JP2010109278A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010109278A
JP2010109278A JP2008282082A JP2008282082A JP2010109278A JP 2010109278 A JP2010109278 A JP 2010109278A JP 2008282082 A JP2008282082 A JP 2008282082A JP 2008282082 A JP2008282082 A JP 2008282082A JP 2010109278 A JP2010109278 A JP 2010109278A
Authority
JP
Japan
Prior art keywords
thin film
film
semiconductor device
manufacturing
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008282082A
Other languages
Japanese (ja)
Other versions
JP5018737B2 (en
Inventor
Koji Hotta
幸司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008282082A priority Critical patent/JP5018737B2/en
Publication of JP2010109278A publication Critical patent/JP2010109278A/en
Application granted granted Critical
Publication of JP5018737B2 publication Critical patent/JP5018737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device for achieving the suppression of thermal resistance and the suppression of large size in the case of integrally bonding a structure including a semiconductor element to its support, and for suitably achieving the suppression of stress immanent in the structure and the support after the completion of junction. <P>SOLUTION: In such configurations that a reactive film 21 set to characteristics for securing a reaction temperature and a thermal conductivity with which melting brazing materials 20 is possible in an opposite relation between the reaction temperature and the thermal conductivity is interposed by the brazing materials 20, the brazing materials 20, the reaction film 21, the brazing materials 20 and the structure are sequentially laminated on a cooling unit 13. In this status, reaction conditions inducing the reaction are applied to the reactive film 21 to melt the brazing materials 20, and the structure including a semiconductor 10 is joined to the cooling unit 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の製造方法に関し、特に電力の変換や各種電力制御等に用いられる半導体素子を含む構造体がこれを支持する支持体に一体に接合された半導体装置にあって半導体素子を含む構造体を支持体に接合する方法の改良に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device in which a structure including a semiconductor element used for power conversion, various power control, and the like is integrally joined to a support that supports the semiconductor element. The present invention relates to an improvement in a method for joining a structure including a substrate to a support.

こうした半導体装置としては、例えばハイブリッド車や電気自動車などにあって、車載バッテリから供給される直流電力を3相交流等に変換してモータ駆動用の電力変換を行うインバータ装置が知られている。そして、このような半導体装置では通常、上述のように半導体素子(電力用半導体素子)を含んで構成される構造体が冷却器に一体に接合されていることが多い。すなわち、半導体素子が絶縁基板や放熱板に半田付け等によって実装されている上記構造体を熱交換機能を有する冷却器にシリコングリース等を介してねじ止めするなどにより接合、固定することで、半導体素子動作時の発熱を緩和するようにしている。ただし、冷却器とのこのような接合構造を採用する場合、上記シリコングリース自体の熱伝導率が低いために、熱抵抗の悪化が避けられないとともに、上記ねじ止めするためには、ねじ等の部品の増加はもとより、構造体及び冷却器自体にもそのための締結構造を別途施す必要があり、半導体装置そのものが大型化してしまう不都合がある。   As such a semiconductor device, for example, an inverter device that is used in a hybrid vehicle, an electric vehicle, or the like and converts DC power supplied from a vehicle-mounted battery into three-phase AC or the like and performs power conversion for driving a motor is known. In such a semiconductor device, the structure including the semiconductor element (power semiconductor element) is usually integrally joined to the cooler as described above. That is, the semiconductor element is bonded and fixed to the cooler having a heat exchanging function by screwing the structure, which is mounted on the insulating substrate or the heat radiating plate, with silicon grease or the like. Heat generation during device operation is mitigated. However, when adopting such a joint structure with a cooler, the thermal conductivity of the silicon grease itself is low, so deterioration of thermal resistance is unavoidable, and in order to fasten the screws, In addition to an increase in the number of parts, it is necessary to separately provide a fastening structure for the structure and the cooler itself, which disadvantageously increases the size of the semiconductor device itself.

そこで従来は、こうした半導体装置の製造方法、すなわち上記構造体を冷却器に接合する方法として、構造体をロウ付けにより冷却器に接合する方法が採用されることも多い。このようなロウ付けによれば、部品の増加や半導体装置としての大型化が抑えられるとともに、ロウ材自体、その熱抵抗も低いことから、当該半導体装置としての冷却効率も自ずと高められるようになる。
特開2007−88468号公報
Therefore, conventionally, as a manufacturing method of such a semiconductor device, that is, a method of joining the structure to the cooler, a method of joining the structure to the cooler by brazing is often employed. According to such brazing, an increase in the number of parts and an increase in size as a semiconductor device are suppressed, and the brazing material itself has a low thermal resistance, so that the cooling efficiency as the semiconductor device is naturally increased. .
JP 2007-88468 A

上述のように、構造体を冷却器に接合する方法としてロウ付けを採用することにより、完成された半導体装置としては確かに、その大型化が抑制されたり、冷却効率が向上するなどの望ましい効果が得られるようにはなる。ただし、こうしたロウ付けを採用した場合には、その製造過程、すなわち冷却器に対する上記構造体の接合過程における次のような不都合も無視できないものとなっている。   As described above, by adopting brazing as a method of joining the structure to the cooler, the completed semiconductor device is surely a desirable effect such as suppressing the increase in size and improving the cooling efficiency. Can be obtained. However, when such brazing is adopted, the following inconveniences in the manufacturing process, that is, the process of joining the structure to the cooler cannot be ignored.

すなわち、上記構造体を構成する絶縁基板や放熱板に用いられる材料と冷却器に用いられる材料とでは一般にその線膨張係数が異なるとともに、上記ロウ付け自体が、ロウ材の溶融のために高温の熱印加を比較的長い時間に亘って行わざるを得ない接合方法である。このため、ロウ付け後の自然冷却期間、すなわち膨張された各部材が冷却によって原形状に戻る際にロウ材が先に冷却されて上下の部材が固定されるまでの期間に、上記線膨張係数の違いに起因する応力が内在するようになり、冷却器に反りが生じたり、絶縁基板にクラックが生じたりするなどの懸念がある。なお、こうした反りやクラック等は、冷却器に対する構造体の接合時、すなわち製造時に限らず、製造(接合)後でもそれら構造体や冷却器に大きな応力が内在している以上、構造体を構成する半導体素子の動作の繰り返しに基づくヒートサイクルによっても生じ得るものであり、こうした傾向は、上記半導体素子自身の発熱量が大きいほど顕著となる。また、上記ロウ材の溶融温度が半田の溶融温度よりも高く、その熱印加にかかる時間も長期化されるようなことがあれば、上記構造体において半田付けされている部分が再溶融されることにもなりかねない。   That is, the material used for the insulating substrate and the heat radiating plate constituting the structure and the material used for the cooler generally have different linear expansion coefficients, and the brazing itself has a high temperature due to the melting of the brazing material. In this joining method, heat application must be performed for a relatively long time. Therefore, in the natural cooling period after brazing, that is, the period until the brazing material is first cooled and the upper and lower members are fixed when each expanded member returns to the original shape by cooling, the above linear expansion coefficient There is a concern that the stress due to the difference is inherent, the cooler is warped, and the insulating substrate is cracked. Such warpage and cracks are not limited to the time when the structure is bonded to the cooler, that is, at the time of manufacturing. This tendency can also be caused by a heat cycle based on repeated operation of the semiconductor element, and this tendency becomes more remarkable as the amount of heat generated by the semiconductor element itself increases. Further, if the melting temperature of the brazing material is higher than the melting temperature of the solder and the time required for applying the heat is prolonged, the soldered portion of the structure is remelted. It can also be a thing.

なお従来、例えば特許文献1に見られるように、接合面(基板)の表面に高抵抗の金属導線を敷設しておき、この金属配線に電流を流すことにより発生するジュール熱を利用して接合対象(高分子材料)を接合面(基板)に瞬時に(瞬間的に)接合する方法なども知られてはいる。しかしこの方法であれ、ジュール熱を利用している以上、瞬時に(瞬間的に)とはいえ、接合が完了するまでにはある程度の時間を要し、しかも、接合領域の全域に亘って均一に熱を発生させることも難しい。すなわち、局所的な発熱には適していても、上述した冷却器に対する半導体素子構造体の接合となるとその適用も難しい。   Conventionally, as seen in, for example, Patent Document 1, a high-resistance metal conductor is laid on the surface of the bonding surface (substrate), and bonding is performed using Joule heat generated by passing a current through the metal wiring. A method of bonding an object (polymer material) to a bonding surface (substrate) instantaneously (instantaneously) is also known. However, even with this method, since Joule heat is used, it takes a certain amount of time to complete the bonding, even though instantaneously (instantaneously), and it is uniform over the entire bonding area. It is also difficult to generate heat. That is, even if it is suitable for local heat generation, its application is difficult when the semiconductor element structure is bonded to the above-described cooler.

また、上記冷却器に限らず、上記半導体素子(電力用半導体素子)を含んで構成される構造体がこれを支持する何らかの支持体に一体に接合されて構成される半導体装置、さらには接合材としてロウ材以外に例えば半田等が用いられる場合であっても、その接合方法にかかる上記課題は概ね共通したものとなっている。   Further, not only the cooler, but also a semiconductor device configured by integrally bonding a structure including the semiconductor element (power semiconductor element) to some support that supports the semiconductor element, and further a bonding material Even if, for example, solder or the like is used in addition to the brazing material, the above-described problems relating to the joining method are generally common.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、半導体素子を含む構造体をその支持体に一体に接合するに際し、熱抵抗の抑制や大型化の抑制はもとより、接合完了後にそれら構造体及び支持体に内在する応力についても、その好適な抑制を図ることのできる半導体装置の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the purpose thereof is to complete the bonding in addition to the suppression of thermal resistance and the increase in size when the structure including the semiconductor element is integrally bonded to the support. It is another object of the present invention to provide a method for manufacturing a semiconductor device capable of suitably suppressing the stress inherent in the structure and the support later.

以下、上記課題を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、半導体素子を含む構造体がこれを支持する支持体に一体に接合されて構成される半導体装置の前記半導体素子を含む構造体を熱抵抗の低い接合材を介して前記支持体に接合する半導体装置の製造方法において、反応温度と熱伝導率との相反する関係の中で前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定された反応性膜を前記接合材によって挟持する態様で前記支持体上にこれら接合材及び反応性膜及び接合材及び前記構造体を順に積層し、この状態で前記反応性膜にその反応を誘起する反応条件を付与することにより前記接合材を溶融せしめて前記支持体に前記構造体を接合することを要旨とする。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
According to the first aspect of the present invention, a structure including a semiconductor element of a semiconductor device configured by integrally bonding a structure including a semiconductor element to a support that supports the structure is provided via a bonding material having a low thermal resistance. In the method of manufacturing a semiconductor device to be bonded to the support, it is possible to achieve both the reaction temperature and the thermal conductivity ensuring that the bonding material can be melted in a conflicting relationship between the reaction temperature and the thermal conductivity. The bonding material, the reactive film, the bonding material, and the structure are sequentially laminated on the support in such a manner that the reactive film set in the characteristic is sandwiched by the bonding material, and in this state, the reactive film is placed on the reactive film. The gist is to melt the bonding material by applying reaction conditions that induce a reaction, and bond the structure to the support.

このような製造方法によれば、接合材によって挟持された反応性膜による自己伝播反応に基づきそれら接合材同士が瞬時に、しかも均一に溶融されて構造体が支持体に溶接接合されるようになる。そしてこのとき、反応性膜自身は上述のように、反応温度と熱伝導率との相反する関係の中で、接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性、すなわち接合材を溶融するに必要十分な反応温度に抑えることでそれに見合った高い熱伝導率を維持することのできる特性に設定されていることから、同反応性膜による接合材同士の瞬時の溶融、並びにその固化後に、接合材としての熱抵抗が増大することもない。上記製造方法ではこのように、構造体や支持体に過大な応力が内在する以前にそれらの接合を完了させることができることから、接合後にそれら構造体や支持体に内在する応力を的確に抑制することができるようになる。また接合構造に関しても、接合材としての熱抵抗を低く維持することができるとともに、いわゆる溶接による接合構造が維持されることから、半導体装置としてその大型化を招くこともない。なお、上記反応性膜に付与する反応条件としては、例えば火花の印加等がある。   According to such a manufacturing method, based on the self-propagating reaction by the reactive film sandwiched between the bonding materials, the bonding materials are instantaneously and uniformly melted so that the structure is welded to the support. Become. At this time, as described above, the reactive film itself can satisfy both of the reaction temperature and the thermal conductivity ensuring the melting of the bonding material in the conflicting relationship between the reaction temperature and the thermal conductivity. The properties, that is, the properties that can maintain the high thermal conductivity corresponding to the reaction temperature, which is necessary and sufficient to melt the bonding material, are set so that the bonding material instantly reacts with the reactive film. After melting and solidifying, the thermal resistance as a bonding material does not increase. In the above manufacturing method, since the joining can be completed before excessive stress is inherent in the structure and the support, the stress inherent in the structure and the support is accurately suppressed after joining. Will be able to. Further, regarding the joining structure, the thermal resistance as a joining material can be kept low, and since the joining structure by so-called welding is maintained, the semiconductor device is not increased in size. In addition, as reaction conditions provided to the said reactive film, there exists application of a spark etc., for example.

請求項2に記載の発明は、請求項1に記載の半導体装置の製造方法において、前記反応性膜として、反応温度が低くかつ熱伝導率の高い金属薄膜からなる第1の金属薄膜と反応温度が高くかつ熱伝導率の低い金属薄膜からなる第2の金属薄膜とが複数層、交互に積層された膜を用い、特定の積層数の中でのこれら第1の金属薄膜の膜厚と第2の金属薄膜の膜厚との膜厚調整を通じて前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定することを要旨とする。   According to a second aspect of the present invention, in the method for manufacturing a semiconductor device according to the first aspect, as the reactive film, a first metal thin film made of a metal thin film having a low reaction temperature and a high thermal conductivity and a reaction temperature. The second metal thin film made of a metal thin film having a high thermal conductivity and a low thermal conductivity is used, and a plurality of layers are alternately laminated. The gist of the present invention is to set the characteristics that can achieve both the reaction temperature enabling the melting of the bonding material and the securing of thermal conductivity through film thickness adjustment with the film thickness of the metal thin film.

このような製造方法によれば、反応性膜としての上記反応温度と熱伝導率との相反する関係、そしてその中で、接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性の設定も容易となる。   According to such a manufacturing method, the reaction temperature and the thermal conductivity as a reactive film conflict with each other, and among them, the reaction temperature and the thermal conductivity that enable melting of the bonding material are ensured. It is also easy to set compatible characteristics.

請求項3に記載の発明は、請求項2に記載の半導体装置の製造方法において、前記反応性膜を構成する前記第1の金属薄膜としてアルミニウム薄膜を用い、前記第2の金属薄膜としてニッケル薄膜を用いることを要旨とする。   According to a third aspect of the present invention, in the method of manufacturing a semiconductor device according to the second aspect, an aluminum thin film is used as the first metal thin film constituting the reactive film, and a nickel thin film is used as the second metal thin film. The gist is to use.

この製造方法によるように、上記特性を有する反応性膜を構成する第1及び第2の金属薄膜としては、それぞれアルミニウム薄膜及びニッケル薄膜が有効であり、またこれらの金属薄膜であれば、上記反応性膜としての実現、実用も容易である。   According to this manufacturing method, as the first and second metal thin films constituting the reactive film having the above characteristics, an aluminum thin film and a nickel thin film are effective, respectively. Realization and practical use as a conductive film are also easy.

請求項4に記載の発明は、請求項3に記載の半導体装置の製造方法において、前記接合材としてアルミニウム系のロウ材を用い、前記反応性膜の反応温度が600℃となるように前記アルミニウム薄膜と前記ニッケル薄膜とが各々膜厚調整されることを要旨とする。   According to a fourth aspect of the present invention, in the method for manufacturing a semiconductor device according to the third aspect, an aluminum brazing material is used as the bonding material, and the reaction temperature of the reactive film is 600 ° C. The gist is that the film thickness of each of the thin film and the nickel thin film is adjusted.

接合材としての上記アルミニウム系のロウ材はその溶融のための最低温度が約600℃であることが知られている。そこで、同製造方法によるように、上記アルミニウム薄膜とニッケル薄膜との各膜厚調整を通じて、反応性膜としての反応温度をこの600℃に設定することとすれば、上記構造体を過剰に加熱することのない、接合材のみの円滑な溶融を促すことができるとともに、アルミニウム薄膜とニッケル薄膜との多重積層膜とする当該反応性膜としての熱伝導率についても、その組合せから選択し得る最大の値とすることができるようになる。   It is known that the aluminum brazing material as a bonding material has a minimum temperature of about 600 ° C. for melting. Therefore, if the reaction temperature as the reactive film is set to 600 ° C. by adjusting the film thicknesses of the aluminum thin film and the nickel thin film as in the manufacturing method, the structure is heated excessively. It is possible to promote the smooth melting of only the bonding material without any problem, and the thermal conductivity as the reactive film as a multilayer film of aluminum thin film and nickel thin film can be selected from the combination. Value.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の半導体装置の製造方法において、前記構造体及び前記支持体の各接合面に前記接合材を予め塗布しておくとともに、それら接合材の塗布された構造体及び支持体のいずれか一方の接合材の表面に前記反応性膜を予め成膜しておくことを要旨とする。   According to a fifth aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the first to fourth aspects, the bonding material is applied in advance to each bonding surface of the structure and the support. In addition, the gist is that the reactive film is formed in advance on the surface of any one of the structure and the support to which the bonding material is applied.

このような製造方法によれば、接合材や反応性膜も含めて、接合時における上記構造体及び支持体の扱いを極めて容易なものとすることができるようになる。
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の半導体装置の製造方法において、前記構造体として、両面にアルミニウム板の接着された絶縁基板上に前記半導体素子が半田付けによって実装されたものを含むものを用いることを要旨とする。
According to such a manufacturing method, handling of the structure and the support including the bonding material and the reactive film at the time of bonding can be made extremely easy.
According to a sixth aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the first to fifth aspects, the semiconductor element is formed on an insulating substrate having an aluminum plate bonded to both sides as the structure. The gist is to use what is mounted by soldering.

この製造方法は、請求項6にかかる発明によるように、両面にアルミニウム板の接着された絶縁基板上に半導体素子が半田付けによって実装された半導体素子構造体に適用して特に有効であり、同製造方法の適用により、上記支持体との接合後に絶縁基板等に内在する応力を的確に抑制することができるようになる。   This manufacturing method is particularly effective when applied to a semiconductor element structure in which a semiconductor element is mounted by soldering on an insulating substrate having aluminum plates bonded to both sides, as in the invention according to claim 6. By applying the manufacturing method, the stress inherent in the insulating substrate or the like after joining with the support can be accurately suppressed.

請求項7に記載の発明は、請求項1〜5のいずれか一項に記載の半導体装置の製造方法において、前記構造体として、金属からなる放熱板上に前記半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装されたものを含むものを用いることを要旨とする。   A seventh aspect of the present invention is the method of manufacturing a semiconductor device according to any one of the first to fifth aspects, wherein the semiconductor element is formed on a heat radiating plate made of metal or an aluminum plate on both sides as the structure. The gist is to use a bonded insulating substrate including one mounted by soldering.

この製造方法は、請求項7にかかる発明によるように、金属からなる放熱板上に半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装された半導体素子構造体に適用しても有効であり、同製造方法の適用により、上記支持体との接合後に放熱板や絶縁基板等に内在する応力を的確に抑制することができるようになる。   This manufacturing method is applied to a semiconductor element structure in which a semiconductor element or an insulating substrate bonded with an aluminum plate on both sides is mounted on a heat sink made of metal by soldering, as in the invention according to claim 7. This is also effective, and the application of the manufacturing method makes it possible to accurately suppress the stress inherent in the heat radiating plate, the insulating substrate and the like after joining with the support.

請求項8に記載の発明は、請求項1〜7のいずれか一項に記載の半導体装置の製造方法において、前記構造体を支持する支持体として、液冷式もしくは空冷式の冷却器を用いることを要旨とする。   According to an eighth aspect of the present invention, in the method for manufacturing a semiconductor device according to any one of the first to seventh aspects, a liquid-cooled or air-cooled cooler is used as a support that supports the structure. This is the gist.

この製造方法はまた、請求項8にかかる発明によるように、上記支持体として、液冷式もしくは空冷式の冷却器を用いるものに適用して特に有効であり、同製造方法の適用により、上記構造体との接合後に冷却器に内在する応力を的確に抑制することができるようになる。   This manufacturing method is also particularly effective when applied to a support using a liquid-cooled or air-cooled cooler as the support, as in the invention according to claim 8. By applying the manufacturing method, The stress inherent in the cooler after joining with the structure can be accurately suppressed.

(第1の実施の形態)
以下、本発明にかかる半導体装置の製造方法の第1の実施の形態について図1〜図7を参照して説明する。図1は、この実施の形態にかかる半導体装置の製造方法について、その適用対象とする半導体装置の接合工程直前の概略断面構造を示したものである。
(First embodiment)
A semiconductor device manufacturing method according to a first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a schematic cross-sectional structure of a semiconductor device manufacturing method according to this embodiment immediately before a bonding process of a semiconductor device to be applied.

同図1に示されるように、この半導体装置は、半導体素子10及びこの半導体素子10が実装された絶縁基板12からなる構造体と、該構造体の支持体としてこれを支持する冷却器13とによって構成される。   As shown in FIG. 1, the semiconductor device includes a structure including a semiconductor element 10 and an insulating substrate 12 on which the semiconductor element 10 is mounted, and a cooler 13 that supports the structure as a support of the structure. Consists of.

ここで、半導体素子10は、例えばIGBT(絶縁ゲート・バイポーラ・トランジスタ)などの動作時に比較的高温の熱が発せられる電力用半導体素子であり、また絶縁基板12には、DBA(ダイレクト・ブレイジング・アルミニウム)と称される基板であって、セラミック基板11の両面にアルミニウム板11a及び11bがロウ付けによって接着固定されている。そして、アルミニウム板11aは半田14のぬれ性が得られるように表面処理されており、この上面に上記半導体素子10が半田付けによって実装されている。一方、冷却器13は、半導体素子10の動作に伴って発せられる熱を熱交換することでその冷却を図るためのものであり、本実施の形態では、例えばアルミニウム製からなる水冷式の冷却器が用いられている。   Here, the semiconductor element 10 is a power semiconductor element that generates relatively high-temperature heat during operation of, for example, an IGBT (insulated gate bipolar transistor), and the insulating substrate 12 has a DBA (direct brazing diode). Aluminum plates 11a and 11b are bonded and fixed to both surfaces of the ceramic substrate 11 by brazing. The aluminum plate 11a is surface-treated so that the wettability of the solder 14 is obtained, and the semiconductor element 10 is mounted on the upper surface by soldering. On the other hand, the cooler 13 is for cooling the heat generated by the operation of the semiconductor element 10 by heat exchange. In the present embodiment, for example, a water-cooled cooler made of aluminum is used. Is used.

また、同図1に示されるように、これら半導体素子10及び絶縁基板12からなる構造体と冷却器13との間には、これらを互いに接合するための接合材としてアルミニウム系からなるとするロウ材20が介在されている。このようにロウ材20を用いて冷却器13と構造体とを接合する方法によれば、ロウ材20自体の熱抵抗が低いことから、半導体素子10から冷却器13に伝達される熱の伝達効率、すなわち当該半導体装置としての冷却効率を高めることができるようになる。一方、ロウ材を用いた接合方法では前述のように、ロウ材を溶融するために比較的長い期間の熱印加が必要となること、そして冷却器13と絶縁基板12とでは線膨張係数が異なることに起因して応力の内在を招き、それら冷却器13や絶縁基板12に反りやクラックを生じる虞がある。   Further, as shown in FIG. 1, a brazing material that is made of an aluminum-based material as a bonding material for bonding the semiconductor element 10 and the insulating substrate 12 and the cooler 13 together. 20 is interposed. Thus, according to the method of joining the cooler 13 and the structure using the brazing material 20, since the thermal resistance of the brazing material 20 itself is low, the transfer of heat transmitted from the semiconductor element 10 to the cooler 13. Efficiency, that is, cooling efficiency of the semiconductor device can be increased. On the other hand, as described above, in the joining method using the brazing material, it is necessary to apply heat for a relatively long period in order to melt the brazing material, and the cooler 13 and the insulating substrate 12 have different linear expansion coefficients. Due to this, there is a possibility that stress is inherent and warpage and cracks occur in the cooler 13 and the insulating substrate 12.

そこで、本実施の形態では、ロウ付けによる接合工程に先立ち、上記ロウ材20を瞬時かつ均一に溶融することの可能な反応性膜21をロウ材20によって挟持する態様で積層する。そして、この反応性膜21の反応時に発せられる反応熱(生成エンタルピー)をロウ材20を溶融するための溶融熱として用いることで、冷却器13や絶縁基板12に反りやクラックの要因となる熱応力が内在する以前にそれら冷却器13と絶縁基板12との接合が完了されるようにしている。図2に、本実施の形態で採用する反応性膜21についてその拡大断面構造を示す。   Therefore, in the present embodiment, prior to the joining step by brazing, the reactive film 21 capable of melting the brazing material 20 instantaneously and uniformly is laminated in such a manner as to be sandwiched by the brazing material 20. Then, by using the reaction heat (generation enthalpy) generated during the reaction of the reactive film 21 as melting heat for melting the brazing material 20, heat that causes warping and cracks in the cooler 13 and the insulating substrate 12. Before the stress is inherent, the bonding between the cooler 13 and the insulating substrate 12 is completed. FIG. 2 shows an enlarged cross-sectional structure of the reactive film 21 employed in the present embodiment.

一般に、異なる金属原子同士が化学反応して発生した反応熱を引き金(トリガ)として隣り合う原子同士の化学反応を誘発し続けることがこうした反応性膜としての必要条件となる。そして、化学反応による反応熱が放熱による冷却を上回るためには、放熱面積に比
べて発熱量を増やしてやればよい。この最も簡便な方法が異種金属を薄く、多層に積層することであり、本実施の形態では、図2に示すように、この反応性膜21として、アルミニウム(Al)薄膜21aとニッケル(Ni)薄膜21bとを交互に多数層積層した膜構造としている。ここで、同反応性膜21を形成するアルミニウム薄膜21a及びニッケル薄膜21bは、それぞれ反応温度と熱伝導率とが相反する特性を有している。すなわち、アルミニウム薄膜21aは、反応温度が低くかつ熱伝導率の高い特性を有しており、逆にニッケル薄膜21bは、反応温度が高くかつ熱伝導率の低い特性を有している。そこで本実施の形態では、アルミニウム薄膜21a及びニッケル薄膜21bのこうした特性に基づきこれらの膜厚を調整することによって、反応性膜21の反応温度が上記アルミニウム系からなるロウ材20を溶融するために最低限必要な温度(「600℃」)に設定するとともに、その中で反応性膜21の反応後(固化後)の熱伝導率が最大の値となるように設定するようにしている。すなわち、反応性膜21の主に反応温度を確保する機能を有するニッケル薄膜21bの膜厚βを上記反応温度「600℃」を確保し得る必要最小限の厚さとし、これに対して、反応性膜21の主に熱伝導率を確保する機能を有するアルミニウム薄膜21aの膜厚αを、同層数、同組み合わせの中で最大限に厚くする(α>β)。これよって、ロウ材20を溶融するために最低限必要な反応温度(「600℃」)の確保と接合材としての熱伝導率の確保との両立が図られるようになる。
In general, it is a necessary condition for such a reactive film to continuously induce a chemical reaction between adjacent atoms by using a reaction heat generated by a chemical reaction between different metal atoms as a trigger. And in order for the reaction heat by a chemical reaction to exceed the cooling by heat dissipation, what is necessary is just to increase calorific value compared with a heat dissipation area. The simplest method is to stack different metals thinly and in multiple layers. In this embodiment, as shown in FIG. 2, as the reactive film 21, an aluminum (Al) thin film 21a and nickel (Ni) are used. The film structure is formed by alternately laminating a plurality of thin films 21b. Here, the aluminum thin film 21a and the nickel thin film 21b forming the reactive film 21 have characteristics in which the reaction temperature and the thermal conductivity are opposite to each other. That is, the aluminum thin film 21a has a characteristic of low reaction temperature and high thermal conductivity, and conversely, the nickel thin film 21b has a characteristic of high reaction temperature and low thermal conductivity. Therefore, in the present embodiment, by adjusting the film thickness based on these characteristics of the aluminum thin film 21a and the nickel thin film 21b, the reaction temperature of the reactive film 21 can be used to melt the aluminum-based brazing material 20. The temperature is set to a minimum required temperature (“600 ° C.”), and the thermal conductivity after reaction (after solidification) of the reactive film 21 is set to a maximum value. That is, the film thickness β of the nickel thin film 21b mainly having a function of ensuring the reaction temperature of the reactive film 21 is set to a necessary minimum thickness capable of ensuring the above reaction temperature “600 ° C.”. The film thickness α of the aluminum thin film 21a mainly having the function of ensuring the thermal conductivity of the film 21 is maximized among the same number of layers and the same combination (α> β). As a result, it is possible to ensure both the minimum reaction temperature (“600 ° C.”) necessary for melting the brazing material 20 and the thermal conductivity as the bonding material.

なお、このような反応性膜にあっては通常、極力薄い膜を多層に積層することが自己発熱伝播性の向上につながり、反応時間をより短くして大きな面積でも均一な接合が可能となる。そして、ここで用いる反応性膜21にあっては、10nm〜500nmのアルミニウム薄膜21aあるいはニッケル薄膜21bの層をトータルで5μm〜200μmの膜厚となるように多層に積層することによって上記ロウ材20によるロウ付けが可能となり、アルミニウム薄膜21aの膜厚とニッケル薄膜21bの膜厚の比を
アルミニウム薄膜21aの膜厚α:ニッケル薄膜21bの膜厚β=3:2
とするときに原子数の比が「1:1」となって、最も反応熱が高くなる。そして本実施の形態では、アルミニウム薄膜21aとニッケル薄膜21bとのこのような関係に鑑みて、その反応温度が「600℃」となるように、その積層数nをはじめ、上記各膜厚α、βを決めている。
In addition, in such a reactive film, it is usually possible to laminate thin films as many as possible in order to improve the self-heating propagation property, and to shorten the reaction time and enable uniform bonding even in a large area. . In the reactive film 21 used here, the brazing material 20 is formed by laminating a layer of aluminum thin film 21a or nickel thin film 21b of 10 nm to 500 nm in a total of 5 μm to 200 μm. The ratio of the film thickness of the aluminum thin film 21a to the film thickness of the nickel thin film 21b can be determined by the ratio of the film thickness α of the aluminum thin film 21a: the film thickness β of the nickel thin film 21b = 3: 2.
When the ratio of the number of atoms becomes “1: 1”, the heat of reaction becomes the highest. In the present embodiment, in view of such a relationship between the aluminum thin film 21a and the nickel thin film 21b, each of the above-described film thicknesses α, including the number n of layers, such that the reaction temperature becomes “600 ° C.” β is determined.

次に、ロウ材20の溶融に必要とされる上述の反応性膜21の反応温度の推移と、従来の高周波誘導加熱法による熱源の温度の推移とについて、図3を参照して比較する。なお、これらの温度推移例は実験等を通じて得られたものである。   Next, the transition of the reaction temperature of the reactive film 21 required for melting the brazing material 20 and the transition of the temperature of the heat source by the conventional high frequency induction heating method will be compared with reference to FIG. These temperature transition examples were obtained through experiments and the like.

まず、図3において、二点鎖線による曲線L0は、上記従来の高周波誘導加熱法による熱源の温度の推移を示したものである。また、実線による曲線L1〜L4は、反応性膜21の積層数をnとし、反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの総量をQとしたときのニッケル薄膜21bの割合Pn1〜Pn4に相関する反応性膜21の反応温度の推移をそれぞれ示したものであ。このとき、これらニッケル薄膜21bの割合Pn1〜Pn4はそれぞれ以下の関係式(イ)のようになっている。   First, in FIG. 3, a curve L0 indicated by a two-dot chain line shows a transition of the temperature of the heat source by the conventional high frequency induction heating method. Curves L1 to L4 by solid lines indicate the ratio Pn1 of the nickel thin film 21b when the number of stacked reactive films 21 is n and the total amount of the aluminum thin films 21a and the nickel thin films 21b constituting the reactive film 21 is Q. The transition of the reaction temperature of the reactive film 21 correlated with ~ Pn4 is shown respectively. At this time, the ratios Pn1 to Pn4 of the nickel thin film 21b are as shown in the following relational expression (A).

Pn1>Pn2>Pn3>Pn4 …(イ)
すなわち、同図3に曲線L1〜L4として示されるように、反応性膜21を構成するニッケル薄膜21bの割合が多くなるほど反応性膜21の反応温度が高くかつその反応時間が短くなり、逆に反応性膜21を構成するニッケル薄膜21bの割合が少なくなるほど反応性膜21の反応温度が低くかつその反応時間が長くなっている。そして、この反応性膜21の自己伝搬反応によって反応熱が発せられる時間は、実際には数μ秒から数十μ秒であることが発明者によって確認されている。
Pn1>Pn2>Pn3> Pn4 (B)
That is, as shown by curves L1 to L4 in FIG. 3, as the proportion of the nickel thin film 21b constituting the reactive film 21 increases, the reaction temperature of the reactive film 21 increases and the reaction time decreases. As the proportion of the nickel thin film 21b constituting the reactive film 21 decreases, the reaction temperature of the reactive film 21 decreases and the reaction time increases. The inventor has confirmed that the time during which reaction heat is generated by the self-propagating reaction of the reactive film 21 is actually several microseconds to several tens of microseconds.

一方、従来の高周波誘導加熱法では、同図3に曲線L0として示されるように、またよ
く知られているように、同方法によって熱源から熱が発せられる時間は数秒となっている。このため、ロウ材20を溶融すべく同方法を採用した場合には、ロウ材20のみならず、接合対象となる上記絶縁基板12や冷却器13にも過剰な熱が印加されることとなり、ロウ材20の固化後にはそれら接合対象に上記線膨張係数の違いに起因する過大な応力が内在してしまう。
On the other hand, in the conventional high frequency induction heating method, as shown as a curve L0 in FIG. 3, and as is well known, the time for generating heat from the heat source by this method is several seconds. For this reason, when the same method is adopted to melt the brazing material 20, excessive heat is applied not only to the brazing material 20 but also to the insulating substrate 12 and the cooler 13 to be joined, After the brazing material 20 is solidified, excessive stress due to the difference in the coefficient of linear expansion is inherent in the objects to be joined.

そこで上述のように、本実施の形態では、こうしたいわば瞬間的な反応熱の発生を可能とする反応性膜21をロウ材20の溶融に採用することによって、接合対象に過大な応力が内在する以前に接合対象の接合を完了するようにしている。   Therefore, as described above, in this embodiment, by using the reactive film 21 that enables the generation of instantaneous reaction heat in this way for melting the brazing material 20, excessive stress is inherent in the joining target. The joining of the joining object is completed previously.

なお、本実施の形態に用いられるアルミニウム系のロウ材20の融解温度は、これも上述のように「600℃」となっている。このためここでは、上記反応性膜21の反応温度が「600℃」となるように、同反応性膜21を形成するニッケル薄膜21bの割合を、図3において曲線L2にて示す反応温度推移をとる割合である上記割合Pn2に設定する。これにより、ロウ材20の融解温度を超えた過剰な反応熱の発生を抑えてロウ材20のみの円滑な、しかも瞬間的な溶融を促すことが可能となる。   The melting temperature of the aluminum brazing material 20 used in the present embodiment is also “600 ° C.” as described above. For this reason, the ratio of the nickel thin film 21b forming the reactive film 21 is represented by a curve L2 in FIG. 3 so that the reaction temperature of the reactive film 21 is “600 ° C.”. The ratio Pn2, which is the ratio to be taken, is set. Accordingly, it is possible to suppress the generation of excessive reaction heat exceeding the melting temperature of the brazing material 20 and promote smooth and instantaneous melting of only the brazing material 20.

次に、このような反応性膜21の反応温度と熱伝導率との相反する関係、及び反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの割合(膜厚)の設定方法について図4及び図5を参照して説明する。なお、これら図4及び図5の関係も、先に示した図3と同様、反応性膜21の積層数をnとし、反応性膜21を構成するアルミニウム薄膜21aとニッケル薄膜21bとの総量をQとしたときのアルミニウム薄膜21a及びニッケル薄膜21bの割合調整に基づき実験等を通じて得られたものである。   Next, the relationship between the reaction temperature of the reactive film 21 and the thermal conductivity and the method of setting the ratio (film thickness) of the aluminum thin film 21a and the nickel thin film 21b constituting the reactive film 21 are illustrated. 4 and FIG. 4 and 5, the number of stacked reactive films 21 is n, and the total amount of the aluminum thin film 21a and the nickel thin film 21b constituting the reactive film 21 is the same as in FIG. It was obtained through experiments and the like based on the ratio adjustment of the aluminum thin film 21a and the nickel thin film 21b when Q is assumed.

まず、図4に示すように、反応性膜21の反応温度は、反応性膜21に対するニッケル薄膜21bの割合が増加するほど、すなわち主に反応温度を確保するニッケル(Ni)の量が多くなるほどこれに比例して高くなる。   First, as shown in FIG. 4, the reaction temperature of the reactive film 21 increases as the ratio of the nickel thin film 21b to the reactive film 21 increases, that is, as the amount of nickel (Ni) mainly securing the reaction temperature increases. It becomes higher in proportion to this.

一方、図5に示すように、反応性膜21の熱伝導率は、反応性膜21に対するニッケル薄膜21bの割合が増加するほど、すなわち主に熱伝導率を確保するアルミニウム(Al)の量が減少して熱伝導率の低いニッケル(Ni)の量が増加するほど、これに反比例して低くなる。   On the other hand, as shown in FIG. 5, the thermal conductivity of the reactive film 21 is increased as the ratio of the nickel thin film 21b to the reactive film 21 increases, that is, the amount of aluminum (Al) that mainly ensures the thermal conductivity. As the amount of nickel (Ni) having a low thermal conductivity decreases and decreases, the amount decreases in inverse proportion to this.

このように、アルミニウム薄膜21a及びニッケル薄膜21bからなる反応性膜21は、その反応温度と熱伝導率とが相反する関係にあることから、こうした関係を積極的に利用することで反応性膜21にそれら反応温度と熱伝導率とが両立する特性を持たせることができるようになる。そこで本実施の形態では、これら図4及び図5に示す関係に基づいて反応性膜21の目標反応温度をロウ材20の溶融のための最低温度である「600℃」に設定するとともに、このときの反応性膜21に対するニッケル薄膜21bの割合Pn2、及びアルミニウム薄膜21aの割合Pa2(=(Q−Q・Pn2)/Q)を算出する。そしてこれらの割合と、アルミニウム薄膜21aの膜厚αとニッケル薄膜21bの膜厚βとが以下の関係式(ロ)を満たす態様でそれら各膜厚α、βを調整する。   As described above, the reactive film 21 composed of the aluminum thin film 21a and the nickel thin film 21b is in a relationship in which the reaction temperature and the thermal conductivity are in conflict, and therefore, the reactive film 21 is actively used by using such a relationship. It is possible to have the characteristics that the reaction temperature and the thermal conductivity are compatible with each other. Therefore, in the present embodiment, the target reaction temperature of the reactive film 21 is set to “600 ° C.” that is the lowest temperature for melting the brazing material 20 based on the relationship shown in FIG. 4 and FIG. The ratio Pn2 of the nickel thin film 21b to the reactive film 21 and the ratio Pa2 of the aluminum thin film 21a (= (Q−Q · Pn2) / Q) are calculated. And these each film thickness (alpha) and (beta) are adjusted in the aspect with which the film thickness (alpha) of the aluminum thin film 21a, and the film thickness (beta) of the nickel thin film 21b satisfy | fill the following relational expression (b).

Pa2:Pn2=α:β(=n・α:n・β) …(ロ)
Pa2:反応性膜21に対するアルミニウム薄膜21aの割合
Pn2:反応性膜21に対するニッケル薄膜21bの割合
α:アルミニウム薄膜21aの膜厚
β:ニッケル薄膜21bの膜厚
n:積層数
すなわち、このような関係式(ロ)を満たす態様で反応性膜21が構成されることによ
って、ロウ材20の溶融に最低限必要な反応温度「600℃」の確保と、この反応温度「600℃」を確保する上で最大の熱伝導率λxの確保との両立が図られるようになる。
Pa2: Pn2 = α: β (= n · α: n · β) (B)
Pa2: Ratio of the aluminum thin film 21a to the reactive film 21
Pn2: Ratio of the nickel thin film 21b to the reactive film 21
α: film thickness of the aluminum thin film 21a
β: film thickness of the nickel thin film 21b
n: Number of stacked layers In other words, by forming the reactive film 21 in a manner that satisfies such a relational expression (b), it is possible to secure the minimum reaction temperature “600 ° C.” necessary for melting the brazing material 20 and In securing the reaction temperature “600 ° C.”, it is possible to achieve both the securing of the maximum thermal conductivity λx.

次に、このような反応性膜21を用いて絶縁基板12及び冷却器13の接合を行う本実施の形態にかかる半導体装置の製造方法について、その製造工程の一例を図6及び図7を参照しつつ説明する。   Next, an example of the manufacturing process of the semiconductor device manufacturing method according to the present embodiment in which the insulating substrate 12 and the cooler 13 are bonded using the reactive film 21 will be described with reference to FIGS. However, it will be explained.

この製造に際してはまず、図6(a)に示すように、例えば窒化アルミニウム(AlN)等のセラミック基板11の両面にアルミニウム(Al)板11a及び11bが接着された絶縁基板(DBA)12上に、例えばIGBTからなる半導体素子10を半田付けによって実装する。これによって、半田14を接合媒体とした半導体素子10及び絶縁基板12からなる構造体が形成される。なお、上記セラミック基板11の材料としては、絶縁性を確保できるものであればよく、上記窒化アルミニウム(AlN)の他、窒素ケイ素(Si4)、酸化アルミニウム(Al)等を挙げることができるが、熱伝導率及び熱膨張係数等の観点からは上記窒化アルミニウム(AlN)が好適である。 6A, first, on an insulating substrate (DBA) 12 in which aluminum (Al) plates 11a and 11b are bonded to both surfaces of a ceramic substrate 11 such as aluminum nitride (AlN), for example. For example, the semiconductor element 10 made of IGBT is mounted by soldering. As a result, a structure including the semiconductor element 10 and the insulating substrate 12 using the solder 14 as a bonding medium is formed. The material of the ceramic substrate 11 may be any material as long as it can ensure insulation. In addition to the above aluminum nitride (AlN), nitrogen silicon (Si 3 N 4) , aluminum oxide (Al 2 O 3 ), etc. The aluminum nitride (AlN) is preferable from the viewpoints of thermal conductivity, thermal expansion coefficient, and the like.

このようにして半導体素子10及び絶縁基板12からなる構造体の形成を終えると、次に図6(b)に示すように、絶縁基板12を構成する下側のアルミニウム板11bの下面に例えばアルミニウム系からなるロウ材20を塗布する。そして、図6(c)に示すように、ロウ材20の表面(下面)に多層膜スパッタ法等を用いた成膜処理を施して、先の図2に拡大断面構造を例示したようなアルミニウム薄膜21aとニッケル薄膜21bとが交互に積層された反応性膜21を成膜する。ここで、この成膜されるアルミニウム薄膜21aとニッケル薄膜21bとの割合(膜厚)により、反応性膜21としての特性がロウ材20を溶融するために必要最低限の反応温度「600℃」の確保とロウ材固化後の熱伝導率の確保とを両立し得る特性に設定されることは上述の通りである。続いて、図6(d)に示すように、半導体素子10の動作時の冷却を行う上記冷却器13上に、構造体側の上記反応性膜21により覆われたロウ材20と対向する態様でもう一方のロウ材20を塗布する。   When the formation of the structure including the semiconductor element 10 and the insulating substrate 12 is completed in this way, as shown in FIG. 6B, for example, aluminum is formed on the lower surface of the lower aluminum plate 11b constituting the insulating substrate 12. A brazing material 20 made of a system is applied. Then, as shown in FIG. 6C, the surface (lower surface) of the brazing material 20 is subjected to a film forming process using a multilayer film sputtering method or the like, and the aluminum as illustrated in FIG. A reactive film 21 in which thin films 21a and nickel thin films 21b are alternately stacked is formed. Here, depending on the ratio (film thickness) between the aluminum thin film 21a and the nickel thin film 21b, the characteristic as the reactive film 21 is the minimum reaction temperature “600 ° C.” necessary for melting the brazing material 20. As described above, it is set to a characteristic capable of satisfying both the securing of heat conductivity and the securing of thermal conductivity after solidifying the brazing material. Subsequently, as shown in FIG. 6D, in a mode facing the brazing material 20 covered with the reactive film 21 on the structure side on the cooler 13 that cools the semiconductor element 10 during operation. The other brazing material 20 is applied.

このようにしてロウ材20及び反応性膜21の塗布、成膜を終えると、次いで、図7(a)に示すように、冷却器13上に形成されたロウ材20と、絶縁基板12の下側のアルミニウム板11bに形成されたロウ材20及び反応性膜21とが対向、当接する態様で、冷却器13上に半導体素子10及び絶縁基板12からなる構造体を積層する。すなわちこれにより、冷却器13と半導体素子10及び絶縁基板12からなる構造体との間には、反応性膜21を挟持する態様でロウ材20が積層されることとなる。そしてこの状態で、冷却器13に上記構造体を接合すべく、上記反応性膜21に反応条件を付与する。この反応条件の付与としては、火花の印加や過電流の通電等が挙げられる。反応性膜21にこうして反応条件が付与されると、先の図3に示したように、反応性膜21の自己伝播反応に伴う約「600℃」の反応熱が数μ〜数十μ秒程度の間発生する。そしてこれにより、反応性膜21を挟持する態様で積層されていたロウ材20にその融解温度である約「600℃」の熱が印加され、ロウ材20は瞬時に溶融される。このように、反応性膜21の反応に伴ってロウ材20に反応熱が印加される時間は数μ〜数十μ程度といった極めて短時間である。このため、接合対象である冷却器13や半導体素子10及び絶縁基板12からなる構造体に過大な応力が内在する以前にこれらの接合がなされるようになる。   When the application and deposition of the brazing material 20 and the reactive film 21 are completed in this manner, the brazing material 20 formed on the cooler 13 and the insulating substrate 12 are then formed as shown in FIG. A structure composed of the semiconductor element 10 and the insulating substrate 12 is laminated on the cooler 13 in such a manner that the brazing material 20 and the reactive film 21 formed on the lower aluminum plate 11b are opposed to and in contact with each other. That is, as a result, the brazing material 20 is laminated between the cooler 13 and the structure composed of the semiconductor element 10 and the insulating substrate 12 so as to sandwich the reactive film 21. In this state, reaction conditions are applied to the reactive film 21 in order to join the structure to the cooler 13. Examples of the application of the reaction conditions include application of a spark and energization of an overcurrent. When the reaction conditions are given to the reactive film 21 in this way, as shown in FIG. 3, the reaction heat of about “600 ° C.” accompanying the self-propagation reaction of the reactive film 21 is several μs to several tens μs. Occurs for a degree. As a result, the heat of about “600 ° C.”, which is the melting temperature, is applied to the brazing material 20 that is laminated in such a manner as to sandwich the reactive film 21, and the brazing material 20 is instantaneously melted. Thus, the time for which the reaction heat is applied to the brazing material 20 in response to the reaction of the reactive film 21 is an extremely short time of about several μ to several tens of μ. For this reason, before the excessive stress is inherent in the structure composed of the cooler 13, the semiconductor element 10, and the insulating substrate 12 to be bonded, the bonding is performed.

そして、こうして反応性膜21の反応が終了すると、図7(b)に示すように、ロウ材20及び反応性膜21が溶融混合された接合層23によって冷却器13に半導体素子10及び絶縁基板12からなる構造体が接合され、これらが一体になった半導体装置としてその製造が完了される。   When the reaction of the reactive film 21 is completed in this manner, as shown in FIG. 7B, the semiconductor element 10 and the insulating substrate are brought into the cooler 13 by the bonding layer 23 in which the brazing material 20 and the reactive film 21 are melted and mixed. The structure consisting of 12 is joined, and the manufacture is completed as a semiconductor device in which these are integrated.

以上説明したように、本実施の形態にかかる半導体装置の製造方法によれば、以下のような効果が得られるようになる。
(1)ロウ材20により挟持された反応性膜21の自己伝播反応に基づく反応熱により、ロウ材20を瞬時かつ均一に溶融することで、冷却器13に半導体素子10及び絶縁基板12からなる構造体を溶接接合することとした。これにより、冷却器13や半導体素子10及び絶縁基板12からなる構造体に過大な応力が内在する以前にこれらの接合を完了することができ、接合後にこれら構造体や冷却器13に内在する応力を的確に抑制することができるようになる。
As described above, according to the manufacturing method of the semiconductor device according to the present embodiment, the following effects can be obtained.
(1) The brazing material 20 is instantaneously and uniformly melted by reaction heat based on the self-propagating reaction of the reactive film 21 sandwiched by the brazing material 20, so that the cooler 13 includes the semiconductor element 10 and the insulating substrate 12. The structure was welded. Accordingly, the bonding can be completed before excessive stress is inherent in the structure composed of the cooler 13, the semiconductor element 10, and the insulating substrate 12, and the stress inherent in the structure and the cooler 13 after the bonding. Can be accurately suppressed.

(2)上記反応性膜21を、アルミニウム薄膜21aとニッケル薄膜21bとを交互に積層することによって形成し、アルミニウム薄膜21a及びニッケル薄膜21bの割合をロウ材20の溶融に必要十分な温度(「600℃」)が得られるように設定した。これにより、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合に際して、これらの接合対象に過剰な熱が印加されることなく、ロウ材20のみの溶融を促すことができるようになる。   (2) The reactive film 21 is formed by alternately laminating aluminum thin films 21a and nickel thin films 21b, and the ratio of the aluminum thin films 21a and the nickel thin films 21b is set to a temperature necessary and sufficient for melting the brazing material 20 (" 600 ° C. ”). As a result, when the cooler 13 and the structure including the semiconductor element 10 and the insulating substrate 12 are bonded, it is possible to promote melting of only the brazing material 20 without applying excessive heat to these bonding targets. become.

(3)反応性膜21の反応温度がロウ材20の溶融に必要十分な温度(「600℃」)となるようにアルミニウム薄膜21aとニッケル薄膜21bとの割合が設定されることから、反応性膜21としての反応温度と相反する関係にある熱伝導率を最大の値とすることができるようにもなる。このため、接合材としての熱抵抗を低く維持することができるようにもなる。   (3) Since the ratio of the aluminum thin film 21a and the nickel thin film 21b is set so that the reaction temperature of the reactive film 21 becomes a temperature necessary and sufficient for melting the brazing material 20 (“600 ° C.”), the reactivity It also becomes possible to make the thermal conductivity that is in a relation with the reaction temperature as the film 21 opposite to the maximum value. For this reason, the thermal resistance as a bonding material can be kept low.

(4)冷却器13と半導体素子10及び絶縁基板12からなる構造体に対する熱応力の影響が極めて小さい段階でこれらの接合を完了することができることから、それら接合対象の線膨張係数が異なる場合であれ、その影響をほとんど無視することができるようにもなる。すなわちこれにより、接合対象とする材料の選択にかかる自由度を拡大することができるようになる。   (4) Since these bondings can be completed at a stage where the influence of thermal stress on the structure composed of the cooler 13, the semiconductor element 10, and the insulating substrate 12 is extremely small, the linear expansion coefficients of the bonding objects are different. Anyway, the effect can be almost ignored. In other words, this makes it possible to expand the degree of freedom in selecting the materials to be joined.

(5)また上述のように、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合時における熱の印加時間が極めて短時間であり、特に上記構造体が過剰に加熱されることが抑制されることで、冷却器13に対する上記構造体の接合の前工程で同構造体の形成、すなわち絶縁基板12に対する半導体素子10の半田付けによる実装を済ませておくことができるようになる。これにより、こうした半田付け自体を容易なものとすることができ、より理想的な手順にて半導体装置の生産を行うことができるようになる。すなわち、半導体素子10の半田付け工程を、冷却器13と半導体素子10及び絶縁基板12からなる構造体との接合の前工程で行うことができることで、これらの接合に先立ち事前に半導体素子10の電気特性の検査等を行うことが可能となり、不具合等があれば、その旨を冷却器13との接合前に検知することができるようになる。
(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態を図8を参照して説明する。なお、この第2の実施の形態は、構造体として半導体素子10の発熱を処理するための放熱板30をさらに含むものを接合(製造)の対象としており、その基本的な製造方法は先の第1の実施の形態と共通になっている。
(5) Further, as described above, the heat application time is extremely short when the cooler 13 is bonded to the structure including the semiconductor element 10 and the insulating substrate 12, and the structure is particularly heated excessively. By suppressing this, it is possible to complete the formation of the structure, that is, the mounting of the semiconductor element 10 on the insulating substrate 12 by soldering in the previous step of joining the structure to the cooler 13. . As a result, the soldering itself can be facilitated, and the semiconductor device can be produced by a more ideal procedure. That is, the soldering process of the semiconductor element 10 can be performed in a pre-process of bonding between the cooler 13 and the structure including the semiconductor element 10 and the insulating substrate 12, so that the semiconductor element 10 can be formed in advance prior to the bonding. It becomes possible to inspect electric characteristics and the like, and if there is a defect or the like, that fact can be detected before joining with the cooler 13.
(Second Embodiment)
The second embodiment of the present invention will be described below with reference to FIG. In the second embodiment, a structure that further includes a heat dissipation plate 30 for treating the heat generation of the semiconductor element 10 is an object to be bonded (manufactured), and the basic manufacturing method is as described above. This is common with the first embodiment.

図8は、先の図1に対応する図として、この第2の実施の形態において製造の対象とする半導体装置の接合工程直前の概略断面構造を示したものである。なお、この図8において、先の図1に示した各要素と同一の要素についてはそれぞれ同一の符号を付して示しており、それら要素についての重複する説明は割愛する。   FIG. 8 shows a schematic cross-sectional structure immediately before the bonding step of the semiconductor device to be manufactured in the second embodiment as a diagram corresponding to FIG. In FIG. 8, elements that are the same as those shown in FIG. 1 are given the same reference numerals, and redundant descriptions of these elements are omitted.

すなわち図8に示すように、本実施の形態では、半導体素子10が半田付けによって実
装された絶縁基板(DBA)12にさらに放熱板30を半田付けによって接着固定し、この放熱板30の設けられた構造体を冷却器13に対する接合の対象としている。なお、放熱板30としては、モリブデン(Mo)、銅−モリブデン(Cu−Mo)合金、アルミニウム−炭化ケイ素(Al−SiC)合金、銅(Cu)、アルミニウム(Al)などで形成されたものが望ましく、中でも特に、高い熱伝導率とパワー半導体素子に近い熱膨張係数を有するモリブデン(Mo)が好適である。またここでは、同図8に示されるように、例えば先のIGBT等からなるとする半導体素子10の表面に設けられているエミッタ端子及びゲート端子にワイヤボンディングによる配線が施されており、それらワイヤ31a及び31bを介して配線された半導体素子10の電気的特性が予め検査される。そして、正常な電気的特性を示す半導体素子10が搭載された構造体のみを冷却器13との接合対象とする。
That is, as shown in FIG. 8, in this embodiment, a heat radiating plate 30 is further bonded and fixed to the insulating substrate (DBA) 12 on which the semiconductor element 10 is mounted by soldering, and the heat radiating plate 30 is provided. This structure is an object to be joined to the cooler 13. The heat sink 30 is made of molybdenum (Mo), copper-molybdenum (Cu-Mo) alloy, aluminum-silicon carbide (Al-SiC) alloy, copper (Cu), aluminum (Al), or the like. Among these, molybdenum (Mo) having high thermal conductivity and a thermal expansion coefficient close to that of a power semiconductor element is particularly preferable. Further, here, as shown in FIG. 8, wiring by wire bonding is applied to the emitter terminal and the gate terminal provided on the surface of the semiconductor element 10 made of, for example, the above-described IGBT or the like, and these wires 31a. And the electrical characteristics of the semiconductor element 10 wired via 31b are inspected beforehand. Only the structure on which the semiconductor element 10 exhibiting normal electrical characteristics is mounted is to be joined to the cooler 13.

このような半導体装置にあっても、冷却器13に対する構造体の接合は先の第1の実施の形態に準じて行うことができる。すなわち、先の図6(a)として示した工程に引き続き上記放熱板30を半田付けして構造体を形成し、上述した配線の後、半導体素子10の電気的特性の検査を終えてからは、先の図6(a)〜(d)、及び図7(a)、(b)に準じた手順をもってその製造(接合)を完了することができる。   Even in such a semiconductor device, the structure can be joined to the cooler 13 in accordance with the first embodiment. That is, after the process shown in FIG. 6A is performed, the heat sink 30 is soldered to form a structure, and after the wiring described above, the inspection of the electrical characteristics of the semiconductor element 10 is completed. The manufacturing (joining) can be completed by the procedure according to FIGS. 6 (a) to 6 (d) and FIGS. 7 (a) and 7 (b).

以上説明したように、この第2の実施の形態にかかる半導体装置の製造方法によっても、第1の実施の形態による前記(1)〜(5)の効果に準じた効果が得られるとともに、更に以下のような効果が得られるようになる。   As described above, the semiconductor device manufacturing method according to the second embodiment can obtain the effects according to the effects (1) to (5) according to the first embodiment, and further. The following effects can be obtained.

(6)構造体の形成後、これを冷却器13に接合する前に、ワイヤボンディングによる配線を行って半導体素子10の電気的特性を検査することとした。これにより、冷却器13と上記構造体との接合前に半導体素子10の良否の選別が可能となり、当該半導体装置としての歩留まり、並びに生産性を高めることができるようになる。
(他の実施の形態)
なお、上記各実施の形態は、以下のような態様をもって実施することもできる。
(6) After the structure is formed and before it is joined to the cooler 13, wiring by wire bonding is performed to inspect the electrical characteristics of the semiconductor element 10. As a result, it is possible to select the quality of the semiconductor element 10 before joining the cooler 13 and the structure, and the yield and productivity of the semiconductor device can be improved.
(Other embodiments)
In addition, each said embodiment can also be implemented with the following aspects.

・第1の実施の形態では、説明の便宜上、半導体素子10の電気的特性の検査についてはその言及を割愛したが、この第1の実施の形態においても第2の実施の形態と同様、予めの配線、並びに電気的特性の検査を行うようにしてもよい。   In the first embodiment, for convenience of explanation, the reference to the inspection of the electrical characteristics of the semiconductor element 10 is omitted. However, in the first embodiment, as in the second embodiment, the inspection is performed in advance. The wiring and electrical characteristics may be inspected.

