JP2010106340A - Method for manufacturing insulating member - Google Patents

Method for manufacturing insulating member Download PDF

Info

Publication number
JP2010106340A
JP2010106340A JP2008281504A JP2008281504A JP2010106340A JP 2010106340 A JP2010106340 A JP 2010106340A JP 2008281504 A JP2008281504 A JP 2008281504A JP 2008281504 A JP2008281504 A JP 2008281504A JP 2010106340 A JP2010106340 A JP 2010106340A
Authority
JP
Japan
Prior art keywords
polyimide
electrodeposition
insulating member
water
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281504A
Other languages
Japanese (ja)
Other versions
JP5464838B2 (en
Inventor
Toyokazu Nagato
豊和 長門
Masanori Fujii
政徳 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2008281504A priority Critical patent/JP5464838B2/en
Publication of JP2010106340A publication Critical patent/JP2010106340A/en
Application granted granted Critical
Publication of JP5464838B2 publication Critical patent/JP5464838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an insulating member in a high yield, which is insulation-treated with an electrodeposition coating film that has highly uniform film properties, is superior in adhesiveness to a member to be insulation-treated, and further has a high level of voltage resistance and heat resistance. <P>SOLUTION: The method for manufacturing the insulating member includes: an anionic electrodeposition step of immersing the member to be insulation-treated into a suspension-type electrodeposition paint composition which contains a block copolymerization polyimide having a siloxane bond in a molecule skeleton and an anionic group in a molecule, as a resin component, and passing an electric current to the member which has been set as an anode to grow a polyimide coating film on the surface of the member; a step of cleaning the member to be insulation-treated having the polyimide coating film thereon in a cleaning liquid containing a water-soluble polar solvent and water and/or a solvent of an aliphatic alcohol; a step of removing the cleaning liquid by jetting air to the member to be insulation-treated having the polyimide coating film thereon; and a step of drying the polyimide coating film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は絶縁部材の製造方法に関し、詳しくは、特定のブロック共重合ポリイミドからなる電着被膜で絶縁処理された絶縁部材の製造方法に関する。   The present invention relates to a method for manufacturing an insulating member, and more particularly to a method for manufacturing an insulating member that is insulated with an electrodeposition coating made of a specific block copolymerized polyimide.

従来から、絶縁保護が必要な部材(部品)に絶縁処理を行う方法として、例えば、部材表面に電着塗料を電着して電着被膜による絶縁層を形成することが知られている。この種の電着塗料としては、例えば、ポリイミドの前駆体であるポリアミック酸を溶解した有機極性溶媒に、貧溶媒及び水を添加した水分散系電着液が知られており、該電着液による電着膜を240〜260℃に加熱してイミド化することで絶縁層(絶縁被膜)が形成される(特許文献1〜3)。しかし、従来提案の電着塗料による電着被膜は、被電着物被絶縁処理部材に対する被膜の剥がれや被膜の割れの生じにくさについては必ずしも満足することができない。また、被膜の耐電圧性や耐熱性も十分に高いものとはいえない。そこで、特許文献4には、このような従来の電着塗料の問題を改善でき、被電着物上に剥がれや割れが生じにくい電着被膜を形成できる電着塗料として、主鎖中にシロキサン結合を有する特定のブロック共重合ポリイミドを樹脂成分として含有する電着塗料組成物が提案されている。この電着塗料組成物は、従来のポリイミド電着塗料に比べて、被電着物(被絶縁処理部材)対する電着膜の剥がれや電着膜の割れが生じにくく、しかも、耐熱性及び耐電圧性にも優れる電着被膜を形成できるものである。   Conventionally, as a method for performing an insulation treatment on a member (component) that requires insulation protection, for example, electrodeposition of an electrodeposition paint on the surface of the member to form an insulating layer by an electrodeposition coating is known. As this type of electrodeposition coating, for example, an aqueous dispersion electrodeposition liquid in which a poor solvent and water are added to an organic polar solvent in which a polyamic acid that is a polyimide precursor is dissolved is known. An electrodeposited film is heated to 240 to 260 ° C. and imidized to form an insulating layer (insulating film) (Patent Documents 1 to 3). However, the conventionally proposed electrodeposition coating with an electrodeposition coating cannot always satisfy the difficulty of peeling of the coating or cracking of the coating on the electrodeposition-insulated member. Moreover, it cannot be said that the withstand voltage and heat resistance of the coating are sufficiently high. Therefore, Patent Document 4 discloses a siloxane bond in the main chain as an electrodeposition paint that can improve such a problem of the conventional electrodeposition paint and can form an electrodeposition film that is unlikely to be peeled off or cracked on the electrodeposition. An electrodeposition coating composition containing a specific block copolymerized polyimide having a resin component has been proposed. Compared to conventional polyimide electrodeposition paints, this electrodeposition paint composition is less prone to electrodeposition film peeling and electrodeposition film cracking on electrodeposits (insulation-treated members), and also has heat resistance and voltage resistance. It is possible to form an electrodeposition film having excellent properties.

しかしながら、近時において、例えば、電気・電子部品関連、自動車分野、航空宇宙分野等の分野では、絶縁部材における絶縁被膜(絶縁層)の耐熱性や耐電圧性の一層の向上が望まれているところ、本発明者らの研究では、特許文献4に提案の電着塗料組成物であっても、かかる要求に十分に応えることができないことが分かった。すなわち、特許文献4に提案の電着塗料組成物は、数種類の溶剤の混合系からなるために溶剤の配合比率の若干の変動によって電着塗料としての挙動が大きく変化し、得られる電着被膜の膜性状が均一になりにくく、そのために、高度の耐電圧性や耐熱性の電着被膜を形成することができないことが分かった。また、概ね15μm以下の比較的薄い厚みの被膜を形成する場合に、同一の膜厚の被膜であっても、耐電圧が大きくばらつき、所望の特性の絶縁被膜を再現性よく形成できないことが分かった。
特開昭49−52252号公報 特開昭52−32943号公報 特開昭63−111199号公報 特開2005−162954号公報 国際公開公報WO99/19771 米国特許第5,502,143号公報
However, recently, for example, in the fields of electrical / electronic components, automobiles, aerospace, etc., further improvement in heat resistance and voltage resistance of insulating coatings (insulating layers) in insulating members is desired. However, the inventors' research has shown that even the electrodeposition coating composition proposed in Patent Document 4 cannot sufficiently meet such a requirement. That is, since the electrodeposition coating composition proposed in Patent Document 4 consists of a mixed system of several kinds of solvents, the behavior as an electrodeposition coating changes greatly due to a slight change in the blending ratio of the solvent, and the resulting electrodeposition coating is obtained. It was found that the film properties of the film were difficult to be uniform, and as a result, it was impossible to form a highly voltage-resistant or heat-resistant electrodeposition film. In addition, when forming a relatively thin film having a thickness of approximately 15 μm or less, it is found that the withstand voltage varies greatly even if the film has the same film thickness, and an insulating film having a desired characteristic cannot be formed with good reproducibility. It was.
Japanese Patent Laid-Open No. 49-52252 JP 52-32943 A JP-A-63-1111199 Japanese Patent Laid-Open No. 2005-162954 International Publication No. WO99 / 19771 US Pat. No. 5,502,143

上記事情に鑑み、本発明が解決しようとする課題は、膜性状の均一性が高く、被絶縁処理部材に対する密着性に優れ、しかも、高度の耐電圧性及び耐熱性を有する電着被膜によって絶縁処理された絶縁部材を再現性良く製造することができる、絶縁部材の製造方法を提供することである。   In view of the above circumstances, the problem to be solved by the present invention is that the film property is highly uniform, has excellent adhesion to the member to be insulated, and is insulated by an electrodeposition coating having high voltage resistance and heat resistance. An object of the present invention is to provide a method for producing an insulating member, which can produce a treated insulating member with good reproducibility.

本願発明者らは、上記課題を解決するために鋭意研究した結果、分子骨格中にシロキサン結合を有し、分子中にアニオン性基を有するブロック共重合ポリイミドとともに使用する溶媒組成及び塗料化の際の温度条件等を工夫することで、前記ブロック共重合ポリイミドが比較的大きな粒径の析出粒子として分散したサスペンジョン型塗料となり、こうして得られた塗料は電着速度が速く、短時間で膜性状の均一性が高い一様な厚みの電着被膜を形成できて、その耐電圧性及び耐熱性が極めて良好で、しかも、従来では困難なレベルまで厚膜化した電着被膜を形成できること、さらに、電着工程後に形成された電着被膜に特定組成の洗浄液による洗浄とエアーの噴き付けによる洗浄液の除去処理を行なってから、被膜の乾燥処理を行なうことで、膜性状の一層の均一化が図れることを知見し、該知見に基づいてさらに研究を進めることにより、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present application have found that a solvent composition used in combination with a block copolymerized polyimide having a siloxane bond in the molecular skeleton and an anionic group in the molecule, and at the time of coating. By devising the temperature conditions, etc., a suspension-type paint in which the block copolymerized polyimide is dispersed as precipitated particles having a relatively large particle size is obtained. Highly uniform electrodeposition coating of uniform thickness can be formed, its voltage resistance and heat resistance are extremely good, and it is possible to form an electrodeposition coating that has been thickened to a level that was difficult in the past, After the electrodeposition film formed after the electrodeposition process is cleaned with a cleaning liquid of a specific composition and the cleaning liquid is removed by spraying air, the film is dried. It was found that further homogenization can be achieved in the film properties, by advancing a further study on the basis of the look 該知, and have completed the present invention.

すなわち、本発明は以下の通りである。
(1)分子骨格中にシロキサン結合を有し、分子中にアニオン性基を有するブロック共重合ポリイミドを樹脂成分として含有する、サスペンジョン型電着塗料組成物中に、被絶縁処理部材を浸漬し、該部材を陽極として電流を通じて該部材の表面上にポリイミド被膜を成長させるアニオン電着工程と、
前記ポリイミド被膜を有する被絶縁処理部材を水溶性極性溶媒と水及び/又は脂肪族アルコール系溶媒を含む洗浄液にて洗浄する工程と、
前記ポリイミド被膜を有する被絶縁処理部材にエアーを噴き付けて洗浄液を除去する工程と、
前記ポリイミド被膜を乾燥する工程とを含む、絶縁部材の製造方法。
(2)洗浄液が、水溶性極性溶媒50〜80重量%と水及び/又は脂肪族アルコール系溶媒20〜50重量%を含有するものである、上記(1)記載の絶縁部材の製造方法。
(3)水溶性極性溶媒が、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素及びスルホランから選ばれる1種又は2種以上である、上記(2)記載の絶縁部材の製造方法。
(4)ブロック共重合ポリイミドが、ジアミン成分の一つとして、分子骨格中にシロキサン結合を有するジアミンを含むポリイミドである、上記(1)〜(3)のいずれかに記載の絶縁部材の製造方法。
(5)分子骨格中にシロキサン結合を有するジアミンが、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び下記の一般式(I)で表される化合物よりなる群から選ばれる1種又は2種以上である、上記(4)記載の絶縁部材の製造方法。
That is, the present invention is as follows.
(1) A member to be insulated is immersed in a suspension-type electrodeposition coating composition containing a block copolymer polyimide having a siloxane bond in the molecular skeleton and an anionic group in the molecule as a resin component, An anionic electrodeposition step of growing a polyimide film on the surface of the member through an electric current using the member as an anode;
Cleaning the insulating member having the polyimide coating with a cleaning liquid containing a water-soluble polar solvent and water and / or an aliphatic alcohol solvent;
A step of spraying air on the member to be insulated having the polyimide coating to remove the cleaning liquid;
And a step of drying the polyimide coating.
(2) The method for producing an insulating member according to the above (1), wherein the cleaning liquid contains 50 to 80% by weight of a water-soluble polar solvent and 20 to 50% by weight of water and / or an aliphatic alcohol solvent.
(3) The water-soluble polar solvent is N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (γBL), The method for producing an insulating member according to (2), wherein the insulating member is one or more selected from anisole, tetramethylurea and sulfolane.
(4) The method for producing an insulating member according to any one of (1) to (3), wherein the block copolymerized polyimide is a polyimide containing a diamine having a siloxane bond in the molecular skeleton as one of the diamine components. .
(5) A diamine having a siloxane bond in the molecular skeleton is bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane, and The manufacturing method of the insulating member of the said (4) description which is 1 type (s) or 2 or more types chosen from the group which consists of a compound represented with the following general formula (I).

Figure 2010106340
Figure 2010106340

(式中、4つのRは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基又は1個〜3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)
(6)一般式(I)中の4つのRが、それぞれ独立して、炭素数1〜6のアルキル基、炭素数3〜7のシクロアルキル基、フェニル基、又は1個〜3個の炭素数1〜6のアルキル基若しくは炭素数1〜6のアルコキシル基で置換されたフェニル基を表す上記(5)記載の絶縁部材の製造方法。
(7)ブロック共重合ポリイミドの分子中のアニオン性基が、カルボン酸基若しくはその塩、及び/又は、スルホン酸基若しくその塩である、上記(1)〜(6)のいずれかに記載の絶縁部材の製造方法。
(8)ブロック共重合ポリイミドが、ジアミン成分の1つとして、芳香族ジアミノカルボン酸を含むものである、上記(1)〜(7)のいずれかに記載の絶縁部材の製造方法。
(9)ブロック共重合ポリイミドの全ジアミン成分中、分子骨格中にシロキサン結合を有するジアミンの割合が5〜90モル%、芳香族ジアミノカルボン酸の割合が10〜70モル%である(ただし、両者の合計は100モル%以下であり、第3のジアミン成分を含んでいてもよい)、上記(8)記載の絶縁部材の製造方法。
(10)絶縁部材が絶縁電線であり、被絶縁処理部材が導体線である、上記(1)〜(9)のいずれかに記載の絶縁部材の製造方法。
(11)絶縁部材が絶縁処理リード端子付き電子部品であり、被絶縁処理部材がリード端子付き電子部品である、上記(1)〜(9)のいずれかに記載の絶縁部材の製造方法。
(In the formula, four R's each independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And represents an integer of 1 to 4, and n represents an integer of 1 to 20.)
(6) Four R in the general formula (I) are each independently an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, a phenyl group, or 1 to 3 carbon atoms. The manufacturing method of the insulating member of the said (5) description showing the phenyl group substituted by the C1-C6 alkyl group or the C1-C6 alkoxyl group.
(7) The anionic group in the molecule of the block copolymerized polyimide is a carboxylic acid group or a salt thereof, and / or a sulfonic acid group or a salt thereof, according to any one of (1) to (6) above. Manufacturing method of the insulating member.
(8) The method for producing an insulating member according to any one of (1) to (7), wherein the block copolymerized polyimide contains an aromatic diaminocarboxylic acid as one of the diamine components.
(9) In all diamine components of the block copolymerized polyimide, the proportion of diamine having a siloxane bond in the molecular skeleton is 5 to 90 mol%, and the proportion of aromatic diaminocarboxylic acid is 10 to 70 mol% (however, both Of the insulating member according to (8) above, which may contain a third diamine component).
(10) The method for manufacturing an insulating member according to any one of (1) to (9), wherein the insulating member is an insulated wire and the member to be insulated is a conductor wire.
(11) The method for manufacturing an insulating member according to any one of (1) to (9), wherein the insulating member is an electronic component with an insulating treatment lead terminal, and the insulated member is an electronic component with a lead terminal.

本発明によれば、膜質の均一性に優れ、被絶縁処理部材に対する剥がれや割れが生じにくく、従来にない高度の耐電圧性及び耐熱性を有する電着被膜で絶縁処理された絶縁部材を製造することができ、しかも、電着被膜の被膜厚みと耐電圧の相関性が高いので、所望の耐電圧性を有する絶縁部材を再現性良く製造することができる。従って、従来にない優れた絶縁性能と耐熱性を有する絶縁部材を高い歩留まりで製造することができる。   According to the present invention, it is possible to produce an insulating member that has excellent film quality uniformity, is less likely to be peeled off or cracked against the member to be insulated, and is insulated with an electrodeposition coating that has unprecedented high voltage resistance and heat resistance. Moreover, since the correlation between the thickness of the electrodeposition coating and the withstand voltage is high, an insulating member having a desired withstand voltage can be manufactured with good reproducibility. Therefore, it is possible to manufacture an insulating member having excellent insulation performance and heat resistance, which has not been conventionally obtained, with a high yield.

以下、本発明を好適な実施形態に即して説明する。
本発明でいう「絶縁部材」とは、種々の技術分野において、表面の絶縁保護が必要となる部材の表面に、電着被膜による絶縁層を形成して絶縁処理した部材を意味し、具体的には、導体線の外周に電着被膜による絶縁層を形成した絶縁電線、積層型トランス用コイルに使用される、打ち抜き加工された金属板の外周に電着被膜による絶縁層を形成した絶縁金属板、プローブガード測定用の針状金属ピン、モーターコアなどに使用される、切削または積層により3次元的に成形された金属板の外周に電着被膜による絶縁層を形成した絶縁金属板、リード端子を備えた電子部品のリード端子の表面に電着被膜による絶縁層を形成した絶縁処理リード端子付き電子部品等が挙げられる。
Hereinafter, the present invention will be described with reference to preferred embodiments.
The term “insulating member” as used in the present invention means a member obtained by forming an insulating layer with an electrodeposition coating on the surface of a member that requires insulation protection on the surface in various technical fields. Insulated wires with an insulating layer formed by an electrodeposition coating on the outer periphery of a conductor wire, an insulating metal having an insulating layer formed by an electrodeposition coating on the outer periphery of a stamped metal plate used in a coil for a laminated transformer Insulating metal plate, lead with an insulating layer formed by electrodeposition coating on the outer periphery of a three-dimensionally formed metal plate by cutting or laminating used for plates, needle guards for measuring probe guards, motor cores, etc. Examples thereof include an electronic component with an insulating treatment lead terminal in which an insulating layer made of an electrodeposition coating is formed on the surface of the lead terminal of the electronic component having the terminal.

本発明で使用する電着塗料組成物は、分子骨格(すなわちポリイミドの主鎖)中にシロキサン結合(−Si−O−)を有し、分子中にアニオン性基を有するブロック共重合ポリイミドを樹脂成分として含有する。   The electrodeposition coating composition used in the present invention is a resin comprising a block copolymerized polyimide having a siloxane bond (—Si—O—) in the molecular skeleton (namely, the main chain of polyimide) and an anionic group in the molecule. Contains as a component.

ここで、「ブロック共重合ポリイミド」とは、テトラカルボン酸二無水物とジアミンとを加熱してイミドオリゴマーを生成させ(第1段階反応)、次いでこれに前記のテトラカルボン酸二無水物と同一若しくは異なるテトラカルボン酸二無水物又は/及び前記のジアミンとは異なるジアミンを加えて反応(第2段階反応)させることによって、アミック酸間で起る交換反応に起因するランダム共重合化を防止して得られる、共重合ポリイミドのことを意味する。   Here, the “block copolymerized polyimide” is a tetracarboxylic dianhydride and a diamine that are heated to form an imide oligomer (first stage reaction), and then the same as the tetracarboxylic dianhydride described above. Alternatively, by adding a different tetracarboxylic dianhydride or / and a diamine different from the above diamine to react (second stage reaction), random copolymerization caused by exchange reaction occurring between amic acids can be prevented. It means a copolymerized polyimide obtained.

上記のポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドにおいて、主鎖中のシロキサン結合はテトラカルボン酸二無水物成分由来のシロキサン結合であっても、ジアミン成分由来のシロキサン結合であってもよいが、好ましくはジアミン成分由来のシロキサン結合であり、通常、ジアミン成分の少なくとも一部に、分子骨格中にシロキサン結合(−Si−O−)を有するジアミン化合物(以下、「シロキサン結合含有ジアミン」と呼ぶことがある。)を用いて得られたブロック共重合ポリイミドが使用される。   In the block copolymer polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule, the siloxane bond in the main chain may be a siloxane bond derived from a tetracarboxylic dianhydride component. A siloxane bond derived from a diamine component may be used, but a siloxane bond derived from a diamine component is preferable. Usually, at least a part of the diamine component has a siloxane bond (—Si—O—) in the molecular skeleton. A block copolymerized polyimide obtained using a diamine compound (hereinafter sometimes referred to as “siloxane bond-containing diamine”) is used.

シロキサン結合含有ジアミンとしては、テトラカルボン酸二無水物との間でイミド化し得るものであれば特に制限なく使用できるが、例えば、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び一般式(I):   The siloxane bond-containing diamine can be used without particular limitation as long as it can be imidized with tetracarboxylic dianhydride. For example, bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4 -Aminophenoxy) -1,1,3,3-tetramethyldisiloxane and the general formula (I):

Figure 2010106340
Figure 2010106340

(式中、4つのRは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基、又は1個〜3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)で表される化合物が挙げられる。当該一般式(I)で表される化合物は、式中nが1又は2の単一化合物、及びポリシロキサンジアミンを含む。 (In the formula, each of four R's independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m each represent Independently represents an integer of 1 to 4, and n represents an integer of 1 to 20.). The compound represented by the general formula (I) includes a single compound in which n is 1 or 2, and polysiloxane diamine.

式(I)中の4つのRのそれぞれにおいて、アルキル基、シクロアルキル基の炭素数は1〜6が好ましく、1〜2がより好ましい。また、1個〜3個のアルキル基若しくはアルコキシル基で置換されたフェニル基における、1個〜3個のアルキル基若しくはアルコキシル基は、それが2又は3個の場合、互いに同一であっても異なってもよい。また、アルキル基、アルコキシル基は、それぞれ、炭素数が1〜6が好ましく、1〜2がより好ましい。   In each of the four Rs in formula (I), the alkyl group and the cycloalkyl group preferably have 1 to 6 carbon atoms, more preferably 1 to 2 carbon atoms. In addition, in the phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, 1 to 3 alkyl groups or alkoxyl groups may be the same or different when they are 2 or 3 May be. Moreover, as for an alkyl group and an alkoxyl group, C1-C6 is respectively preferable, and 1-2 are more preferable.

一般式(I)で表される化合物は、式中の4つのRがアルキル基(特にメチル基)又はフェニル基であるのが好ましく、また、式中l及びmが2〜3、nが5〜15にあるポリシロキサンジアミンが好ましい。   In the compound represented by the general formula (I), four Rs in the formula are preferably an alkyl group (particularly a methyl group) or a phenyl group, and in the formula, l and m are 2 to 3, and n is 5 Polysiloxane diamines in ˜15 are preferred.

なお、ポリシロキサンジアミンの好ましい例としては、ビス(γ−アミノプロピル)ポリジメチルシロキサン(式(I)中、l及びmが3、4つのRがメチル基のもの。)、ビス(γ−アミノプロピル)ポリジフェニルシロキサン(式(I)中、l及びmが3、4つのRがフェニル基のもの。)が挙げられる。   Preferred examples of the polysiloxane diamine include bis (γ-aminopropyl) polydimethylsiloxane (in the formula (I), l and m are 3 and 4 R are methyl groups), bis (γ-amino). Propyl) polydiphenylsiloxane (in the formula (I), l and m are 3, and four R are phenyl groups).

本発明で使用する電着塗料組成物において、シロキサン結合含有ジアミンはいずれか1種の化合物を単独で使用しても、2種以上を併用して使用してもよい。なお、かかるシロキサン結合含有ジアミンは、市販品を使用してもよく、信越化学工業社、東レ・ダウコーニング社、チッソ社から販売されているものをそのまま使用できる。具体的には、信越化学工業社製のKF−8010(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約450)、X−22−161A(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約840)等が挙げられ、これらは特に好ましいものである。   In the electrodeposition coating composition used in the present invention, the siloxane bond-containing diamine may be used alone or in combination of two or more. In addition, a commercial item may be used for this siloxane bond containing diamine, and what is sold from Shin-Etsu Chemical Co., Toray Dow Corning, Chisso can be used as it is. Specifically, KF-8010 (bis (γ-aminopropyl) polydimethylsiloxane: amino group equivalent of about 450), X-22-161A (bis (γ-aminopropyl) polydimethylsiloxane: Shin-Etsu Chemical Co., Ltd .: Amino group equivalent of about 840) and the like, and these are particularly preferable.

本発明で使用する電着塗料組成物において、アニオン性基とは、電着組成物の溶媒(後述)中でアニオンになる基であり、好ましくはカルボキシル基若しくはその塩、及び/又は、スルホン酸基若しくはその塩である。アニオン性基は、シロキサン含有ジアミンやテトラカルボン酸二無水物成分が有していてもよいが、アニオン性基を有するジアミンをジアミン成分の1つとして用いることが好ましい。ポリイミドの耐熱性、被電着物(被絶縁処理部材)との密着性、重合度向上のために、このようなアニオン性基含有ジアミンは、芳香族ジアミンであることが好ましい。すなわち、芳香族ジアミノカルボン酸及び/又は芳香族ジアミノスルホン酸が好ましい。芳香族ジアミノカルボン酸としては、例えば、3,5−ジアミノ安息香酸、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸等が挙げられ、芳香族ジアミノスルホン酸としては、2,5−ジアミノベンゼンスルホン酸、4,4’−ジアミノ−2,2’−スチルベンジスルホン酸、o−トリジンジスルホン酸等が挙げられる。これらの中でも、3,5−ジアミノ安息香酸が特に好ましい。このようなアニオン性基含有芳香族ジアミンは、単独で用いることもできるし、2種以上を組み合わせて用いることもできる。なお、シロキサン結合含有ジアミンがアニオン性基を有している場合には、ジアミン成分は、シロキサン結合含有ジアミンのみであってもかまわない。   In the electrodeposition coating composition used in the present invention, the anionic group is a group that becomes an anion in a solvent (described later) of the electrodeposition composition, preferably a carboxyl group or a salt thereof, and / or a sulfonic acid. A group or a salt thereof. The anionic group may be contained in a siloxane-containing diamine or a tetracarboxylic dianhydride component, but it is preferable to use a diamine having an anionic group as one of the diamine components. Such an anionic group-containing diamine is preferably an aromatic diamine in order to improve the heat resistance of the polyimide, the adhesion to an electrodeposit (insulation-treated member), and the degree of polymerization. That is, aromatic diaminocarboxylic acid and / or aromatic diaminosulfonic acid is preferable. Examples of the aromatic diaminocarboxylic acid include 3,5-diaminobenzoic acid, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,5-diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid and the like can be mentioned. As aromatic diaminosulfonic acid, 2,5-diamino Examples thereof include benzenesulfonic acid, 4,4′-diamino-2,2′-stilbene disulfonic acid, o-tolidine disulfonic acid, and the like. Among these, 3,5-diaminobenzoic acid is particularly preferable. Such an anionic group-containing aromatic diamine may be used alone or in combination of two or more. When the siloxane bond-containing diamine has an anionic group, the diamine component may be only the siloxane bond-containing diamine.

ジアミン成分として、上記したシロキサン結合含有ジアミン及びジアミノカルボン酸に加え、さらに他のジアミンが含まれていてもよい。このようなジアミンとしては、ポリイミドの耐熱性、被電着物への密着性、重合度向上のため通常は芳香族ジアミンが用いられる。このような芳香族ジアミンの例として、m−フェニレンジアミン、p−フェニレンジアミン、2,4−ジアミノトルエン、4,4’−ジアミノ−3,3’−ジメチル−1,1’−ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−1,1’−ビフェニル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,6−ジアミノピリジン、2,6−ジアミノ−4−メチルピリジン、4,4’−(9−フルオレニリデン)ジアニリン、α,α−ビス(4-アミノフェニル)-1,3-ジイソプロピルベンゼンを挙げることができ、中でも、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホンがより好ましい。   As the diamine component, in addition to the above-described siloxane bond-containing diamine and diaminocarboxylic acid, another diamine may be further contained. As such a diamine, an aromatic diamine is usually used in order to improve the heat resistance of the polyimide, the adhesion to the electrodeposit, and the degree of polymerization. Examples of such aromatic diamines include m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 4,4′-diamino-3,3′-dimethyl-1,1′-biphenyl, 4, 4'-diamino-3,3'-dihydroxy-1,1'-biphenyl, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 4,4'-diamino Diphenylsulfone, 4,4′-diaminodiphenyl sulfide, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (4-aminophenoxy) ) Benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) bif Nyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) Phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,6-diaminopyridine, 2,6-diamino-4-methylpyridine, 4,4 ′-(9-fluorenylidene) dianiline, α, α-bis (4-aminophenyl) -1,3-diisopropylbenzene can be mentioned, among which bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] Sulfone is more preferred.

全ジアミン成分中、前記シロキサン結合含有ジアミンの割合は5〜90モル%が好ましく、より好ましくは15〜50モル%である。シロキサン結合含有ジアミン単位が5モル%未満の場合、ポリイミドの電着被膜は伸び率が劣り、十分な可とう性が得られにくくなって、剥がれや割れを生じ易くなるため、好ましくない。また、前記芳香族ジアミノカルボン酸又はその塩の割合が10〜70モル%であることが好ましい(ただし、シロキサン結合含有ジアミンと芳香族ジアミノカルボン酸又はその塩の合計は100モル%以下であり、また、上記の通り第3のジアミン成分を含んでいてもよい)。   In the total diamine component, the proportion of the siloxane bond-containing diamine is preferably 5 to 90 mol%, more preferably 15 to 50 mol%. When the siloxane bond-containing diamine unit is less than 5 mol%, the electrodeposition film of polyimide is inferior in elongation and it is difficult to obtain sufficient flexibility, and peeling and cracking are likely to occur. Further, the ratio of the aromatic diaminocarboxylic acid or a salt thereof is preferably 10 to 70 mol% (however, the total of the siloxane bond-containing diamine and the aromatic diaminocarboxylic acid or a salt thereof is 100 mol% or less, Moreover, the 3rd diamine component may be included as above-mentioned.

一方、ポリイミド中のテトラカルボン酸二無水物成分としては、ポリイミドの耐熱性、ポリシロキサンジアミンの相溶性の点から芳香族テトラカルボン酸二無水物が通常使用され、例えば、ピロメリット酸二無水物、3,3',4,4’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物等が挙げられ、これらの中でもポリイミドの耐熱性、被電着物への密着性、ポリシロキサンジアミンの相溶性、重合速度の観点から3,3',4,4’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物が特に好ましいものとして挙げられる。これら例示のテトラカルボン酸二無水物は、何れか1種の化合物を単独で使用しても、2種以上を組み合わせて使用しても良い。   On the other hand, as a tetracarboxylic dianhydride component in polyimide, aromatic tetracarboxylic dianhydride is usually used from the viewpoint of heat resistance of polyimide and compatibility of polysiloxane diamine. For example, pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride , Bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride Products, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, etc. Among these, heat resistance of polyimide, adhesion to electrodeposits, polysiloxane diamine 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4 ′ from the viewpoint of compatibility and polymerization rate -Benzophenone tetracarboxylic dianhydride and 3,3 ', 4,4'-biphenylsulfone tetracarboxylic dianhydride are particularly preferred. These exemplified tetracarboxylic dianhydrides may be used alone or in combination of two or more.

本発明で使用する電着塗料組成物の樹脂成分として用いられるポリイミドは、水溶性極性溶媒に可溶な(例えば、N−メチル−2−ピロリドン(NMP)中に、5重量%以上、好ましくは10重量%以上の濃度で溶解する溶解性を示す。)ブロック共重合ポリイミドである。ブロック共重合ポリイミド及びその製造方法は、既に公知であり(例えば特許文献5及び6に記載)、本発明で用いるポリイミドも、上記ジアミン成分及びテトラカルボン酸二無水物を用い、公知の方法を適用して製造することができる。重合反応には水溶性極性溶媒が用いられ、具体的には、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素、及びスルホランから選ばれる1種又は2種以上が挙げられ、なかでも、NMPが好ましい。かかる水溶性極性溶媒中に、テトラカルボン酸二無水物とジアミンを、ほぼ等モル(好ましくはモル比で1:0.95〜1.05)加え、触媒存在下で加熱して脱水イミド化反応することにより直接ポリイミド溶液を製造する。触媒は、ラクトンと塩基又はクロトン酸と塩基から成る2成分系の複合触媒である。ラクトンとしてはγ−バレロラクトンが好ましく、塩基としてはピリジン又はN−メチルモルホリンが好ましい。ラクトン又はクロトン酸と塩基の混合比は、1:1〜5(モル当量)好ましくは、1:1〜2である。水が存在すると、酸−塩基の複塩として、触媒作用を示し、イミド化が完了し、水が反応系外に出る(好ましくは、トルエンの存在下で重縮合反応を行い、生成する水はトルエンと共に反応系外に除かれる)と触媒作用を失う。この触媒の使用量は、テトラカルボン酸二無水物に対し通常1/100〜1/5モル、好ましくは1/50〜1/10モルである。上記イミド化反応に供するテトラカルボン酸二無水物とジアミンとの混合比率(酸/ジアミン)は、上記の通りモル比で1:0.95〜1.05程度が好ましい。また、反応開始時における反応混合物全体中の酸二無水物の濃度は4〜16重量%程度が好ましく、ラクトン又はクロトン酸の濃度は0.2〜0.6重量%程度が好ましく、塩基の濃度は0.3〜0.9重量%程度が好ましく、トルエンの濃度は6〜15重量%程度が好ましい。反応温度は、150℃〜220℃が好ましい。また、反応時間は特に限定されず、製造しようとするポリイミドの分子量等により異なるが、通常180〜900分間程度である。また、反応は撹拌下で行うことが好ましい。   The polyimide used as the resin component of the electrodeposition coating composition used in the present invention is soluble in a water-soluble polar solvent (for example, 5% by weight or more in N-methyl-2-pyrrolidone (NMP), preferably Shows solubility at a concentration of 10% by weight or more.) Block copolymerized polyimide. The block copolymerized polyimide and its production method are already known (for example, described in Patent Documents 5 and 6), and the polyimide used in the present invention is also applied to the known method using the diamine component and tetracarboxylic dianhydride. Can be manufactured. A water-soluble polar solvent is used for the polymerization reaction. Specifically, N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP) , Γ-butyrolactone (γBL), anisole, tetramethylurea, and sulfolane, and NMP is preferable. In this water-soluble polar solvent, tetracarboxylic dianhydride and diamine are added in an approximately equimolar amount (preferably in a molar ratio of 1: 0.95 to 1.05) and heated in the presence of a catalyst to perform a dehydration imidization reaction. To produce a polyimide solution directly. The catalyst is a two-component composite catalyst composed of a lactone and a base or a crotonic acid and a base. The lactone is preferably γ-valerolactone, and the base is preferably pyridine or N-methylmorpholine. The mixing ratio of lactone or crotonic acid and the base is 1: 1 to 5 (molar equivalent), preferably 1: 1 to 2. In the presence of water, it acts as an acid-base double salt, exhibits catalytic action, completes imidization, and water comes out of the reaction system (preferably, a polycondensation reaction is performed in the presence of toluene, and water produced is When it is removed from the reaction system together with toluene, the catalytic action is lost. The amount of the catalyst used is usually 1/100 to 1/5 mol, preferably 1/50 to 1/10 mol, relative to tetracarboxylic dianhydride. The mixing ratio (acid / diamine) of tetracarboxylic dianhydride and diamine to be subjected to the imidization reaction is preferably about 1: 0.95 to 1.05 in molar ratio as described above. The concentration of the acid dianhydride in the entire reaction mixture at the start of the reaction is preferably about 4 to 16% by weight, the concentration of lactone or crotonic acid is preferably about 0.2 to 0.6% by weight, and the concentration of the base Is preferably about 0.3 to 0.9% by weight, and the concentration of toluene is preferably about 6 to 15% by weight. The reaction temperature is preferably 150 ° C to 220 ° C. Moreover, reaction time is not specifically limited, Although it changes with the molecular weight etc. of the polyimide which is going to manufacture, it is about 180 to 900 minutes normally. Moreover, it is preferable to perform reaction under stirring.

水溶性極性溶媒中、上記2成分系の酸触媒の存在下で酸二無水物とジアミンとを加熱してイミドオリゴマーを生成させ、次いでこれに酸二無水物又は/及びジアミンを加えて第2段階反応することによりポリイミドを生成することができる。この方法によりアミック酸間で起こる交換反応に起因するランダム共重合化を防止することができる。その結果、ブロック共重合ポリイミドが製造できる。このときの固形分濃度は10〜40重量%が好ましく、より好ましくは20〜30重量%である。   An acid dianhydride and a diamine are heated in a water-soluble polar solvent in the presence of the above-mentioned two-component acid catalyst to form an imide oligomer, and then an acid dianhydride or / and a diamine are added to the second diamine oligomer. A polyimide can be produced by a step reaction. By this method, random copolymerization due to an exchange reaction occurring between amic acids can be prevented. As a result, a block copolymerized polyimide can be produced. The solid concentration at this time is preferably 10 to 40% by weight, more preferably 20 to 30% by weight.

ポリイミドは固有対数粘度(25℃)が20wt%NMP溶液時で5000〜50,000mPasであるものが好ましく、5000〜15,000mPasがより好ましい。   The polyimide preferably has an inherent logarithmic viscosity (25 ° C.) of 5000 to 50,000 mPas, more preferably 5000 to 15,000 mPas when 20 wt% NMP solution is used.

また、樹脂成分として用いられるブロック共重合ポリイミドの重量平均分子量(Mw)はポリスチレン換算で20,000〜150,000が好ましく、特に45,000〜90,000が好ましい。当該ポリイミドの重量平均分子量が20,000未満の場合、電着被膜の耐熱性が低下する傾向となり、また被膜表面が荒れてしまい、審美性および耐電圧特性が低下する傾向となる。また、重量平均分子量が150,000より大きくなると、ポリイミド樹脂が水に対して撥水性を帯び電着液(塗料)製造工程でゲル化を引き起こし易くなる。   Further, the weight average molecular weight (Mw) of the block copolymerized polyimide used as the resin component is preferably 20,000 to 150,000, particularly preferably 45,000 to 90,000 in terms of polystyrene. When the weight average molecular weight of the polyimide is less than 20,000, the heat resistance of the electrodeposited coating tends to be reduced, and the coating surface is roughened, and the aesthetics and withstand voltage characteristics tend to be reduced. On the other hand, when the weight average molecular weight is larger than 150,000, the polyimide resin has water repellency with respect to water and easily causes gelation in the electrodeposition liquid (paint) manufacturing process.

また、数平均分子量(Mn)については、ポリスチレン換算で10,000〜70,000が好ましく、より好ましくは20,000〜40,000である。数平均分子量が10,000未満の場合、電着効率が低下する傾向となり、また、耐熱性、耐電圧性が低下する場合もある。ここで、ポリイミドの分子量はGPCにより測定される、ポリスチレン換算の分子量であり、GPC装置としてHLC−8220(東ソー(株)製)を、カラムにTSKgel SuperH−RC(東ソー(株)製)を使用して、測定した値である。   Moreover, about a number average molecular weight (Mn), 10,000-70,000 are preferable in polystyrene conversion, More preferably, it is 20,000-40,000. When the number average molecular weight is less than 10,000, the electrodeposition efficiency tends to decrease, and the heat resistance and voltage resistance may decrease. Here, the molecular weight of the polyimide is a molecular weight in terms of polystyrene measured by GPC, using HLC-8220 (manufactured by Tosoh Corp.) as the GPC device and TSKgel SuperH-RC (manufactured by Tosoh Corp.) as the column. The measured value.

本発明で使用する電着塗料組成物は、サスペンジョン型電着塗料である。ここで、「サスペンジョン型電着塗料」とは、本発明で使用する電着塗料組成物が、電気泳動法光散乱法(レーザードップラー法)での粒径分析装置ELS−Z2(大塚電子株式会社製)を用いて測定し、測定結果をキュムラント解析法にて解析したポリイミド粒子(析出粒子)の粒子径が0.1〜10μm、粒子径の標準偏差が0.1〜8μmで分散されているサスペンジョンを形成していることを意味する。   The electrodeposition coating composition used in the present invention is a suspension type electrodeposition coating. Here, the “suspension type electrodeposition paint” means that the electrodeposition paint composition used in the present invention is a particle size analyzer ELS-Z2 (Otsuka Electronics Co., Ltd.) using an electrophoretic light scattering method (laser Doppler method). The particle diameter of the polyimide particles (precipitated particles) whose measurement results were analyzed by the cumulant analysis method is 0.1 to 10 μm and the standard deviation of the particle diameter is 0.1 to 8 μm. It means that a suspension is formed.

本発明で使用する電着塗料組成物(サスペンジョン型電着塗料組成物)は、その固有相対粘度が5〜100mPasであることが好ましい。かかる粘度範囲の組成物は、30μm以上の膜厚が得られ、かつ均一な膜厚が得られる電着塗料用組成物として好適である。なお、固有対数粘度は、B型粘度計(東機産業(株)製)を用いて測定した。   The electrodeposition coating composition (suspension type electrodeposition coating composition) used in the present invention preferably has an intrinsic relative viscosity of 5 to 100 mPas. A composition having such a viscosity range is suitable as a composition for an electrodeposition coating material that can provide a film thickness of 30 μm or more and a uniform film thickness. The inherent logarithmic viscosity was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.).

また、ブロック共重合ポリイミドからなる粒子の平均粒子径は0.1〜10μmであるのが好ましく、0.5〜5μmがより好ましい。平均粒子径が0.1μm未満であるとクーロン効率の低下および過電圧による耐電圧性能の低下をもたらす。また、10μmを超えるとクーロン効率の制御および粒子が大きくなることによるリーク電流の増大により耐電圧性能の低下を引き起こす。そのため、クーロン効率の制御および耐電圧性能の維持のバランスのとれた粒子径範囲として0.5〜5μmが好ましい。   Moreover, it is preferable that the average particle diameter of the particle | grains which consist of block copolymerization polyimide is 0.1-10 micrometers, and 0.5-5 micrometers is more preferable. When the average particle size is less than 0.1 μm, the Coulomb efficiency is lowered and the withstand voltage performance is lowered due to overvoltage. On the other hand, if it exceeds 10 μm, the coulombic efficiency is controlled and the leakage current is increased due to the increase in particles, thereby causing a decrease in withstand voltage performance. Therefore, the particle size range in which the control of the coulomb efficiency and the maintenance of the withstand voltage performance are balanced is preferably 0.5 to 5 μm.

本発明で使用する電着塗料組成物(サスペンジョン型電着塗料組成物)の製造は、具体的には、次のようにして行う。先ず、上記の重合反応を経て得られたブロック共重合ポリイミドを含む重合反応後組成物(すなわち、ブロック共重合ポリイミドと水溶性極性溶媒とを含み、ブロック共重合ポリイミドの含有量が15〜25重量%の組成物)を加熱溶融する。ここでの加熱温度は通常50〜180℃程度、好ましくは60〜160℃程度である。加熱温度が50℃未満では、ブロック共重合ポリイミドが溶解せず、他の溶媒と分散しにくい傾向となり、180℃を超えると、加水分解を起こし、分子量が低下する傾向となる。   The production of the electrodeposition coating composition (suspension type electrodeposition coating composition) used in the present invention is specifically performed as follows. First, a post-polymerization composition containing a block copolymerized polyimide obtained through the above polymerization reaction (that is, containing a block copolymerized polyimide and a water-soluble polar solvent, and the content of the block copolymerized polyimide is 15 to 25 wt. % Composition) is heated and melted. The heating temperature here is usually about 50 to 180 ° C., preferably about 60 to 160 ° C. When the heating temperature is less than 50 ° C., the block copolymerized polyimide does not dissolve and tends to be difficult to disperse with other solvents. When the heating temperature exceeds 180 ° C., hydrolysis occurs and the molecular weight tends to decrease.

次に、前記加熱溶融後の組成物に塩基性化合物を添加、攪拌してブロック共重合ポリイミドを中和した後、組成物を40℃以下に冷却し、さらにブロック共重合ポリイミドの貧溶媒及び水を添加し、混合攪拌して、サスペンジョンを調製する。   Next, a basic compound is added to the heated and melted composition and stirred to neutralize the block copolymer polyimide, and then the composition is cooled to 40 ° C. or lower, and the block copolymer polyimide poor solvent and water are further cooled. Is added and mixed and stirred to prepare a suspension.

かかるサスペンジョン型塗料組成物の製造工程において、ブロック共重合ポリイミドを中和した後の組成物の冷却後温度が40℃を超える場合、中和剤によりポリイミドが分解する傾向となる。組成物の冷却温度はより好ましくは30℃以下である。なお、組成物の冷却温度が低すぎると、再び固化が始まる傾向となるため、冷却温度の下限は20℃以上が好ましい。   In the manufacturing process of such a suspension-type coating composition, when the temperature after cooling of the composition after neutralizing the block copolymerized polyimide exceeds 40 ° C., the polyimide tends to be decomposed by the neutralizing agent. The cooling temperature of the composition is more preferably 30 ° C. or lower. If the cooling temperature of the composition is too low, solidification tends to start again, so the lower limit of the cooling temperature is preferably 20 ° C. or higher.

上記塩基性化合物は、ブロック共重合ポリイミドが有するアニオン性基を中和し得るものであれば特に制限なく使用できるが、塩基性含窒素化合物が好ましく、例えば、N,N−ジメチルアミノエタノール、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、アンモニア等の第1級アミン、第2級アミン又は第3級アミンが挙げられる。また、ピロール、イミダゾール、オキサゾール、ピラゾール、イソキサゾール、チアゾール、イソチアゾール等の含窒素五員複素環化合物やピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、モルホリン等の含窒素六員複素環化合物等の含窒素複素環式化合物が挙げられる。なお、脂肪族アミンは臭気が強いものが多いので、低臭気である点から含窒素複素環式化合物が好ましい。また、塗料の毒性を考慮した場合、含窒素複素環式化合物の中でも毒性が低いピペリジン、モルホリンなどが好ましい。当該塩基性化合物の使用量はポリイミド中の酸性基が水溶液中に安定に溶解または分散する程度であり、通常、理論中和量の30〜200モル%程度である。   The basic compound is not particularly limited as long as it can neutralize the anionic group of the block copolymerized polyimide, but a basic nitrogen-containing compound is preferable, for example, N, N-dimethylaminoethanol, triethylamine, and the like. Primary amines such as triethanolamine, N-dimethylbenzylamine and ammonia, secondary amines and tertiary amines. Also, nitrogen-containing five-membered heterocyclic compounds such as pyrrole, imidazole, oxazole, pyrazole, isoxazole, thiazole, isothiazole, and nitrogen-containing six-membered heterocyclic compounds such as pyridine, pyridazine, pyrimidine, pyrazine, piperidine, piperazine, morpholine, etc. A nitrogen-containing heterocyclic compound is mentioned. In addition, since many aliphatic amines have a strong odor, nitrogen-containing heterocyclic compounds are preferred from the viewpoint of low odor. In consideration of the toxicity of the paint, piperidine, morpholine and the like having low toxicity are preferable among the nitrogen-containing heterocyclic compounds. The amount of the basic compound used is such that the acidic group in the polyimide is stably dissolved or dispersed in the aqueous solution, and is usually about 30 to 200 mol% of the theoretical neutralization amount.

また、上記ブロック共重合ポリイミドの貧溶媒は、例えば、フェニル基、フルフリル基若しくはナフチル基を有するアルコール又はケトン類が挙げられ、具体的には、アセトフェノン、ベンジルアルコール、4−メチルベンジルアルコール、4−メトキシベンジルアルコール、エチレングリコールモノフェニルエーテル、フェノキシ−2−エタノール、シンナミルアルコール、フルフリルアルコール、ナフチルカルビノール等が挙げられる。また、脂肪族アルコール系溶媒は毒性が低い点で好ましく、エーテル基を有する脂肪族アルコール系溶媒が特に好ましい。脂肪族アルコール系溶媒としては、1−プロパノール、イソプロピルアルコール、エチレングリコール類、プロピレングリコール類が挙げられる。エチレングリコール類、プロピレングリコール類の具体例としては、ジプロピレングリコール、トリプロピレングリコール、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル(1−メトキシ−2−プロパノール)、プロピレングリコールメチルエーテルアセテート等が挙げられる。これら貧溶媒は1種又は2種以上を使用できる。   Examples of the poor solvent for the block copolymer polyimide include alcohols or ketones having a phenyl group, a furfuryl group, or a naphthyl group. Specifically, acetophenone, benzyl alcohol, 4-methylbenzyl alcohol, 4- Examples include methoxybenzyl alcohol, ethylene glycol monophenyl ether, phenoxy-2-ethanol, cinnamyl alcohol, furfuryl alcohol, and naphthyl carbinol. An aliphatic alcohol solvent is preferred because of its low toxicity, and an aliphatic alcohol solvent having an ether group is particularly preferred. Examples of the aliphatic alcohol solvent include 1-propanol, isopropyl alcohol, ethylene glycols, and propylene glycols. Specific examples of ethylene glycols and propylene glycols include dipropylene glycol, tripropylene glycol, ethylene glycol monoethyl ether, propylene glycol monomethyl ether (1-methoxy-2-propanol), propylene glycol methyl ether acetate, and the like. . These poor solvents can use 1 type (s) or 2 or more types.

かかる貧溶媒の配合量は組成物全量に対し10〜40重量%が好ましく、10〜30重量%がより好ましい。また、上記水の量は組成物全量に対し10〜30重量%が好ましく、15〜30重量%がより好ましい。   The blending amount of the poor solvent is preferably 10 to 40% by weight and more preferably 10 to 30% by weight with respect to the total amount of the composition. The amount of water is preferably 10 to 30% by weight, more preferably 15 to 30% by weight, based on the total amount of the composition.

なお、上記のブロック共重合ポリイミドの貧溶媒や水以外に、組成物の粘度、電気伝導度を調整する目的で、水溶性極性溶媒や油溶性溶媒を適量添加してもよい。ここで、水溶性極性溶媒の具体例としては、前記のブロック共重合ポリイミドの重合反応に使用する水溶性極性溶媒と同じものが挙げられ、油溶性溶媒としてはγ−ブチロラクトン等が挙げられる。なお、油溶性溶媒を添加する場合、その量は組成物全量に対し15重量%以下である。   In addition to the poor solvent and water of the block copolymer polyimide, an appropriate amount of a water-soluble polar solvent or an oil-soluble solvent may be added for the purpose of adjusting the viscosity and electrical conductivity of the composition. Here, specific examples of the water-soluble polar solvent include the same water-soluble polar solvents used for the polymerization reaction of the block copolymerized polyimide, and examples of the oil-soluble solvent include γ-butyrolactone. In addition, when adding an oil-soluble solvent, the quantity is 15 weight% or less with respect to the composition whole quantity.

本発明で使用する電着塗料組成物(サスペンジョン型電着塗料組成物)の固形分濃度は1〜15重量%が好ましく、より好ましくは5〜10重量%である。また、水溶性極性溶媒の含有量は組成物全量に対し25〜60重量%が好ましく、より好ましくは35〜55重量%である。   The solid content concentration of the electrodeposition coating composition (suspension type electrodeposition coating composition) used in the present invention is preferably 1 to 15% by weight, more preferably 5 to 10% by weight. The content of the water-soluble polar solvent is preferably 25 to 60% by weight, more preferably 35 to 55% by weight, based on the total amount of the composition.

本発明で使用する電着塗料組成物(サスペンジョン型電着塗料組成物)は、被膜の成長過程での電気伝導度が高く、低電流の電着条件でも、被絶縁処理部材(被電着物)表面に膜性状の均一性の高いポリイミド電着被膜を形成することができ、その結果、所望厚みの優れた耐電圧性及び耐熱性を有する絶縁被膜を再現性よく形成することができる。また、ブロック共重合ポリイミドの分散粒子(析出粒子)が被絶縁処理部材(被電着物)の表面に堆積(付着)しやすいことから、被絶縁処理部材がリード端子を備えた電子部品(リード端子付き電子部品)のような単一の線材や平板材でない複雑な形状の部材や、絶縁部と導電部が混在する部材であっても、部材の絶縁保護を図るべき導電性領域に対して被膜の密着性が十分でない不良部分を生じることなく、膜性状の均一性の高いポリイミドの被膜を形成することができる。また、30μmを超える厚みの被膜形成も可能である。   The electrodeposition coating composition (suspension-type electrodeposition coating composition) used in the present invention has high electrical conductivity during the film growth process, and is a member to be insulated (electrodeposited object) even under low current electrodeposition conditions. A highly uniform polyimide electrodeposition film having a film property can be formed on the surface, and as a result, an insulating film having excellent voltage resistance and heat resistance with a desired thickness can be formed with good reproducibility. In addition, since the dispersed particles (deposited particles) of the block copolymerized polyimide are likely to be deposited (attached) on the surface of the member to be insulated (electrodeposit), the electronic component (lead terminal) provided with the lead member as the member to be insulated Even if it is a member with a complicated shape that is not a single wire or flat plate, such as an electronic component), or a member with a mixture of insulating and conductive parts, it coats the conductive region where insulation protection of the member is to be achieved It is possible to form a polyimide film with high uniformity in film properties without producing defective portions with insufficient adhesion. In addition, a film having a thickness exceeding 30 μm can be formed.

本発明の絶縁部材の製造方法において、電着被膜の形成は、被絶縁処理部材(被電着物)を電着塗料用組成物に浸漬し、該部材(被電着物)を陽極として電流を通じて該部材(被電着物)上にポリイミド被膜を成長させればよい。   In the method for producing an insulating member according to the present invention, the electrodeposition coating is formed by immersing a member to be insulated (electrodeposit) in an electrodeposition coating composition, and passing the member (electrodeposit) as an anode through an electric current. A polyimide film may be grown on the member (electrodeposit).

本発明における「被絶縁処理部材」の材質は特に限定されず、その少なくとも一部が、銅、銅合金、銅グラットアルミニウム、アルミニウム、鉄、亜鉛メッキ鉄、銀、金、ニッケル、チタン、タングステン等から選ばれる1種又は2種以上の金属によって構成される部材等が挙げられる。具体的には、例えば、製造する絶縁部材が絶縁電線の場合、被絶縁処理部材は銅線、銅合金、銅クラッドアルミニウム、アルミニウム、ステンレス合金等の導体線であり、製造する絶縁部材が絶縁処理リード端子付き電子部品の場合、銅被覆ニッケル鋼線(ジュメット線)、ニッケル線、コバール線、鉄ニッケル線、Ni合金線、Niめっき線等による絶縁処理がされていないリード端子を備えた電子部品(リード端子付き電子部品)等が挙げられる。なお、ここでいうリード端子付き電子部品とは、部品本体であるサーミスタ(温度センサ)、トランス、抵抗器、コンデンサ、インダクタ、圧電素子、水晶振動子、発光素子(LED)、冷陰極蛍光ランプ(CCFL)、ダイオード等の素子の電極にリード端子を溶接、ハンダ等で接続した電子部品である。   The material of the “insulated member” in the present invention is not particularly limited, and at least a part thereof is copper, copper alloy, copper grat aluminum, aluminum, iron, galvanized iron, silver, gold, nickel, titanium, tungsten, etc. The member comprised by 1 type, or 2 or more types of metals chosen from these is mentioned. Specifically, for example, when the insulating member to be manufactured is an insulated wire, the member to be insulated is a conductor wire such as copper wire, copper alloy, copper clad aluminum, aluminum, or stainless alloy, and the insulating member to be manufactured is insulated. In the case of electronic components with lead terminals, electronic components with lead terminals that are not insulated by copper-coated nickel steel wires (Jumet wires), nickel wires, Kovar wires, iron-nickel wires, Ni alloy wires, Ni-plated wires, etc. (Electronic components with lead terminals) and the like. In addition, the electronic component with a lead terminal here is a thermistor (temperature sensor), transformer, resistor, capacitor, inductor, piezoelectric element, crystal resonator, light emitting element (LED), cold cathode fluorescent lamp ( CCFL) is an electronic component in which a lead terminal is connected to an electrode of an element such as a diode by welding or soldering.

電着は、定電流法又は定電圧法で行うことができ、例えば、定電流法の場合、電流値:1.0〜200mA、直流電圧:5〜200V(好ましくは30〜120V)の条件が挙げられる。また、電着時間は電着条件、形成すべき電着膜の厚み等によっても異なるが、一般的には10〜120秒の範囲から選択され、好ましくは30〜60秒である。また、電着の際の組成物温度は通常10〜50℃、好ましくは10〜40℃、より好ましくは20〜30℃である。電着電圧が5Vより低いと電着によって被膜を形成させることが困難となる傾向があり、200Vよりも大きくなると被塗布物からの酸素の発生が激しくなり均一な被膜形成ができなくなる。また、電着時間が10秒よりも短いと、電着電圧を高めに設定しても被膜が成長しにくいためにピンホールが発生しやすく、電着膜の耐電圧性能が低下する傾向となり、120秒を超えると、被膜の厚さが必要以上に厚くなるだけで経済性に欠ける。また、組成物温度が10℃よりも低いと電着によって被膜形成をさせることが困難になり、50℃よりも高くなると温度管理が必要となり生産コストを上げる原因になる。   Electrodeposition can be performed by the constant current method or the constant voltage method. For example, in the case of the constant current method, the conditions of current value: 1.0 to 200 mA, DC voltage: 5 to 200 V (preferably 30 to 120 V) are used. Can be mentioned. The electrodeposition time varies depending on the electrodeposition conditions, the thickness of the electrodeposition film to be formed, etc., but is generally selected from the range of 10 to 120 seconds, preferably 30 to 60 seconds. Moreover, the composition temperature at the time of electrodeposition is 10-50 degreeC normally, Preferably it is 10-40 degreeC, More preferably, it is 20-30 degreeC. If the electrodeposition voltage is lower than 5V, it tends to be difficult to form a film by electrodeposition. If the electrodeposition voltage is higher than 200V, the generation of oxygen from the object to be coated becomes intense and a uniform film cannot be formed. In addition, if the electrodeposition time is shorter than 10 seconds, the film is difficult to grow even if the electrodeposition voltage is set high, so that pinholes are likely to occur, and the withstand voltage performance of the electrodeposition film tends to decrease, If it exceeds 120 seconds, the thickness of the coating becomes thicker than necessary, and it is not economical. Further, when the composition temperature is lower than 10 ° C., it is difficult to form a film by electrodeposition, and when it is higher than 50 ° C., temperature management is required, which increases production costs.

電着によって形成されたブロック共重合ポリイミドの被膜は、加熱乾燥(焼付け)されるが、本発明では、電着によって形成されたブロック共重合ポリイミドの被膜を水溶性極性溶媒と水及び/又は脂肪族アルコール系溶媒を含む洗浄液(好ましくは水溶性極性溶媒と水の混合液からなる洗浄液)にて洗浄し、さらにエアーの噴き付けによって不要な洗浄液を被膜から分離(除去)した後に、被膜の加熱乾燥(焼付け)を行なう。   The block copolymerized polyimide film formed by electrodeposition is heat-dried (baked). In the present invention, the block copolymerized polyimide film formed by electrodeposition is treated with a water-soluble polar solvent and water and / or fat. Cleaning with a cleaning solution containing an aromatic alcohol solvent (preferably a cleaning solution comprising a mixture of a water-soluble polar solvent and water), and separating (removing) unnecessary cleaning solution from the coating by blowing air, and then heating the coating Dry (baked).

被膜の加熱乾燥(焼付け)前に行なう洗浄処理により、加熱乾燥(焼付け)後の被膜は膜性状の一層の均一化が図られ、被絶縁処理部材への密着性や被膜の絶縁性能がより向上する。また、洗浄後のエアーの噴き付けによる洗浄液の分離(除去)操作により、被絶縁処理部材が絶縁部と導電部が混在するような部材である場合に、被絶縁処理部材の実質的に絶縁保護を要しない領域(絶縁部)に付着していた不要な塗料成分を除去できるため、電着被膜の加熱乾燥(焼付け)の際の塗料成分の不要な発泡が生じるのを防止することができ、また、導電部の絶縁部との境界付近においても電着被膜の高い密着力が維持される。   By performing the cleaning process before heat drying (baking) of the film, the film after heat drying (baking) is made more uniform in film properties, and the adhesion to the member to be insulated and the insulating performance of the film are further improved. To do. In addition, when the member to be insulated is a member in which an insulating portion and a conductive portion are mixed due to the separation (removal) operation of the cleaning liquid by spraying air after cleaning, the insulation treatment member is substantially insulated. Can remove unnecessary paint components adhering to the area (insulating part) that does not need to be prevented, so that it is possible to prevent unnecessary foaming of the paint components during the heat drying (baking) of the electrodeposition coating, Further, the high adhesion of the electrodeposition film is maintained near the boundary between the conductive portion and the insulating portion.

また、例えば、リード端子を備えた電子部品の場合、後述するように、電子部品本体(例えば、サーミスタ素子)と、電子部品本体の端子電極とリード端子の接続部はセラミックやガラスで封止されることが多いが、セラミックやガラスによる封止部から突出するリード端子の根元から先端の手前までを電着被膜で被覆する場合、リード端子の根元付近はセラミックやガラスとの境界に位置することから、被膜の密着性が低下しやすい。しかし、被膜の加熱乾燥(焼付け)前に行なう、上記洗浄液による被膜の洗浄処理とエアーによる洗浄液の除去処理を行なうことで、加熱乾燥(焼付け)後の被膜の密着性が高まり、被膜剥がれを防止することができる。   Further, for example, in the case of an electronic component having a lead terminal, as will be described later, the electronic component body (for example, the thermistor element) and the connection portion between the terminal electrode and the lead terminal of the electronic component body are sealed with ceramic or glass. However, when covering the lead terminal protruding from the sealing part with ceramic or glass with the electrodeposition coating from the base of the lead terminal, the vicinity of the base of the lead terminal should be located at the boundary with the ceramic or glass. Therefore, the adhesion of the film tends to decrease. However, by performing the cleaning treatment of the coating with the above cleaning solution and the removal of the cleaning solution with air before the coating is heated and dried (baked), the adhesion of the coating after heating and drying (baking) is increased and the coating is prevented from peeling off. can do.

このような電着被膜の加熱乾燥(焼付け)前に行なう洗浄液による洗浄操作によってより好ましい性状の被膜が形成できるのは、洗浄液として水溶性極性溶媒と水及び/又は脂肪族アルコール系溶媒を含む洗浄液(好ましくは水溶性極性溶媒と水の混合液)を使用するためであり、洗浄液が水溶性極性溶媒である場合、電着後の被膜中に残存する塗料の分離(除去)だけでなく被膜の溶解等が生じてしまい、また、洗浄液が水及び/又は脂肪族アルコール系溶媒である場合、被膜中の良溶媒の溶出により被膜の密着性低下が生じ、加熱乾燥(焼付け)後の被膜の膜性状を向上させることができない。水溶性極性溶媒と水及び/又は脂肪族アルコール系溶媒を含有する洗浄液を使用することで加熱乾燥(焼付け)後の被膜の膜性状が向上する理由は明らかではないが、ブロック共重合ポリイミドに対する良溶媒である水溶性極性溶媒とブロック共重合ポリイミドに対する貧溶媒である水及び/又は脂肪族アルコール系溶媒とが混在する洗浄液が被膜に接触することで、被膜中のブロック共重合ポリイミドの粒子同士の結合力が増すとともに、被膜中に残存する塗料(液状成分)が適度に減量されて、加熱乾燥(焼付け)による被膜の緻密化がより高まるためであると考えられる。   A film having a more preferable property can be formed by a cleaning operation with a cleaning liquid performed before heat drying (baking) of the electrodeposited film. The cleaning liquid contains a water-soluble polar solvent and water and / or an aliphatic alcohol solvent as the cleaning liquid. (Preferably a mixture of a water-soluble polar solvent and water). When the cleaning liquid is a water-soluble polar solvent, not only the separation (removal) of the paint remaining in the film after electrodeposition but also the coating If the cleaning solution is water and / or an aliphatic alcohol solvent, dissolution of the good solvent in the coating causes a decrease in the adhesion of the coating, and the coating film after heat drying (baking) The properties cannot be improved. The reason why the film properties of the coating after heat drying (baking) is improved by using a cleaning solution containing a water-soluble polar solvent and water and / or an aliphatic alcohol solvent is not clear. When the cleaning liquid in which the water-soluble polar solvent as the solvent and the poor solvent for the block copolymerized polyimide and / or the aliphatic alcohol solvent are in contact with the coating, the particles of the block copolymerized polyimide in the coating It is considered that this is because, as the binding force increases, the paint (liquid component) remaining in the coating is appropriately reduced, and the densification of the coating by heat drying (baking) is further increased.

水溶性極性溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素、及びスルホラン等が挙げられ、これらはいずれか1種又は2種以上を使用することができる。中でも、N−メチルピロリドン(NMP)が特に好ましい。また、脂肪族アルコール系溶媒としては、1−プロパノール、イソプロピルアルコール、エチレングリコール類、プロピレングリコール類等が挙げられ、いずれか1種又は2種以上を使用することができる。   Examples of the water-soluble polar solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (γBL), Anisole, tetramethylurea, sulfolane and the like can be mentioned, and any one or more of these can be used. Among these, N-methylpyrrolidone (NMP) is particularly preferable. Moreover, 1-propanol, isopropyl alcohol, ethylene glycol, propylene glycol etc. are mentioned as an aliphatic alcohol solvent, Any 1 type (s) or 2 or more types can be used.

洗浄液における水溶性極性媒と水及び/又は脂肪族アルコール系溶媒との混合比は水溶性極性媒50〜80重量%と水及び/又は脂肪族アルコール系溶媒20〜50重量%が好ましく、より好ましくは水溶性極性媒60〜80重量%と水及び/又は脂肪族アルコール系溶媒20〜40重量%であり、とりわけ好ましくは水溶性極性媒60〜75重量%と水及び/又は脂肪族アルコール系溶媒25〜40重量%である。水溶性極性媒が80重量%を超えると、電着による被膜が溶解して、被膜の厚み減少が顕著になり、水及び/又は脂肪族アルコール系溶媒50重量%を超えると、被膜外観(ツヤ)の低下や被膜のザラツキが生じ、場合によってはクラックを生じることがある。   The mixing ratio of the water-soluble polar medium to water and / or the aliphatic alcohol solvent in the cleaning liquid is preferably 50 to 80% by weight of the water-soluble polar medium and 20 to 50% by weight of water and / or the aliphatic alcohol solvent, more preferably. Is 60 to 80% by weight of water-soluble polar medium and 20 to 40% by weight of water and / or aliphatic alcohol solvent, and particularly preferably 60 to 75% by weight of water soluble polar medium and water and / or aliphatic alcohol solvent. 25 to 40% by weight. When the water-soluble polar medium exceeds 80% by weight, the film formed by electrodeposition is dissolved, and the thickness of the film is significantly reduced. When the water and / or aliphatic alcohol solvent exceeds 50% by weight, the appearance of the film (shine ) Or roughness of the film, and in some cases, cracks may occur.

なお、ブロック共重合ポリイミドに対する貧溶媒として水及び脂肪族アルコール系溶媒を使用する場合、両者の混合比(水:脂肪族アルコール系溶媒)は、重量比で1:0.1〜5程度とするのが好ましい。   In addition, when water and an aliphatic alcohol solvent are used as a poor solvent for the block copolymerized polyimide, the mixing ratio (water: aliphatic alcohol solvent) of both is about 1: 0.1 to 5 by weight ratio. Is preferred.

洗浄液による洗浄処理は、表面に電着による被膜が形成された被絶縁処理部材を洗浄液に浸漬するか、被膜に洗浄液を噴射させる等によって行なうことができる。洗浄処理の時間は、例えば、洗浄液への浸漬である場合、1〜30秒程度が一般的である。30秒よりも長くなると、析出樹脂の再溶解による、被膜厚さの減少や被膜の不均一化を起こす虞があり、1秒よりも短いと洗浄不足による、被膜厚さ不均一化の傾向となる。   The cleaning treatment with the cleaning liquid can be performed by immersing the member to be insulated having a film formed by electrodeposition on the surface in the cleaning liquid or by spraying the cleaning liquid on the coating. For example, in the case of immersion in a cleaning solution, the cleaning treatment time is generally about 1 to 30 seconds. If it is longer than 30 seconds, the film thickness may decrease or the coating may become non-uniform due to re-dissolution of the precipitated resin. If it is shorter than 1 second, the film thickness tends to become non-uniform due to insufficient cleaning. Become.

一方、エアーの噴き付けによる洗浄液の分離(除去)処理は、例えば、エアガン等によって行なうことができ、エアガンの噴射圧によっても相違するが、一般に吹き付け時間は1〜30秒程度とするのがよい。吹き付け時間が30秒を超えて長くなりすぎると、被膜外観(ツヤ)の低下や被膜のザラツキが生じ、場合によってはクラックを生じやすい傾向となり、また、1秒よりも短いと、洗浄液の除去が不十分となり、発泡等の外観不良を起こしやすい傾向となる。   On the other hand, the separation (removal) process of the cleaning liquid by spraying air can be performed by, for example, an air gun or the like, and generally depends on the spray pressure of the air gun, but generally the spraying time is preferably about 1 to 30 seconds. . If the spraying time exceeds 30 seconds and becomes too long, the coating appearance (gloss) will deteriorate and the coating will become rough, and in some cases it will tend to crack, and if it is shorter than 1 second, the cleaning liquid will be removed. It becomes insufficient and tends to cause appearance defects such as foaming.

加熱乾燥(焼付け)は、被絶縁処理部材への被膜の密着性の観点から、70〜110℃で10〜60分の第一段階の焼付け処理を行った後、160〜180℃で10〜60分の第二段階の焼付け処理を行い、さらに200〜220℃で30〜60分の第三段階の焼付け処理を行うのが好ましい。   Heat drying (baking) is performed at a temperature of 160 to 180 ° C. for 10 to 60 minutes after performing a first stage baking process at 70 to 110 ° C. for 10 to 60 minutes from the viewpoint of adhesion of the film to the member to be insulated. It is preferable to perform a second stage baking process for 30 minutes, and further perform a third stage baking process at 200 to 220 ° C. for 30 to 60 minutes.

このようにして電着膜(被膜)を加熱乾燥(焼付け)して得られるポリイミド被膜は、被絶縁処理部材に対して強固密着し、かつ、割れが生じ難い可撓性に優れるものとなり、しかも、例えば、JIS−C−3003に準拠したB法金属箔法によるAC耐電圧が、層厚みが10μmのときに1kV以上、層厚みが20μmのときに2kV以上、層厚みが30μmのときに3kV以上を示すような高度の耐電性を示す絶縁層となり、また、例えば、JIS−C−3003に準拠した温度指数評価法での温度指数が200℃以上(すなわち、耐熱区分がC種以上)を示すような高度の耐熱性を有する絶縁層となる。また、JIS−C−2151に準拠して測定される伸び率が5%以上、好ましくは8%以上という高い伸び率を示す。   The polyimide film obtained by heating and drying (baking) the electrodeposition film (coating) in this way is excellent in flexibility with which it is firmly adhered to the member to be insulated and is not easily cracked. For example, the AC withstand voltage according to the B method metal foil method in accordance with JIS-C-3003 is 1 kV or more when the layer thickness is 10 μm, 2 kV or more when the layer thickness is 20 μm, and 3 kV when the layer thickness is 30 μm. It becomes an insulating layer having a high electric resistance as shown above, and, for example, a temperature index according to a temperature index evaluation method based on JIS-C-3003 is 200 ° C. or higher (that is, the heat resistance category is C class or higher). It becomes an insulating layer having a high heat resistance as shown. Further, the elongation measured according to JIS-C-2151 is 5% or higher, preferably 8% or higher.

なお、特許文献4で提案されている電着塗料組成物は、分子骨格中にシロキサン結合を有し、分子中にアニオン性基を有するブロック共重合ポリイミドを樹脂成分として含有する点で、本発明で使用する上記のサスペンジョン型電着塗料組成物と共通するが、ブロック共重合ポリイミドが析出粒子(固形粒子)として存在しない、液相分散乃至溶液型の組成物であり、数種類の溶剤の混合系からなるために溶剤の配合比率の若干の変動によって電着塗料としての挙動が大きく変化し、得られる電着被膜の膜性状が均一になりにくい。このため、JIS−C−3003に準拠した温度指数評価法による耐熱区分が最高でF種の電着被膜(絶縁層)しか形成できず、また、JIS−C−3003に準拠したB法金属箔法による層厚みが10μmのときのAC耐電圧は最高でもせいぜい0.3kV程度しか示さない。また、電着条件を種々変更しても、厚みが30μmを超える電着被膜(絶縁層)を形成することは困難である。また、特に5〜15μm程度の比較的薄い厚みの被膜を形成した場合、被膜厚みに対する被膜の絶縁性能のバラツキが大きく、所望の耐電圧性を有する被膜を再現性よく形成することができない。   The electrodeposition coating composition proposed in Patent Document 4 includes the present invention in that it contains a block copolymer polyimide having a siloxane bond in the molecular skeleton and an anionic group in the molecule as a resin component. This is the same as the above suspension type electrodeposition coating composition used in the above, but it is a liquid phase dispersion or solution type composition in which block copolymerized polyimide does not exist as precipitated particles (solid particles), and a mixed system of several kinds of solvents Therefore, the behavior as an electrodeposition coating is greatly changed by a slight change in the mixing ratio of the solvent, and the film properties of the obtained electrodeposition coating are difficult to be uniform. For this reason, the heat resistance classification based on the temperature index evaluation method based on JIS-C-3003 is the highest, and only F-type electrodeposition coatings (insulating layers) can be formed, and the B-method metal foil conforming to JIS-C-3003 The AC withstand voltage when the layer thickness by the method is 10 μm shows at most only about 0.3 kV. Even if the electrodeposition conditions are variously changed, it is difficult to form an electrodeposition film (insulating layer) having a thickness exceeding 30 μm. In particular, when a relatively thin film having a thickness of about 5 to 15 μm is formed, variation in the insulation performance of the film with respect to the film thickness is large, and a film having a desired voltage resistance cannot be formed with good reproducibility.

以下、実施例と比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited by the following Example.

実施例1
[電着塗料組成物の調製]
ステンレス製の碇型攪拌機を取り付けた2リットルのセパラブル三つ口フラスコに水分分離トラップを備えた玉付冷却管を取り付けた。該フラスコに3,3’4,4’−ビフェニルテトラカルボン酸二無水物58.84g(200ミリモル)、ビス−[4−(4−アミノフェノキシ)フェニル]スルホン43.25g(100ミリモル)、γ−バレロラクトン4.0g(40ミリモル)、ピリジン6.3g(80ミリモル)、N−メチル−2−ピロリドン(NMP)531gおよびトルエン50gを仕込み、室温、窒素雰囲気下、180rpmで10分攪拌した後、180℃に昇温して2時間攪拌した。反応中、トルエン−水の共沸分を除いた。ついで、室温に冷却し、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物64.45g(200ミリモル)、信越化学工業社製KF−8010を83.00g(100ミリモル)、3,5−ジアミノ安息香酸30.43g(200ミリモル)、NMP531gおよびトルエン50gを添加し、180℃、180rpmで攪拌しながら、8時間反応させた。還流物を系外に除くことにより、20重量%濃度のポリイミド溶液(20%ポリイミドワニス)を得た。得られたポリイミドの数平均分子量及び重量平均分子量は、それぞれ24,000及び68,000であった。
Example 1
[Preparation of electrodeposition coating composition]
A 2-liter separable three-necked flask equipped with a stainless steel vertical stirrer was equipped with a ball condenser equipped with a water separation trap. The flask was charged with 58.84 g (200 mmol) of 3,3′4,4′-biphenyltetracarboxylic dianhydride, 43.25 g (100 mmol) of bis- [4- (4-aminophenoxy) phenyl] sulfone, γ -After charging 4.0 g (40 mmol) of valerolactone, 6.3 g (80 mmol) of pyridine, 531 g of N-methyl-2-pyrrolidone (NMP) and 50 g of toluene, the mixture was stirred for 10 minutes at 180 rpm in a nitrogen atmosphere at room temperature. The mixture was heated to 180 ° C. and stirred for 2 hours. During the reaction, toluene-water azeotrope was removed. Next, the mixture was cooled to room temperature, 64.45 g (200 mmol) of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 83.00 g (100 mmol) of KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd., 3 , 5-Diaminobenzoic acid 30.43 g (200 mmol), NMP 531 g and toluene 50 g were added and reacted for 8 hours while stirring at 180 ° C. and 180 rpm. By removing the refluxed product out of the system, a 20 wt% polyimide solution (20% polyimide varnish) was obtained. The number average molecular weight and weight average molecular weight of the obtained polyimide were 24,000 and 68,000, respectively.

得られたポリイミドワニスをガラス板上にバーコーターを用いてウエット膜厚50μmにて塗布した。その後、温風乾燥機にて90℃/30分、180℃/30分、220℃/30分で乾燥させた後、ガラス板より剥離させ、JIS C 2151に準拠して機械的伸び率を測定し、21.8%のポリイミド被膜が得られた。また熱分解温度は420℃であった。   The obtained polyimide varnish was applied on a glass plate with a wet film thickness of 50 μm using a bar coater. Then, after drying at 90 ° C./30 minutes, 180 ° C./30 minutes, 220 ° C./30 minutes with a hot air drier, peel from the glass plate, and measure the mechanical elongation according to JIS C 2151. 21.8% of polyimide film was obtained. The thermal decomposition temperature was 420 ° C.

先に得られた20%ポリイミドワニス100gを窒素雰囲気下160℃で1時間攪拌し、その後、30℃まで急冷し、N−メチルピロリドン59.4gとピペリジン2.2g(中和率200モル%)を加え激しく攪拌した。その後、プロピレングリコールモノメチルエーテル129gを加えながら攪拌し、水67gを滴下して電着液を調製した。粒径分析装置ELS−Z2(大塚電子株式会社製)を用いて、該電着液における分散粒子の粒径および標準偏差を測定したところ、粒径0.7μm、標準偏差0.5μmの析出粒子(固形粒子)を有するサスペンジョンを形成していた。なお、固形分濃度6.0%、pH8.7、電気伝導度7.3mS/mの黒濁液であった。また、固有対数粘度は、50mPasであった。   100 g of the 20% polyimide varnish obtained above was stirred at 160 ° C. for 1 hour in a nitrogen atmosphere, and then rapidly cooled to 30 ° C., 59.4 g of N-methylpyrrolidone and 2.2 g of piperidine (neutralization rate 200 mol%) And stirred vigorously. Thereafter, the mixture was stirred while adding 129 g of propylene glycol monomethyl ether, and 67 g of water was added dropwise to prepare an electrodeposition solution. Using a particle size analyzer ELS-Z2 (manufactured by Otsuka Electronics Co., Ltd.), when the particle size and standard deviation of the dispersed particles in the electrodeposition solution were measured, precipitated particles having a particle size of 0.7 μm and a standard deviation of 0.5 μm A suspension having (solid particles) was formed. In addition, it was a black turbid liquid with a solid content concentration of 6.0%, pH of 8.7, and electric conductivity of 7.3 mS / m. The intrinsic log viscosity was 50 mPas.

[絶縁電線の作製]
上記電着液組成物を使用し、電極−被着体間距離を25mmとし、電着電圧を30〜50V、電着電流を0.01〜200mAの範囲内、電着時間を10〜60秒の範囲内でそれぞれ変更し、φ1.0mm、長さ20cmの円形銅線外周に電着を行い、電着後の銅線を電着浴から取り出した。次に、N−メチルピロリドン(NMP)70重量%と水30重量%からなる洗浄液に、上記の電着により被膜形成を行った円形銅線を3秒間浸漬して引き上げ、エアガンによりエアーを噴き付けて、洗浄液の除去を行った。その後、90℃×30分間、さらに170℃×30分間、さらに220℃×30分間被膜を焼き付けることで、種々の厚みのポリイミド被膜(絶縁層)を有する円形絶縁銅線(1条件当たりのサンプル数=10)を得た。
[Production of insulated wires]
Using the above electrodeposition liquid composition, the distance between the electrode and the adherend is 25 mm, the electrodeposition voltage is 30 to 50 V, the electrodeposition current is 0.01 to 200 mA, and the electrodeposition time is 10 to 60 seconds. The electrode was electrodeposited on the outer periphery of a circular copper wire having a diameter of 1.0 mm and a length of 20 cm, and the electrodeposited copper wire was taken out from the electrodeposition bath. Next, the circular copper wire on which the film was formed by the above electrodeposition was dipped in a cleaning solution consisting of 70% by weight of N-methylpyrrolidone (NMP) and 30% by weight of water for 3 seconds, and air was sprayed by an air gun. The cleaning solution was removed. After that, 90 ° C. × 30 minutes, 170 ° C. × 30 minutes, and 220 ° C. × 30 minutes, the coating is baked to form a circular insulated copper wire having polyimide coatings (insulating layers) of various thicknesses (number of samples per condition) = 10) was obtained.

そして、得られた円形絶縁銅線につき、以下の試験方法で、電着液の電着性(被膜の状態)、被膜の厚さ、被膜のAC耐電圧及び耐熱寿命を評価した。下記表1にその結果を示す。   And about the obtained circular insulated copper wire, the electrodeposition property (the state of the coating) of the electrodeposition liquid, the thickness of the coating, the AC withstand voltage and the heat resistant life of the coating were evaluated by the following test methods. The results are shown in Table 1 below.

1.被膜の状態
JIS−C−3003に準拠して、ピンホールの有無を調査した。
1. State of coating The presence or absence of pinholes was investigated in accordance with JIS-C-3003.

2.被膜の厚さ
マイクロメータ(最小目盛:0.1mm)を用いて計測した。サンプル1個当たり2cmの間隔で離間する5箇所の厚さを測定し、平均値をそのサンプルの測定結果とした。
2. The thickness of the coating was measured using a micrometer (minimum scale: 0.1 mm). The thicknesses of five locations separated by an interval of 2 cm per sample were measured, and the average value was taken as the measurement result of the sample.

3.被膜のAC耐電圧
JIS−C−3003に準拠して、B法金属箔法により、AC破壊電圧を測定した。すなわち、1cmのスズ箔を絶縁電線に巻き付け、導体−すず箔間にて測定した。そして、各板に交流電圧発生装置を接続し、1秒間当たり100Vの速度で電圧を上昇させて、短絡(漏れ電流値10mA以上)した電圧を破壊電圧とした。表1には10個のサンプルの平均値と最大値と最小値を示した。
3. AC breakdown voltage of coating The AC breakdown voltage was measured by the B method metal foil method in accordance with JIS-C-3003. That is, 1 cm of tin foil was wound around an insulated wire and measured between the conductor and tin foil. Then, an AC voltage generator was connected to each plate, the voltage was increased at a rate of 100 V per second, and the short-circuited voltage (leakage current value of 10 mA or more) was taken as the breakdown voltage. Table 1 shows the average value, maximum value, and minimum value of 10 samples.

4.被膜の耐熱寿命
絶縁電線の被膜厚さが21μmの試料(試験No.3)について、JIS−C−3003に記載の温度指数評価法に準拠して絶縁電線の耐熱性(電着被膜の耐熱寿命)を評価した。すなわち、電線試料2本を用いて2個撚りし、試験片を得た。この試験片を290〜320℃の範囲内の10℃間隔の温度(290℃、300℃、310℃、320℃)に設定したオーブンで熱処理し、それぞれについて、500V×1秒の電圧印加で破壊に至るまでの時間を計測した。温度指数は290℃、300℃、310℃、320℃の各温度での測定結果をアレニウスプロットした耐熱寿命グラフより算出した。寿命20,000時間に相当する耐熱温度、すなわち、温度指数は240℃で、耐熱区分は200℃以上であるC種に相当するものであった。
4). Heat resistant life of coating For a sample (test No. 3) having a film thickness of 21 μm of insulated wire, the heat resistance of the insulated wire (heat resistant life of the electrodeposited coating) in accordance with the temperature index evaluation method described in JIS-C-3003 ) Was evaluated. That is, two test pieces were obtained by twisting two using two wire samples. This test piece was heat-treated in an oven set at a temperature of 290 to 320 ° C. at intervals of 10 ° C. (290 ° C., 300 ° C., 310 ° C., 320 ° C.), and each was destroyed by applying a voltage of 500 V × 1 second. The time to reach was measured. The temperature index was calculated from a heat resistant life graph in which the measurement results at temperatures of 290 ° C., 300 ° C., 310 ° C., and 320 ° C. were Arrhenius plotted. The heat-resistant temperature corresponding to a life of 20,000 hours, that is, the temperature index is 240 ° C., and the heat-resistant classification corresponds to Class C having a temperature of 200 ° C. or higher.

Figure 2010106340
Figure 2010106340

比較例1
実施例1で得られたブロック共重合ポリイミド(樹脂成分)を20重量%含有する半固形状の組成物100gを160℃に加熱溶融した後、NMP70gを加え、アニソール55g、シクロヘキサノン45g及びN−メチルモルホリン2.6g(中和率200モル%)を加え、攪拌しながら水30gを滴下して、固形分濃度6.6%、pH7.8の電着液組成物を得た。粒径分析装置ELS−Z2(大塚電子株式会社製)を用いて、電着液における分散粒子の粒径および標準偏差を測定したが、粒径が0.1μm以上の析出粒子は観察されなかった。そして、この電着液組成物を使用して、極間距離を25mm、電着電圧を160Vとし、電着電流を0.01〜200mAの範囲内、電着時間を10〜60秒の範囲内で変更して、実施例1で使用した円形銅線と同じ銅線に電着を行い、電着後の銅線を電着浴から取り出し、実施例1と同様の条件で被膜の洗浄と被膜の焼き付けを行って、種々の厚みのポリイミド被膜(絶縁層)を有する円形絶縁銅線(1条件当たりのサンプル数=10)を得た。そして、上述の試験方法で、電着液の電着性(被膜の状態)、被膜の厚さ、AC耐電圧及び被膜の耐熱寿命を評価した。下記表2に結果を示す。なお、被膜の耐熱寿命はポリイミド被膜の厚さが18μmの試料について行ったところ、温度指数は180℃で、耐熱区分はH種であった。
Comparative Example 1
After 100 g of a semisolid composition containing 20% by weight of the block copolymerized polyimide (resin component) obtained in Example 1 was heated and melted at 160 ° C., 70 g of NMP was added, 55 g of anisole, 45 g of cyclohexanone and N-methyl were added. 2.6 g of morpholine (neutralization rate: 200 mol%) was added, and 30 g of water was added dropwise with stirring to obtain an electrodeposition liquid composition having a solid content concentration of 6.6% and a pH of 7.8. Using a particle size analyzer ELS-Z2 (manufactured by Otsuka Electronics Co., Ltd.), the particle size and standard deviation of the dispersed particles in the electrodeposition liquid were measured, but no precipitated particles having a particle size of 0.1 μm or more were observed. . And using this electrodeposition liquid composition, the distance between electrodes is 25 mm, the electrodeposition voltage is 160 V, the electrodeposition current is in the range of 0.01 to 200 mA, and the electrodeposition time is in the range of 10 to 60 seconds. Then, electrodeposition was performed on the same copper wire as the circular copper wire used in Example 1, the copper wire after electrodeposition was taken out from the electrodeposition bath, and the coating was washed and coated under the same conditions as in Example 1. Then, a circular insulated copper wire (number of samples per condition = 10) having polyimide coatings (insulating layers) with various thicknesses was obtained. And by the above-mentioned test method, the electrodeposition property (the state of the coating) of the electrodeposition liquid, the thickness of the coating, the AC withstand voltage, and the heat resistant life of the coating were evaluated. The results are shown in Table 2 below. The heat resistant life of the film was measured on a sample having a polyimide film thickness of 18 μm. The temperature index was 180 ° C. and the heat resistance category was H.

Figure 2010106340
Figure 2010106340

図1は実施例1及び比較例1で作製した円形絶縁銅線(サンプル)の被膜厚みとAC耐電圧の関係を示したものである。なお、図1中の参考例1は電着被膜の焼付け前の洗浄を水で行った以外は実施例1と同様にして作製した円形絶縁銅線(サンプル)における被膜厚みとAC耐電圧の関係である。   FIG. 1 shows the relationship between the coating thickness of the circular insulated copper wire (sample) produced in Example 1 and Comparative Example 1 and the AC withstand voltage. In addition, in Reference Example 1 in FIG. 1, the relationship between the film thickness and the AC withstand voltage in a circular insulated copper wire (sample) produced in the same manner as in Example 1 except that the electrodeposition film was washed before baking with water. It is.

図1からサスペンジョン型電着塗料組成物を使用することで、従来の液相分散乃至溶液型の電着塗料組成物を使用した場合に比べて、高度の耐電圧性を有する絶縁被膜を形成できることが分かる。また、表1及び表2の対比から、サスペンジョン型電着塗料組成物を使用することで、従来の液相分散乃至溶液型の電着塗料組成物を使用した場合に比べて、電着被膜の被膜厚みに対する耐電圧のバラツキが小さくなる(すなわち、同一条件により得られる略同一厚みの被膜のAC耐電圧の最大値と最小値の差が小さくなる)ことがわかる。そして、サスペンジョン型電着塗料組成物による電着被膜の焼付け前にN−メチルピロリドン(NMP)と水の混合液からなる洗浄液にて被膜を洗浄する本発明方法(実施例1)では、サスペンジョン型電着塗料組成物による電着被膜の焼付け前に水で被膜を洗浄した場合(参考例1)に比べて被膜の耐電圧性が更に向上するとともに、被膜厚みとAC耐電圧との相関性が更に向上することが分かる。従って、本発明方法によれば、意図した厚みの絶縁被膜であって、高度の耐電圧性及び耐熱性を有する絶縁被膜にて絶縁処理された絶縁部材を高い歩留まりで製造できることがわかる。   As shown in FIG. 1, by using a suspension type electrodeposition coating composition, it is possible to form an insulating film having a high voltage resistance compared to the case of using a conventional liquid phase dispersion or solution type electrodeposition coating composition. I understand. Further, from the comparison of Table 1 and Table 2, the use of the suspension type electrodeposition coating composition allows the electrodeposition coating to be compared with the case where a conventional liquid phase dispersion or solution type electrodeposition coating composition is used. It can be seen that the variation in withstand voltage with respect to the film thickness is small (that is, the difference between the maximum value and the minimum value of the AC withstand voltage of the film having substantially the same thickness obtained under the same conditions is small). In the method of the present invention (Example 1) in which the coating is washed with a cleaning liquid composed of a mixed solution of N-methylpyrrolidone (NMP) and water before baking the electrodeposition coating with the suspension type electrodeposition coating composition, the suspension type The voltage resistance of the film is further improved as compared with the case where the film is washed with water before baking the electrodeposition film with the electrodeposition coating composition (Reference Example 1), and the correlation between the film thickness and the AC voltage resistance is increased. It turns out that it improves further. Therefore, according to the method of the present invention, it can be seen that an insulating member having an intended thickness and having an insulation treatment with an insulating film having high voltage resistance and heat resistance can be manufactured with high yield.

実施例2
[絶縁処理リード端子付きサーミスタの作製]
図2(A)に示す、部品本体であるサーミスタ素子(両面にAuからなる端子電極が対向して形成された負特性のサーミスタ素子)1の端子電極にAu粉末を含む導電性ペーストを用いて、φ0.4mm、長さ80mmの銅被覆ニッケル鋼線(ジュメット線)からなるリード端子2の一端を接続し、サーミスタ素子1及びサーミスタ素子1の端子電極とリード端子2の接続部に低融点ガラス(軟化点570℃)からなるガラス管(外径1.35mm、内径1.05mm、長さ3.0mm)を装着後、750℃で3分間加熱し、ガラス封止することでリード端子付きサーミスタ5を用意した。このリード端子付きサーミスタ5を、電着浴に満たした上記実施例1で作製の電着塗料組成物中に部品本体(サーミスタ1)側からリード端子2の先端の50mmの長さ部分を残して浸漬し、電圧30V、通電量を0.05〜0.2Cとし、電着被膜を形成した。その時の電着電流値は0.01〜200mAの範囲内、電着時間は0.5〜30秒の範囲内で変更した。次に、N−メチルピロリドン(NMP)75重量%と水25重量%からなる洗浄液に、上記の電着によりリード端子に被膜を形成したリード端子付きサーミスタを3秒間浸漬して引き上げ、エアガンによりエアーを噴き付けて、洗浄液の除去を行った。その後、90℃×30分間、さらに170℃×30分間、さらに220℃×30分間被膜を焼き付けることで、図2(B)に示すリード端子2の先端側の50mmの長さ部分を残して、リード端子2がポリイミド被膜(絶縁被膜)4で被覆された絶縁処理リード端子付きサーミスタ10を得た(1条件当たりのサンプル数=10)を得た。
Example 2
[Production of thermistor with insulated lead terminals]
A conductive paste containing Au powder is used for the terminal electrode of the thermistor element (negative thermistor element formed by opposing the terminal electrodes made of Au on both sides) 1 shown in FIG. One end of a lead terminal 2 made of a copper-coated nickel steel wire (Jumet wire) with a diameter of 0.4 mm and a length of 80 mm is connected to the thermistor element 1 and the terminal electrode of the thermistor element 1 and the connection portion of the lead terminal 2 with a low melting point glass. A thermistor with lead terminals by mounting a glass tube (outer diameter 1.35 mm, inner diameter 1.05 mm, length 3.0 mm) made of (softening point 570 ° C.), followed by heating at 750 ° C. for 3 minutes and glass sealing. 5 was prepared. This thermistor 5 with lead terminals is left in the electrodeposition coating composition produced in Example 1 filled with an electrodeposition bath, with a length of 50 mm at the tip of the lead terminal 2 from the component body (thermistor 1) side. Immersion was performed, the voltage was 30 V, the energization amount was 0.05 to 0.2 C, and an electrodeposition film was formed. The electrodeposition current value at that time was changed within the range of 0.01 to 200 mA, and the electrodeposition time was changed within the range of 0.5 to 30 seconds. Next, the thermistor with a lead terminal formed by coating the lead terminal by the above electrodeposition in a cleaning solution composed of 75% by weight of N-methylpyrrolidone (NMP) and 25% by weight of water is dipped for 3 seconds and pulled up with an air gun. Was sprayed to remove the cleaning solution. Then, by baking the film at 90 ° C. × 30 minutes, further at 170 ° C. × 30 minutes, and further at 220 ° C. × 30 minutes, leaving the 50 mm length portion on the tip side of the lead terminal 2 shown in FIG. A thermistor with an insulated lead terminal 10 in which the lead terminal 2 was coated with a polyimide coating (insulating coating) 4 was obtained (number of samples per condition = 10).

このようにして作製された絶縁処理リード端子付きサーミスタにつき、被膜厚さを測定し、被膜のAC耐電圧を評価した。   The film thickness of the thermistor with insulated lead terminals thus prepared was measured, and the AC withstand voltage of the coating film was evaluated.

被膜の厚さは、マイクロメータ(最小目盛:0.1mm)を用いて計測した。サンプル1個当たり5mmの間隔で離間する3箇所の厚さを測定し、平均値をそのサンプルの測定結果とした。また、被膜のAC耐電圧は、以下の水中法により測定した。   The thickness of the coating was measured using a micrometer (minimum scale: 0.1 mm). The thickness of three places spaced at intervals of 5 mm per sample was measured, and the average value was taken as the measurement result of the sample. The AC withstand voltage of the coating was measured by the following underwater method.

[AC耐電圧測定法(水中法)]
図4に示すように、予め、電極68が設置された水槽66に水67を充満した。そこに、リード端子2の絶縁被膜4による被覆部分が水67に浸かり、該被覆部分と未被覆部分の境界が水面近傍に位置するようにリード端子付きサーミスタ10を配置した。なお、予め、絶縁被膜4からリード端子(ジュメット線)が露出する境界付近を絶縁テープ64でマスクし、封止ガラス3とリード端子2との境界部分を絶縁テープ65でマスクした。テープによるマスキングは、これらの付近で、リード端子(ジュメット線)が直接、水67と接触することによる測定エラーを防止するためである。この構成において、絶縁被膜4が水67と接触している長さを28mmとした。この状態で、電極68とリード端子2間にAC電源69から交流電圧を印加し、絶縁破壊が生じる電圧値を求めた。
[AC withstand voltage measurement method (underwater method)]
As shown in FIG. 4, the water 67 was previously filled with the water tank 66 in which the electrode 68 was installed. There, the thermistor 10 with lead terminals was arranged so that the covered portion of the lead terminal 2 with the insulating coating 4 was immersed in water 67 and the boundary between the covered portion and the uncovered portion was located near the water surface. In addition, the vicinity of the boundary where the lead terminal (Jumet wire) was exposed from the insulating coating 4 was masked with the insulating tape 64 in advance, and the boundary portion between the sealing glass 3 and the lead terminal 2 was masked with the insulating tape 65. The masking with the tape is to prevent measurement errors caused by the contact of the lead terminals (jumet wires) directly with the water 67 in the vicinity thereof. In this configuration, the length of the insulating coating 4 in contact with the water 67 was 28 mm. In this state, an AC voltage was applied between the electrode 68 and the lead terminal 2 from the AC power source 69, and a voltage value causing dielectric breakdown was determined.

下記の表3が測定結果であり、被膜厚さとAC耐電圧は各試験条件での10個のサンプルの平均値である。   Table 3 below shows the measurement results, and the film thickness and AC withstand voltage are average values of 10 samples under each test condition.

Figure 2010106340
Figure 2010106340

参考例2
洗浄液を水に変更した以外は、実施例2と同様にして絶縁処理リード端子付きサーミスタを作製し、被膜厚さを測定し、被膜のAC耐電圧を評価した。下記表4に結果を示す。表中の被膜厚さとAC耐電圧は各試験条件での10個のサンプルの平均値である。
Reference example 2
A thermistor with an insulated lead terminal was prepared in the same manner as in Example 2 except that the cleaning liquid was changed to water, the film thickness was measured, and the AC withstand voltage of the coating was evaluated. The results are shown in Table 4 below. The film thickness and AC withstand voltage in the table are average values of 10 samples under each test condition.

Figure 2010106340
Figure 2010106340

図3は表3、4の結果から被膜厚さとAC耐電圧の関係を示した図である。
図3から、洗浄液に水を使用した参考例2に対し、洗浄液にN−メチルピロリドンと水の混合液を使用した実施例では、焼き付け後の被膜がより高い耐電圧性を示すものとなっており、本発明方法によれば、リード端子が極めて優れた電気絶縁性を有する絶縁被膜で絶縁処理された絶縁処理リード端子付き電子部品を製造できることが分かる。
FIG. 3 is a graph showing the relationship between the film thickness and the AC withstand voltage from the results of Tables 3 and 4.
From FIG. 3, in the Example using the mixed liquid of N-methylpyrrolidone and water as the cleaning liquid, the film after baking shows higher withstand voltage with respect to Reference Example 2 using water as the cleaning liquid. Thus, according to the method of the present invention, it can be seen that an electronic component with an insulated lead terminal in which the lead terminal is insulated with an insulating coating having an extremely excellent electrical insulation property can be manufactured.

図1は実施例1、比較例1及び参考例1における電着被膜の厚みとAC耐電圧の関係を示す図である。FIG. 1 is a graph showing the relationship between the thickness of the electrodeposition coating and the AC withstand voltage in Example 1, Comparative Example 1, and Reference Example 1. 図2(A)、(B)は絶縁処理リード端子付きサーミスタの製造方法を説明するための模式図である。2A and 2B are schematic views for explaining a method for manufacturing a thermistor with insulated lead terminals. 図3は実施例2、参考例2における電着被膜の厚みとAC耐電圧の関係を示す図である。FIG. 3 is a graph showing the relationship between the thickness of the electrodeposition coating and the AC withstand voltage in Example 2 and Reference Example 2. AC耐電圧測定法(水中法)の説明図である。It is explanatory drawing of AC withstand voltage measuring method (underwater method).

符号の説明Explanation of symbols

1 サーミスタ素子
2 リード端子
3 ガラス(封止ガラス)
4 ポリイミド被膜
5 リード端子付きサーミスタ
10 絶縁処理リード端子付きサーミスタ
1 Thermistor element 2 Lead terminal 3 Glass (sealing glass)
4 Polyimide coating 5 Thermistor with lead terminal 10 Thermistor with insulated lead terminal

Claims (11)

分子骨格中にシロキサン結合を有し、分子中にアニオン性基を有するブロック共重合ポリイミドを樹脂成分として含有する、サスペンジョン型電着塗料組成物中に、被絶縁処理部材を浸漬し、該部材を陽極として電流を通じて該部材の表面上にポリイミド被膜を成長させるアニオン電着工程と、
前記ポリイミド被膜を有する被絶縁処理部材を水溶性極性溶媒と水及び/又は脂肪族アルコール系溶媒を含む洗浄液にて洗浄する工程と、
前記ポリイミド被膜を有する被絶縁処理部材にエアーを噴き付けて洗浄液を除去する工程と、
前記ポリイミド被膜を乾燥する工程とを含む、絶縁部材の製造方法。
A member to be insulated is immersed in a suspension-type electrodeposition coating composition containing a block copolymer polyimide having a siloxane bond in the molecular skeleton and an anionic group in the molecule as a resin component. An anionic electrodeposition step of growing a polyimide film on the surface of the member through an electric current as an anode;
Cleaning the insulating member having the polyimide coating with a cleaning liquid containing a water-soluble polar solvent and water and / or an aliphatic alcohol solvent;
A step of spraying air on the member to be insulated having the polyimide coating to remove the cleaning liquid;
And a step of drying the polyimide coating.
洗浄液が、水溶性極性溶媒50〜80重量%と水及び/又は脂肪族アルコール系溶媒20〜50重量%を含有するものである、請求項1記載の絶縁部材の製造方法。   The method for producing an insulating member according to claim 1, wherein the cleaning liquid contains 50 to 80% by weight of a water-soluble polar solvent and 20 to 50% by weight of water and / or an aliphatic alcohol solvent. 水溶性極性溶媒が、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチルピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、テトラメチル尿素及びスルホランから選ばれる1種又は2種以上である、請求項2記載の絶縁部材の製造方法。   Water-soluble polar solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (γBL), anisole, tetra The manufacturing method of the insulating member of Claim 2 which is 1 type, or 2 or more types chosen from methylurea and sulfolane. ブロック共重合ポリイミドが、ジアミン成分の一つとして、分子骨格中にシロキサン結合を有するジアミンを含むポリイミドである、請求項1〜3のいずれか1項に記載の絶縁部材の製造方法。   The manufacturing method of the insulating member of any one of Claims 1-3 whose block copolymerization polyimide is a polyimide containing the diamine which has a siloxane bond in molecular skeleton as one of the diamine components. 分子骨格中にシロキサン結合を有するジアミンが、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び下記の一般式(I)で表される化合物よりなる群から選ばれる1種又は2種以上である、請求項4記載の絶縁部材の製造方法。
Figure 2010106340
(式中、4つのRは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基又は1個〜3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)
Diamines having a siloxane bond in the molecular skeleton include bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane, and The manufacturing method of the insulating member of Claim 4 which is 1 type, or 2 or more types chosen from the group which consists of a compound represented by Formula (I).
Figure 2010106340
(In the formula, four R's each independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And represents an integer of 1 to 4, and n represents an integer of 1 to 20.)
一般式(I)中の4つのRが、それぞれ独立して、炭素数1〜6のアルキル基、炭素数3〜7のシクロアルキル基、フェニル基、又は1個〜3個の炭素数1〜6のアルキル基若しくは炭素数1〜6のアルコキシル基で置換されたフェニル基を表す請求項5記載の絶縁部材の製造方法。   Four R in the general formula (I) are each independently an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, a phenyl group, or 1 to 3 carbon atoms having 1 to 3 carbon atoms. The method for producing an insulating member according to claim 5, which represents a phenyl group substituted with an alkyl group having 6 or an alkoxyl group having 1 to 6 carbon atoms. ブロック共重合ポリイミドの分子中のアニオン性基が、カルボン酸基若しくはその塩、及び/又は、スルホン酸基若しくその塩である、請求項1〜6のいずれか1項に記載の絶縁部材の製造方法。   The insulating member according to any one of claims 1 to 6, wherein the anionic group in the molecule of the block copolymerized polyimide is a carboxylic acid group or a salt thereof, and / or a sulfonic acid group or a salt thereof. Production method. ブロック共重合ポリイミドが、ジアミン成分の1つとして、芳香族ジアミノカルボン酸を含むものである、請求項1〜7のいずれか1項に記載の絶縁部材の製造方法。   The manufacturing method of the insulating member of any one of Claims 1-7 whose block copolymer polyimide contains aromatic diaminocarboxylic acid as one of the diamine components. ブロック共重合ポリイミドの全ジアミン成分中、分子骨格中にシロキサン結合を有するジアミンの割合が5〜90モル%、芳香族ジアミノカルボン酸の割合が10〜70モル%である(ただし、両者の合計は100モル%以下であり、第3のジアミン成分を含んでいてもよい)、請求項8記載の絶縁部材の製造方法。   In the total diamine component of the block copolymerized polyimide, the proportion of diamine having a siloxane bond in the molecular skeleton is 5 to 90 mol%, and the proportion of aromatic diaminocarboxylic acid is 10 to 70 mol% (however, the sum of both is The method for producing an insulating member according to claim 8, which is 100 mol% or less and may contain a third diamine component. 絶縁部材が絶縁電線であり、被絶縁処理部材が導体線である、請求項1〜9のいずれか1項に記載の絶縁部材の製造方法。   The method for manufacturing an insulating member according to any one of claims 1 to 9, wherein the insulating member is an insulated wire and the member to be insulated is a conductor wire. 絶縁部材が絶縁処理リード端子付き電子部品であり、被絶縁処理部材がリード端子付き電子部品である、請求項1〜9のいずれか1項に記載の絶縁部材の製造方法。   The method for manufacturing an insulating member according to any one of claims 1 to 9, wherein the insulating member is an electronic component with an insulated treatment lead terminal, and the insulated member is an electronic component with a lead terminal.
JP2008281504A 2008-10-31 2008-10-31 Insulating member manufacturing method Expired - Fee Related JP5464838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281504A JP5464838B2 (en) 2008-10-31 2008-10-31 Insulating member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281504A JP5464838B2 (en) 2008-10-31 2008-10-31 Insulating member manufacturing method

Publications (2)

Publication Number Publication Date
JP2010106340A true JP2010106340A (en) 2010-05-13
JP5464838B2 JP5464838B2 (en) 2014-04-09

Family

ID=42296075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281504A Expired - Fee Related JP5464838B2 (en) 2008-10-31 2008-10-31 Insulating member manufacturing method

Country Status (1)

Country Link
JP (1) JP5464838B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127869A (en) * 2010-12-16 2012-07-05 Mitsubishi Cable Ind Ltd Insulation-coated probe pin and method for manufacturing the same
JP2012137416A (en) * 2010-12-27 2012-07-19 Mitsubishi Cable Ind Ltd Probe pin and method for manufacturing probe pin
JP2012167349A (en) * 2011-02-16 2012-09-06 Mitsubishi Cable Ind Ltd Electrodeposition method and electrodeposition apparatus
CN103302049A (en) * 2013-05-22 2013-09-18 江苏句容联合铜材有限公司 Enameled bare wire cleaning process
JP2018115272A (en) * 2017-01-18 2018-07-26 住友電気工業株式会社 Resin varnish, insulation wire and manufacturing method of insulation wire
JP2019061873A (en) * 2017-09-27 2019-04-18 三菱電線工業株式会社 Manufacturing method of insulation wire
JP2019218432A (en) * 2018-06-15 2019-12-26 住友精化株式会社 Polyamic acid, paint composition, electrodeposition paint composition, article with polyimide resin coating, and production method thereof
JP2019218431A (en) * 2018-06-15 2019-12-26 住友精化株式会社 Polyimide resin, paint composition, electrodeposition paint composition, article with polyimide resin coating, and production method thereof
WO2022050100A1 (en) * 2020-09-02 2022-03-10 ニプロ株式会社 Guidewire and biological sensor manufacturing method
WO2024037158A1 (en) * 2022-08-18 2024-02-22 合肥汉之和新材料科技有限公司 High-pdiv insulating workpiece and preparation method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106541A (en) * 1973-02-09 1974-10-09
JPS5015084A (en) * 1973-06-13 1975-02-17
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106541A (en) * 1973-02-09 1974-10-09
JPS5015084A (en) * 1973-06-13 1975-02-17
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127869A (en) * 2010-12-16 2012-07-05 Mitsubishi Cable Ind Ltd Insulation-coated probe pin and method for manufacturing the same
JP2012137416A (en) * 2010-12-27 2012-07-19 Mitsubishi Cable Ind Ltd Probe pin and method for manufacturing probe pin
JP2012167349A (en) * 2011-02-16 2012-09-06 Mitsubishi Cable Ind Ltd Electrodeposition method and electrodeposition apparatus
CN103302049A (en) * 2013-05-22 2013-09-18 江苏句容联合铜材有限公司 Enameled bare wire cleaning process
JP2018115272A (en) * 2017-01-18 2018-07-26 住友電気工業株式会社 Resin varnish, insulation wire and manufacturing method of insulation wire
JP2019061873A (en) * 2017-09-27 2019-04-18 三菱電線工業株式会社 Manufacturing method of insulation wire
JP2019218432A (en) * 2018-06-15 2019-12-26 住友精化株式会社 Polyamic acid, paint composition, electrodeposition paint composition, article with polyimide resin coating, and production method thereof
JP2019218431A (en) * 2018-06-15 2019-12-26 住友精化株式会社 Polyimide resin, paint composition, electrodeposition paint composition, article with polyimide resin coating, and production method thereof
JP7169784B2 (en) 2018-06-15 2022-11-11 住友精化株式会社 POLYIMIDE RESIN, COATING COMPOSITION, ELECTRODEPOSITION COATING COMPOSITION, ARTICLE HAVING POLYIMIDE RESIN COATING AND MANUFACTURING METHOD THEREOF
WO2022050100A1 (en) * 2020-09-02 2022-03-10 ニプロ株式会社 Guidewire and biological sensor manufacturing method
WO2024037158A1 (en) * 2022-08-18 2024-02-22 合肥汉之和新材料科技有限公司 High-pdiv insulating workpiece and preparation method therefor

Also Published As

Publication number Publication date
JP5464838B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5464838B2 (en) Insulating member manufacturing method
JP5513109B2 (en) Electrodeposition coating composition and electrodeposition method
JP5422381B2 (en) Insulating material
JP5296493B2 (en) Insulating material
JP5624716B2 (en) Probe pin and insulation method thereof
JP4594615B2 (en) Insulated wire and insulated coil
JP6750146B2 (en) Polyimide for electrodeposition and electrodeposition coating composition containing the same
JP6245252B2 (en) Insulating coating layer manufacturing method
JP5555063B2 (en) Polyimide electrodeposition paint and method for producing the same
JP2005162954A (en) Electrodeposition coating material composition and electrodepositing method using the same
JP5399685B2 (en) Electronic component with lead wire and insulation coating method for lead wire
JP2013234257A (en) Electrodeposition paint composition and electrodeposition method and insulation member
JP6314707B2 (en) Polyimide precursor composition and method for producing insulating coating layer using the same
JP5706268B2 (en) Electrodeposition coating composition and insulating member using the same
JP5551523B2 (en) Method for producing polyimide electrodeposition paint
JP5657417B2 (en) Electrodeposition method and electrodeposition apparatus
JP5876176B2 (en) Electrodeposition coating composition and insulating member using the same
JPH01115931A (en) Polyimide reaction product
JP2012138289A (en) Insulated conductor, method for producing the same and coil produced using the insulated conductor
JP5683943B2 (en) PROBE PIN AND PROBE PIN MANUFACTURING METHOD
JP2013153107A (en) Manufacturing method of bonding wire and bonding wire
JP5363067B2 (en) Heating roller
JP2809705B2 (en) Coating method
JP2837178B2 (en) Coating method
JP2647423B2 (en) Metal coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees