * | 2016-03-30 | 2017-10-05 | 三菱重工業株式会社 | 可変容量型ターボチャージャ |
CN109312658B (zh) * | 2016-03-30 | 2022-02-22 | 三菱重工发动机和增压器株式会社 | 可变容量型涡轮增压器 |
EP3954882A1 (en) * | 2016-03-30 | 2022-02-16 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Variable geometry turbocharger |
CN109312658A (zh) * | 2016-03-30 | 2019-02-05 | 三菱重工发动机和增压器株式会社 | 可变容量型涡轮增压器 |
US20200123966A1 (en) * | 2016-03-30 | 2020-04-23 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Variable geometry turbocharger |
JP2016191382A (ja) * | 2016-05-31 | 2016-11-10 | ボルボ ラストバグナー アーベー | ガス流を制御するための装置、排気後処理システム、及び車両を推進するシステム |
WO2017221839A1 (ja) * | 2016-06-22 | 2017-12-28 | 三菱重工業株式会社 | 可変ノズルベーン及び可変容量型ターボチャージャ |
JP2017227159A (ja) * | 2016-06-22 | 2017-12-28 | 三菱重工業株式会社 | 可変ノズルベーン及び可変容量型ターボチャージャ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010112223A (ja) | ターボチャージャ | |
WO2010052911A1 (ja) | ターボチャージャ | |
JP4797788B2 (ja) | ターボチャージャ | |
JP6331736B2 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP6326912B2 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
US9028202B2 (en) | Variable geometry turbine | |
KR20090093779A (ko) | 터빈 및 이것을 구비한 터보 과급기 | |
WO2015114971A1 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
WO2014132727A1 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP2015014252A (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP6959992B2 (ja) | タービン及びターボチャージャ | |
JP2013130116A (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP6844619B2 (ja) | 過給機 | |
WO2018155546A1 (ja) | 遠心圧縮機 | |
JP7248113B2 (ja) | 過給機 | |
JP2015031237A (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP2010127093A (ja) | ターボチャージャ | |
EP3421754B1 (en) | Variable geometry turbocharger | |
JP2013164040A (ja) | タービン | |
JP6864119B2 (ja) | タービン及びターボチャージャ | |
JP2013155640A (ja) | ターボ機械の可変静翼機構 | |
JP2010180811A (ja) | 可変容量型タービン | |
WO2019077962A1 (ja) | 過給機のシール構造 | |
JP2014169640A (ja) | 可変ノズルユニット及び可変容量型過給機 | |
WO2022102329A1 (ja) | 過給機 |