・上記構造体としては、先の各例以外にも、同じく図1に対応する図として例えば図9に示すように、冷却器13上に、ロウ材20によって挟持される反応性膜21を介して、金属板40、絶縁樹脂41、放熱板42、半導体素子10が順に積層された構造体を採用することもできる。このような構造体にあっても、冷却器13との接合に際して反応性膜21に反応条件を付与することにより、上記各実施の形態に準ずる態様にて、構造体や冷却器13に応力の内在しにくい半導体装置を製造することができる。   As the above structure, in addition to the previous examples, as shown in FIG. 9 as a diagram corresponding to FIG. 1, for example, a reactive film 21 sandwiched between brazing members 20 is placed on the cooler 13. In addition, a structure in which the metal plate 40, the insulating resin 41, the heat radiating plate 42, and the semiconductor element 10 are sequentially laminated may be employed. Even in such a structure, stress is applied to the structure and the cooler 13 by applying reaction conditions to the reactive film 21 at the time of joining to the cooler 13 in a manner similar to the above embodiments. It is possible to manufacture a semiconductor device that is difficult to exist.

・また同様に、図1に対応する図として例えば図10に示すように、上記構造体の周囲にハウジング50a及び50bが形成され、さらにその中に上記ワイヤ31a及び31bと電気的に接続されるバスバー51a及び51bが形成された半導体装置などにも、本発明の製造方法は適用可能である。また、同じく図1に対応する図として例えば図11に示すように、図8に例示した第2の実施の形態にて製造対象とした半導体装置にこれらハウジング50a及び50b、ワイヤ31a及び31bを設けたものや、同様に図1に対応する図として例えば図12に示すように、図9に例示したような構造体をモールドパッケージ52にて封止したものなどにも、本発明の製造方法は同様に適用可能である。   Similarly, as shown in FIG. 10 as a diagram corresponding to FIG. 1, for example, housings 50a and 50b are formed around the structure, and are further electrically connected to the wires 31a and 31b therein. The manufacturing method of the present invention can also be applied to a semiconductor device in which the bus bars 51a and 51b are formed. Further, as shown in FIG. 11 as a diagram corresponding to FIG. 1, for example, the housings 50a and 50b and the wires 31a and 31b are provided in the semiconductor device manufactured in the second embodiment illustrated in FIG. The manufacturing method of the present invention is also applicable to a structure in which a structure as illustrated in FIG. 9 is sealed with a mold package 52 as shown in FIG. The same applies.

・上記各実施の形態では、反応性膜21を多層膜スパッタ法によって成膜する例につい
て示したが、他に例えば、PVD法やCVD法等でこれを成膜するようにしてもよい。
・上記各実施の形態では、構造体の下面に塗布されたロウ材20に反応性膜21を成膜するようにしたが、これに限らず、冷却器13上に塗布されたロウ材20の上に反応性膜21を成膜するようにしてもよい。また、別工程で反応性膜21を成膜し、これをロウ材20に挟持する態様で積層するようにしてもよい。
In each of the above-described embodiments, the example in which the reactive film 21 is formed by the multilayer film sputtering method has been described. Alternatively, for example, the reactive film 21 may be formed by a PVD method, a CVD method, or the like.
In each of the above embodiments, the reactive film 21 is formed on the brazing material 20 applied to the lower surface of the structure. However, the present invention is not limited to this, and the brazing material 20 applied on the cooler 13 is not limited to this. A reactive film 21 may be formed thereon. Alternatively, the reactive film 21 may be formed in a separate process and laminated in such a manner that the reactive film 21 is sandwiched between the brazing materials 20.

・上記各実施の形態では、接合材としてアルミニウム系のロウ材20を用いることとしたが、これに限らず、銀ロウ、リン銅ロウ、銅ロウ、銅合金ロウ、ペーストロウ、粉末ロウ、アルミニウム合金ロウ、ニッケルロウ等のロウ材を用い、これらの融解温度に応じてアルミニウム薄膜21aとニッケル薄膜21bとを各々膜厚調整するようにしてもよい。また、接合材としては熱抵抗が低いものであればよく、ロウ材20に代えて例えば半田等を用いるようにしてもよい。   In each of the above embodiments, the aluminum-based brazing material 20 is used as the bonding material. However, the present invention is not limited to this, and silver brazing, phosphorous copper brazing, copper brazing, copper alloy brazing, paste brazing, powder brazing, aluminum A brazing material such as alloy brazing or nickel brazing may be used, and the thickness of the aluminum thin film 21a and the nickel thin film 21b may be adjusted in accordance with the melting temperature thereof. The bonding material only needs to have a low thermal resistance, and for example, solder or the like may be used instead of the brazing material 20.

・上記各実施の形態では、反応性膜21を構成する金属薄膜としてアルミニウム薄膜21a及びニッケル薄膜21bを用いたが、反応温度と熱伝導率との相反する関係の中で接合材の溶融を可能とする反応温度と熱伝導率とを両立し得る特性に設定されるものであればよく、アルミニウム薄膜21aを第1の金属薄膜とするとき、これと交互に積層される第2の金属薄膜としては、上記ニッケル薄膜以外にも、例えばチタン(Ti)薄膜やタンタル(Ta)薄膜等を採用することもできる。   In each of the above embodiments, the aluminum thin film 21a and the nickel thin film 21b are used as the metal thin film constituting the reactive film 21. However, the bonding material can be melted in the contradictory relationship between the reaction temperature and the thermal conductivity. As long as the reaction temperature and the thermal conductivity are set to be compatible with each other, when the aluminum thin film 21a is the first metal thin film, the second metal thin film is alternately laminated. In addition to the nickel thin film, for example, a titanium (Ti) thin film or a tantalum (Ta) thin film can be employed.

・上記各実施の形態では、第1の金属薄膜と第2の金属薄膜との2種類の金属薄膜を交互に積層することによって反応性膜21を形成することとしたが、これに限らず、3種類以上の金属薄膜を積層することによって反応性膜21を形成するようにしてもよい。   In each of the above embodiments, the reactive film 21 is formed by alternately laminating two kinds of metal thin films, ie, the first metal thin film and the second metal thin film. The reactive film 21 may be formed by laminating three or more kinds of metal thin films.

・上記実施の形態では、絶縁基板12上に半導体素子10の半田付けを行った後に、構造体と冷却器13との接合を行うこととした。これに限らず、構造体と冷却器13との接合後に絶縁基板12上に半導体素子10の半田付けを行うようにしてもよい。   In the above embodiment, after the semiconductor element 10 is soldered on the insulating substrate 12, the structure and the cooler 13 are joined. Not limited to this, the semiconductor element 10 may be soldered onto the insulating substrate 12 after the structure and the cooler 13 are joined.

・上記実施の形態では、上記構造体を支持する支持体として、水冷式の冷却器13を用いたが、これに代えて空冷式の冷却器を用いてもよい。また、冷却器に限らず、同支持体としては放熱板(ブロック)や金属板(ブロック)等を用いるようにしてもよい。   In the embodiment described above, the water-cooled cooler 13 is used as a support for supporting the structure, but an air-cooled cooler may be used instead. Moreover, you may make it use not only a cooler but a heat sink (block), a metal plate (block), etc. as the support body.

本発明にかかる半導体装置の製造方法の第1の実施の形態について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a cross-sectional structure of a semiconductor device manufacturing method according to the present invention immediately before joining a semiconductor device to be applied; 同実施の形態に採用される反応性膜の拡大断面構造を示す断面図。Sectional drawing which shows the expanded sectional structure of the reactive film employ | adopted as the embodiment. 同実施の形態における反応性膜の反応温度の推移例とロウ材の溶融に従来用いられていた高周波誘導加熱法による熱源の温度の推移例とを対比して示すグラフ。The graph which compares and shows the transition example of the reaction temperature of the reactive film in the same embodiment, and the transition example of the temperature of the heat source by the high frequency induction heating method conventionally used for melting of the brazing material. 同実施の形態における反応性膜を構成するニッケル薄膜(アルミニウム薄膜)の割合と反応性膜の反応温度との関係を示すグラフ。The graph which shows the relationship between the ratio of the nickel thin film (aluminum thin film) which comprises the reactive film in the same embodiment, and the reaction temperature of a reactive film. 同実施の形態における反応性膜を構成するニッケル薄膜(アルミニウム薄膜)の割合と反応性膜の熱伝導率との関係を示すグラフ。The graph which shows the relationship between the ratio of the nickel thin film (aluminum thin film) which comprises the reactive film in the embodiment, and the thermal conductivity of a reactive film. (a)〜(d)は、同実施の形態における半導体装置の製造方法について、主にその積層工程を示す概略断面図。(A)-(d) is a schematic sectional drawing which mainly shows the lamination process about the manufacturing method of the semiconductor device in the embodiment. (a)、(b)は、同実施の形態における半導体装置の製造方法について、主にその接合工程を示す概略断面図。(A), (b) is a schematic sectional drawing which mainly shows the joining process about the manufacturing method of the semiconductor device in the embodiment. 本発明にかかる半導体装置の製造方法の第2の実施の形態について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。The schematic sectional drawing which shows the cross-section immediately before joining of the semiconductor device made into application object about 2nd Embodiment of the manufacturing method of the semiconductor device concerning this invention. 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。The schematic sectional drawing which shows the cross-section immediately before joining of the semiconductor device made into application object about the modification with respect to said each embodiment of the manufacturing method of the semiconductor device concerning this invention. 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。The schematic sectional drawing which shows the cross-section immediately before joining of the semiconductor device made into application object about the modification with respect to said each embodiment of the manufacturing method of the semiconductor device concerning this invention. 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。The schematic sectional drawing which shows the cross-section immediately before joining of the semiconductor device made into application object about the modification with respect to said each embodiment of the manufacturing method of the semiconductor device concerning this invention. 本発明にかかる半導体装置の製造方法の上記各実施の形態に対する変形例について、適用対象とする半導体装置の接合直前の断面構造を示す概略断面図。The schematic sectional drawing which shows the cross-section immediately before joining of the semiconductor device made into application object about the modification with respect to said each embodiment of the manufacturing method of the semiconductor device concerning this invention.

符号の説明Explanation of symbols

10…半導体素子、11…セラミック基板、11a、11b…アルミニウム板、12…絶縁基板(DBA)、13…冷却器、14…半田、20…ロウ材、21…反応性膜、21a…アルミニウム薄膜、21b…ニッケル薄膜、23…接合層、30…放熱板、31a、31b…ワイヤ、40…金属板、41…絶縁樹脂、42…放熱板、50a、50b…ハウジング、51a、51b…バスバー、52…モールドパッケージ。   DESCRIPTION OF SYMBOLS 10 ... Semiconductor element, 11 ... Ceramic substrate, 11a, 11b ... Aluminum plate, 12 ... Insulating substrate (DBA), 13 ... Cooler, 14 ... Solder, 20 ... Brazing material, 21 ... Reactive film | membrane, 21a ... Aluminum thin film, 21b ... nickel thin film, 23 ... bonding layer, 30 ... heat sink, 31a, 31b ... wire, 40 ... metal plate, 41 ... insulating resin, 42 ... heat sink, 50a, 50b ... housing, 51a, 51b ... bus bar, 52 ... Mold package.

Claims (8)

半導体素子を含む構造体がこれを支持する支持体に一体に接合されて構成される半導体装置の前記半導体素子を含む構造体を熱抵抗の低い接合材を介して前記支持体に接合する半導体装置の製造方法において、
反応温度と熱伝導率との相反する関係の中で前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定された反応性膜を前記接合材によって挟持する態様で前記支持体上にこれら接合材及び反応性膜及び接合材及び前記構造体を順に積層し、この状態で前記反応性膜にその反応を誘起する反応条件を付与することにより前記接合材を溶融せしめて前記支持体に前記構造体を接合する
ことを特徴とする半導体装置の製造方法。
A semiconductor device in which a structure including a semiconductor element is integrally bonded to a support that supports the structure, and the structure including the semiconductor element is bonded to the support via a bonding material having a low thermal resistance. In the manufacturing method of
A reactive film having a characteristic that can achieve both a reaction temperature that enables melting of the bonding material and securing of thermal conductivity in a conflicting relationship between the reaction temperature and thermal conductivity is sandwiched by the bonding material. In this embodiment, the bonding material, the reactive film, the bonding material, and the structure are sequentially laminated on the support, and in this state, the reactive film is given reaction conditions that induce the reaction. A method for manufacturing a semiconductor device, comprising: melting a substrate and bonding the structure to the support.
前記反応性膜として、反応温度が低くかつ熱伝導率の高い金属薄膜からなる第1の金属薄膜と反応温度が高くかつ熱伝導率の低い金属薄膜からなる第2の金属薄膜とが複数層、交互に積層された膜を用い、特定の積層数の中でのこれら第1の金属薄膜の膜厚と第2の金属薄膜の膜厚との膜厚調整を通じて前記接合材の溶融を可能とする反応温度と熱伝導率の確保とを両立し得る特性に設定する
請求項1に記載の半導体装置の製造方法。
As the reactive film, a plurality of first metal thin films made of a metal thin film having a low reaction temperature and high thermal conductivity and a second metal thin film made of a metal thin film having a high reaction temperature and low thermal conductivity, Using the alternately stacked films, the bonding material can be melted by adjusting the film thicknesses of the first metal thin film and the second metal thin film within a specific number of layers. The method for manufacturing a semiconductor device according to claim 1, wherein the characteristics are set such that the reaction temperature and the thermal conductivity can be ensured.
前記反応性膜を構成する前記第1の金属薄膜としてアルミニウム薄膜を用い、前記第2の金属薄膜としてニッケル薄膜を用いる
請求項2に記載の半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 2, wherein an aluminum thin film is used as the first metal thin film constituting the reactive film, and a nickel thin film is used as the second metal thin film.
前記接合材としてアルミニウム系のロウ材を用い、前記反応性膜の反応温度が600℃となるように前記アルミニウム薄膜と前記ニッケル薄膜とが各々膜厚調整される
請求項3に記載の半導体装置の製造方法。
4. The semiconductor device according to claim 3, wherein an aluminum-based brazing material is used as the bonding material, and the aluminum thin film and the nickel thin film are each adjusted to have a reaction temperature of 600 ° C. 4. Production method.
前記構造体及び前記支持体の各接合面に前記接合材を予め塗布しておくとともに、それら接合材の塗布された構造体及び支持体のいずれか一方の接合材の表面に前記反応性膜を予め成膜しておく
請求項1〜4のいずれか一項に記載の半導体装置の製造方法。
The bonding material is previously applied to each bonding surface of the structure and the support, and the reactive film is applied to the surface of one of the structure and the support to which the bonding material is applied. The method for manufacturing a semiconductor device according to claim 1, wherein a film is formed in advance.
前記構造体として、両面にアルミニウム板の接着された絶縁基板上に前記半導体素子が半田付けによって実装されたものを含むものを用いる
請求項1〜5のいずれか一項に記載の半導体装置の製造方法。
The semiconductor device according to any one of claims 1 to 5, wherein the structure includes a structure in which the semiconductor element is mounted by soldering on an insulating substrate having an aluminum plate bonded on both sides. Method.
前記構造体として、金属からなる放熱板上に前記半導体素子もしくは両面にアルミニウム板の接着された絶縁基板が半田付けによって実装されたものを含むものを用いる
請求項1〜5のいずれか一項に記載の半導体装置の製造方法。
The structure according to any one of claims 1 to 5, wherein the structure includes a semiconductor radiator or an insulating substrate having an aluminum plate bonded to both sides thereof mounted by soldering on a heat sink made of metal. The manufacturing method of the semiconductor device of description.
前記構造体を支持する支持体として、液冷式もしくは空冷式の冷却器を用いる
請求項1〜7のいずれか一項に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1, wherein a liquid-cooled or air-cooled cooler is used as a support that supports the structure.
JP2008282082A 2008-10-31 2008-10-31 Manufacturing method of semiconductor device Expired - Fee Related JP5018737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282082A JP5018737B2 (en) 2008-10-31 2008-10-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282082A JP5018737B2 (en) 2008-10-31 2008-10-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010109278A true JP2010109278A (en) 2010-05-13
JP5018737B2 JP5018737B2 (en) 2012-09-05

Family

ID=42298397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282082A Expired - Fee Related JP5018737B2 (en) 2008-10-31 2008-10-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5018737B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080053A (en) * 2010-09-30 2012-04-19 Arima Lasers Corp Conduction cooled package laser and method for packaging the same
JP2012516239A (en) * 2009-01-29 2012-07-19 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ MICROSTRUCTURE, ITS MANUFACTURING METHOD, MICROSTRUCTURE AND MICROSYSTEM BONDING DEVICE
JP2014236022A (en) * 2013-05-30 2014-12-15 新光電気工業株式会社 Method of manufacturing semiconductor device
JP2015116574A (en) * 2013-12-16 2015-06-25 公立大学法人兵庫県立大学 Reactive multilayer film and joining method for device using the same
US10314208B2 (en) * 2014-07-10 2019-06-04 Continental Automotive Gmbh Cooling device, method for producing a cooling device and power circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270596A (en) * 1997-03-26 1998-10-09 Mitsubishi Materials Corp Ceramic circuit substrate with heat sink
JP2008166356A (en) * 2006-12-27 2008-07-17 T Rad Co Ltd Method for manufacturing aluminum heat-sink
JP2008238233A (en) * 2007-03-28 2008-10-09 Toshiba Corp Non-lead based alloy joining material, joining method, and joined body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270596A (en) * 1997-03-26 1998-10-09 Mitsubishi Materials Corp Ceramic circuit substrate with heat sink
JP2008166356A (en) * 2006-12-27 2008-07-17 T Rad Co Ltd Method for manufacturing aluminum heat-sink
JP2008238233A (en) * 2007-03-28 2008-10-09 Toshiba Corp Non-lead based alloy joining material, joining method, and joined body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012516239A (en) * 2009-01-29 2012-07-19 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ MICROSTRUCTURE, ITS MANUFACTURING METHOD, MICROSTRUCTURE AND MICROSYSTEM BONDING DEVICE
JP2012080053A (en) * 2010-09-30 2012-04-19 Arima Lasers Corp Conduction cooled package laser and method for packaging the same
JP2014236022A (en) * 2013-05-30 2014-12-15 新光電気工業株式会社 Method of manufacturing semiconductor device
JP2015116574A (en) * 2013-12-16 2015-06-25 公立大学法人兵庫県立大学 Reactive multilayer film and joining method for device using the same
US10314208B2 (en) * 2014-07-10 2019-06-04 Continental Automotive Gmbh Cooling device, method for producing a cooling device and power circuit

Also Published As

Publication number Publication date
JP5018737B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP6272512B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6199397B2 (en) Semiconductor device and manufacturing method thereof
CN107534033B (en) Bonded body, substrate for power module with heat sink, method for manufacturing bonded body, method for manufacturing substrate for power module with heat sink, and method for manufacturing heat sink
JP6300633B2 (en) Power module
JP4371151B2 (en) Semiconductor power module
US20110235279A1 (en) Cooling device
JP5125241B2 (en) Power module substrate manufacturing method
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
WO2011040313A1 (en) Semiconductor module, process for production thereof
JP5018737B2 (en) Manufacturing method of semiconductor device
JP2012160548A (en) Insulation substrate, and power module having insulation substrate
JP2014112732A (en) Substrate for power module with heat sink and power module
CN112823073B (en) Joined body, insulated circuit board with heat sink, and heat sink
JP2008306134A (en) Semiconductor module
JP5808295B2 (en) module
JP2004327711A (en) Semiconductor module
JP2005328087A (en) Power module substrate
JP2009158715A (en) Heat dissipator and power module
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP6413230B2 (en) Resistor and manufacturing method of resistor
JP2007067220A (en) Power semiconductor device and inverter using same
US10804236B2 (en) Power electronic assemblies with high purity aluminum plated substrates
JP6118583B2 (en) Insulating substrate
JP6201297B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP5315635B2 (en) Manufacturing method of power module heat sink and ceramic layer bonded substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees