JP2010105018A - Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body - Google Patents

Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body Download PDF

Info

Publication number
JP2010105018A
JP2010105018A JP2008279764A JP2008279764A JP2010105018A JP 2010105018 A JP2010105018 A JP 2010105018A JP 2008279764 A JP2008279764 A JP 2008279764A JP 2008279764 A JP2008279764 A JP 2008279764A JP 2010105018 A JP2010105018 A JP 2010105018A
Authority
JP
Japan
Prior art keywords
welding
seam
welded
outer end
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279764A
Other languages
Japanese (ja)
Inventor
Atsushi Sugibashi
敦史 杉橋
Koji Hirano
弘二 平野
Shigeru Hirano
茂 平野
Hiroichi Yokoya
博一 横矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008279764A priority Critical patent/JP2010105018A/en
Publication of JP2010105018A publication Critical patent/JP2010105018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a welded can body, which has excellent repair weldability of a seam welded edge, to provide a welded can body, and to provide a device for manufacturing a welded can body. <P>SOLUTION: In the method, a welded can body 12 is manufactured by superposing edge parts 10a, 10b of a metal blank, which are opposed to each other, to form a can-body shape 10 with a superposed portion 10c, and by bringing linear electrodes 3, 4 respectively into contact with both surfaces of the superposed portion 10c to perform electric resistance mash seam welding. An outside edge C1 is shape-formed by radiating a laser beam L along the outside edge C1 of a seam welded portion B to melt the outside edge C1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、飲料用に用いられる溶接缶胴の製造方法、溶接缶胴、および溶接缶胴の製造装置に関する。   The present invention relates to a method for manufacturing a welded can body used for beverages, a welded can body, and an apparatus for manufacturing a welded can body.

コーヒー飲料缶等に用いられる溶接缶胴は、通常、錫めっき鋼板等の金属ブランクの対向する端縁部を重ね合せて、重ね合わせ部を電気抵抗マッシュシーム溶接することによって製造される。ところが、このマッシュシーム溶接部の側方には、比較的急激な勾配のかつ断面不規則の段差部や、えぐれ部が生ずる(図4のC1、C2部分)。この溶接部は、発錆や内容物による腐食を防止するため、通常、塗料を塗布し、乾燥させて、塗膜を形成することによって補修されるが、段差やえぐれ部のため、塗膜の欠落部、あるいは塗膜がごく薄い部分を生じ易く、そのため、満足な補修効果を得ることが困難であるという問題があった。   A welded can body used for a coffee beverage can or the like is usually manufactured by overlaying opposing edge portions of a metal blank such as a tin-plated steel plate and welding the overlapped portion with an electric resistance mash seam. However, on the side of the mash seam welded portion, a step portion having a relatively steep slope and an irregular cross-section or a hollow portion is formed (C1 and C2 portions in FIG. 4). In order to prevent rusting and corrosion due to contents, this weld is usually repaired by applying paint and drying to form a paint film. There is a problem that it is easy to produce a missing part or a part where the coating film is very thin, and therefore it is difficult to obtain a satisfactory repair effect.

上記課題に対し、特許文献1あるいは特許文献2には、電気マッシュシーム溶接に用いる線電極の形状を工夫する事で、該段差を低減する方法が開示されている。   In order to solve the above problem, Patent Document 1 or Patent Document 2 discloses a method of reducing the step by devising the shape of the wire electrode used for electric mash seam welding.

また、特許文献3には、溶接にレーザを用いる事で、溶接部の段差を少なくする溶接缶胴の製造方法が開示されている。   Patent Document 3 discloses a method for manufacturing a welding can body that uses a laser for welding to reduce the level difference of the welded portion.

しかし、特許文献1あるいは特許文献2の発明では、電極との接触状態の僅かな変化によって溶接状態が変動する事で、段差やえぐれ部の解消に対して必ずしも十分な効果を得られないという問題があった。また、特許文献3に記されているレーザによる溶接方法では、通常の飲料缶に用いられる板厚0.1〜0.2mm程度の非常に薄い金属ブランクを溶接するにあたり、溶接部の金属ブランク端の重ね具合の僅かな変化により、溶接不良が発生し易いと言う問題があった。   However, in the invention of Patent Document 1 or Patent Document 2, the welding state fluctuates due to a slight change in the contact state with the electrode, so that it is not always possible to obtain a sufficient effect for the elimination of the step and the gap portion. was there. Moreover, in the welding method by the laser described in patent document 3, when welding the very thin metal blank about 0.1-0.2 mm of plate | board thickness used for a normal drink can, the metal blank edge of a welding part is carried out. There is a problem that poor welding is likely to occur due to a slight change in the degree of overlap.

特開昭62−275582号公報JP-A-62-275582 特開昭63−149087号公報Japanese Unexamined Patent Publication No. 63-149087 特開昭61−202789号公報JP-A-61-202789

以上のように、溶接缶胴は、溶接部に段差やえぐれが生じ、その段差部には防錆、防食用の塗料が塗布されて補修されるが、段差の角部では塗装厚みが薄くなったり、えぐれ部には塗料が届かず空洞ができるなどの塗装不良が生じやすく、溶接部に腐食や錆が発生する原因となる問題があった。   As described above, the welded can body has a stepped portion and a burrow in the welded portion, and the stepped portion is repaired by applying a rust and anticorrosion coating, but the coating thickness is reduced at the corners of the stepped portion. In addition, there is a problem that coating failure is likely to occur, such as the paint does not reach the hollowed portion and a void is formed, and corrosion and rust are generated in the welded portion.

本発明は、上記の問題を解決し、塗料による溶接部の補修性を向上させた溶接缶胴ならびに溶接缶胴の製造方法および製造装置を提供する事を目的とするものである。   An object of the present invention is to provide a welded can body, a manufacturing method and an apparatus for manufacturing a welded can body, in which the above-described problems are solved and the repairability of a welded portion by paint is improved.

本発明者らは、上記課題を解決するために検討を行った結果、電気抵抗マッシュシーム溶接のシーム溶接端部にレーザ光を照射し、シーム溶接端部を溶融させ、溶融時の表面張力を利用して端部の形状を整形する事で、溶接シーム端部の段差やえぐれ部が発生する問題を解消できる事を発見した。   As a result of investigations to solve the above problems, the inventors of the present invention irradiate a seam weld end of electric resistance mash seam welding to melt the seam weld end, and determine the surface tension at the time of melting. It was discovered that by using the shape of the end to make use of it, it was possible to eliminate the problem of the level difference in the end of the weld seam and the gap.

すなわち、本発明は、以下に示すものである。   That is, the present invention is as follows.

本発明の溶接缶胴の製造方法は、金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して溶接缶胴を製造する溶接缶胴の製造方法において、マッシュシーム溶接した前記溶接缶胴のシーム溶接部の外側端部に沿ってレーザ光を照射し、前記外側端部を溶融することにより、前記外側端部を整形加工する事を特徴とする。   In the method for manufacturing a welded can body of the present invention, opposing edge portions of a metal blank are overlapped to form a can body formed body having an overlap portion, and line electrodes are brought into contact with both surfaces of the overlap portion, respectively. In the method of manufacturing a welded can body by welding an electric resistance mash seam, a laser beam is irradiated along the outer end of the seam welded portion of the welded can body that has been mash seam welded. The outer end portion is shaped by melting the end portion.

本発明の溶接缶胴の製造方法は、前記レーザ光が、マッシュシーム溶接工程と、前記シーム溶接部に腐食防止の塗装を施す工程との間の搬送移動中に照射される事を特徴とする。   The method for manufacturing a welding can body according to the present invention is characterized in that the laser beam is irradiated during a transfer movement between a mash seam welding step and a step of applying a corrosion-preventing coating to the seam welded portion. .

本発明の溶接缶胴は、金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して製造される溶接缶胴において、シーム溶接工程の後に、シーム溶接部の外側端部に沿ってレーザ光が照射され、前記外側端部が溶融されることにより、前記外側端部が整形加工された事を特徴とする。   The welding can body of the present invention is formed by superposing the opposing edge portions of the metal blank to form a can body forming body having the overlapping portion, and contacting the line electrodes on both surfaces of the overlapping portion, respectively. In a welding can body manufactured by resistance mash seam welding, after the seam welding process, the outer end is melted by irradiating a laser beam along the outer end of the seam weld. The part is shaped and processed.

本発明の溶接缶胴は、前記レーザ光照射により溶融された前記外側端部の寸法が、前記外側端部の段差の50%以上の溶融深さ、且つ、前記外側端部の段差の50%以上の溶融幅である事を特徴とする。   In the welding can body of the present invention, the dimension of the outer end melted by the laser beam irradiation is a melting depth of 50% or more of the step of the outer end, and 50% of the step of the outer end. It is the above melting width.

本発明の溶接缶胴の製造装置は、金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して溶接缶胴を製造する溶接缶胴の製造装置において、マッシュシーム溶接機構と、シーム溶接部に腐食防止の塗装を施す塗装機構との間に、シーム溶接端部にレーザ光を照射するレーザ光照射機構として、レーザ発振器およびレーザ集光光学機構を有する事を特徴とする。   The apparatus for manufacturing a welded can body of the present invention forms a can body forming body having an overlapped portion by superimposing the opposing edge portions of a metal blank, and makes line electrodes contact with both surfaces of the overlapped portion, respectively. In a welding can barrel manufacturing apparatus that manufactures a welded can barrel by electric resistance mash seam welding, a seam weld end portion is provided between the mash seam welding mechanism and a coating mechanism for applying a corrosion-preventing coating to the seam welded portion. As a laser beam irradiation mechanism for irradiating a laser beam, a laser oscillator and a laser focusing optical mechanism are provided.

本発明の溶接缶胴の製造装置は、前記レーザ光照射機構が、前記溶接缶胴の通過位置を検出するセンサーを備え、該センサーの検出信号にもとづいて、前記レーザ発振器の発振の開始および停止を制御する機構を備えた事を特徴とする。   In the welding can barrel manufacturing apparatus according to the present invention, the laser beam irradiation mechanism includes a sensor that detects a passing position of the welding can barrel, and starts and stops oscillation of the laser oscillator based on a detection signal of the sensor. It is characterized by having a mechanism to control.

本発明の溶接缶胴の製造装置は、前記レーザ光照射機構が、マッシュシーム溶接のシーム溶接線位置を検出するセンサーと、該センサーによるシーム位置検出信号によりレーザ光照射位置を制御する制御機構とを備えた事を特徴とする。   In the welding can barrel manufacturing apparatus of the present invention, the laser beam irradiation mechanism includes a sensor that detects a seam weld line position of mash seam welding, and a control mechanism that controls the laser beam irradiation position based on a seam position detection signal from the sensor. It is characterized by having.

本発明によって、溶接缶胴のマッシュシーム溶接端部の形状を改善し、端部の段差あるいはえぐれ部が発生する問題が解消される。本発明によって、端縁部の重ね合わせ部が、溶接部にて滑らかに繋がる曲線状の断面を持ち、溶接部の塗料による補修性を向上させた、溶接缶胴を得る事ができる。すなわち、耐食塗装性に優れた溶接缶胴を提供する事ができる。   According to the present invention, the shape of the mash seam weld end portion of the weld can body is improved, and the problem of the occurrence of a step or a hollow portion at the end portion is solved. According to the present invention, it is possible to obtain a welded can body in which the overlapping portion of the edge portion has a curved cross section smoothly connected at the welded portion, and the repairability of the welded portion by the paint is improved. That is, it is possible to provide a welded can body excellent in corrosion resistance paint resistance.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1は本発明の概要を示す図である。溶接缶胴12は、錫めっき鋼板、テインフリースチール、極薄ニッケルめっき鋼板、極薄ニッケル・錫複合めっき鋼板等の金属ブランクを筒状に成型した缶胴プリフォームの対向する端縁部を重ね合わせ、該重ね合わせ部を電気抵抗マッシュシーム溶接して形成したものである。本発明は、溶接缶胴12のシーム溶接部Bの外側のシーム溶接線13に沿って、レーザ光Lを照射し、シーム溶接部Bの外側端部を溶融させ、溶融時に発生する表面張力の作用を利用して、シーム溶接部Bの外側端部の形状を整形するものである。図1において、Dはレーザ照射完了部を示す。   FIG. 1 is a diagram showing an outline of the present invention. The welded can body 12 is formed by stacking opposing end edges of a can body preform formed of a metal blank such as tin-plated steel plate, tin-free steel, ultra-thin nickel-plated steel plate, or ultra-thin nickel / tin composite-plated steel plate. In addition, the overlapping portion is formed by electric resistance mash seam welding. In the present invention, the laser beam L is irradiated along the seam weld line 13 outside the seam weld B of the weld can body 12 to melt the outer end of the seam weld B, and the surface tension generated at the time of melting is melted. The shape of the outer end portion of the seam weld B is shaped using the action. In FIG. 1, D shows a laser irradiation completion part.

図2に、本発明を実施する製造装置の構成の概要を示す。図2において、1は内部電極ロール、2は外部電極ロール、3,4は各々溶接時に内部電極ロール1および外部電極ロール2により支持される第1の線電極および第2の線電極である。5はマンドレルである。   FIG. 2 shows an outline of the configuration of a manufacturing apparatus that implements the present invention. In FIG. 2, 1 is an internal electrode roll, 2 is an external electrode roll, and 3 and 4 are a first line electrode and a second line electrode supported by the internal electrode roll 1 and the external electrode roll 2 during welding, respectively. 5 is a mandrel.

金属ブランクは筒状の缶胴プリフォーム10に成型され、図2の矢印Z方向に移動しながら、図3に示すように、缶胴プリフォーム10の対向する外側の端縁部10aと内側の端縁部10bとの重ね合わせ部10cが、一対の線電極3、4により押圧通電される事によって溶接形成(マッシュシーム溶接)され、溶接缶胴12が製造される。   As shown in FIG. 3, the metal blank is molded into a cylindrical can body preform 10 and moved in the direction of the arrow Z in FIG. 2, while the outer edge 10a and the inner side of the can body preform 10 face each other. The overlapping portion 10c with the end edge portion 10b is welded (mash seam welding) by being pressed and energized by the pair of wire electrodes 3 and 4, and the welding can body 12 is manufactured.

マッシュシーム溶接により、各端縁部10a、10bは重ね合わせ部10cの厚み差を少なくするため圧下されるが(通常、重ね溶接部の厚みは金属ブランク厚の1.1〜1.8倍程度の厚みに押圧される)、図4の溶接部断面写真に示されるように、シーム溶接部の缶内側端部C2および外側端部C1には、段差あるいは微小なえぐれ部を有する形状が残される。   By mash seam welding, the edge portions 10a and 10b are reduced in order to reduce the difference in thickness of the overlapped portion 10c (normally, the thickness of the overlap welded portion is about 1.1 to 1.8 times the thickness of the metal blank). 4), as shown in the cross-sectional photograph of the welded portion in FIG. 4, a shape having a step or a minute burred portion is left at the can inner end portion C2 and the outer end portion C1 of the seam welded portion. .

溶接完了後、図4に示す段差hoを有する外側端部C1は、防錆、防食の塗料を塗布する補修塗装装置6(図2)で塗装補修される。しかし、外側端部C1の角部では、塗装厚みが薄くなったり、えぐれ部に塗料が届かず空洞ができるなどの塗装不良が生じやすく、シーム溶接部Bに腐食や錆が発生する原因となる問題があった。   After the completion of welding, the outer end C1 having the step ho shown in FIG. 4 is painted and repaired by the repair coating apparatus 6 (FIG. 2) for applying a rust and anticorrosion paint. However, at the corner portion of the outer end C1, the coating thickness becomes thin, or coating failure such as the formation of a cavity due to the paint not reaching the corner portion is likely to occur, which causes corrosion and rust in the seam welded portion B. There was a problem.

本発明の溶接缶胴の製造装置は、図2に示すレーザ光照射機構20を有している。図の都合上、レーザ光照射機構20は、レーザ発振器21から矢印Zに平行に出射されたレーザ光Lが、折り返し反射ミラー22にて溶接缶胴12の方向(下方)に曲げられ照射されている様に図示しているが、後述する様に、シーム溶接線位置の変動に合わせてレーザ光照射位置を制御するために、実際のレーザ光照射機構20は、紙面と垂直方向に回転した向きに設置されている。   The welding can barrel manufacturing apparatus of the present invention has a laser beam irradiation mechanism 20 shown in FIG. For convenience of illustration, the laser beam irradiation mechanism 20 is irradiated with the laser beam L emitted in parallel to the arrow Z from the laser oscillator 21 by being bent in the direction of the welding can body 12 (downward) by the reflection mirror 22. However, as will be described later, in order to control the laser beam irradiation position in accordance with the change in the position of the seam weld line, the actual laser beam irradiation mechanism 20 is rotated in a direction perpendicular to the paper surface. Is installed.

シーム溶接部Bに補修塗装装置6で補修塗装を施す前に、シーム溶接部Bの外側端部C1を狙い、レーザ光Lの照射を行う。図5に、レーザ光照射により端部の形状が整形された重ね合わせ部10cの断面写真を示す。レーザ光を照射して図4の外側端部C1を溶融させ、再凝固時の表面張力の作用を利用する事で、シーム溶接端部の外側に出来た段差やえぐれ部を図5に示す外側端部C11のように整形し、外側の端縁部10aがなだらかに内側の端縁部10bの面に繋がる断面形状を得る事ができる。図5の外側端部C11は滑らかであるため、防錆、防食塗料が均一に塗布され、十分な耐錆、耐食性を確保する事ができる。   Before the seam welded portion B is subjected to the repair coating by the repair coating device 6, the laser beam L is irradiated aiming at the outer end C1 of the seam welded portion B. FIG. 5 shows a cross-sectional photograph of the overlapped portion 10c in which the shape of the end is shaped by laser light irradiation. The outer step C1 in FIG. 4 is melted by irradiating the laser beam, and the step and the sag portion formed on the outer side of the seam weld end by utilizing the action of the surface tension at the time of resolidification are shown in FIG. It is possible to obtain a cross-sectional shape that is shaped like the end portion C11 so that the outer end edge portion 10a gently connects to the surface of the inner end edge portion 10b. Since the outer end C11 in FIG. 5 is smooth, the rust-proof and anti-corrosion paint is uniformly applied, and sufficient rust and corrosion resistance can be ensured.

本発明は、マッシュシーム溶接工程とシーム溶接部Bに腐食防止の塗装を施す工程との間の搬送移動中において、溶接缶胴12のシーム溶接部B外側の端部にレーザ光を照射することにより、また、レーザ光照射に必要な機構をレーザ装置およびレーザ光照射に拘わる光学的な機構のみとすることにより、余分な溶接缶胴12の移動機構やシーム溶接部B全長に亘るレーザ光走査のための複雑な機構などが不要であり、安価で簡便な溶接缶胴の製造装置を実現できる。   The present invention irradiates a laser beam to the outer end of the seam welded portion B of the welding can body 12 during the transfer movement between the mash seam welding step and the step of applying a corrosion prevention coating to the seam welded portion B. In addition, by using only a laser device and an optical mechanism related to laser light irradiation as a mechanism necessary for laser light irradiation, a laser beam scanning over the entire moving mechanism of the welding can barrel 12 and the entire length of the seam weld B is performed. Therefore, it is possible to realize an inexpensive and simple manufacturing apparatus for a welding can body.

本発明では、溶接缶胴の通過位置を検出するセンサーとして図2に示す溶接缶胴検出器31を設け、溶接缶胴12のZ方向の位置を検出し、レーザ光照射位置L0の下に溶接缶胴12が移動してくるタイミングに合わせてレーザ発振を開始し、溶接缶胴12がレーザ光照射位置L0を通過完了するタイミングに合わせてレーザ光照射を停止する。溶接缶胴12が存在しない時にはレーザ発振を停止させる事で、装置本体にレーザ光が照射されるのを防止し、装置の破損を防ぐ事ができる。   In the present invention, a welding can body detector 31 shown in FIG. 2 is provided as a sensor for detecting the passing position of the welding can body, the position of the welding can body 12 in the Z direction is detected, and welding is performed below the laser light irradiation position L0. Laser oscillation is started at the timing when the can body 12 moves, and the laser light irradiation is stopped at the timing when the welding can body 12 completes passing through the laser light irradiation position L0. By stopping the laser oscillation when the welding can body 12 is not present, it is possible to prevent the apparatus body from being irradiated with laser light and prevent damage to the apparatus.

通常の製缶装置では、マッシュシーム溶接に際し重ね部を精度良く成型するために、図6に示すZ型のガイドレール41を用いる。このため、マッシュシーム溶接前の段階では、筒状に成型された缶胴プリフォーム10は回転の自由度を制限されており、外側の端縁部10aと内側の端縁部10bとの重ね合わせ部の位置が円周方向にずれる事はない。しかし、マッシュシーム溶接完了後は、筒状の溶接缶胴12になるため、ガイドロール41で拘束されてはいるものの、次工程への移動中に、円周方向の回転によるシーム溶接線13位置のずれが発生する。また、溶接缶胴12の両端部においては、溶接時の発熱量が大きくなる事から溶接時の加圧によるシーム重ね部分の変形が大きく、シーム溶接線13の位置が円周方向外側に曲がることがある。   In a normal can making apparatus, a Z-shaped guide rail 41 shown in FIG. 6 is used in order to accurately mold the overlap portion during mash seam welding. For this reason, in the stage before mash seam welding, the can body preform 10 formed into a cylindrical shape is limited in the degree of freedom of rotation, and the outer edge portion 10a and the inner edge portion 10b are overlapped. The position of the part does not shift in the circumferential direction. However, after the mash seam welding is completed, the cylindrical welding can body 12 is formed, so that it is restrained by the guide roll 41, but the seam weld line 13 position by the rotation in the circumferential direction is moved during the next process. Deviation occurs. In addition, at both ends of the welding can body 12, the amount of heat generated at the time of welding increases, so the deformation of the seam overlap portion due to the pressurization at the time of welding is large, and the position of the seam weld line 13 bends in the circumferential direction. There is.

本発明者らの検討によると、上記の回転および曲がりによるシーム溶接線13の変動幅は、通常0〜0.5mm程度である。従って、この様なシーム溶接線位置の変動に対しても、シーム溶接部Bにレーザ光が照射されるビーム径として、シーム溶接線13の直交方向のビーム径を1mmとすれば、溶接缶胴12の搬送移動中にシーム溶接線位置が変動しても、確実にシーム溶接外側端部C1にレーザ光を照射する事ができる。   According to the study by the present inventors, the fluctuation width of the seam weld line 13 due to the above rotation and bending is usually about 0 to 0.5 mm. Therefore, even when the seam weld line position is changed, the beam diameter in the orthogonal direction of the seam weld line 13 is set to 1 mm as the beam diameter irradiated with the laser beam to the seam weld B. Even if the seam weld line position fluctuates during the transport movement of 12, the seam weld outer end C1 can be reliably irradiated with laser light.

さらに、本発明は、シーム溶接線位置を検出するセンサーとして、照射するレーザ光と同軸にシーム溶接線13位置を検出するカメラ撮像素子による溶接線検出器30(図2)を設けている。集光レンズ23の手前に設置したレーザ光反射ミラー22は、例えばガルバノミラーであり、溶接線検出器30の検出信号に基づいて、反射ミラー22の設定角度を制御する事でシーム溶接線13の端部にレーザ光が照射される様に、ビーム位置を修正できる。このように、シーム溶接線13の変動に合わせてレーザ光照射位置を制御する機構を備える事で、必ずしもレーザスポット径を1mmとする必要はなく、一般的に用いられる10μm〜0.5mmφ程度の微小な集光スポット径のレーザ光でも処理が可能である。   Further, according to the present invention, a welding line detector 30 (FIG. 2) is provided as a sensor for detecting the position of the seam weld line, which is a camera image sensor that detects the position of the seam weld line 13 coaxially with the laser beam to be irradiated. The laser beam reflecting mirror 22 installed in front of the condensing lens 23 is, for example, a galvanometer mirror, and controls the setting angle of the reflecting mirror 22 based on the detection signal of the welding line detector 30 to control the seam welding line 13. The beam position can be corrected so that the end is irradiated with laser light. Thus, by providing a mechanism for controlling the laser beam irradiation position according to the variation of the seam welding line 13, it is not always necessary to set the laser spot diameter to 1 mm, and is generally about 10 μm to 0.5 mmφ. Processing is possible even with a laser beam having a small focused spot diameter.

シーム溶接線位置の検出については、必ずしも撮像素子による画像検出方式に限るものではなく、例えばシーム溶接の不良検出に一般的に用いられている溶接シーム部の温度センサーの温度分布測定結果を用いて、シーム溶接位置を検出する方式なども利用できる。あるいは、線状スポットにレーザビームを集光してシーム溶接部に照射し、該線状レーザスポットの形状変化から、シーム溶接端部を検出する方法なども利用できる。   The detection of the seam weld line position is not necessarily limited to the image detection method by the image sensor, and for example, using the temperature distribution measurement result of the temperature sensor of the weld seam part generally used for detecting the seam welding failure. A method for detecting the seam welding position can also be used. Alternatively, a method of condensing a laser beam on a linear spot and irradiating the seam welded portion and detecting a seam weld end from the shape change of the linear laser spot can be used.

また、レーザ光照射位置の駆動手段としては、ガルバノミラー以外に、音響光学素子によるビーム駆動方法なども利用できる。また、集光レンズにfθレンズを使用する事で、ビーム駆動時に生じる収差などの影響を排した安定的なレーザ集光を得る事ができる。   In addition to the galvanometer mirror, a beam driving method using an acousto-optic element can be used as the laser beam irradiation position driving means. Further, by using an fθ lens as the condensing lens, it is possible to obtain a stable laser condensing that eliminates the influence of aberrations and the like that occur during beam driving.

さらに、レーザ光照射位置を図2のA部(電気抵抗シーム溶接の直後で、未溶接部が図6のZ型ガイドレール41に拘束されている間)の範囲とすれば、図6のZ型のガイドレール41による拘束で、シーム溶接位置の変動が抑制されているため、より安定的にシーム溶接外側端部C1にレーザ光照射を行う事ができる。   Furthermore, if the laser beam irradiation position is in the range of A part in FIG. 2 (immediately after electric resistance seam welding and the unwelded part is restrained by the Z-type guide rail 41 in FIG. 6), Z in FIG. Since the variation of the seam welding position is suppressed by restraint by the guide rail 41 of the mold, the laser beam irradiation can be performed more stably on the seam welding outer end C1.

図7(a)〜(c)は、シーム溶接部B付近のレーザ光照射の様子を示す拡大断面図である。B0は、電気抵抗シーム溶接によって溶接されたラップ部の溶接線である。図7(a)〜(c)に示すように、本発明では、レーザ光Lは、シーム溶接外側端部C1を含むように照射される。また、図8に示すように、シーム溶接外側端部C1の外側の斜め上方からレーザ光Lを照射しても良い。溶接缶胴に用いられる金属ブランクの厚みは通常0.1〜0.3mm程度と非常に薄く、さらに溶接部はシーム溶接時に加圧による押圧変形を受けるため、シーム溶接外側端部C1の段差は通常0.01〜0.2mm程度と比較的小さい。このため、図7(a)のように、シーム溶接外側端部C1にほぼ垂直上方からレーザ光Lを照射した場合と、図8のように、シーム溶接外側端部C1を狙って斜め上方からレーザ光Lを照射した場合とにおいて、シーム溶接外側端部C1の溶融整形性に大きな違いは無く、レーザ光Lの照射方向は、溶接機の装置構成上、レーザ光Lを照射し易い方向から照射すれば良い。   7A to 7C are enlarged cross-sectional views showing the state of laser light irradiation in the vicinity of the seam weld B. B0 is a weld line of the lap part welded by electric resistance seam welding. As shown in FIGS. 7A to 7C, in the present invention, the laser beam L is irradiated so as to include the seam weld outer end C1. Moreover, as shown in FIG. 8, you may irradiate the laser beam L from diagonally upward outside the seam welding outer end C1. The thickness of the metal blank used for the welding can body is usually very thin, about 0.1 to 0.3 mm, and the welded portion is subjected to pressure deformation due to pressurization during seam welding. Usually, it is relatively small, about 0.01 to 0.2 mm. Therefore, as shown in FIG. 7A, the seam weld outer end C1 is irradiated with laser light L from substantially vertically above, and as shown in FIG. 8, the seam weld outer end C1 is aimed obliquely from above. There is no significant difference in the melt shapeability of the seam weld outer end C1 when the laser beam L is irradiated, and the irradiation direction of the laser beam L is from the direction in which the laser beam L is easily irradiated due to the apparatus configuration of the welding machine. Irradiation is sufficient.

また、本発明では、レーザ光照射前のシーム溶接外側端部C1の段差ho(図4)の50%以上の溶融深さhと溶融幅wを得るレーザ光照射条件とした。   Moreover, in this invention, it was set as the laser beam irradiation conditions which obtain 50% or more of the fusion depth h and the melt width w of the level | step difference ho (FIG. 4) of the seam welding outer side end C1 before laser beam irradiation.

なお、本発明のレーザ光の集光スポット形状dは、必ずしも図7および図8に示すような円形に限るものではなく、本発明の主旨であるシーム溶接の外側端部にレーザ光を照射する目的に合致し、前記の溶融状態を満足するものであれば、線状や楕円形などの集光スポット形状のレーザ光を用いる事ができる。   The condensing spot shape d of the laser beam of the present invention is not necessarily limited to a circle as shown in FIGS. 7 and 8, and the outer end of seam welding, which is the gist of the present invention, is irradiated with the laser beam. A laser beam having a condensing spot shape such as a linear shape or an elliptical shape can be used as long as it meets the purpose and satisfies the above-described molten state.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明者らは、レーザ光照射位置、レーザ出力、レーザ光照射速度、レーザ光集光形状などのレーザ処理条件と、シーム溶接外側端部C1の溶融後の整形形状との関係を調査検討した。つまり、様々なレーザ出力、レーザ光照射速度、レーザ光集光形状の組み合わせによって得られるレーザ光照射条件のもと、図9に示す金属ブランク地金42へレーザ光を照射し、その結果得られた溶融深さh、表面溶融幅w、をもとに、シーム溶接外側端部C1の溶融整形形状を比較検討した。   The present inventors investigated and examined the relationship between the laser processing conditions such as the laser beam irradiation position, laser output, laser beam irradiation speed, and laser beam focusing shape, and the shaped shape after melting of the seam weld outer end C1. . That is, under the laser light irradiation conditions obtained by combining various laser outputs, laser light irradiation speeds, and laser light condensing shapes, the metal blank ingot 42 shown in FIG. On the basis of the melt depth h and the surface melt width w, the melt-shaped shapes of the seam weld outer end C1 were compared and examined.

表1は、検討した溶接条件の例と、図9の金属ブランク地金42への照射で得られた溶融深さh、溶融幅w、レーザ光照射前のシーム溶接外側端部C1の段差ho(図4)と、同一のレーザ光照射条件によってレーザ光照射した後の、シーム溶接外側端部C11(図5)の形状評価の結果を示している。○印は、レーザ光照射後に、シーム溶接部Bにて外側の端縁部10aと内側の端縁部10bの段差およびえぐれが解消していたものを示す。×印は、レーザ光照射後にも、シーム溶接部Bにて外側の端縁部10aと内側の端縁部10bの段差あるいはえぐれが解消せずに残存していたものを示す。なお、レーザ光照射は、いずれもNパージ雰囲気の中で行った。表1において、アンダーラインを付した数値が、本発明の条件を満足しない部分である。 Table 1 shows an example of the welding conditions studied, the melting depth h, the melting width w obtained by irradiation of the metal blank metal 42 in FIG. 9, and the step ho of the seam welding outer end C1 before laser light irradiation. (FIG. 4) and the result of shape evaluation of the seam weld outer end C11 (FIG. 5) after laser light irradiation under the same laser light irradiation conditions are shown. A mark ◯ shows that the step and gap between the outer edge portion 10a and the inner edge portion 10b have been eliminated in the seam welded portion B after the laser beam irradiation. A cross indicates that the step or gap between the outer edge portion 10a and the inner edge portion 10b remained in the seam welded portion B even after the laser beam irradiation. Note that the laser beam irradiation was performed in an N 2 purge atmosphere. In Table 1, numerical values with an underline are portions that do not satisfy the conditions of the present invention.

様々なレーザ光照射条件での処理において、溶融深さh、溶融幅wが、ともに初期の段差部分の高さ(段差ho)の50%以上である条件において、シーム溶接外側端部C1の段差およびえぐれが解消した。レーザ光照射条件を、初期の段差hoの全体を溶融させる条件とする必要が無い理由は、レーザ光を照射するシーム溶接外側端部C1の段差は金属ブランクの端部であり、レーザ光照射により与えられる熱が逃げる方向が金属ブランク母材の存在する片側に限定される事から、左右方向に熱が拡散可能な金属ブランク地金よりも効率的に溶融が得られる結果、より少ない投入熱量で段差全体が溶融し、段差hoが消滅するに十分な溶融を得る事が出来るからである。   In the processing under various laser light irradiation conditions, the step of the seam weld outer end C1 is performed under the condition that the melting depth h and the melting width w are both 50% or more of the initial step height (step ho). And the excuse was resolved. The reason why the laser beam irradiation condition does not need to be the condition for melting the entire initial level difference ho is that the level difference of the seam weld outer end C1 that irradiates the laser beam is the end of the metal blank. Since the direction in which the applied heat escapes is limited to one side where the metal blank base material exists, melting can be achieved more efficiently than a metal blank that can diffuse heat in the left-right direction, resulting in less input heat. This is because the entire step is melted, and melting sufficient to eliminate the step ho can be obtained.

以上より、シーム溶接外側端部C1を、溶接後の補修塗装に有効ななだらかな形状に整形するためには、レーザ光照射前のシーム溶接外側端部C1の段差hoの50%以上の溶融深hさと溶融幅wを得るレーザ光照射条件を用いる事が必要であることがわかった。   From the above, in order to shape the seam weld outer end C1 into a gentle shape effective for repair coating after welding, a melting depth of 50% or more of the step ho of the seam weld outer end C1 before laser light irradiation. It was found that it was necessary to use laser light irradiation conditions for obtaining h and melt width w.

以下に、溶接缶胴を製造した実施例を示す。実施例ではテインフリースチールの金属ブランクを用いたが、金属ブランクの材質は錫めっき鋼板、テインフリースチール、極薄ニッケルめっき鋼板、極薄ニッケル・錫複合めっき鋼板等の金属ブランクであれば、どの材料を使用しても良い。   Below, the Example which manufactured the welding can body is shown. In the examples, a metal blank of tin-free steel was used. However, any metal blank such as tin-plated steel, tin-free steel, ultra-thin nickel-plated steel, ultra-thin nickel / tin composite-plated steel can be used. Materials may be used.

また、本実施例では、マッシュシーム溶接機の成缶機構、溶接機構、補修塗装機構が連続する付近の非常に入り組んだ機械構造の間を通して、シーム溶接部にレーザ光を照射するために、レーザ光の出射口が小型で設置自由度に優れ、かつ集光性に優れ長焦点のレンズでも1.0mmφ以下の微小な集光径を得る事が可能な点を考慮し、ファイバーレーザを使用したが、炭酸ガスレーザ、YAGレーザ、ディスクレーザなど一般的に広く金属加工に用いられるレーザであれば、いずれも適用可能である。   Further, in this embodiment, the laser beam is irradiated to the seam welded portion through the very complicated mechanical structure in the vicinity of the continuous can mechanism, welding mechanism, and repair coating mechanism of the mash seam welder. A fiber laser was used in consideration of the fact that the light exit port is small, has excellent installation flexibility, has excellent condensing performance, and can obtain a small condensing diameter of 1.0 mmφ or less even with a long-focus lens. However, any laser can be applied as long as it is generally used for metal processing, such as a carbon dioxide laser, a YAG laser, and a disk laser.

また、マッシュシーム溶接と補修塗装機構との間に十分に広い空間を設けるか、あるいは、シーム溶接後の溶接缶胴を、別の製造ラインに移設する事で、半導体レーザの様なレーザ光照射にスペースを必要とするレーザの利用も可能である。   In addition, by providing a sufficiently wide space between the mash seam welding and the repair coating mechanism, or by moving the welded can body after seam welding to another production line, laser light irradiation such as a semiconductor laser is performed. It is also possible to use a laser that requires space.

厚さ0.15mm,金属クロム量120mg/mの金属クロム層、およびクロム酸化物量18mg/m(金属クロム換算)の水和クロム酸化物層よりなる表面処理層を有するテインフリースチールのブランクより、重ね合せ部近傍より表面処理層を除去することなく、内径52mm、重ね合せ部の幅0.4mm、高さ136mmの缶胴プリフォーム10を形成した。この缶胴プリフォーム10の重ね合せ部10c(図3参照)を、図2に示す製造装置の溶接機構を用いて窒素ガス雰囲気中でマッシュシーム溶接した。マッシュシーム溶接の電流は3000A、溶接時の加圧力は40kg、溶接時の缶胴プリフォームの移動速度(マッシュシーム溶接速度)は60m/分とした。溶接後にシーム溶接部を調べたところ、上記溶接条件での溶接においては、段差ho=60μmの段差が存在する事が確認された(比較例)。 A tin-free steel blank having a surface treatment layer comprising a metal chromium layer having a thickness of 0.15 mm, a metal chromium amount of 120 mg / m 2 , and a chromium oxide amount of 18 mg / m 2 (in terms of metal chromium) Thus, the can body preform 10 having an inner diameter of 52 mm, a width of the overlapping portion of 0.4 mm, and a height of 136 mm was formed without removing the surface treatment layer from the vicinity of the overlapping portion. The overlapping portion 10c (see FIG. 3) of the can body preform 10 was mash seam welded in a nitrogen gas atmosphere using the welding mechanism of the manufacturing apparatus shown in FIG. The current for mash seam welding was 3000 A, the applied pressure during welding was 40 kg, and the moving speed of the can body preform during welding (mash seam welding speed) was 60 m / min. When the seam welded portion was examined after welding, it was confirmed that a step having a step ho = 60 μm was present in the welding under the above welding conditions (comparative example).

本発明にかかる実施例として、その後、図2のレーザ光照射機構20によって、シーム溶接端部にレーザ光を集光照射した。レーザは定格出力500Wのシングルモードファイバーレーザを用い、焦点距離300mmのレンズにてシーム溶接端部にレーザ光を集光照射した。この時照射したレーザ光の集光スポット径は、出力分布のピーク値の1/eとなる径で0.2mmφであった。レーザ出力は500Wとし、シーム溶接済みの溶接缶胴の矢印Z方向への移動速度は、マッシュシーム溶接と同じ60m/分であった。レーザ光は、集光スポット径の中心が、マッシュシーム溶接端部のコーナーとレーザビームの中心位置を一致させる様に照射した。レーザ光照射部近傍は窒素ガス雰囲気に保持した。 As an example according to the present invention, the laser beam irradiation mechanism 20 in FIG. As the laser, a single mode fiber laser with a rated output of 500 W was used, and laser light was condensed and irradiated on the seam weld end with a lens having a focal length of 300 mm. The focused spot diameter of the laser light irradiated at this time was 0.2 mmφ, which is a diameter that is 1 / e 2 of the peak value of the output distribution. The laser output was 500 W, and the moving speed in the arrow Z direction of the seam-welded welded barrel was 60 m / min, the same as in mash seam welding. The laser beam was irradiated such that the center of the focused spot diameter matched the corner of the mash seam weld end with the center position of the laser beam. The vicinity of the laser beam irradiation part was maintained in a nitrogen gas atmosphere.

レーザ光照射後に、シーム溶接部に補修塗装装置6によって耐食補修塗装を施し溶接缶胴を製造した。一連の製造工程は、図2に示す製造装置にて連続的に行った。製造後の溶接缶胴について、シーム溶接部を調べたところ、レーザ光照射を行わない比較例において存在したシーム溶接部の段差は消滅し、なだらかな溶接部が得られ、耐食塗料が均一に該溶接シーム部に塗装されている事が確認された。   After the laser beam irradiation, the seam welded portion was subjected to anticorrosion repair coating by the repair coating apparatus 6 to manufacture a welded can body. A series of manufacturing steps were continuously performed with the manufacturing apparatus shown in FIG. When the seam welded portion was examined for the welded can body after production, the step of the seam welded portion that existed in the comparative example in which laser light irradiation was not performed disappeared, and a gentle welded portion was obtained, and the corrosion-resistant paint was uniformly applied. It was confirmed that the weld seam was painted.

実施例2と同じ条件で、缶胴プリフォーム10を形成し、マッシュシーム溶接を行った。さらに、図2のレーザ光照射機構20によって、シーム溶接端部にレーザ光を集光照射した。レーザは定格出力500Wのシングルモードファイバーレーザを用い、焦点距離300mmのレンズにてシーム溶接端部にレーザ光を集光照射した。この時照射したレーザ光の集光径は出力分布のピーク値の1/eとなる径で0.2mmφであった。レーザ出力は500Wとし、シーム溶接済みの溶接缶胴の矢印Z方向への移動速度はマッシュシーム溶接と同じ60m/分であった。レーザ光は、集光径の中心がマッシュシーム溶接端部のコーナー部からレーザ光の中心位置が0.08mm離れた部位に照射した(図7(b)に示す状態)。レーザ光照射部近傍は窒素ガス雰囲気に保持した。 Under the same conditions as in Example 2, a can body preform 10 was formed, and mash seam welding was performed. Furthermore, the laser beam irradiation mechanism 20 in FIG. 2 focused and irradiated the laser beam on the seam weld end. As the laser, a single mode fiber laser with a rated output of 500 W was used, and laser light was condensed and irradiated on the seam weld end with a lens having a focal length of 300 mm. The condensing diameter of the laser light irradiated at this time was 0.2 mmφ, which is 1 / e 2 of the peak value of the output distribution. The laser output was 500 W, and the moving speed in the direction of arrow Z of the welded can body that had been seam welded was 60 m / min, the same as in mash seam welding. The laser beam was applied to a portion where the center of the focused diameter was 0.08 mm away from the corner of the mash seam weld end (the state shown in FIG. 7B). The vicinity of the laser beam irradiation part was maintained in a nitrogen gas atmosphere.

レーザ光照射後に、シーム溶接部に補修塗装装置6によって耐食補修塗装を施し溶接缶胴を製造した。一連の製造工程は、図2に示す製造装置にて連続的に行った。製造後の溶接缶胴について、該シーム溶接部を調べたところ、レーザ光照射を行わない比較例において存在したシーム溶接部の段差は消滅し、なだらかな溶接部が得られ、耐食塗料が均一に該溶接シーム部に塗装されている事が確認された。   After the laser beam irradiation, the seam welded portion was subjected to anticorrosion repair coating by the repair coating apparatus 6 to manufacture a welded can body. A series of manufacturing steps were continuously performed with the manufacturing apparatus shown in FIG. When the seam welded portion was examined for the welded can body after production, the step of the seam welded portion that existed in the comparative example in which laser light irradiation was not performed disappeared, and a gentle welded portion was obtained, and the corrosion-resistant paint was uniform. It was confirmed that the weld seam was painted.

実施例2と同じ条件で、缶胴プリフォーム10を形成し、マッシュシーム溶接を行った。さらに、図2の20のレーザ光照射機構によって、シーム溶接端部にレーザ光を集光照射した。レーザは定格出力500Wのシングルモードファイバーレーザを用い、焦点距離300mmのレンズにてシーム溶接端部にレーザ光を集光照射した。この時照射したレーザ光の集光スポット径は出力分布のピーク値の1/eとなる径で0.2mmφであった。レーザ出力は500Wとし、シーム溶接済みの溶接缶胴の矢印Z方向への移動速度はマッシュシーム溶接と同じ60m/分であった。レーザ光は、集光スポット径の中心が、マッシュシーム溶接端部のコーナー部からレーザビームの中心位置が実施例2とは反対方向に0.08mm離れた部位になる様に照射した(図7(c)に示す状態)。レーザ光照射部近傍は窒素ガス雰囲気に保持した。 Under the same conditions as in Example 2, a can body preform 10 was formed, and mash seam welding was performed. Further, the laser beam was focused and irradiated to the seam weld end by the laser beam irradiation mechanism 20 in FIG. As the laser, a single mode fiber laser with a rated output of 500 W was used, and laser light was condensed and irradiated on the seam weld end with a lens having a focal length of 300 mm. The focused spot diameter of the laser beam irradiated at this time was 0.2 mmφ, which is a diameter that is 1 / e 2 of the peak value of the output distribution. The laser output was 500 W, and the moving speed in the direction of arrow Z of the welded can body that had been seam welded was 60 m / min, the same as in mash seam welding. The center of the focused spot diameter was irradiated so that the center position of the laser beam was 0.08 mm away from the corner portion of the mash seam weld end in the opposite direction to that of Example 2 (FIG. 7). (State shown in (c)). The vicinity of the laser beam irradiation part was maintained in a nitrogen gas atmosphere.

レーザ光照射後に、シーム溶接部に補修塗装装置6によって耐食補修塗装を施し溶接缶胴を製造した。一連の製造工程は、図2に示す製造装置にて連続的に行った。製造後の溶接缶胴について、該シーム溶接部を調べたところ、レーザ光照射を行わない比較例において存在したシーム溶接部の段差は消滅し、なだらかな溶接部が得られ、耐食塗料が均一に該溶接シーム部に塗装されている事が確認された。   After the laser beam irradiation, the seam welded portion was subjected to anticorrosion repair coating by the repair coating apparatus 6 to manufacture a welded can body. A series of manufacturing steps were continuously performed with the manufacturing apparatus shown in FIG. When the seam welded portion was examined for the welded can body after production, the step of the seam welded portion that existed in the comparative example in which laser light irradiation was not performed disappeared, and a gentle welded portion was obtained, and the corrosion-resistant paint was uniform. It was confirmed that the weld seam was painted.

本発明は、電気抵抗マッシュシーム溶接機にて製造される溶接缶胴において、外側のシーム溶接端部の段差あるいはえぐれ部の形状をなだらかにする技術として利用される。   INDUSTRIAL APPLICABILITY The present invention is used as a technique for smoothening the shape of a step or a hollow portion of an outer seam weld end in a welding can body manufactured by an electric resistance mash seam welder.

本発明の概要を示す斜視図である。It is a perspective view which shows the outline | summary of this invention. 本発明の製造装置の概要を示す図である。It is a figure which shows the outline | summary of the manufacturing apparatus of this invention. 溶接直前の金属ブランクの重ね合わせ状態を示す拡大断面図である。It is an expanded sectional view which shows the overlapping state of the metal blank immediately before welding. シーム溶接部の重ね合わせ部の断面写真である。It is a cross-sectional photograph of the overlapping part of the seam welded part. レーザ光照射により整形された重ね合わせ部の断面写真である。It is a cross-sectional photograph of the overlapping portion shaped by laser light irradiation. 金属ブランクの端部を重ね合わせるZ型のガイドレールを示す断面図である。It is sectional drawing which shows the Z-shaped guide rail which overlaps the edge part of a metal blank. シーム溶接端部とレーザ光照射位置との関係を示す概要図である。It is a schematic diagram which shows the relationship between a seam welding edge part and a laser beam irradiation position. シーム溶接端部とレーザ光照射角度の関係を示す概要図である。It is a schematic diagram which shows the relationship between a seam welding edge part and a laser beam irradiation angle. 金属ブランク地金へのレーザ光照射によって得られた溶融部の断面写真である。It is a cross-sectional photograph of the fusion | melting part obtained by laser beam irradiation to a metal blank metal.

符号の説明Explanation of symbols

1 内部電極ロール
2 外部電極ロール
3、4 線電極
5 マンドレル
6 補修塗装装置
10 缶胴プリフォーム
10a 外側の端縁部
10b 内側の端縁部
10c 重ね合わせ部
12 溶接缶胴
13 シーム溶接線
20 レーザ光照射機構
21 レーザ発振器
22 反射ミラー
23 集光レンズ
30 シーム溶接線検出器
31 溶接缶胴検出器
B シーム溶接部
B0 溶接線
Be シーム溶接端部
L レーザ光
C1 シーム溶接外側端部
C2 シーム溶接内側端部
C11 シーム溶接外側端部(シーム溶接直後)
D レーザ照射完了部
ho 段差
h 溶融深さ
w 溶融幅
DESCRIPTION OF SYMBOLS 1 Internal electrode roll 2 External electrode roll 3, 4-wire electrode 5 Mandrel 6 Repair coating apparatus 10 Can body preform 10a Outer edge part 10b Inner edge part 10c Overlapping part 12 Welding can body 13 Seam welding line 20 Laser Light irradiation mechanism 21 Laser oscillator 22 Reflection mirror 23 Condensing lens 30 Seam welding line detector 31 Welding can body detector B Seam welding part B0 Welding line Be Seam welding end L Laser light C1 Seam welding outer end C2 Seam welding inner End C11 Seam welding outer end (immediately after seam welding)
D Laser irradiation completion part ho Step difference h Melting depth w Melting width

Claims (7)

金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して溶接缶胴を製造する溶接缶胴の製造方法において、
マッシュシーム溶接後の前記溶接缶胴のシーム溶接部の外側端部に沿ってレーザ光を照射し、前記外側端部を溶融することにより、前記外側端部を整形加工する事を特徴とする溶接缶胴の製造方法。
Overlapping edge portions of metal blanks are overlapped to form a can body molded body having an overlapped portion, wire electrodes are brought into contact with both surfaces of the overlapped portion, and electric resistance mash seam welding is performed to weld a can. In the method of manufacturing a welded can body for manufacturing a body,
Welding characterized in that the outer end portion is shaped by irradiating a laser beam along the outer end portion of the seam welded portion of the welding can body after mash seam welding and melting the outer end portion. A method for manufacturing a can body.
前記レーザ光が、マッシュシーム溶接工程と、前記シーム溶接部に腐食防止の塗装を施す工程との間の搬送移動中に照射される事を特徴とする請求項1に記載の溶接缶胴の製造方法。   The said laser beam is irradiated during the conveyance movement between a mash seam welding process and the process of giving the corrosion prevention coating to the said seam welding part, The manufacture of the welding can body of Claim 1 characterized by the above-mentioned. Method. 金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して製造される溶接缶胴において、
シーム溶接工程の後に、シーム溶接部の外側端部に沿ってレーザ光が照射され、前記外側端部が溶融されることにより、前記外側端部が整形加工された事を特徴とする溶接缶胴。
It is manufactured by superposing the opposing edge portions of the metal blank to form a can body molded body having an overlapped portion, bringing the line electrodes into contact with both surfaces of the overlapped portion, and performing electric resistance mash seam welding. In the welding can body
A welding can body characterized in that after the seam welding process, laser light is irradiated along the outer end portion of the seam welded portion, and the outer end portion is melted to form the outer end portion. .
前記レーザ光照射により溶融された前記外側端部の寸法が、前記外側端部の段差の50%以上の溶融深さ、且つ、前記外側端部の段差の50%以上の溶融幅である事を特徴とする請求項3に記載の溶接缶胴。   The dimension of the outer end melted by the laser light irradiation is a melting depth of 50% or more of the step of the outer end and a melting width of 50% or more of the step of the outer end. The welding can body according to claim 3, wherein 金属ブランクの対抗する端縁部を重ね合わせて、重ね合わせ部を有する缶胴成形体を形成し、該重ね合わせ部の両面にそれぞれ線電極を接触させて、電気抵抗マッシュシーム溶接して溶接缶胴を製造する溶接缶胴の製造装置において、
マッシュシーム溶接機構と、シーム溶接部に腐食防止の塗装を施す塗装機構との間に、シーム溶接端部にレーザ光を照射するレーザ光照射機構として、レーザ発振器およびレーザ集光光学機構を有する事を特徴とする溶接缶胴の製造装置。
Overlapping edge portions of metal blanks are overlapped to form a can body molded body having an overlapped portion, wire electrodes are brought into contact with both surfaces of the overlapped portion, and electric resistance mash seam welding is performed to weld a can. In the welding can barrel manufacturing apparatus for manufacturing the barrel,
Between the mash seam welding mechanism and the coating mechanism that coats the seam weld to prevent corrosion, the laser beam irradiation mechanism that irradiates the laser beam to the seam weld end has a laser oscillator and a laser focusing optical mechanism. A welding can barrel manufacturing apparatus characterized by the above.
前記レーザ光照射機構が、前記溶接缶胴の通過位置を検出するセンサーを備え、該センサーの検出信号にもとづいて、前記レーザ発振器の発振の開始および停止を制御する機構を備えた事を特徴とする請求項5に記載の溶接缶胴の製造装置。   The laser light irradiation mechanism includes a sensor for detecting a passing position of the welding can body, and includes a mechanism for controlling start and stop of oscillation of the laser oscillator based on a detection signal of the sensor. The apparatus for manufacturing a welded can body according to claim 5. 前記レーザ光照射機構が、マッシュシーム溶接のシーム溶接線位置を検出するセンサーと、該センサーによるシーム位置検出信号によりレーザ光照射位置を制御する制御機構とを備えた事を特徴とする請求項5に記載の溶接缶胴の製造装置。   6. The laser light irradiation mechanism includes a sensor for detecting a seam weld line position of mash seam welding, and a control mechanism for controlling a laser light irradiation position by a seam position detection signal from the sensor. An apparatus for manufacturing a welded can body as described in 1.
JP2008279764A 2008-10-30 2008-10-30 Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body Pending JP2010105018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279764A JP2010105018A (en) 2008-10-30 2008-10-30 Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279764A JP2010105018A (en) 2008-10-30 2008-10-30 Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body

Publications (1)

Publication Number Publication Date
JP2010105018A true JP2010105018A (en) 2010-05-13

Family

ID=42294976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279764A Pending JP2010105018A (en) 2008-10-30 2008-10-30 Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body

Country Status (1)

Country Link
JP (1) JP2010105018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099116A1 (en) * 2011-01-18 2012-07-26 古河電気工業株式会社 Fiber laser apparatus and method for aligning laser light irradiation position
WO2014129640A1 (en) * 2013-02-22 2014-08-28 古河電気工業株式会社 Crimp terminal production method, crimp terminal, and wire harness
JP2015098032A (en) * 2013-11-18 2015-05-28 Jfeスチール株式会社 Manufacturing method for butt-welded steel tube
JP2016074035A (en) * 2014-10-06 2016-05-12 Rtm 株式会社 Die repair method and die repaired thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133993A (en) * 1983-11-28 1985-07-17 エルパトロ−ニク・アクチェンゲゼルシャフト Method and device for pulse high-energy density welding
JPS62275582A (en) * 1986-05-21 1987-11-30 Toyo Seikan Kaisha Ltd Mash-seam welding can shell
JPH08206865A (en) * 1995-02-03 1996-08-13 Nippon Steel Corp Profiling device for laser welding of tube
JPH1024374A (en) * 1996-07-11 1998-01-27 Sumitomo Metal Ind Ltd Production of joined steel plate having smooth stepped part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133993A (en) * 1983-11-28 1985-07-17 エルパトロ−ニク・アクチェンゲゼルシャフト Method and device for pulse high-energy density welding
JPS62275582A (en) * 1986-05-21 1987-11-30 Toyo Seikan Kaisha Ltd Mash-seam welding can shell
JPH08206865A (en) * 1995-02-03 1996-08-13 Nippon Steel Corp Profiling device for laser welding of tube
JPH1024374A (en) * 1996-07-11 1998-01-27 Sumitomo Metal Ind Ltd Production of joined steel plate having smooth stepped part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099116A1 (en) * 2011-01-18 2012-07-26 古河電気工業株式会社 Fiber laser apparatus and method for aligning laser light irradiation position
US10141708B2 (en) 2011-01-18 2018-11-27 Furukawa Electric Co., Ltd. Fiber laser apparatus and method of aligning laser light irradiation position
US11171462B2 (en) 2011-01-18 2021-11-09 Furukawa Electric Co., Ltd. Fiber laser apparatus
WO2014129640A1 (en) * 2013-02-22 2014-08-28 古河電気工業株式会社 Crimp terminal production method, crimp terminal, and wire harness
JP5598889B1 (en) * 2013-02-22 2014-10-01 古河電気工業株式会社 Crimping terminal manufacturing method, crimping terminal and wire harness
US9564691B2 (en) 2013-02-22 2017-02-07 Furukawa Automotive Systems Inc. Method for manufacturing crimp terminal, crimp terminal, and wire harness
JP2015098032A (en) * 2013-11-18 2015-05-28 Jfeスチール株式会社 Manufacturing method for butt-welded steel tube
JP2016074035A (en) * 2014-10-06 2016-05-12 Rtm 株式会社 Die repair method and die repaired thereby

Similar Documents

Publication Publication Date Title
JP5224349B2 (en) Laser welding method for thin plate
US5603853A (en) Method of high energy density radiation beam lap welding
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
WO2016189855A1 (en) Laser welding method
US20090314750A1 (en) Gap control device and laser lap welding method
JP5495118B2 (en) Laser lap welding method of galvanized steel sheet
JP2009148781A (en) Laser welding method
JP2005254282A (en) Method for manufacturing butt-welded metallic plates by laser
JP2010105018A (en) Method for manufacturing welded can body, welded can body, and device for manufacturing welded can body
JP5866790B2 (en) Laser welded steel pipe manufacturing method
WO2012147213A1 (en) Method for producing laser welded steel pipe
Yang et al. Welding of galvanized dual-phase 980 steel in a gap-free lap joint configuration
JP2006218497A (en) Method for laser beam welding of sheet material
JP5253777B2 (en) Overlapping laser welding method and laser welded product
JP2011115836A (en) Method of laser welding metal plated plate
JP6495987B2 (en) Butt laser welding method and laser welding member
JP5177745B2 (en) Laminated laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JP2006136904A (en) Apparatus and method of laser beam welding
JP2008000764A (en) Method, device and equipment for laser beam welding
JP5724294B2 (en) Laser welded steel pipe manufacturing method
JP2003311453A (en) Laser welding method and welding set
JP5000982B2 (en) Laser welding method for differential thickness materials
JP2006159279A (en) Welding method and weld-shaping device
JP2016153129A (en) Lap welding method for plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312