JP2010106963A - Electrically conductive roller - Google Patents

Electrically conductive roller Download PDF

Info

Publication number
JP2010106963A
JP2010106963A JP2008279632A JP2008279632A JP2010106963A JP 2010106963 A JP2010106963 A JP 2010106963A JP 2008279632 A JP2008279632 A JP 2008279632A JP 2008279632 A JP2008279632 A JP 2008279632A JP 2010106963 A JP2010106963 A JP 2010106963A
Authority
JP
Japan
Prior art keywords
roller
axial direction
shaft
bearing support
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008279632A
Other languages
Japanese (ja)
Other versions
JP5269546B2 (en
Inventor
Yoshihiko Mukoyama
慶彦 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008279632A priority Critical patent/JP5269546B2/en
Priority to PCT/JP2009/068712 priority patent/WO2010050597A1/en
Priority to CN200980143616.1A priority patent/CN102203440B/en
Publication of JP2010106963A publication Critical patent/JP2010106963A/en
Application granted granted Critical
Publication of JP5269546B2 publication Critical patent/JP5269546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0808Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the developer supplying means, e.g. structure of developer supply roller
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0806Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller
    • G03G15/0818Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer on a donor element, e.g. belt, roller characterised by the structure of the donor member, e.g. surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1665Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
    • G03G15/167Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
    • G03G15/1685Structure, details of the transfer member, e.g. chemical composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/0005Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium
    • G03G21/0058Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge for removing solid developer or debris from the electrographic recording medium using a roller or a polygonal rotating cleaning member; Details thereof, e.g. surface structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Dry Development In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrically conductive roller, wherein the strength of the root part of a shaft is increased to prevent the shaft from breaking at the root part. <P>SOLUTION: This electrically conductive roller 10 is provided with a shaft member 3 attached to an end of a circular tube-like base 4, and the shaft member 3 is provided with a flange section 1 and a shaft section 2 which is extended in the direction of the axis of the roller. A bearing support section 1a is formed on the outer peripheral section at an outer end, in the direction of the axis of the roller, of the flange section 1. The root 6 of the shaft section 2 is formed at a position offset inward from an end surface of the bearing support section 1a as a refernce in the direction of the axis of the roller. A thickened wall section 1b is formed at the root 6, in the electrically conductive roller 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電性ローラ(以下、単に「ローラ」とも称する)に関し、詳しくは、軸の根元の強度を高め、軸の根元の折れを防止できる導電性ローラに関する。   The present invention relates to a conductive roller (hereinafter, also simply referred to as “roller”), and more particularly to a conductive roller that can increase the strength of the shaft base and prevent the shaft from being bent.

一般に、複写機やプリンタ、ファクシミリ等の電子写真方式を用いた画像形成装置においては、画像形成の各工程で、転写ローラ、現像ローラ、トナー供給ローラ、帯電ローラ、クリーニングローラ、中間転写ローラ、ベルト駆動ローラ等の、導電性を付与したローラが用いられている。   In general, in an image forming apparatus using an electrophotographic system such as a copying machine, a printer, and a facsimile machine, a transfer roller, a developing roller, a toner supply roller, a charging roller, a cleaning roller, an intermediate transfer roller, and a belt are used in each image forming process. A roller having conductivity, such as a driving roller, is used.

かかる導電性ローラとして、例えば、特許文献1には、複数の金属板をそれぞれ曲げ加工し、円筒状に湾曲し、その両側縁を開先加工し、開先溶接によって各金属板の両側縁間をした円筒状の導電性ローラが、開示されている。   As such a conductive roller, for example, in Patent Document 1, a plurality of metal plates are bent, bent into a cylindrical shape, grooved on both side edges thereof, and grooved between both side edges of each metal plate. A cylindrical conductive roller is disclosed.

また、特許文献2および3には、シャフト部材の外周上に導電性の弾性層を形成し、この弾性層上に導電性の樹脂層を形成し、シャフト部材が、樹脂製の中実円柱体およびその両端に形成されたそれぞれの軸部よりなる導電性ローラが、開示されている。   In Patent Documents 2 and 3, a conductive elastic layer is formed on the outer periphery of the shaft member, a conductive resin layer is formed on the elastic layer, and the shaft member is a solid cylinder made of resin. And the electroconductive roller which consists of each axial part formed in the both ends is disclosed.

さらに、図7に示すように、円筒状基体34の外周に弾性層35を設けた構成を有しており、用途に応じて、金属製パイプの両端に軸部32を形成したフランジ31を嵌合して、その外周に弾性層35を形成した構造や、芯金等のシャフトの外周に円筒状基体本体を設けて、その外周に弾性層35を形成した構造の導電性ローラ30が、知られている。
実公平7−54198号公報 特開2006−251004号公報 特開2006−285209号公報
Furthermore, as shown in FIG. 7, it has the structure which provided the elastic layer 35 in the outer periphery of the cylindrical base | substrate 34, and fitted the flange 31 which formed the axial part 32 on the both ends of the metal pipe according to a use. In addition, a conductive roller 30 having a structure in which an elastic layer 35 is formed on the outer periphery thereof, or a structure in which a cylindrical base body is provided on the outer periphery of a shaft such as a core metal and the elastic layer 35 is formed on the outer periphery thereof is known. It has been.
No. 7-54198 JP 2006-251004 A JP 2006-285209 A

しかしながら、特許文献1〜3等に記載の従来の導電性ローラは、図8に示すように、フランジ部31と軸部32との根元36、あるいはジャーナルと軸部との接合部等の軸の根元が略直角に形成されているため、所定の強度がかかると軸の根元に応力が集中して破壊の起点となり、その結果、軸の根元が折れるという問題がある。また、軸の根元にRを付けることで、上記折れの問題を解決できると考えられるが、フランジ部の軸受け支持部31aで軸受け部品を支持する制約があるため、軸の根元にRを付けることができない。   However, the conventional conductive rollers described in Patent Documents 1 to 3 and the like have shafts such as the root 36 of the flange portion 31 and the shaft portion 32 or the joint portion between the journal and the shaft portion, as shown in FIG. Since the root is formed at a substantially right angle, when a predetermined strength is applied, stress concentrates on the root of the shaft and becomes a starting point of fracture, and as a result, there is a problem that the root of the shaft is broken. In addition, it is thought that the problem of the above-mentioned bending can be solved by adding R to the shaft base. However, since there is a restriction to support the bearing parts by the bearing support portion 31a of the flange portion, R is added to the shaft base. I can't.

そこで本発明の目的は、上記問題を解消して、軸の根元の強度を高め、軸の根元の折れを防止できる導電性ローラを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a conductive roller that can solve the above problems, increase the strength of the shaft base, and prevent the shaft base from being broken.

本発明者は、上記課題を解決するために、鋭意検討した結果、フランジ部と軸部との根元の位置を規定し、該根元の外周側に肉盛部を形成することで、軸の根元の強度を高め、軸の根元の折れを防止できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor defines the position of the base of the flange part and the shaft part, and forms a built-up part on the outer peripheral side of the base, thereby forming the base of the shaft. As a result, it was found that the strength of the shaft can be increased and the shaft can be prevented from being broken.

即ち、本発明の導電性ローラは、円筒状基体の端部に、フランジ部とローラ軸方向に延設した軸部とを備えた軸部材が取り付けられた導電性ローラにおいて、
前記フランジ部のローラ軸方向外側の端部の外周部に、軸受け支持部が形成され、
前記軸部の根元が、前記軸受け支持部の端面を基準にローラ軸方向内側にオフセットされた位置に形成され、
前記根元に、肉盛部が形成されてなることを特徴とするものである。
That is, the conductive roller of the present invention is a conductive roller in which a shaft member including a flange portion and a shaft portion extending in the roller axial direction is attached to an end portion of a cylindrical base body.
A bearing support portion is formed on the outer peripheral portion of the outer end of the flange portion in the axial direction of the roller,
The base of the shaft is formed at a position offset inward in the roller axial direction with reference to the end surface of the bearing support,
A built-up portion is formed at the base.

また、本発明の導電性ローラは、前記肉盛部のローラ軸方向の断面形状における前記ローラ軸方向内側の肉厚が、前記軸受け支持部の端面側の肉厚より厚くなることが好ましい。   In the conductive roller of the present invention, it is preferable that the wall thickness in the roller axial direction inside the cross-sectional shape of the build-up portion in the roller axial direction is thicker than the thickness on the end face side of the bearing support portion.

さらに、本発明の導電性ローラは、前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、曲率半径R(mm)を有する形状で厚くなることが好ましく、前記曲率半径R(mm)が、0.2〜2.0であることがより好ましい。   Further, in the conductive roller of the present invention, the thickness of the cross-sectional shape of the build-up portion in the roller axial direction has a curvature radius R (mm) from the end surface side of the bearing support portion toward the inner side in the roller axial direction. It is preferable that the shape is thick, and the radius of curvature R (mm) is more preferably 0.2 to 2.0.

さらにまた、本発明の導電性ローラは、前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、傾斜をもった直線状に厚くなることが好ましい。   Furthermore, the conductive roller of the present invention is a linear shape in which the thickness of the cross-sectional shape of the build-up portion in the roller axial direction is inclined from the end surface side of the bearing support portion toward the inner side in the roller axial direction. It is preferable to be thicker.

また、本発明の導電性ローラは、前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、ローラ軸の垂直方向に膨らんだ曲線状に厚くなることが好ましい。   In the conductive roller of the present invention, the thickness of the cross-sectional shape in the roller axial direction of the build-up portion swells in the direction perpendicular to the roller shaft from the end surface side of the bearing support portion toward the inner side in the roller axial direction. It is preferable that the curve is thick.

さらにまた、本発明の導電性ローラは、前記軸受け支持部の端面を基準にローラ軸方向内側に0.2〜2.0mmオフセットされた位置に、前記肉盛部を有することが好ましい。   Furthermore, it is preferable that the conductive roller of the present invention has the build-up portion at a position offset 0.2 to 2.0 mm inward in the roller axial direction with respect to the end surface of the bearing support portion.

本発明によれば、軸の根元の強度を高め、軸の根元の折れを防止できる導電性ローラを提供することが可能となった。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the electroconductive roller which can raise the intensity | strength of the base of a shaft and can prevent the bending of the base of a shaft.

以下、本発明の好適実施形態について、図面を参照しつつ詳細に説明する。
図1は、本発明の好適実施形態に係る導電性ローラの一例を示す図である。本発明の導電性ローラ10は、円筒状基体4の端部に、フランジ部1とローラ軸方向に延設した軸部2とを備えた軸部材3が取り付けられたものである。また、円筒状基体4の外周に弾性層5を有している。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing an example of a conductive roller according to a preferred embodiment of the present invention. In the conductive roller 10 of the present invention, a shaft member 3 including a flange portion 1 and a shaft portion 2 extending in the roller axial direction is attached to an end portion of a cylindrical base body 4. Further, an elastic layer 5 is provided on the outer periphery of the cylindrical substrate 4.

図2は、本発明の好適実施形態に係る導電性ローラの端部の一例を示す図である。フランジ部1のローラ軸方向外側の端部の外周部に、軸受け支持部1aが形成され、さらに、軸部2の根元6が、軸受け支持部1aの端面を基準にローラ軸方向内側にオフセットされた位置に形成され、該根元6に肉盛部1bが形成されている。本発明においては、肉盛部1bが形成されているため、軸の根元6にかかる応力集中を緩和することができる。   FIG. 2 is a diagram illustrating an example of an end portion of a conductive roller according to a preferred embodiment of the present invention. A bearing support portion 1a is formed on the outer peripheral portion of the outer end of the flange portion 1 in the roller axial direction, and the root 6 of the shaft portion 2 is offset inward in the roller axial direction with respect to the end surface of the bearing support portion 1a. A built-up portion 1 b is formed at the base 6. In the present invention, since the built-up portion 1b is formed, the stress concentration applied to the shaft root 6 can be reduced.

図3は、軸受け支持部で軸受け部品を支持した一例を示す図である。肉盛部1bが、軸受け支持部1aの端面を基準にローラ軸方向内側にオフセットされた位置に形成されているため、肉盛部1bを形成してもフランジ部1の軸受け支持部1aで軸受け部品7を支持することができる。   FIG. 3 is a diagram illustrating an example in which a bearing component is supported by a bearing support portion. Since the build-up portion 1b is formed at a position offset inward in the roller axial direction with respect to the end surface of the bearing support portion 1a, the bearing support portion 1a of the flange portion 1 is used as a bearing even if the build-up portion 1b is formed. The part 7 can be supported.

本発明において、肉盛部1bの形状としては、根元6の外周側の肉厚を厚くでき、本発明の所期の効果が得られれば特に限定されないが、肉盛部1bのローラ軸方向の断面形状におけるローラ軸方向内側の肉厚が、軸受け支持部の端面側の肉厚より厚くなることが好ましい。ローラ軸方向内側の肉厚を厚くすることにより、軸の根元6にかかる応力集中をより緩和することができる。   In the present invention, the shape of the built-up portion 1b is not particularly limited as long as the thickness on the outer peripheral side of the base 6 can be increased and the desired effect of the present invention can be obtained. The wall thickness in the roller axial direction in the cross-sectional shape is preferably thicker than the wall thickness on the end face side of the bearing support portion. By increasing the thickness on the inner side in the roller axial direction, stress concentration applied to the shaft root 6 can be further relaxed.

図4は、肉盛部の形状の一例を示す拡大図である。図4中、矢印は、軸受け支持部1aの端面側からローラ軸方向内側への方向を示す。本発明の導電性ローラは、図4(a)に示すように、肉盛部1bのローラ軸方向の断面形状の肉厚が、軸受け支持部1aの端面側からローラ軸方向内側に向かって、曲率半径R(mm)を有する形状で厚くなることが、好ましい。肉盛部1bのローラ軸方向内側にR形状を設けることにより、根元6にかかる応力集中を緩和することができる。   FIG. 4 is an enlarged view showing an example of the shape of the built-up portion. In FIG. 4, the arrow indicates the direction from the end face side of the bearing support portion 1a to the inner side in the roller axial direction. In the conductive roller of the present invention, as shown in FIG. 4A, the thickness of the cross-sectional shape in the roller axial direction of the built-up portion 1b is from the end surface side of the bearing support portion 1a toward the inner side in the roller axial direction. It is preferable to be thick in a shape having a curvature radius R (mm). By providing the R shape on the inner side in the roller axial direction of the built-up portion 1b, stress concentration applied to the root 6 can be reduced.

また、本発明においては、曲率半径R(mm)が、0.2〜2.0mmであることが好ましく、0.5〜1.2mmであることがより好ましい。曲率半径Rをかかる範囲とすることにより、成形も容易に本発明の所期の効果を得ることができる。   In the present invention, the radius of curvature R (mm) is preferably 0.2 to 2.0 mm, and more preferably 0.5 to 1.2 mm. By setting the curvature radius R in such a range, the desired effect of the present invention can be easily obtained.

図5は、本発明の好適実施形態に係る導電性ローラの端部の他の一例を示す図である。本発明においては、ローラ軸方向内側にR形状を設ける等肉盛部1bを有していれば、本発明の所期の効果が得られるため、他の部分の形状は特に限定されない。   FIG. 5 is a view showing another example of the end portion of the conductive roller according to the preferred embodiment of the present invention. In the present invention, the desired effect of the present invention can be obtained as long as the built-up portion 1b is provided with an R shape on the inner side in the roller axis direction, and the shape of other portions is not particularly limited.

また、本発明の導電性ローラは、図4(b)に示すように、肉盛部1bのローラ軸方向の断面形状の肉厚が、軸受け支持部1aの端面側からローラ軸方向内側に向かって、傾斜をもった直線状に厚くなることが好ましい。肉盛部1bのローラ軸方向内側に向かって、厚くなっているため、根元6にかかる応力集中を緩和することができる。   Further, in the conductive roller of the present invention, as shown in FIG. 4 (b), the thickness of the cross-sectional shape in the roller axial direction of the built-up portion 1b is directed from the end surface side of the bearing support portion 1a to the inner side in the roller axial direction. Thus, it is preferable that the thickness is increased linearly with an inclination. Since the thickness increases toward the inner side in the roller axial direction of the built-up portion 1b, stress concentration on the root 6 can be reduced.

さらに、本発明の導電性ローラは、図4(c)に示すように、肉盛部1bのローラ軸方向の断面形状の肉厚が、軸受け支持部1aの端面側からローラ軸方向内側に向かって、ローラ軸の垂直方向に膨らんだ曲線状に厚くなることが好ましい。肉盛部1bがローラ軸の垂直方向に膨らんで全体的により厚くなっているため、根元6にかかる応力集中を緩和することができる。   Furthermore, in the conductive roller of the present invention, as shown in FIG. 4C, the thickness of the cross-sectional shape of the built-up portion 1b in the roller axial direction is directed from the end surface side of the bearing support portion 1a to the inner side in the roller axial direction. Thus, it is preferable to increase the thickness in a curved shape that swells in the direction perpendicular to the roller shaft. Since the build-up portion 1b swells in the direction perpendicular to the roller shaft and becomes thicker as a whole, stress concentration on the root 6 can be reduced.

また、本発明の導電性ローラは、軸受け支持部1aの端面を基準にローラ軸方向内側に0.2〜2.0mmオフセットされた位置に、肉盛部1bを有することが好ましく、0.5〜1.2mmオフセットされた位置に、肉盛部1bを有することより好ましい。オフセット量をかかる範囲とすることにより、より容易に肉盛部1bを成形できる。   The conductive roller of the present invention preferably has a built-up portion 1b at a position offset by 0.2 to 2.0 mm inward in the roller axial direction with respect to the end surface of the bearing support portion 1a. It is more preferable to have the built-up portion 1b at a position offset by -1.2 mm. By setting the offset amount within such a range, the built-up portion 1b can be more easily formed.

本発明において、円筒状基体4の本体部としては、金属製パイプを用いることができる。かかる金属製パイプの材質としては、良好な導電性を有する金属材料からなるものであれば特に限定されるものではないが、例えば、鉄、ステンレススチール、アルミニウムやこれらを含む合金等を用いることができる。この金属製パイプの肉厚は、強度的に十分であるかぎり、軽量化の点で薄い方が好ましく、例えば、0.3〜2mmである。   In the present invention, a metal pipe can be used as the main body of the cylindrical substrate 4. The material of the metal pipe is not particularly limited as long as it is made of a metal material having good conductivity. For example, iron, stainless steel, aluminum or an alloy containing these may be used. it can. As long as the thickness of the metal pipe is sufficient in strength, it is preferably thinner in terms of weight reduction, for example, 0.3 to 2 mm.

また、本発明において、フランジ部1および軸部2の材料としては、ローラの用途等に応じて、各種金属材料や樹脂材料等、いかなる材質のものを用いてもよいが、製造時の加工の容易性等の観点から、樹脂材料からなることが好適である。   In the present invention, the material of the flange portion 1 and the shaft portion 2 may be any material, such as various metal materials or resin materials, depending on the use of the roller. From the viewpoint of ease and the like, it is preferable to be made of a resin material.

フランジ部1および軸部2の樹脂材料としては、具体的には、エンジニアリングプラスチックの場合、例えば、ポリアセタール、ポリアミド樹脂(例えば、ポリアミド6、ポリアミド6・6、ポリアミド12、ポリアミド4・6、ポリアミド6・10、ポリアミド6・12、ポリアミド11、ポリアミドMXD6(メタキシレンジアミンとアジピン酸とから得られるポリアミド)等)、ポリオキシメチレン、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルエーテルケトン、ポリエチレンテレフタレート、ポリアリレート、液晶ポリマー、ポリテトラフルオロエチレンなどを挙げることができる。また、汎用樹脂としては、ポリプロピレン、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン、ポリエチレンなどが挙げられる。その他、メラミン樹脂、フェノール樹脂、シリコーン樹脂等を用いることもできる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Specifically, as the resin material of the flange portion 1 and the shaft portion 2, in the case of engineering plastics, for example, polyacetal, polyamide resin (for example, polyamide 6, polyamide 6 · 6, polyamide 12, polyamide 4 · 6, polyamide 6) 10, polyamide 6,12, polyamide 11, polyamide MXD6 (polyamide obtained from metaxylenediamine and adipic acid), polyoxymethylene, polybutylene terephthalate, polyphenylene oxide, polyphenylene ether, polyphenylene sulfide, polyether sulfone, Polycarbonate, polyimide, polyamideimide, polyetherimide, polysulfone, polyetheretherketone, polyethylene terephthalate, polyarylate, liquid crystal polymer, poly , And the like tetrafluoroethylene. Examples of the general-purpose resin include polypropylene, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, and polyethylene. In addition, a melamine resin, a phenol resin, a silicone resin, etc. can also be used. These may be used individually by 1 type and may be used in combination of 2 or more type.

また、上記の中でも、エンジニアリングプラスチックが好ましく、特に、ポリアセタール、ポリアミド樹脂、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリカーボネートなどが、熱可塑性で成形性に優れ、かつ、機械的強度に優れる点で一層好ましい。特に、ポリアミド6・6、ポリアミドMXD6、ポリアミド6・12、ポリブチレンテレフタレート、あるいはこれらの混合樹脂が好適である。なお、熱硬化性樹脂を用いることに差し支えはないが、リサイクル性を考慮すれば熱可塑性樹脂を用いることが好ましい。   Among the above, engineering plastics are preferable, and in particular, polyacetal, polyamide resin, polybutylene terephthalate, polyphenylene ether, polyphenylene sulfide, polycarbonate, and the like are further improved in terms of thermoplasticity, excellent moldability, and excellent mechanical strength. preferable. In particular, polyamide 6 · 6, polyamide MXD6, polyamide 6 · 12, polybutylene terephthalate, or a mixed resin thereof is preferable. Although there is no problem in using a thermosetting resin, it is preferable to use a thermoplastic resin in consideration of recyclability.

フランジ部1および軸部2に導電性を具えさせる場合の導電剤としては、樹脂材料中に均一に分散することができるものであれば各種のものを使用することが可能であるが、カーボンブラック粉末、グラファイト粉末、カーボンファイバーやアルミニウム、銅、ニッケルなどの金属粉末、酸化スズ、酸化チタン、酸化亜鉛などの金属酸化物粉末、導電性ガラス粉末などの粉末状導電剤が好ましく用いられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。この導電剤の配合量は、目的とする導電ローラの用途や状況に応じて適当な抵抗値が得られるように選定すればよく、特に制限されるものではないが、通常は材料全体に対して5〜40質量%、特には、5〜20質量%とすることが好ましい。   As the conductive agent in the case where the flange portion 1 and the shaft portion 2 are provided with conductivity, various materials can be used as long as they can be uniformly dispersed in the resin material. Powdered conductive agents such as powder, graphite powder, metal powder such as carbon fiber, aluminum, copper and nickel, metal oxide powder such as tin oxide, titanium oxide and zinc oxide, and conductive glass powder are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type. The blending amount of the conductive agent may be selected so that an appropriate resistance value can be obtained according to the intended use and situation of the conductive roller, and is not particularly limited. It is preferable to set it as 5-40 mass%, especially 5-20 mass%.

さらに、フランジ部1および軸部2の樹脂材料中には、必要に応じ補強や増量等を目的として各種導電性または非導電性の繊維状物やウィスカー、フェライトなどを配合することができる。繊維状物としては、例えば、炭素繊維、ガラス繊維などの繊維を挙げることができ、また、ウィスカーとしては、チタン酸カリウムなどの無機ウィスカーを挙げることができる。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの配合量は、用いる繊維状物やウィスカーの長さおよび径、主体となる樹脂材料の種類や目的とするローラ強度等に応じて適宜選定することができるが、通常は材料全体の5〜70質量%、特には10〜20質量%である。   Furthermore, in the resin material of the flange portion 1 and the shaft portion 2, various conductive or non-conductive fibrous materials, whiskers, ferrites, and the like can be blended as needed for the purpose of reinforcement or increase in weight. Examples of the fibrous material include fibers such as carbon fiber and glass fiber, and examples of the whisker include inorganic whiskers such as potassium titanate. These may be used individually by 1 type, and may be used in combination of 2 or more types. These blending amounts can be appropriately selected according to the length and diameter of the fibrous material or whisker to be used, the type of the main resin material, the intended roller strength, etc. 70% by mass, in particular 10 to 20% by mass.

上記円筒状基体4の外周面に形成される弾性層5の材料としては、特に限定されず、例えば、紫外線硬化型樹脂または電子線硬化型樹脂を好適に用いることができる。かかる紫外線硬化型樹脂または電子線硬化型樹脂としては、具体的には例えば、ポリエステル樹脂、ポリエーテル樹脂、フッ素樹脂、エポキシ樹脂、アミノ樹脂、ポリアミド樹脂、アクリル樹脂、アクリルウレタン樹脂、ウレタン樹脂、アルキッド樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、シリコーン樹脂、ポリビニルブチラール樹脂などが挙げられ、これらの1種または2種以上を混合して用いることができる。また、これらの樹脂に特定の官能基を導入した変性樹脂を用いてもよい。   The material of the elastic layer 5 formed on the outer peripheral surface of the cylindrical substrate 4 is not particularly limited, and for example, an ultraviolet curable resin or an electron beam curable resin can be suitably used. Specific examples of such ultraviolet curable resins or electron beam curable resins include polyester resins, polyether resins, fluorine resins, epoxy resins, amino resins, polyamide resins, acrylic resins, acrylic urethane resins, urethane resins, and alkyds. Resins, phenol resins, melamine resins, urea resins, silicone resins, polyvinyl butyral resins, and the like can be used, and one or more of these can be used in combination. Moreover, you may use the modified resin which introduce | transduced specific functional group into these resin.

上記の中でも、特に、(メタ)アクリレートオリゴマーを含む(メタ)アクリレート系樹脂組成物が好適である。このような(メタ)アクリレートオリゴマーとしては、例えば、ウレタン系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、エーテル系(メタ)アクリレートオリゴマー、エステル系(メタ)アクリレートオリゴマー、ポリカーボネート系(メタ)アクリレートオリゴマー等、また、フッ素系、シリコーン系のアクリルオリゴマーなどを挙げることができる。   Among the above, a (meth) acrylate-based resin composition containing a (meth) acrylate oligomer is particularly preferable. Examples of such (meth) acrylate oligomers include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, ether (meth) acrylate oligomers, ester (meth) acrylate oligomers, and polycarbonate (meth). Examples include acrylate oligomers, and fluorine-based and silicone-based acrylic oligomers.

以下、本発明を、実施例を用いてより詳細に説明する。
(実施例1、2および比較例1)
図1に示すような、金属製パイプ(材質:アルミA6063,長さ:230mm,厚み0.7mm,外径φ18mm)の両端に軸部2を有するフランジ部1(材質:POM(ポリプラスチックス(株)製,EB−10)、肉厚1.2mm)が嵌合されてなる円筒状基体4の外周面に、弾性層形成用塗料をダイコータで塗工することにより、膜厚7mmにて、弾性層5の形成を行い、導電性ローラ10を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Examples 1 and 2 and Comparative Example 1)
As shown in FIG. 1, a flange portion 1 (material: POM (polyplastics (material: aluminum A6063, length: 230 mm, thickness 0.7 mm, outer diameter φ18 mm)) having shaft portions 2 at both ends thereof. By applying a coating material for forming an elastic layer to the outer peripheral surface of the cylindrical substrate 4 with a thickness of 1.2 mm) manufactured by Co., Ltd., with a die coater, The elastic layer 5 was formed and the conductive roller 10 was obtained.

弾性層形成用塗料としては、ウレタン(メタ)アクリレートオリゴマーUV3000B(日本合成化学工業(株)製,官能基数:2,分子量:18000)65質量部、(メタ)アクリレートモノマーL−A(ラウリルアクリレート,共栄社化学(株)製,官能基数:1,Tg:−3℃)25質量部およびA−SA(β−アクリロイルオキシエチルハイドロジェンサクシネート,新中村化学(株)製,官能基数:1,Tg:−10℃)10質量部、光重合開始剤IRGACURE184(チバ・スペシャリティ・ケミカルズ(株)製)0.5質量部、並びに導電剤MP−100(昭島化学工業(株)製)からなる混合物を、攪拌機にて、液温70℃、60回転/分で1時間攪拌混合し、ろ過して得られるUV硬化樹脂原料を用いた。弾性層形成用塗料は、塗工しながらスポットUV照射を施すことで形状を保てる程度まで硬化させた後、さらに、窒素雰囲気下で、回転させながらUV照射強度700mW/cmにて5秒間UV照射を施すことで硬化させ、弾性層5を形成した。 As the coating material for forming an elastic layer, urethane (meth) acrylate oligomer UV3000B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., functional group number: 2, molecular weight: 18000) 65 parts by mass, (meth) acrylate monomer LA (lauryl acrylate, Kyoeisha Chemical Co., Ltd., functional group number: 1, Tg: −3 ° C. 25 parts by mass and A-SA (β-acryloyloxyethyl hydrogen succinate, Shin-Nakamura Chemical Co., Ltd., functional group number: 1, Tg : -10 ° C.) A mixture comprising 10 parts by mass, 0.5 parts by mass of photopolymerization initiator IRGACURE 184 (Ciba Specialty Chemicals Co., Ltd.), and conductive agent MP-100 (Akishima Chemical Industry Co., Ltd.) A UV curable resin raw material obtained by stirring and mixing with a stirrer at a liquid temperature of 70 ° C. for 1 hour at 60 rpm was used. The coating material for forming the elastic layer is cured to the extent that the shape can be maintained by applying spot UV irradiation while being applied, and then UV is applied for 5 seconds at a UV irradiation intensity of 700 mW / cm 2 while rotating in a nitrogen atmosphere. The elastic layer 5 was formed by curing by irradiation.

図6は、導電性ローラの端部の実施例を示す図である。図6中、軸部2の直径Aを7.5mm、端面の内径Aを12.3mmとし、肉盛部6の軸受け支持部の端面を基準にしたオフセット量Bを1.2mmとした。さらに、肉盛部6における曲率半径R(mm)を下記表1に示す条件に設定した。なお、肉盛部6を有しない場合を比較例1とし、その構造を図8に示す。 FIG. 6 is a diagram showing an example of the end portion of the conductive roller. In FIG. 6, 7.5 mm in diameter A 1 of the shaft portion 2, the inner diameter A 2 of the end face and 12.3 mm, and 1.2mm offset amount B 1 relative to the end face of the bearing supporting portion of the deposition section 6 did. Furthermore, the curvature radius R (mm) in the built-up portion 6 was set to the conditions shown in Table 1 below. In addition, the case where it does not have the build-up part 6 is made into the comparative example 1, and the structure is shown in FIG.

(評価)
各導電性ローラ10において、矢印C方向に荷重を加え(図6参照)、軸部2が折れる折れ強度(N)を5回測定し、その平均値を求めた。結果を表1に併記する。
(Evaluation)
In each conductive roller 10, a load was applied in the direction of arrow C (see FIG. 6), and the bending strength (N) at which the shaft portion 2 was broken was measured five times, and the average value was obtained. The results are also shown in Table 1.

Figure 2010106963
Figure 2010106963

表1の結果から、実施例1および2では、比較例1より折れ強度が良好となっており、軸の根元の強度が高くなり、軸の根元の折れを防止できた。   From the results of Table 1, in Examples 1 and 2, the bending strength was better than that of Comparative Example 1, the strength of the shaft root was increased, and the shaft root could be prevented from being broken.

本発明の好適実施形態に係る導電性ローラの一例を示す図である。It is a figure which shows an example of the electroconductive roller which concerns on suitable embodiment of this invention. 本発明の好適実施形態に係る導電性ローラの端部の一例を示す図である。It is a figure which shows an example of the edge part of the electroconductive roller which concerns on suitable embodiment of this invention. 軸受け支持部で軸受け部品を支持した一例を示す図である。It is a figure which shows an example which supported the bearing components in the bearing support part. 肉盛部の断面形状の一例を示す拡大図である。It is an enlarged view which shows an example of the cross-sectional shape of a build-up part. 本発明の好適実施形態に係る導電性ローラの端部の他の一例を示す図である。It is a figure which shows another example of the edge part of the electroconductive roller which concerns on suitable embodiment of this invention. 導電性ローラの端部の実施例を示す図である。It is a figure which shows the Example of the edge part of an electroconductive roller. 従来の導電性ローラを示す図である。It is a figure which shows the conventional electroconductive roller. 従来の導電性ローラの端部を示す図である。It is a figure which shows the edge part of the conventional electroconductive roller.

符号の説明Explanation of symbols

1、31 フランジ部
1a、31a 軸受け支持部
1b 肉盛部
2、32 軸部
3、33 軸部材
4、34 円筒状基体
5、35 弾性層
6、36 根元
7、37 軸受け部品
10、30 導電性ローラ
DESCRIPTION OF SYMBOLS 1, 31 Flange part 1a, 31a Bearing support part 1b Overlay part 2, 32 Shaft part 3, 33 Shaft member 4, 34 Cylindrical base | substrate 5, 35 Elastic layer 6, 36 Base 7, 37 Bearing component 10, 30 Conductivity roller

Claims (7)

円筒状基体の端部に、フランジ部とローラ軸方向に延設した軸部とを備えた軸部材が取り付けられた導電性ローラにおいて、
前記フランジ部のローラ軸方向外側の端部の外周部に、軸受け支持部が形成され、
前記軸部の根元が、前記軸受け支持部の端面を基準にローラ軸方向内側にオフセットされた位置に形成され、
前記根元に、肉盛部が形成されてなることを特徴とする導電性ローラ。
In the conductive roller in which the shaft member having the flange portion and the shaft portion extending in the roller axial direction is attached to the end portion of the cylindrical base body,
A bearing support portion is formed on the outer peripheral portion of the outer end of the flange portion in the axial direction of the roller,
The base of the shaft is formed at a position offset inward in the roller axial direction with reference to the end surface of the bearing support,
A conductive roller having a built-up portion formed at the base.
前記肉盛部のローラ軸方向の断面形状における前記ローラ軸方向内側の肉厚が、前記軸受け支持部の端面側の肉厚より厚くなる請求項1記載の導電性ローラ。   2. The conductive roller according to claim 1, wherein a thickness on the inner side in the roller axial direction in a cross-sectional shape of the built-up portion in the roller axial direction is thicker than a thickness on an end surface side of the bearing support portion. 前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、曲率半径R(mm)を有する形状で厚くなる請求項2記載の導電性ローラ。   The thickness of the cross-sectional shape of the build-up portion in the roller axial direction increases in a shape having a radius of curvature R (mm) from the end surface side of the bearing support portion toward the inner side in the roller axial direction. Conductive roller. 前記曲率半径R(mm)が、0.2〜2.0である請求項3記載の導電性ローラ。   The conductive roller according to claim 3, wherein the radius of curvature R (mm) is 0.2 to 2.0. 前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、傾斜をもった直線状に厚くなる請求項2記載の導電性ローラ。   3. The conductive roller according to claim 2, wherein the thickness of the cross-sectional shape of the build-up portion in the roller axial direction increases linearly from the end surface side of the bearing support portion toward the inner side in the roller axial direction. . 前記肉盛部のローラ軸方向の断面形状の肉厚が、前記軸受け支持部の端面側から前記ローラ軸方向内側に向かって、ローラ軸の垂直方向に膨らんだ曲線状に厚くなる請求項2記載の導電性ローラ。   The thickness of the cross-sectional shape of the build-up portion in the roller axial direction increases in a curved shape that swells in a direction perpendicular to the roller shaft from the end surface side of the bearing support portion toward the inner side in the roller axial direction. Conductive roller. 前記軸受け支持部の端面を基準にローラ軸方向内側に0.2〜2.0mmオフセットされた位置に、前記肉盛部を有する請求項1〜6のうちいずれか一項記載の導電性ローラ。   The conductive roller according to any one of claims 1 to 6, wherein the build-up portion is provided at a position offset by 0.2 to 2.0 mm inward in the roller axial direction with respect to an end face of the bearing support portion.
JP2008279632A 2008-10-30 2008-10-30 Conductive roller Expired - Fee Related JP5269546B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008279632A JP5269546B2 (en) 2008-10-30 2008-10-30 Conductive roller
PCT/JP2009/068712 WO2010050597A1 (en) 2008-10-30 2009-10-30 Electrically conductive roller
CN200980143616.1A CN102203440B (en) 2008-10-30 2009-10-30 Electrically conductive roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279632A JP5269546B2 (en) 2008-10-30 2008-10-30 Conductive roller

Publications (2)

Publication Number Publication Date
JP2010106963A true JP2010106963A (en) 2010-05-13
JP5269546B2 JP5269546B2 (en) 2013-08-21

Family

ID=42128956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279632A Expired - Fee Related JP5269546B2 (en) 2008-10-30 2008-10-30 Conductive roller

Country Status (3)

Country Link
JP (1) JP5269546B2 (en)
CN (1) CN102203440B (en)
WO (1) WO2010050597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106366A (en) * 2012-11-27 2014-06-09 Konica Minolta Inc Developing roller, and image forming apparatus including the developing roller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113881B2 (en) * 2019-12-11 2022-08-05 エスケー ネクシリス カンパニー リミテッド Cathode assembly for plating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288190A (en) * 1992-04-13 1993-11-02 Hitachi Ltd Rotor with rotating body mounted on rotary shaft stepped part
JPH1164122A (en) * 1997-08-25 1999-03-05 Sumitomo Metal Ind Ltd Stress calculating method in hollow roll and manufacture of hollow roll by use of this
JP2006251004A (en) * 2005-03-08 2006-09-21 Bridgestone Corp Conductive roller and image forming apparatus using the same
JP2007286282A (en) * 2006-04-14 2007-11-01 Ricoh Co Ltd Heating roller and manufacturing method therefor, recording medium heating device and image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59101640D1 (en) * 1990-04-26 1994-06-23 Rieter Ag Maschf Stretching roller unit.
DE4416184A1 (en) * 1993-05-11 1994-11-17 Barmag Barmer Maschf Contact roller
JPH11267721A (en) * 1998-03-19 1999-10-05 Hitachi Ltd Roll structure, bearing structure of roll, rolling mill using that structure and method for modifying rolling mill
DE19980953D2 (en) * 1998-05-28 2000-07-13 Barmag Barmer Maschf Galette for guiding, heating and conveying a thread
JP2007011026A (en) * 2005-06-30 2007-01-18 Ricoh Co Ltd Conductive member, process cartridge, and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288190A (en) * 1992-04-13 1993-11-02 Hitachi Ltd Rotor with rotating body mounted on rotary shaft stepped part
JPH1164122A (en) * 1997-08-25 1999-03-05 Sumitomo Metal Ind Ltd Stress calculating method in hollow roll and manufacture of hollow roll by use of this
JP2006251004A (en) * 2005-03-08 2006-09-21 Bridgestone Corp Conductive roller and image forming apparatus using the same
JP2007286282A (en) * 2006-04-14 2007-11-01 Ricoh Co Ltd Heating roller and manufacturing method therefor, recording medium heating device and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106366A (en) * 2012-11-27 2014-06-09 Konica Minolta Inc Developing roller, and image forming apparatus including the developing roller
US9256164B2 (en) 2012-11-27 2016-02-09 Konica Minolta, Inc. Development roller having magnetic roller and image forming apparatus including the development roller

Also Published As

Publication number Publication date
CN102203440A (en) 2011-09-28
CN102203440B (en) 2015-01-14
WO2010050597A1 (en) 2010-05-06
JP5269546B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US8731452B2 (en) Bionanocomposite fuser topcoats comprising nanosized cellulosic particles
EP3051357B1 (en) Conductive member for electrophotography, process cartridge, and electrophotographic device
JP2008276026A (en) Charging member, process cartridge and electrophotographic image forming apparatus
JP5269546B2 (en) Conductive roller
JP2008164814A (en) Developing roll
JP2001140854A (en) Semiconductive roller and image forming device
JP5861603B2 (en) Heat generating belt, fixing device and image forming apparatus
JP2010128060A (en) Conductive roller
JP4033599B2 (en) Insulation sleeve for fixing roller
JP4874051B2 (en) Conductive roller and image forming apparatus having the same
JP2008138735A (en) Conductive roller
JP2003223027A (en) Conductive member for electrophotographic apparatus
CN115903410A (en) Charging member, charging device, process cartridge, and image forming apparatus
JP5068487B2 (en) Image forming roller
JP4925695B2 (en) Conductive roller and image forming apparatus having the same
JP2001100549A (en) Transfer roller and method for manufacturing the same
JP5060730B2 (en) Conductive roller and image forming apparatus having the same
JP2006163147A (en) Electrifying roller, electrifying method, process cartridge and electrophotographic device
JP2007197542A (en) Conductivity-imparting agent and conductive resin composition
JP2008286951A (en) Hollow shaft for roller, roller, and image forming apparatus
JP2009086010A (en) Method of manufacturing conductive roller, and conductive roller
JP2003295548A (en) Conductive roll and image forming apparatus
JP2009211003A (en) Conductive roller, method for manufacturing conductive roller, process cartridge and electrophotographic unit
JP4807831B2 (en) Endless belt manufacturing method and image forming apparatus provided with endless belt
JPH10299762A (en) Roller of elastic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Ref document number: 5269546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees