JP2012127869A - Insulation-coated probe pin and method for manufacturing the same - Google Patents

Insulation-coated probe pin and method for manufacturing the same Download PDF

Info

Publication number
JP2012127869A
JP2012127869A JP2010280995A JP2010280995A JP2012127869A JP 2012127869 A JP2012127869 A JP 2012127869A JP 2010280995 A JP2010280995 A JP 2010280995A JP 2010280995 A JP2010280995 A JP 2010280995A JP 2012127869 A JP2012127869 A JP 2012127869A
Authority
JP
Japan
Prior art keywords
probe pin
insulating coating
end side
electrodeposition
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010280995A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamibayashi
裕之 上林
Toyokazu Nagato
豊和 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2010280995A priority Critical patent/JP2012127869A/en
Publication of JP2012127869A publication Critical patent/JP2012127869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily adjust a shape of an end part of an insulation coat to a shape without variations throughout its entire perimeter by a simple method without performing peeling operation.SOLUTION: An electrode 22 is soaked in electrodeposition liquid L containing an electrodeposition material for forming an insulation coat 12, a probe pin 11 is vertically inserted thereinto such that a detection end side 11a of the probe pin 11 is directed upward, and a voltage to be energized to the electrode 22 and the probe pin 11 is adjusted. Therefore, a detection end side 12a of the insulation coat 12 is made into a desired shape such as a tapered shape tapered upward, a shape in which a cross section of an end part is right-angle, and a shape in which the end part is expanded relative to another region, throughout its entire perimeter.

Description

本発明は、導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被膜する絶縁被膜と、を備えた絶縁被膜プローブピン及びその製造方法に関する。   The present invention relates to an insulating coating probe pin including a probe pin made of a conductor and an insulating coating that coats the outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed, and a manufacturing method thereof.

回路基板や半導体素子等を検査する場合、通常、それらに設けられた電極や電極パッドにプローバの絶縁被膜プローブピン検出端側のプローブピン先端を接触させることにより通電を行う。絶縁被膜プローブピンは、金属製のプローブピンを備え、一般に、その検出端側の部分が露出され、一方、その他の部分の外周が絶縁被膜で被膜された構成を有する。   When inspecting a circuit board, a semiconductor element or the like, normally, energization is performed by bringing the probe pin tip of the prober detection end side of the prober into contact with the electrode or electrode pad provided thereon. The insulating coating probe pin includes a metal probe pin, and generally has a configuration in which a portion on the detection end side is exposed, while the outer periphery of the other portion is coated with an insulating coating.

特許文献1には、電着液に金属製のプローブピンの検出端側から所定長を浸漬した後に通電を行い、それによって電着塗装で絶縁被膜を形成することが開示されている。   Patent Document 1 discloses that a predetermined length is immersed in an electrodeposition liquid from the detection end side of a metal probe pin and then energized, thereby forming an insulating film by electrodeposition coating.

特許文献2には、金属製のプローブピンを電着塗装して絶縁被膜を形成するための電着液として、ブロック共重合ポリイミドを含むサスペンジョンを用いることが開示されている。   Patent Document 2 discloses that a suspension containing a block copolymerized polyimide is used as an electrodeposition liquid for electrodepositing a metal probe pin to form an insulating film.

登録実用新案第3038114号公報Registered Utility Model No. 3038114 特開2010−107420号公報JP 2010-107420 A

ところで、半導体検査に用いられる絶縁被膜プローブピンでは、絶縁被膜層の検出端側の端部は絶縁被膜が設けられず、しかもその界面(角部)の断面形状が全周に渡りバラツキのないことが要求される。形状にバラツキがあると、検査対象物を押す力が強くなったり弱くなったりして検査結果が安定しないためである。絶縁被膜を剥離させるためには、切削等による機械的な剥離方法、レーザ等を用いた光学的な剥離方法、溶剤等を使用した化学的な剥離方法があるが、いずれも難易度が高く、さらに作業が繁雑なために製造コストが高くなるという問題がある。   By the way, in the insulating coating probe pin used for semiconductor inspection, the insulating coating layer is not provided with the insulating coating on the end portion on the detection end side, and the cross-sectional shape of the interface (corner portion) does not vary over the entire circumference. Is required. This is because if there is variation in shape, the force to push the inspection object becomes stronger or weaker, and the inspection result is not stable. In order to peel the insulating coating, there are mechanical peeling methods such as cutting, optical peeling methods using lasers, etc., and chemical peeling methods using solvents, etc., all of which are highly difficult, Furthermore, there is a problem that the manufacturing cost becomes high due to complicated work.

本発明の課題は、簡単な方法で絶縁被膜の端部の形状を剥離作業を行うことなく容易に調整することである。   An object of the present invention is to easily adjust the shape of an end portion of an insulating coating without performing a peeling operation by a simple method.

上記の目的を達成するために、この発明では、プローブピンに通電する電圧を調整することにより、絶縁被膜の検出端側端部の形状を全周に渡り偏りのないように調整するようにした。   In order to achieve the above object, in the present invention, the voltage applied to the probe pin is adjusted so that the shape of the end portion on the detection end side of the insulating coating is adjusted so as not to be biased over the entire circumference. .

具体的には、第1の発明では、
導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被覆する絶縁被膜と、を備えた絶縁被膜プローブピンの製造方法を対象とし、
上記製造方法では、まず、上記絶縁被膜を形成する電着材料を含む電着液内に電極を浸すと共に、上記プローブピンを該プローブピンの検出端側が上方を向くように垂直に挿入し、
上記電極と上記プローブピンとに通電する電圧を調整することで、
上記絶縁被膜におけるプローブピンの検出端側の形状を全周に渡り上方に向かって先細となるテーパ形状から端部の断面が直角となる形状又は端部が他の領域よりも膨らむ形状まで希望の形状に形成する構成とする。
Specifically, in the first invention,
An object of the present invention is to provide an insulating film probe pin manufacturing method comprising: a probe pin made of a conductor; and an insulating film that covers an outer periphery of the probe pin so that a detection end side portion of the probe pin is exposed;
In the manufacturing method, first, an electrode is immersed in an electrodeposition liquid containing an electrodeposition material for forming the insulating coating, and the probe pin is inserted vertically so that the detection end side of the probe pin faces upward.
By adjusting the voltage applied to the electrode and the probe pin,
The shape on the detection end side of the probe pin in the insulating coating is desired from a taper shape that tapers upward over the entire circumference to a shape in which the cross section of the end portion is a right angle or a shape in which the end portion swells more than other regions. The structure is formed into a shape.

上記の構成によると、電着時の電着液の表面付近では、導体に加わる電圧により絶縁被膜のできやすさが異なり、電圧が小さすぎると形状がなだらかになり、大きすぎると大きく膨らむ形状となる。このことを利用して、電圧を調整することで絶縁被膜を剥離することなく所望の形状が簡単に得られる。   According to the above configuration, in the vicinity of the surface of the electrodeposition liquid during electrodeposition, the ease of forming an insulating film varies depending on the voltage applied to the conductor, and the shape becomes gentle if the voltage is too low, and the shape that swells greatly if the voltage is too high. Become. By utilizing this fact, a desired shape can be easily obtained without adjusting the voltage by adjusting the voltage.

第2の発明では、第1の発明において、
上記クローン効率を120μm/C以上220μm/C以下とし、
上記検出端側の端部の断面が略直角となるように、上記絶縁被膜を形成する。
In the second invention, in the first invention,
The clone efficiency is 120 μm / C or more and 220 μm / C or less,
The insulating coating is formed so that the cross section of the end portion on the detection end side is substantially perpendicular.

ここで、クーロン効率は、1C(クーロン)でどれだけ被膜ができるかを示す指標であり、上記の構成では、このクローン効率が120μm/C以上220μm/C以下に保たれているので電圧を適度に調整することにより絶縁被膜の端部形状を断面が略直角となるように調整することができ、低すぎて絶縁被膜の端部形状がなだらかになったり、高すぎて端部の形状が盛り上がりすぎて半導体検査の検査結果にバラツキが生じることはない。なお、「略直角」とは、完全に90°でなくても、2〜3°程度のブレは許容することを意味する。   Here, the coulomb efficiency is an index indicating how much a film can be formed at 1 C (coulomb). In the above configuration, the clone efficiency is maintained at 120 μm / C or more and 220 μm / C or less, so that the voltage is moderate. It is possible to adjust the end shape of the insulating coating so that the cross section is substantially perpendicular, and the end shape of the insulating coating is too low and the end shape of the insulating coating is too high. Thus, the inspection result of the semiconductor inspection does not vary. Note that “substantially right angle” means that a blur of about 2 to 3 ° is allowed even if it is not completely 90 °.

第3の発明では、第2の発明において、
上記電着液の粘度を5mPa・s以上8mPa・s以下とする。
In the third invention, in the second invention,
The viscosity of the electrodeposition liquid is 5 mPa · s or more and 8 mPa · s or less.

すなわち、電着液の粘度が5mPa・s未満であれば、クローン効率を適切に調整しても端部の形状を略直角等に形成しにくく、なだらかになりやすい。逆に8mPa・s未満だと、絶縁被膜の均一性を保つのが困難になる。しかし、上記の構成によると、電着液の粘度が5mPa・s以上8mPa・s以下に適切に保たれているので、電圧を調整することで、絶縁被膜の端部の形状を容易に調整できる。   That is, if the viscosity of the electrodeposition liquid is less than 5 mPa · s, it is difficult to form the end portion at a substantially right angle or the like, even if the clone efficiency is adjusted appropriately, and it tends to be gentle. Conversely, if it is less than 8 mPa · s, it becomes difficult to maintain the uniformity of the insulating coating. However, according to the above configuration, since the viscosity of the electrodeposition liquid is appropriately maintained at 5 mPa · s or more and 8 mPa · s or less, the shape of the end portion of the insulating coating can be easily adjusted by adjusting the voltage. .

第4の発明では、第3の発明において、
上記電着液の温度を15℃以上30℃以下とする。
In the fourth invention, in the third invention,
The temperature of the electrodeposition liquid is 15 ° C. or higher and 30 ° C. or lower.

すなわち、15℃よりも低いと、電着液に電圧がかかりにくくなり、端部の形状を略直角等に形成しにくく、なだらかになりやすい。また、30℃を超えると、電着液が劣化しやすくなり、また、粘度が低下して端部の形状がなだらかになりやすい。しかし、上記の構成によると、電着液の温度が適度に保たれているので、端部の形状を電圧を調整することで、絶縁被膜の端部の形状を容易に調整できる。   That is, when the temperature is lower than 15 ° C., it is difficult to apply a voltage to the electrodeposition liquid, and the shape of the end portion is hardly formed at a substantially right angle or the like, which tends to be gentle. Moreover, when it exceeds 30 degreeC, an electrodeposition liquid will deteriorate easily, a viscosity will fall and the shape of an edge part will become easy. However, according to the above configuration, since the temperature of the electrodeposition liquid is maintained moderately, the shape of the end portion of the insulating coating can be easily adjusted by adjusting the voltage of the shape of the end portion.

第5の発明では、導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被覆する絶縁被膜と、を備えた絶縁被膜プローブピンを対象とし、
上記絶縁被膜は、剥離処理を伴わずに電着材料を含んだ電着液で電着処理を行うことにより、上記検出端側の端部が全周に渡って断面が略直角に形成されている。
The fifth invention is directed to an insulating coating probe pin comprising a probe pin made of a conductor and an insulating coating covering the outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed,
The insulating coating is formed by performing an electrodeposition treatment with an electrodeposition liquid containing an electrodeposition material without a peeling treatment, so that the end portion on the detection end side is formed substantially at right angles across the entire circumference. Yes.

上記の構成によると、絶縁被膜の検出端側の端部は、全周に渡って、その断面が略直角に形成されているので、プローブ孔からの突出量のバラツキがなくなり、正確な電気的特性の測定を行うことができる。   According to the above configuration, the end of the insulating coating on the detection end side has a substantially right-angled cross section over the entire circumference, so there is no variation in the amount of protrusion from the probe hole, and accurate electrical Measurement of characteristics can be performed.

第6の発明では、上記第5の発明と同様の絶縁被膜プローブピンを対象とし、
上記絶縁被膜は、剥離処理を伴わずに電着材料を含んだ電着液で電着処理を行うことにより、上記検出端側の端部が全周に渡って接続端側の端部よりも厚肉に形成されている。
In the sixth invention, the same insulating coating probe pin as the fifth invention is targeted,
The insulating film is subjected to an electrodeposition treatment with an electrodeposition liquid containing an electrodeposition material without being subjected to a peeling treatment, so that the end on the detection end side is more than the end on the connection end side over the entire circumference. It is formed thick.

上記の構成によると、絶縁被膜におけるプローブピンの検出端側の端部が全周に渡って接続端側の端部よりも厚肉に形成されているので、例えばプローバに多数の絶縁被膜プローブピンが短い間隔で並列して設けられたような場合でも、絶縁被膜の厚肉の端部同士が干渉するため、絶縁被膜プローブピンの検出端側の露出した部分同士が接触しにくくなる。   According to the above configuration, since the end on the detection end side of the probe pin in the insulating coating is formed thicker than the end on the connection end side over the entire circumference, for example, a number of insulating coating probe pins on the prober However, even if they are provided in parallel at short intervals, the thick end portions of the insulating coating interfere with each other, so that the exposed portions on the detection end side of the insulating coating probe pin are difficult to contact.

本発明によれば、絶縁被膜を形成する電着材料を含む電着液内に電極とプローブピンを挿入し、電極とプローブピンとに通電する電圧を調整することで、絶縁被膜におけるプローブピンの検出端側の形状を調整するようにしたので、簡単な方法で絶縁被膜の端部の形状を剥離作業を行うことなく全周に渡りバラツキのない形状に容易に調整することができる。   According to the present invention, the probe and pin are inserted into the electrodeposition liquid containing the electrodeposition material for forming the insulating film, and the voltage applied to the electrode and the probe pin is adjusted to detect the probe pin in the insulating film. Since the shape on the end side is adjusted, the shape of the end portion of the insulating coating can be easily adjusted to a shape having no variation over the entire circumference without performing a peeling operation by a simple method.

本実施形態に係る絶縁被膜プローブピンを製造するための電着塗装装置の一例を示す断面図である。It is sectional drawing which shows an example of the electrodeposition coating apparatus for manufacturing the insulating film probe pin which concerns on this embodiment. 絶縁被膜プローブピンを示す正面図である。It is a front view which shows an insulation coating probe pin. 絶縁被膜プローブピンの縦断面図である。It is a longitudinal cross-sectional view of an insulation coating probe pin. 本実施形態に係る絶縁被膜プローブピンの使用状態を示す説明図である。It is explanatory drawing which shows the use condition of the insulating film probe pin which concerns on this embodiment. 絶縁被膜が形成される様子を示す図1相当図である。FIG. 2 is a view corresponding to FIG. 1 showing a state in which an insulating film is formed. 本実施形態に係る絶縁被膜プローブピンの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the insulation coating probe pin which concerns on this embodiment. 電圧を低くした場合の絶縁被膜プローブピンを示す図2相当図である。FIG. 3 is a view corresponding to FIG. 2 and showing an insulating coating probe pin when the voltage is lowered. 電圧を高くした場合の絶縁被膜プローブピンを示す図2相当図である。FIG. 3 is a view corresponding to FIG. 2 showing an insulating coating probe pin when the voltage is increased. 電圧を低くした場合の絶縁被膜プローブピンに対応する図4相当図である。FIG. 5 is a view corresponding to FIG. 4 corresponding to the insulating coating probe pin when the voltage is lowered.

以下、実施形態について図面に基づいて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

−絶縁被膜プローブピンの構成−
図2及び図3に本実施形態に係る絶縁被膜プローブピン10を示し、この絶縁被膜プローブピン10は、例えば回路基板や半導体素子等を検査する際に用いられるプローバに取り付けられる部品である。
-Composition of insulating coating probe pin-
2 and 3 show an insulating coating probe pin 10 according to the present embodiment. The insulating coating probe pin 10 is a component attached to a prober used when, for example, a circuit board, a semiconductor element, or the like is inspected.

本実施形態に係る絶縁被膜プローブピン10は、金属製のプローブピン11を備え、そのプローブピン11の検出端側11aが露出している。中間部の外周が絶縁被膜12で被覆され、検出端側11aと反対側の接続端側11bも露出している。本実施形態に係る絶縁被膜プローブピン10は、直線状に形成されていてもよく、また、用途に応じて屈曲部を有していてもよい。本実施形態に係る絶縁被膜プローブピン10は、例えば、長さが10〜150mm、外径が20〜400μm、及び検出端側のプローブピン11の露出長さが0.5〜30mmである。   The insulating coating probe pin 10 according to the present embodiment includes a metal probe pin 11, and the detection end side 11a of the probe pin 11 is exposed. The outer periphery of the intermediate portion is covered with the insulating coating 12, and the connection end side 11b opposite to the detection end side 11a is also exposed. The insulating coating probe pin 10 according to the present embodiment may be formed in a straight line shape or may have a bent portion depending on the application. The insulating coating probe pin 10 according to the present embodiment has, for example, a length of 10 to 150 mm, an outer diameter of 20 to 400 μm, and an exposed length of the probe pin 11 on the detection end side of 0.5 to 30 mm.

プローブピン11は金属線で構成されている。プローブピン11は高導電性及び高弾性率を有することが好ましく、これを形成する金属材料としては、特に限定されるものではないが、例えば、銅、タングステン、レニウムタングステン、鋼が挙げられる。プローブピン11は、単一の金属材料で形成されていてもよく、また、複数の金属材料の合金で形成されていてもよい。かかる合金としては、例えば、高硬度でかつ高弾性のベリリウム銅が挙げられる。プローブピン11は、例えば表面に金メッキ等が施されていてもよい。プローブピン11の横断面は円形に形成されていてもよく、また、例えば矩形等の多角形のように非円形に形成されていてもよい。プローブピン11の検出端側の先端は、検査体である電極や電極パッドの種類に応じて、フラット、ラウンド(球面)、尖頭、三角錐などの形状に加工されていてもよい。なお、プローブピン11は、金属製に限らず、導電体であれば、例えば導電性樹脂で構成されていてもよい。この導電性樹脂は、導電性を有し、プローブピン11として要求される弾性を有するものであればよい。   The probe pin 11 is composed of a metal wire. The probe pin 11 preferably has high conductivity and high elastic modulus, and the metal material forming the probe pin 11 is not particularly limited, and examples thereof include copper, tungsten, rhenium tungsten, and steel. The probe pin 11 may be formed of a single metal material or may be formed of an alloy of a plurality of metal materials. An example of such an alloy is beryllium copper having high hardness and high elasticity. For example, the surface of the probe pin 11 may be plated with gold. The cross section of the probe pin 11 may be formed in a circular shape, or may be formed in a non-circular shape such as a polygon such as a rectangle. The tip on the detection end side of the probe pin 11 may be processed into a shape such as a flat shape, a round shape (spherical surface), a pointed tip, or a triangular pyramid according to the type of the electrode or electrode pad that is the test object. The probe pin 11 is not limited to being made of metal, and may be made of, for example, a conductive resin as long as it is a conductor. This conductive resin should just have electroconductivity and the elasticity requested | required as the probe pin 11. FIG.

絶縁被膜12は、絶縁性の樹脂で形成されている。絶縁被膜12を形成する樹脂材料としては、特に限定されるものではないが、例えば、ポリイミド樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂が挙げられる。絶縁被膜12を形成する樹脂材料としては分子骨格にシロキサン結合含むポリイミド樹脂が好ましい。プローブピン11は、単一の樹脂材料で形成されていてもよく、また、複数の樹脂材料が混合されて形成されていてもよい。   The insulating coating 12 is made of an insulating resin. Although it does not specifically limit as a resin material which forms the insulating film 12, For example, a polyimide resin, an acrylic resin, a urethane resin, and an epoxy resin are mentioned. The resin material for forming the insulating coating 12 is preferably a polyimide resin containing a siloxane bond in the molecular skeleton. The probe pin 11 may be formed of a single resin material, or may be formed by mixing a plurality of resin materials.

絶縁被膜12は、長さ方向のいずれの部分においても、プローブピン11の外周に全周に渡って偏肉を有することなく均一厚さで付着している。絶縁被膜12は、長さ方向に沿って例えば1〜50μmの均一厚さを有している。プローブピン11の検出端側の端部12aは、全周に渡って、その断面が略直角に形成されている。   The insulating coating 12 is adhered to the outer periphery of the probe pin 11 with a uniform thickness without any uneven thickness over the entire circumference in any part in the length direction. The insulating coating 12 has a uniform thickness of, for example, 1 to 50 μm along the length direction. The end portion 12a on the detection end side of the probe pin 11 has a substantially right-angle cross section over the entire circumference.

なお、接続端側11bは、それほど寸法制度を要求されないので、絶縁被膜12をレーザ等を使用した光学剥離又は溶剤等を使用した化学剥離によるできるだけ簡単な方法で剥離すればよい。   In addition, since the dimension system is not required so much, the connection end side 11b may be peeled off by the simplest possible method by optical peeling using a laser or the like or chemical peeling using a solvent or the like.

−絶縁被膜プローブピンの用途−
次いで、本実施形態に係る絶縁被膜プローブピン10の用途について説明する。詳しくは図示しないが、例えば図4に示すように、絶縁被膜プローブピン10の検出端側の絶縁被膜12が設けられていない露出した部分が、電気的特性測定用の配線パターンが形成された基板Sのプローブ孔Hから突出及び没入し、突出する際に絶縁被膜12の端部12aがプローブ孔Hの周縁に係止される。プローブピン11の接続端側11bが配線パターンに接続され、さらにテスタに接続される。可動テーブル上に載置された検査対象のウエハ等に形成された半導体集積回路BのパッドPにプローブピン11の検出端側11aを接触させて、電気的特性の測定を行う。
-Use of insulation coating probe pin-
Next, the use of the insulating coating probe pin 10 according to the present embodiment will be described. Although not shown in detail, for example, as shown in FIG. 4, the exposed portion where the insulating coating 12 on the detection end side of the insulating coating probe pin 10 is not provided is a substrate on which a wiring pattern for measuring electrical characteristics is formed. The end portion 12a of the insulating coating 12 is locked to the periphery of the probe hole H when protruding and immersing from the probe hole H of S and protruding. The connection end side 11b of the probe pin 11 is connected to the wiring pattern and further connected to a tester. The electrical characteristics are measured by bringing the detection end side 11a of the probe pin 11 into contact with the pad P of the semiconductor integrated circuit B formed on the inspection target wafer or the like placed on the movable table.

かかる用途において、絶縁被膜プローブピン10で通電試験を行う際には、絶縁被膜プローブピン10のプローブ孔Hからの突出量のバラツキが問題となる。   In such an application, when conducting an energization test with the insulating coating probe pin 10, variation in the amount of protrusion of the insulating coating probe pin 10 from the probe hole H becomes a problem.

しかしながら、本実施形態に係る絶縁被膜プローブピン10によれば、絶縁被膜12の検出端側の端部12aは、全周に渡って、その断面が略直角に形成されているので、プローブ孔Hからの突出量のバラツキがなく、正確な電気的特性の測定を行うことができる。   However, according to the insulating coating probe pin 10 according to the present embodiment, the end portion 12a on the detection end side of the insulating coating 12 is formed at a substantially right angle in cross section over the entire circumference. There is no variation in the amount of protrusion from the device, and accurate electrical characteristics can be measured.

−絶縁被膜プローブピンの製造方法−
次に、本実施形態に係る絶縁被膜プローブピン10の製造方法の一例について図面を用いて説明する。
-Manufacturing method of insulating coating probe pin-
Next, an example of a method for manufacturing the insulating coating probe pin 10 according to the present embodiment will be described with reference to the drawings.

図6に示すように、まず、ステップS01において、プローブピン11を準備する。本実施形態では、予めプローブピン11の検出端側の先端加工を行っておくが、この加工は、電着後に行ってもよい。   As shown in FIG. 6, first, in step S01, the probe pin 11 is prepared. In the present embodiment, tip processing on the detection end side of the probe pin 11 is performed in advance, but this processing may be performed after electrodeposition.

次いで、ステップS02の第1洗浄工程において、電着塗装を行う前に洗浄槽にプローブピンを浸けて洗浄を行う。この洗浄は、プローブピン11の脱脂など及びその水洗作業よりなる。   Next, in the first cleaning process in step S02, the probe pin is immersed in the cleaning tank and cleaned before electrodeposition coating. This cleaning includes degreasing of the probe pin 11 and washing operation thereof.

次いで、ステップS03の電着塗装工程において、プローブピン11に電着塗装を行う。図1に電着塗装装置20を示すように、この電着塗装装置20は、電着バス21、電極22及び電源部23を備えている。   Next, in the electrodeposition coating process of step S03, electrodeposition coating is performed on the probe pin 11. As shown in FIG. 1, the electrodeposition coating apparatus 20 includes an electrodeposition bus 21, an electrode 22, and a power supply unit 23.

電着バス21は、上方に開口した槽であり、内部に電着塗料よりなる電着液Lが入れられている。具体的には、電着液Lは、樹脂成分を含む導電性を有する液体であれば、樹脂成分が、液体中に溶解していてもよく、乳化していてもよく、縣濁状態で存在していてもよいが、電着効率が良好な点から、樹脂成分の平均粒径が0.1μm以上のサスペンジョンが好ましく、絶縁被膜12の厚さの均一性からから、平均粒径が10μm以下のサスペンジョンがより好ましい。ここで、平均粒径は、フロー式粒子像分析装置FPIA−3000S(シスメックス社製)を用いて、電着液L中の分散粒子の粒度分布より測定可能である。樹脂成分は、ポリマーであってもよく、また、ポリマー前駆体であってもよい。樹脂成分は、カルボキシル基、スルホン酸基、リン酸基などのアニオン性基を有するものであってもよく、また、有機アンモニウム基、ピリジウム基などのカチオン性基を有するものであってもよい。樹脂成分がアニオン性基を有する場合にはプローブピン11側の電源部23が正極及び電極22が負極とされ、一方、樹脂成分がカチオン性基を有する場合にはプローブピン11側の電源部23が負極及び電極22が正極とされる。樹脂成分としては、具体的には、例えば、アクリル樹脂、ポリイミド樹脂、ウレタン樹脂、エポキシ樹脂が挙げられる。ポリイミド樹脂は、耐熱性が高く電気絶縁性が良好で、機械的強度が高いという利点がある。アクリル樹脂及びエポキシ樹脂は、耐熱性が低いが機械的強度が高い。ウレタン樹脂及びポリエステル樹脂は、耐熱性が低いが、熱で分解しやすいので剥離しやすい。電着液Lには、樹脂成分以外に、水、水性或いは油性有機溶剤、顔料、レベリング剤、分散剤、消泡剤等が含まれていてもよい。電着液Lの電気伝導度は例えば1.5〜15mS/mとし、2.5〜5mS/mとすることが好ましい。電着液LのpHは例えば6〜9とし、6.5〜7.5とすることが好ましい。電着液Lの表面張力は例えば10〜70mN/mとし、20〜40mN/mとすることが好ましい。電着液Lの固形分濃度は例えば1〜20質量%とし、3〜10質量%とすることが好ましい。   The electrodeposition bath 21 is a tank opened upward, and an electrodeposition liquid L made of an electrodeposition paint is placed therein. Specifically, as long as the electrodeposition liquid L is a conductive liquid containing a resin component, the resin component may be dissolved in the liquid, emulsified, or present in a suspended state. However, a suspension having an average particle size of the resin component of 0.1 μm or more is preferable from the viewpoint of good electrodeposition efficiency, and an average particle size of 10 μm or less from the uniformity of the thickness of the insulating coating 12. The suspension is more preferable. Here, the average particle diameter can be measured from the particle size distribution of the dispersed particles in the electrodeposition liquid L using a flow type particle image analyzer FPIA-3000S (manufactured by Sysmex Corporation). The resin component may be a polymer or a polymer precursor. The resin component may have an anionic group such as a carboxyl group, a sulfonic acid group, or a phosphoric acid group, or may have a cationic group such as an organic ammonium group or a pyridium group. When the resin component has an anionic group, the power supply unit 23 on the probe pin 11 side is a positive electrode and the electrode 22 is a negative electrode. On the other hand, when the resin component has a cationic group, the power supply unit 23 on the probe pin 11 side. Is the negative electrode and the electrode 22 is the positive electrode. Specific examples of the resin component include acrylic resin, polyimide resin, urethane resin, and epoxy resin. Polyimide resins have the advantages of high heat resistance, good electrical insulation, and high mechanical strength. Acrylic resins and epoxy resins have low heat resistance but high mechanical strength. Urethane resins and polyester resins have low heat resistance, but are easy to peel off because they are easily decomposed by heat. In addition to the resin component, the electrodeposition liquid L may contain water, an aqueous or oily organic solvent, a pigment, a leveling agent, a dispersant, an antifoaming agent, and the like. The electric conductivity of the electrodeposition liquid L is, for example, 1.5 to 15 mS / m, and preferably 2.5 to 5 mS / m. The pH of the electrodeposition liquid L is, for example, 6-9, and preferably 6.5-7.5. The surface tension of the electrodeposition liquid L is, for example, 10 to 70 mN / m, and preferably 20 to 40 mN / m. The solid content concentration of the electrodeposition liquid L is, for example, 1 to 20% by mass, and preferably 3 to 10% by mass.

電着液の粘度は、5mPa・s以上8mPa・s以下が好ましい。すなわち、電着液Lの粘度が5mPa・s未満であれば、クローン効率を適切に調整しても端部12aの形状を略直角等に形成しにくく、なだらかになりやすい。逆に8mPa・s未満だと、絶縁被膜12の均一性を保つのが困難になる。しかし、電着液Lの粘度が5mPa・s以上8mPa・s以下に適切に保たれているので、クローン効率を調整することで、絶縁被膜12の端部12aの形状を容易に調整できる。   The viscosity of the electrodeposition liquid is preferably 5 mPa · s or more and 8 mPa · s or less. That is, if the viscosity of the electrodeposition liquid L is less than 5 mPa · s, the shape of the end portion 12a is hardly formed at a substantially right angle or the like, even if the clone efficiency is appropriately adjusted, and tends to be gentle. Conversely, if it is less than 8 mPa · s, it becomes difficult to maintain the uniformity of the insulating coating 12. However, since the viscosity of the electrodeposition liquid L is appropriately maintained at 5 mPa · s or more and 8 mPa · s or less, the shape of the end portion 12a of the insulating coating 12 can be easily adjusted by adjusting the clone efficiency.

また、電着液Lの温度は、15℃以上30℃以下とすることが好ましい。すなわち、15℃よりも低いと、電着液に電圧がかかりにくくなり、端部の形状を略直角等に形成しにくく、図7に示すようになだらかになりやすい。また、30℃を超えると、電着液が劣化しやすくなり、また、粘度が低下して端部の形状がなだらかになりやすい。しかし、上記範囲とすることで、電着液の温度が適度に保たれ、端部の形状を電圧を調整することで、絶縁被膜の端部の形状を容易に調整できる。   Moreover, it is preferable that the temperature of the electrodeposition liquid L shall be 15 degreeC or more and 30 degrees C or less. That is, when the temperature is lower than 15 ° C., it is difficult to apply a voltage to the electrodeposition liquid, and it is difficult to form the shape of the end portion at a substantially right angle or the like, which tends to be smooth as shown in FIG. Moreover, when it exceeds 30 degreeC, an electrodeposition liquid will deteriorate easily, a viscosity will fall and the shape of an edge part will become easy. However, the temperature of the electrodeposition liquid is kept moderate by setting the above range, and the shape of the end portion of the insulating coating can be easily adjusted by adjusting the voltage of the shape of the end portion.

電極22を電着バス21内に、上部が電着液Lの液面Aから突出しかつ底面が槽底に接触しないように設置する。電極22を形成する金属材料としては例えば銅が挙げられる。電極22は電源部23に接続されている。一方、プローブピン11の検出端側11aも電源部23に接続されている。図のように1本のプローブピン11ではなく、複数本のプローブピン11を一度に電源部23に接続するようにしてもよい。   The electrode 22 is installed in the electrodeposition bath 21 so that the upper part protrudes from the liquid surface A of the electrodeposition liquid L and the bottom surface does not contact the tank bottom. An example of the metal material forming the electrode 22 is copper. The electrode 22 is connected to the power supply unit 23. On the other hand, the detection end side 11 a of the probe pin 11 is also connected to the power supply unit 23. Instead of a single probe pin 11 as shown, a plurality of probe pins 11 may be connected to the power supply unit 23 at a time.

次に、図1に示すように、検出端側11aを上方としたプローブピン11を垂直に電着バス21内の電着液Lに浸し、電極22も電着バス21内の電着液Lに浸す。   Next, as shown in FIG. 1, the probe pin 11 with the detection end side 11 a facing upward is vertically immersed in the electrodeposition liquid L in the electrodeposition bath 21, and the electrode 22 is also electrodeposited in the electrodeposition bus 21. Soak in.

電着液Lの表面の乱れがなくなった後、電極22と電源部23との間に電圧を一定時間印加する。印加電圧は例えば1〜200Vとし、5〜50Vとすることが好ましい。電圧印加時間は例えば1〜180秒とし、1〜30秒とすることが好ましい。   After the surface of the electrodeposition liquid L is not disturbed, a voltage is applied between the electrode 22 and the power supply unit 23 for a certain period of time. The applied voltage is, for example, 1 to 200V, preferably 5 to 50V. The voltage application time is, for example, 1 to 180 seconds, and preferably 1 to 30 seconds.

このとき、電極22と電源部23に把持されたプローブピン11との間に、電着液Lを介して電位差が生じ、図5に示すように、プローブピン11の電着液Lに浸かった部分に樹脂成分による絶縁被膜12が析出する。このときのクローン効率を120μm/C以上220μm/C以下とする。   At this time, a potential difference was generated via the electrodeposition liquid L between the electrode 22 and the probe pin 11 held by the power supply unit 23, and the electrode 22 was immersed in the electrodeposition liquid L of the probe pin 11 as shown in FIG. An insulating coating 12 made of a resin component is deposited on the portion. The clone efficiency at this time is set to 120 μm / C or more and 220 μm / C or less.

電着時の電着液Lの液面A付近では、プローブピン11に加わる電圧により絶縁被膜12のできやすさが異なる。このため、電圧を小さくする(1〜20V程度)とすると、図7に示すように、検出端側の端部12aの形状がなだらかになり、大きくする(60〜200V)と、図8に示すように、検出端側の端部12aが大きく膨らむ形状となる。   In the vicinity of the liquid surface A of the electrodeposition liquid L during electrodeposition, the ease with which the insulating coating 12 can be formed varies depending on the voltage applied to the probe pin 11. For this reason, when the voltage is reduced (about 1 to 20 V), as shown in FIG. 7, the shape of the end 12a on the detection end side becomes gentle and larger (60 to 200 V), as shown in FIG. As described above, the end 12a on the detection end side has a shape that swells greatly.

このことを利用して、電圧を25〜55V程度に調整することで絶縁被膜12を剥離することなく、検出端側の端部12aの形状を図3に示すように断面が略直角になるように形成することができる。このため、電気的特性測定時の絶縁被膜プローブピン10のプローブ孔Hからの突出量のバラツキがなくなり、測定精度が向上する。   By making use of this fact, by adjusting the voltage to about 25 to 55 V, the shape of the end portion 12a on the detection end side is substantially perpendicular as shown in FIG. 3 without peeling off the insulating coating 12. Can be formed. For this reason, there is no variation in the amount of protrusion from the probe hole H of the insulating coating probe pin 10 at the time of measuring the electrical characteristics, and the measurement accuracy is improved.

そして、電源部23への通電を停止し、電極22と、絶縁被膜12が形成されプローブピン11とを電着バス21から取り出す。ここで、絶縁被膜12の下方への垂れを抑制する観点からは、この引き上げ速度は0.5〜300mm/sとすることが好ましく、1〜10mm/sとすることがより好ましい。   Then, energization to the power supply unit 23 is stopped, and the electrode 22 and the insulating coating 12 are formed, and the probe pin 11 is taken out from the electrodeposition bus 21. Here, from the viewpoint of suppressing the downward sag of the insulating coating 12, the pulling speed is preferably 0.5 to 300 mm / s, and more preferably 1 to 10 mm / s.

次いで、ステップS04において、第2洗浄工程を行う。この第2洗浄工程では、電着塗装後の絶縁被膜プローブピン10の余分な電着液の除去のため洗浄槽に浸けて洗浄を行う。   Next, in step S04, a second cleaning process is performed. In this second cleaning step, cleaning is performed by immersing in a cleaning tank in order to remove excess electrodeposition liquid on the insulating coating probe pin 10 after electrodeposition coating.

次いで、ステップS05において、第3洗浄工程を行う。この第3洗浄工程では、さらに表面調整用の溶剤を含む洗浄槽に浸けて洗浄を行う。なお、これらの第1〜第3の洗浄工程は、必要に応じて行えばよく、必須の工程ではない。   Next, in step S05, a third cleaning process is performed. In the third cleaning step, cleaning is performed by dipping in a cleaning tank containing a solvent for surface adjustment. In addition, what is necessary is just to perform these 1st-3rd washing | cleaning processes as needed, and is not an essential process.

次いで、ステップS06において、プローブピン11を乾燥炉で乾燥させて水分や有機溶剤を蒸発させる。   Next, in step S06, the probe pin 11 is dried in a drying furnace to evaporate moisture and organic solvent.

最後に、ステップS07において、焼付炉で焼き付けを行う。   Finally, in step S07, baking is performed in a baking furnace.

このように製造することで、絶縁被膜12の煩雑な剥離作業を伴うことなく寸法精度が高く、形状のバラツキのない品質の高い絶縁被膜プローブピン10が極めて簡単かつ低コストな方法で得られる。   By manufacturing in this way, the insulating coating probe pin 10 having high dimensional accuracy and high quality without variation in shape can be obtained by a very simple and low-cost method without complicated peeling work of the insulating coating 12.

一方、例えば加える電圧の範囲を60V〜200Vとすると、図8に示すような検出端側の端部12aが全周に渡って接続端側の端部12aよりも厚肉に形成される。すると、例えばプローバに多数の絶縁被膜プローブピン10が短い間隔で並列して設けられたような場合でも、絶縁被膜12の厚肉の端部12a同士が干渉するため、プローブピン11の検出端側11aの露出した部分同士が接触しにくくなるという利点がある。また、絶縁被膜12の補強がなされ、プローブ孔Hの周縁に接触して大きな応力が作用したとしても、絶縁被膜12の端部12aの削れや剥離が規制され、その結果、絶縁被膜プローブピン10のプローブ孔Hからの突出量のバラツキを抑制することができる。また、プローブピン10の製品寿命を長くすることができる。このような絶縁被膜12の補強の観点からは、絶縁被膜12は、図8に示すように、検出端側の端部12aからプローブピン11の接続端側に向かって漸次薄肉となってテーパ状に形成されている部分を有することが好ましい。絶縁被膜12におけるプローブピン11の検出端側の端部12aの最も厚肉となる部分から接続端側の均一厚さの部分の始点までの長さは、絶縁被膜プローブピン10の検出端側の露出した部分同士の接触を防ぎやすいという観点から、0.02〜1.5mmであることが好ましい。   On the other hand, for example, when the range of the applied voltage is 60 V to 200 V, the end 12a on the detection end side as shown in FIG. 8 is formed thicker than the end 12a on the connection end side over the entire circumference. Then, for example, even when a large number of insulating coating probe pins 10 are provided in parallel at a short interval on the prober, the thick end portions 12a of the insulating coating 12 interfere with each other. There is an advantage that the exposed portions of 11a are less likely to contact each other. Further, even if the insulating coating 12 is reinforced and a large stress is applied by contacting the peripheral edge of the probe hole H, the scraping or peeling of the end 12a of the insulating coating 12 is restricted. As a result, the insulating coating probe pin 10 is controlled. Variation in the amount of protrusion from the probe hole H can be suppressed. Moreover, the product life of the probe pin 10 can be extended. From the viewpoint of reinforcing the insulating coating 12, the insulating coating 12 gradually becomes thinner from the end portion 12a on the detection end side toward the connection end side of the probe pin 11, as shown in FIG. It is preferable to have the part formed in this. The length from the thickest portion of the end portion 12a on the detection end side of the probe pin 11 in the insulating coating 12 to the start point of the uniform thickness portion on the connection end side is the length on the detection end side of the insulating coating probe pin 10. From the viewpoint that it is easy to prevent contact between exposed portions, it is preferably 0.02 to 1.5 mm.

また、例えば加える電圧の範囲を1〜20Vとすると、図7に示すように検出端側の端部12aが全周に渡ってなだらかな形状となる。この場合、例えば図9に示すように、プローブ孔Hの形を意図的に絶縁被膜12の端部12aと同じ角度のテーパー状にすれば、直角の場合は絶縁被膜12の端部12aの界面だけで支えるのに対してテーパー全体で支えることになるので、絶縁被膜12の端部12aにかかる負荷を低減することができる。また、同じプローブピン11を用いてパッドPにあたる力を意図的に操作したい場合、プローブ孔Hの内径を微妙に変化させれば、プローブ孔Hが大きめのときは押し圧を大きくし、プローブ孔Hが小さめのときは押し圧を小さくすることができる。   For example, when the range of applied voltage is 1 to 20 V, the end 12a on the detection end side has a gentle shape as shown in FIG. In this case, for example, as shown in FIG. 9, if the shape of the probe hole H is intentionally tapered at the same angle as the end 12 a of the insulating coating 12, the interface of the end 12 a of the insulating coating 12 in the case of a right angle However, the load applied to the end portion 12a of the insulating coating 12 can be reduced. In addition, when it is desired to intentionally manipulate the force applied to the pad P using the same probe pin 11, if the inner diameter of the probe hole H is changed slightly, the pressing pressure is increased when the probe hole H is larger, and the probe hole H When H is small, the pressing pressure can be reduced.

本発明は、導電体よりなるプローブピンと、このプローブピンの検出端側の部分が露出するように、このプローブピンの外周を被膜する絶縁被膜と、を備えた絶縁被膜プローブピン絶縁被膜プローブピン及びその製造方法に関する。   The present invention relates to an insulating coating probe pin insulating coating probe pin comprising: a probe pin made of a conductor; and an insulating coating that coats the outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed. It relates to the manufacturing method.

10 絶縁被膜プローブピン
11 プローブピン
11a 検出端側
11b 接続端側
12 絶縁被膜
12a 端部
12b 端部
20 電着塗装装置
21 電着バス
22 電極
23 電源部
L 電着液
DESCRIPTION OF SYMBOLS 10 Insulation coating probe pin 11 Probe pin 11a Detection end side 11b Connection end side 12 Insulation coating 12a End part 12b End part 20 Electrodeposition coating apparatus 21 Electrodeposition bus 22 Electrode 23 Power supply part L Electrodeposition liquid

Claims (6)

導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被覆する絶縁被膜と、を備えた絶縁被膜プローブピンの製造方法であって、
上記絶縁被膜を形成する電着材料を含む電着液内に電極を浸すと共に、上記プローブピンを該プローブピンの検出端側が上方を向くように垂直に挿入し、
上記電極と上記プローブピンとに通電する電圧を調整することで、
上記絶縁被膜におけるプローブピンの検出端側の形状を全周に渡り上方に向かって先細となるテーパ形状から端部の断面が直角となる形状又は端部が他の領域よりも膨らむ形状まで希望の形状に形成する
ことを特徴とする絶縁被膜プローブピンの製造方法。
A method of manufacturing an insulating film probe pin comprising: a probe pin made of a conductor; and an insulating film covering an outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed,
The electrode is immersed in an electrodeposition solution containing an electrodeposition material for forming the insulating coating, and the probe pin is inserted vertically so that the detection end side of the probe pin faces upward,
By adjusting the voltage applied to the electrode and the probe pin,
The shape on the detection end side of the probe pin in the insulating coating is desired from a taper shape that tapers upward over the entire circumference to a shape in which the cross section of the end portion is a right angle or a shape in which the end portion swells more than other regions. A method of manufacturing an insulating coating probe pin, wherein the probe is formed into a shape.
請求項1に記載された絶縁被膜プローブピンの製造方法において、
上記クローン効率を120μm/C以上220μm/C以下とし、
上記検出端側の端部の断面が略直角となるように、上記絶縁被膜を形成する
ことを特徴とする絶縁被膜プローブピンの製造方法。
In the manufacturing method of the insulation coating probe pin described in Claim 1,
The clone efficiency is 120 μm / C or more and 220 μm / C or less,
The method of manufacturing an insulating coating probe pin, wherein the insulating coating is formed so that a cross section of the end portion on the detection end side is substantially perpendicular.
請求項2に記載された絶縁被膜プローブピンの製造方法において、
上記電着液の粘度を5mPa・s以上8mPa・s以下とする
ことを特徴とする絶縁被膜プローブピンの製造方法。
In the manufacturing method of the insulation coating probe pin described in Claim 2,
A method for producing an insulating coating probe pin, wherein the viscosity of the electrodeposition liquid is 5 mPa · s or more and 8 mPa · s or less.
請求項3に記載された絶縁被膜プローブピンの製造方法において、
上記電着液の温度を15℃以上30℃以下とする
ことを特徴とする絶縁被膜プローブピンの製造方法。
In the manufacturing method of the insulation coating probe pin described in Claim 3,
The method of manufacturing an insulating coating probe pin, wherein the temperature of the electrodeposition liquid is 15 ° C. or higher and 30 ° C. or lower.
導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被覆する絶縁被膜と、を備えた絶縁被膜プローブピンであって、
上記絶縁被膜は、剥離処理を伴わずに電着材料を含んだ電着液で電着処理を行うことにより、上記検出端側の端部が全周に渡って断面が略直角に形成されている
ことを特徴とする絶縁被膜プローブピン。
An insulating film probe pin comprising: a probe pin made of a conductor; and an insulating film covering an outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed,
The insulating coating is formed by performing an electrodeposition treatment with an electrodeposition liquid containing an electrodeposition material without a peeling treatment, so that the end portion on the detection end side is formed substantially at right angles across the entire circumference. An insulating coating probe pin characterized by comprising:
導電体よりなるプローブピンと、該プローブピンの検出端側の部分が露出するように該プローブピンの外周を被覆する絶縁被膜と、を備えた絶縁被膜プローブピンであって、
上記絶縁被膜は、剥離処理を伴わずに電着材料を含んだ電着液で電着処理を行うことにより、上記検出端側の端部が全周に渡って接続端側の端部よりも厚肉に形成されている
ことを特徴とする絶縁被膜プローブピン。
An insulating film probe pin comprising: a probe pin made of a conductor; and an insulating film covering an outer periphery of the probe pin so that a portion on the detection end side of the probe pin is exposed,
The insulating film is subjected to an electrodeposition treatment with an electrodeposition liquid containing an electrodeposition material without being subjected to a peeling treatment, so that the end on the detection end side is more than the end on the connection end side over the entire circumference. An insulating coating probe pin characterized by being formed thick.
JP2010280995A 2010-12-16 2010-12-16 Insulation-coated probe pin and method for manufacturing the same Pending JP2012127869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280995A JP2012127869A (en) 2010-12-16 2010-12-16 Insulation-coated probe pin and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280995A JP2012127869A (en) 2010-12-16 2010-12-16 Insulation-coated probe pin and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012127869A true JP2012127869A (en) 2012-07-05

Family

ID=46645065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280995A Pending JP2012127869A (en) 2010-12-16 2010-12-16 Insulation-coated probe pin and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012127869A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150123178A (en) * 2014-04-24 2015-11-03 니혼덴산리드가부시키가이샤 Electrode structure, inspection jig, and method of manufacturing electrode structure
KR20160149005A (en) * 2015-06-17 2016-12-27 주식회사 새한마이크로텍 Method of fabricating insulated probe pin
KR102265359B1 (en) * 2021-01-26 2021-06-15 주식회사 메디션 Probe pin using conductive thin film and test socket including the same
CN116543982A (en) * 2023-03-23 2023-08-04 清华大学 Microelectrode preparation method and microelectrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109201A (en) * 1990-08-29 1992-04-10 Seiko Instr Inc Method and device for producing multicolor surface colored body
JP3038114U (en) * 1996-11-22 1997-06-06 日本電子材料株式会社 Probe with insulating coating and probe card using the same
JP2002168879A (en) * 2000-09-19 2002-06-14 Kanai Hiroaki Insulation coated probe pin
JP2010107420A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Probe pin and method for insulating the same
JP2010106340A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Method for manufacturing insulating member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109201A (en) * 1990-08-29 1992-04-10 Seiko Instr Inc Method and device for producing multicolor surface colored body
JP3038114U (en) * 1996-11-22 1997-06-06 日本電子材料株式会社 Probe with insulating coating and probe card using the same
JP2002168879A (en) * 2000-09-19 2002-06-14 Kanai Hiroaki Insulation coated probe pin
JP2010107420A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Probe pin and method for insulating the same
JP2010106340A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Method for manufacturing insulating member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150123178A (en) * 2014-04-24 2015-11-03 니혼덴산리드가부시키가이샤 Electrode structure, inspection jig, and method of manufacturing electrode structure
KR102202297B1 (en) 2014-04-24 2021-01-13 니혼덴산리드가부시키가이샤 Electrode structure, inspection jig, and method of manufacturing electrode structure
KR20160149005A (en) * 2015-06-17 2016-12-27 주식회사 새한마이크로텍 Method of fabricating insulated probe pin
KR101715153B1 (en) * 2015-06-17 2017-03-10 주식회사 새한마이크로텍 Method of fabricating insulated probe pin
KR102265359B1 (en) * 2021-01-26 2021-06-15 주식회사 메디션 Probe pin using conductive thin film and test socket including the same
CN116543982A (en) * 2023-03-23 2023-08-04 清华大学 Microelectrode preparation method and microelectrode
CN116543982B (en) * 2023-03-23 2024-01-30 清华大学 Microelectrode preparation method and microelectrode

Similar Documents

Publication Publication Date Title
US7638028B2 (en) Probe tip plating
KR20020032375A (en) Probe pin, probe card and method for manufacturing thereof
JP6305754B2 (en) Contact probe unit
JP2012127869A (en) Insulation-coated probe pin and method for manufacturing the same
WO2010032905A1 (en) Micro-contact probe coated with nano-structure, and fabricating method thereof
JP2012088122A (en) Insulation-coated probe pin and method of manufacturing the same
Ruhlig et al. Spatial imaging of Cu2+‐ion release by combining alternating current and underpotential stripping mode Scanning Electrochemical Microscopy
KR101715153B1 (en) Method of fabricating insulated probe pin
US9977054B2 (en) Etching for probe wire tips for microelectronic device test
JP5582997B2 (en) Insulating coating probe pin and manufacturing method thereof
JP2002168879A (en) Insulation coated probe pin
JP2008096293A (en) Manufacturing method of contact for inspection, contact for inspection, tool for inspection, and inspection device
US7022212B2 (en) Micro structured electrode and method for monitoring wafer electroplating baths
JP2006017455A (en) Probe needle and its manufacturing method
US20230273013A1 (en) A measuring system
JP2006342403A (en) Plating device, plating treatment controller, plating method, and plating treatment control method
JP2009008487A (en) Probe needle for probe card
JP7008541B2 (en) Probe needle
JP5987230B1 (en) A micro-working electrode for analysis of local electrochemical phenomena
Shibata et al. Detailed analysis of contact resistance of fretting corrosion track for the tin plated contacts
JP2018072283A (en) Probe needle, and manufacturing method for insulation-coated probe needle
JP2015089955A (en) Plating method
JP2006184081A (en) Probe pin for probe card
JP2009162634A (en) Insulation coated probe pin
KR102212982B1 (en) The manufacturing method of probe pin for testing semiconductor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104