JP2009148781A - Laser welding method - Google Patents

Laser welding method Download PDF

Info

Publication number
JP2009148781A
JP2009148781A JP2007327220A JP2007327220A JP2009148781A JP 2009148781 A JP2009148781 A JP 2009148781A JP 2007327220 A JP2007327220 A JP 2007327220A JP 2007327220 A JP2007327220 A JP 2007327220A JP 2009148781 A JP2009148781 A JP 2009148781A
Authority
JP
Japan
Prior art keywords
welding
pattern
laser
target portion
welding pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007327220A
Other languages
Japanese (ja)
Other versions
JP5196128B2 (en
Inventor
Kojiro Yamaguchi
紘次朗 山口
Yohei Shoji
庸平 庄司
Ken Shiwayama
健 志和山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007327220A priority Critical patent/JP5196128B2/en
Publication of JP2009148781A publication Critical patent/JP2009148781A/en
Application granted granted Critical
Publication of JP5196128B2 publication Critical patent/JP5196128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method capable of efficiently performing stable welding excellent in welding quality irrespective of the size of a gap of a lap portion of a plurality of metal plates having a low melting point metal plating layer formed thereon by irradiating a welding target portion of the lap portion with a laser beam. <P>SOLUTION: The method includes: a first step of laser-welding the entire region of a welding target portion 14 of a lap portion 25 of a plurality of steel plates 16, 17 to a "×" type welding pattern 18 to be preheated and removing a zinc plating layer on the entire region of the welding target portion 14 by evaporation; and a second step of laser-welding the entire region to a "○" type welding pattern 19 passing through the outer end of the "×" type welding pattern 18 in a state where the entire region of the welding target portion 14 is pre-heated with the "×" type welding pattern 18. In this way, the amount of molten metal in pattern welding increases, and welding can be stably executed even if the gap of the lap portion 25 of the steel plates 16, 17 is large. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属板の重ね合わせ部にレーザ光を照射して複数の金属板をスポット状に溶接するレーザ溶接方法に関し、特に、重ね合わせ部の溶接対象部に種々の形状のレーザ溶接パターンで溶接する。   The present invention relates to a laser welding method in which a plurality of metal plates are welded in a spot shape by irradiating a laser beam onto an overlapping portion of metal plates, and in particular, laser welding patterns having various shapes on a welding target portion of the overlapping portion. Weld.

レーザ溶接は、金属板の重ね合わせ部に細いビームスポットの高エネルギー密度の熱源を照射して複数の金属板をスポット状に溶接することができる。従来から車体接合などに多用されるスポット溶接と比較すると、レーザ溶接は非接触溶接であるため、スポット溶接のようにスポットガンや治具とワークとの干渉を回避する干渉回避動作を必要としないので、高効率な溶接方法である。   In laser welding, a plurality of metal plates can be welded in a spot shape by irradiating a superposed portion of the metal plates with a high energy density heat source of a narrow beam spot. Compared to spot welding, which is conventionally used for joining car bodies, etc., laser welding is non-contact welding, so it does not require an interference avoidance operation that avoids interference between the spot gun, jig and workpiece, unlike spot welding. So it is a highly efficient welding method.

しかし、複数の亜鉛メッキ鋼板の重ね合わせ部の溶接対象部にレーザ光を照射して溶接したとき、重ね合わせ部に隙間がない場合、亜鉛の融点が鉄の融点よりも低く凝固が遅れるため、鋼板溶融直前又は溶融中に溶接対象部で亜鉛が蒸発して、溶接対象部内でその亜鉛蒸気が圧力によって周りの溶融金属を吹き飛ばす爆飛現象(吹き上げ現象)が発生して穴あき等の欠陥部位が形成される。また、その亜鉛蒸気が溶融部に取り残されて気泡(ブローホールやピット)となり、溶接強度の低下を招くことになる。一方、鋼板間の隙間が大きい場合、溶け落ち(エッジ切れ)が発生して、鋼板の溶接対象部が十分に接合されず溶接強度が低下する。   However, when welding by irradiating the laser beam to the welded part of the overlapped part of a plurality of galvanized steel sheets, if there is no gap in the overlapped part, the melting point of zinc is lower than the melting point of iron, so solidification is delayed, Immediately before or during the melting of the steel sheet, the zinc is evaporated in the welded part, and the zinc vapor vapor blows away the surrounding molten metal by pressure in the welded part. Is formed. In addition, the zinc vapor is left in the melted portion and becomes bubbles (blowholes or pits), resulting in a decrease in welding strength. On the other hand, when the gap between the steel plates is large, melt-off (edge breakage) occurs, and the welding target portion of the steel plate is not sufficiently joined, resulting in a decrease in welding strength.

上述の問題点を解決すべく、特許文献1には、予めシリーズ溶接及びレーザ光照射による前工程とレーザ溶接による本溶接工程とを備えたレーザ溶接方法が開示されている。このレーザ溶接方法では、シリーズ溶接工程において亜鉛メッキ鋼板の接合領域の片側から抵抗スポット溶接電極を押し当てて亜鉛を蒸発除去して亜鉛除去領域が形成される。次に、レーザ光照射工程においてその亜鉛除去領域にレーザ光をインフォーカス又はデフォーカス状態で照射して亜鉛除去領域に残留した亜鉛及びその周囲の亜鉛を除去して亜鉛除去領域を広げる。そして、本溶接工程において亜鉛除去領域にレーザ光をジャストフォーカス状態で照射して複数の亜鉛メッキ鋼板を溶融接合する。
特開2006−110565号公報
In order to solve the above-described problems, Patent Document 1 discloses a laser welding method including a pre-process by series welding and laser light irradiation and a main welding process by laser welding in advance. In this laser welding method, in the series welding process, the resistance spot welding electrode is pressed from one side of the joining region of the galvanized steel sheet to evaporate and remove zinc, thereby forming the zinc removal region. Next, in the laser light irradiation step, the zinc removal region is irradiated with laser light in an in-focus or defocused state to remove zinc remaining in the zinc removal region and surrounding zinc, thereby widening the zinc removal region. In the main welding process, the zinc removal region is irradiated with laser light in a just-focus state to melt-bond a plurality of galvanized steel sheets.
JP 2006-110565 A

特許文献1のレーザ溶接方法は、抵抗スポット溶接によるシリーズ溶接とレーザ溶接の組み合わせにより亜鉛メッキ鋼板が溶接されるので、工程が複雑であり且つ前加工の工程が必要となるため非効率な溶接方法である。また、亜鉛除去領域の形成が前加工の加工効率に依存する形となるので、この前加工の精度がレーザ溶接の溶接品質に大きな影響を与えることになり、レーザ溶接のメリットを低減させる虞がある。
本発明の目的は、低融点金属メッキが形成された複数の金属板の重ね合わせ部の溶接対象部にレーザ光を照射して、金属板の重ね合わせ部の隙間の大きさにかかわらず、溶接品質に優れ且つ安定した溶接を効率良く行えるレーザ溶接方法を提供する。
The laser welding method of Patent Document 1 is an inefficient welding method because the galvanized steel sheet is welded by a combination of series welding by resistance spot welding and laser welding, so that the process is complicated and a pre-processing process is required. It is. In addition, since the formation of the zinc removal region depends on the processing efficiency of the pre-processing, the accuracy of this pre-processing has a great influence on the welding quality of laser welding, and there is a risk of reducing the merit of laser welding. is there.
An object of the present invention is to irradiate a laser beam to a welding target portion of an overlapping portion of a plurality of metal plates on which low melting point metal plating is formed, regardless of the size of the gap between the overlapping portions of the metal plates. Provided is a laser welding method capable of efficiently performing stable welding with excellent quality.

請求項1のレーザ溶接方法は、低融点金属メッキが形成された金属板を含む複数の金属板を重ね、金属板の重ね合わせ部にレーザ光を照射して複数の金属板をスポット状に溶接するレーザ溶接方法において、金属板の外形がほぼ円形の溶接対象部の外周よりも内側の領域内に、溶接対象部の全域を予熱可能な第1溶接パターンとなるようにレーザ光を照射して溶接する第1工程と、次に溶接対象部の外周部に沿った環状の第2溶接パターンとなるようにレーザ光を照射して溶接する第2工程とを備えたことを特徴としている。   The laser welding method according to claim 1, wherein a plurality of metal plates including a metal plate on which a low melting point metal plating is formed are stacked, and a laser beam is irradiated to the overlapping portion of the metal plates to weld the plurality of metal plates in a spot shape. In the laser welding method, the laser beam is irradiated so as to form a first welding pattern in which the entire area of the welding target portion can be preheated in a region inside the outer periphery of the welding target portion having a substantially circular outer shape of the metal plate. A first step of welding and a second step of welding by irradiating with laser light so as to form an annular second welding pattern along the outer peripheral portion of the welding target portion are provided.

このレーザ溶接方法では、低融点金属メッキが形成された金属板を含む複数の金属板を重ね、第1工程において、金属板の重ね合わせ部の溶接対象部の外周よりも内側の領域内にレーザ光が照射されて第1溶接パターンが形成される。次に第2工程において、第1溶接パターンにより溶接対象部の全域が予熱された状態で、溶接対象部の外周部に沿ってレーザ光が照射されて環状の第2溶接パターンが形成されるので、第1溶接パターン溶接時に低融点金属メッキを蒸発させ、第2溶接パターン加工時の溶融金属量を増加させることができる。   In this laser welding method, a plurality of metal plates including a metal plate on which a low melting point metal plating is formed are overlapped, and in the first step, laser is applied in a region inside the outer periphery of the welding target portion of the overlapped portion of the metal plates. Light is irradiated to form a first welding pattern. Next, in the second step, since the entire area of the welding target portion is preheated by the first welding pattern, laser light is irradiated along the outer peripheral portion of the welding target portion to form an annular second welding pattern. The low melting point metal plating can be evaporated at the time of the first welding pattern welding, and the amount of molten metal at the time of the second welding pattern processing can be increased.

請求項2のレーザ溶接方法は、請求項1の発明において、第1溶接パターンが溶接対象部の中心で交差する複数の直線状溶接パターンからなり、第2溶接パターンが複数の直線状溶接パターンの外側端部を通過する円環状溶接パターンからなることを特徴としている。   The laser welding method according to claim 2 is the laser welding method according to claim 1, wherein the first welding pattern includes a plurality of linear welding patterns intersecting at the center of the welding target portion, and the second welding pattern includes a plurality of linear welding patterns. It consists of the annular welding pattern which passes an outer side edge part, It is characterized by the above-mentioned.

請求項3のレーザ溶接方法は、請求項1の発明において、第1溶接パターンが溶接対象部の中心を中心とし且つ溶接対象部の面積の約1/2の面積を囲繞する円環状溶接パターンからなることを特徴としている。   According to a third aspect of the present invention, there is provided a laser welding method according to the first aspect of the invention, wherein the first welding pattern is an annular welding pattern centered on the center of the welding target portion and surrounding an area of about 1/2 of the area of the welding target portion. It is characterized by becoming.

請求項4のレーザ溶接方法は、請求項1の発明において、第1溶接パターンが第2溶接パターンに渦巻き状に連なる渦巻き状溶接パターンからなることを特徴としている。
請求項5のレーザ溶接方法は、請求項1〜4の発明の何れかにおいて、低融点金属メッキが形成された金属板が、亜鉛メッキを形成した鋼板であることを特徴としている。
According to a fourth aspect of the present invention, there is provided the laser welding method according to the first aspect, wherein the first welding pattern is a spiral welding pattern that is spirally connected to the second welding pattern.
A laser welding method according to a fifth aspect is characterized in that, in any of the first to fourth aspects of the invention, the metal plate on which the low melting point metal plating is formed is a steel plate on which galvanization is formed.

請求項1の発明によれば、第1工程において金属板の外形がほぼ円形の溶接対象部の外周よりも内側の領域内に、溶接対象部の全域を予熱可能な第1溶接パターンとなるようにレーザ光を照射して溶接し、次に第2工程において溶接対象部の外周部に沿った環状の第2溶接パターンとなるようにレーザ光を照射して溶接するので、低融点金属メッキを除去する為の前加工工程を必要とせず、金属板の重ね合わせ部の隙間の大きさにかかわらず溶接品質の安定した良好な溶接を効率良く行うレーザ溶接を実現することができる。   According to the first aspect of the present invention, in the first step, the outer shape of the metal plate becomes a first welding pattern in which the entire area of the welding target portion can be preheated in a region inside the outer periphery of the welding target portion having a substantially circular shape. In the second step, welding is performed by irradiating the laser beam so as to form an annular second welding pattern along the outer peripheral portion of the welding target portion. Laser welding that efficiently performs good welding with stable welding quality regardless of the size of the gap between the overlapping portions of the metal plates can be realized without requiring a pre-processing step for removal.

即ち、溶接対象部の全域を予熱可能な第1溶接パターンとなるようにレーザ溶接するので、溶接対象部の全域の低融点金属メッキを蒸発除去できる。また、第1溶接パターンにより溶接対象部の全域が予熱された状態で、溶接対象部の外周部に沿った環状の第2溶接パターンとなるようにレーザ溶接するので、第2溶接パターン溶接時に溶融金属量が増加して重ね合わせ部の隙間が大きい場合でも安定して溶接接合を行うことができる。また、重ね合わせ部に隙間がない場合に発生する低融点金属メッキの爆飛による溶接対象部の欠陥部位へ溶融金属を供給でき、内部欠陥の発生を低減できると共に、溶接不良を確実に防止することできる。   That is, since laser welding is performed so that the entire welding target portion has a first welding pattern that can be preheated, the low melting point metal plating in the entire welding target portion can be removed by evaporation. In addition, since the entire area of the welding target portion is preheated by the first welding pattern, laser welding is performed so that an annular second welding pattern is formed along the outer peripheral portion of the welding target portion. Even when the amount of metal increases and the gap between the overlapping portions is large, welding can be stably performed. In addition, it is possible to supply molten metal to the defective part of the welding target part due to the explosion of the low melting point metal plating that occurs when there is no gap in the overlapped part, reducing the occurrence of internal defects and reliably preventing welding defects I can.

請求項2の発明によれば、第1溶接パターンが溶接対象部の中心で交差する複数の直線状溶接パターンからなり、第2溶接パターンが複数の直線状溶接パターンの外側端部を通過する円環状溶接パターンからなるので、複数の直線状溶接パターンにより溶接対象部の全域をほぼ均等に予熱できると共に、溶接対象部の低融点金属メッキを確実に蒸発除去できる。また、複数の直線状溶接パターンにより溶接対象部の全域が予熱された状態で円環状溶接パターンの溶接が行われるので、溶接時の溶融金属量が増加して重ね合わせ部の隙間が大きい場合でも安定して溶接接合を行うことができる。また、重ね合わせ部に隙間がない場合、低融点金属メッキの爆飛による欠陥部位へ溶融金属を供給でき、溶接強度の高い接合部を形成することができる。   According to invention of Claim 2, the 1st welding pattern consists of a some linear welding pattern which cross | intersects at the center of a welding object part, and the 2nd welding pattern passes the outer side edge part of a some linear welding pattern. Since it consists of an annular welding pattern, the whole area of the welding object can be preheated almost uniformly by a plurality of linear welding patterns, and the low melting point metal plating of the welding object can be reliably removed by evaporation. Also, since the welding of the annular welding pattern is performed in a state where the entire area of the welding target portion is preheated by the plurality of linear welding patterns, even when the amount of molten metal during welding increases and the gap between the overlapping portions is large Stable welding can be performed. Further, when there is no gap in the overlapped portion, the molten metal can be supplied to the defective portion due to the explosion of the low melting point metal plating, and a joint portion with high welding strength can be formed.

請求項3の発明によれば、第1溶接パターンが溶接対象部の中心を中心とし且つ溶接対象部の面積の約1/2の面積を囲繞する円環状溶接パターンからなるので、溶接対象部の全域を均等に予熱できると共に、溶接対象部の低融点金属メッキを確実に蒸発除去できる。その他、請求項1と同様の効果を奏する。   According to invention of Claim 3, since the 1st welding pattern consists of an annular welding pattern centering on the center of a welding object part, and enclosing the area of about 1/2 of the area of a welding object part, The entire region can be preheated evenly, and the low-melting point metal plating of the welding target portion can be reliably removed by evaporation. In addition, the same effects as those of the first aspect are obtained.

請求項4の発明によれば、第1溶接パターンが第2溶接パターンに渦巻き状に連なる渦巻き状溶接パターンからなるので、溶接対象部の全域をほぼ均等に予熱できると共に、溶接対象部の低融点金属メッキを確実に蒸発除去できる。その他、請求項1と同様の効果を奏する。   According to the invention of claim 4, since the first welding pattern is a spiral welding pattern that is spirally connected to the second welding pattern, the entire area of the welding target portion can be preheated almost uniformly and the low melting point of the welding target portion. Metal plating can be reliably removed by evaporation. In addition, the same effects as those of the first aspect are obtained.

請求項5の発明によれば、低融点金属メッキが形成された金属板が、亜鉛メッキを形成した鋼板であるので、溶接品質に優れ且つ防錆効果の高い亜鉛メッキ鋼板の溶接部を形成することができる。その他、請求項1〜4と同様の効果を奏する。   According to the invention of claim 5, since the metal plate on which the low melting point metal plating is formed is a steel plate on which galvanization is formed, a welded portion of a galvanized steel plate having excellent welding quality and high antirust effect is formed. be able to. In addition, the same effects as in the first to fourth aspects are achieved.

本実施例は、低融点金属メッキが形成された金属板を含む複数の金属板を重ね、金属板の重ね合わせ部にレーザ光を照射して複数の金属板をスポット状に溶接するレーザ溶接方法に、本発明を適用した場合の一例である。   The present embodiment is a laser welding method in which a plurality of metal plates including a metal plate on which a low melting point metal plating is formed are overlapped, and a laser beam is irradiated to the overlapped portion of the metal plates to weld the plurality of metal plates in a spot shape. This is an example when the present invention is applied.

以下、本発明の実施例について図面に基づいて説明する。
図1に示すように、レーザ溶接装置1は、レーザ発振器2と、スキャナ加工ヘッド3と、これらを制御する制御装置4とを備えている。
レーザ発振器2は、制御装置4から指示された出力制御指令に基づいて種々のエネルギー密度のレーザ光LAを出力する。レーザ発振器2から出力されたレーザ光LAは、伝送ファイバー5を介してスキャナ加工ヘッド3に伝送される。このとき、スキャナ加工ヘッド3には、レーザ発振器2及び伝送ファイバー5に依存した広がり角をもったレーザ光LAが伝送される。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the laser welding apparatus 1 includes a laser oscillator 2, a scanner processing head 3, and a control device 4 for controlling them.
The laser oscillator 2 outputs laser beams LA having various energy densities based on an output control command instructed from the control device 4. The laser beam LA output from the laser oscillator 2 is transmitted to the scanner processing head 3 via the transmission fiber 5. At this time, the laser beam LA having a spread angle depending on the laser oscillator 2 and the transmission fiber 5 is transmitted to the scanner processing head 3.

スキャナ加工ヘッド3は、制御装置4からのレーザ光位置制御指令により、レーザ発振器2から出力されたレーザ光LAの焦点を調整して、金属板の重ね合わせ部25において溶接対象部14にレーザ光LAを照射して局所的に溶接部を形成する。ここで、レーザ光LAとしては、YAGレーザやCOレーザなどがあり、YAGレーザの方がCOレーザよりも金属に対する光エネルギーの吸収性が優れている。 The scanner processing head 3 adjusts the focus of the laser beam LA output from the laser oscillator 2 according to the laser beam position control command from the control device 4, and the laser beam is applied to the welding target portion 14 in the metal plate overlapping portion 25. LA is irradiated to form a weld locally. Here, examples of the laser beam LA include a YAG laser and a CO 2 laser, and the YAG laser is more excellent in absorbing light energy with respect to metal than the CO 2 laser.

スキャナ加工ヘッド3のケーシング6内には、可動式のコリメートレンズ7、固定ミラー8、可動ミラー9、集光レンズ10及びカバースライド11などが配設されている。コリメートレンズ7は、集光レンズ10によりレーザ光LAを集光させるためにレーザ光LAを平行光にするレンズであり、アクチュエータ(図示略)により、ケーシング6内を上下方向(Z軸方向)に移動可能となっている。   In the casing 6 of the scanner processing head 3, a movable collimating lens 7, a fixed mirror 8, a movable mirror 9, a condensing lens 10, a cover slide 11 and the like are disposed. The collimating lens 7 is a lens that collimates the laser beam LA in order to condense the laser beam LA by the condensing lens 10, and the inside of the casing 6 is moved in the vertical direction (Z-axis direction) by an actuator (not shown). It is movable.

可動ミラー9は、X軸モータ12及びY軸モータ13により、X軸方向及びY軸方向に傾動可能に設けられている。X軸モータ12及びY軸モータ13は、サーボモータ等で構成されている。コリメートレンズ7に伝送されたレーザ光LAは、固定ミラー8によって可動ミラー9側へ反射され、X軸モータ12及びY軸モータ13によりミラー角度が変化する可動ミラー9より反射されて集光レンズ10で集光される。そのため、集光されたレーザ光LAを、複数の金属板の重ね合わせ部25の溶接対象部14に対し可動ミラー9の角度変化により高速で移動させながら照射してレーザ溶接部を形成することが可能となる。   The movable mirror 9 is provided so as to be tiltable in the X-axis direction and the Y-axis direction by the X-axis motor 12 and the Y-axis motor 13. The X-axis motor 12 and the Y-axis motor 13 are constituted by servo motors or the like. The laser beam LA transmitted to the collimating lens 7 is reflected by the fixed mirror 8 toward the movable mirror 9, and is reflected by the X-axis motor 12 and the Y-axis motor 13 from the movable mirror 9 whose mirror angle is changed, and thereby the condenser lens 10. It is condensed with. Therefore, the laser beam LA that has been collected can be irradiated to the welding target portion 14 of the overlapping portion 25 of the plurality of metal plates while moving at high speed by changing the angle of the movable mirror 9 to form a laser welded portion. It becomes possible.

図1に示すように、集光レンズ10からレーザ光LAが最も集光する位置までの距離であるZ軸方向の焦点距離FLは、コリメートレンズ7の上下方向の移動及び集光レンズ10によって調整される。レーザスポット径の外径が最も小さい部分が高エネルギー密度の熱源部分となり、そこから離れるにつれてレーザ光LAのエネルギー密度は低くなる。なお、スキャナ加工ヘッド3は、必要に応じてロボットアーム(図示略)に取り付けて使用することが可能である。   As shown in FIG. 1, the focal length FL in the Z-axis direction, which is the distance from the condenser lens 10 to the position where the laser beam LA is most condensed, is adjusted by the vertical movement of the collimator lens 7 and the condenser lens 10. Is done. The portion with the smallest outer diameter of the laser spot diameter becomes a heat source portion with a high energy density, and the energy density of the laser beam LA decreases as the distance from the heat source portion increases. The scanner processing head 3 can be attached to a robot arm (not shown) as required.

制御装置4によるレーザ発振器2の出力制御は、スキャナ加工ヘッド3の位置制御命令と同期させてレーザ光LAのエネルギー密度の強弱調整が行われるように構成されている。低密度エネルギーのレーザ光LAと高密度エネルギーのレーザ光LAの切換は、制御装置4からレーザ発振器2に対し電気信号が送信されることにより行われる。   The output control of the laser oscillator 2 by the control device 4 is configured such that the energy density of the laser beam LA is adjusted in synchronism with the position control command of the scanner processing head 3. Switching between the low-density energy laser beam LA and the high-density energy laser beam LA is performed by transmitting an electrical signal from the control device 4 to the laser oscillator 2.

次に、上述のレーザ溶接装置1を用いたレーザ溶接方法について説明する。
金属板として、鉄の融点よりも低い低融点金属の亜鉛メッキ15が形成された鋼板16,17を採用する。この亜鉛メッキ15が形成された鋼板16,17は、防錆性能を有し、自動車の車体など種々の分野で使用されている。なお、亜鉛の融点は419.5℃、沸点は930℃である。鉄の融点は1535℃、沸点は2750℃である。
Next, a laser welding method using the above laser welding apparatus 1 will be described.
As the metal plate, steel plates 16 and 17 on which zinc plating 15 of a low melting point metal lower than the melting point of iron is formed are employed. The steel plates 16 and 17 on which the galvanized plate 15 is formed have rust prevention performance and are used in various fields such as automobile bodies. Zinc has a melting point of 419.5 ° C. and a boiling point of 930 ° C. Iron has a melting point of 1535 ° C and a boiling point of 2750 ° C.

図1、図2に示すように、亜鉛メッキ15が形成された上側鋼板16と下側鋼板17とを重ね合わせたものをロボット(図示略)でハンドリングし、レーザ溶接装置1の照射範囲Aに配置する。例えば、照射範囲Aは、直径300mmとし、レーザスポット外径は、0.6mmとする。なお、スキャナ加工ヘッド3自体の位置は固定しておく。次に、上側鋼板16と下側鋼板17の重ね合わせ部25の溶接対象部14にレーザ光LAを照射して複数の亜鉛メッキ鋼板をスポット状に溶接する。   As shown in FIGS. 1 and 2, a superposition of the upper steel plate 16 and the lower steel plate 17 on which the galvanizing 15 is formed is handled by a robot (not shown), and the irradiation range A of the laser welding apparatus 1 is reached. Deploy. For example, the irradiation range A is 300 mm in diameter, and the outer diameter of the laser spot is 0.6 mm. The position of the scanner processing head 3 itself is fixed. Next, the laser beam LA is irradiated to the welding target portion 14 of the overlapping portion 25 of the upper steel plate 16 and the lower steel plate 17 to weld a plurality of galvanized steel plates in a spot shape.

第1工程において、外形がほぼ円形の溶接対象部14の外周よりも内側の領域内においてスポット溶接の直径となる部分に焦点を合わせ、上側鋼板16の上面に鉄の融点(1535℃)以上の高エネルギー密度のレーザ光LAが照射される。そして、そのレーザ光LAがスポット溶接の直径となる部分に沿って可動ミラー9の角度変化により高速で移動照射され、このレーザ溶接により、スポット溶接の直径となる部分に溶接対象部14の中心で交差する複数の直線状溶接パターン(第1溶接パターン)、例えば、図3に示す「×」型の溶接パターン18が形成されるとともに、「×」型の溶接パターン溶接時の熱が溶接対象部14の外周側に向けて広がり溶接対象部14の全域がほぼ加熱される。   In the first step, focusing on the spot welding diameter in the region inside the outer periphery of the welding target portion 14 whose outer shape is substantially circular, the upper surface of the upper steel plate 16 has a melting point of iron (1535 ° C.) or higher. A laser beam LA having a high energy density is irradiated. Then, the laser beam LA is moved and irradiated at a high speed by changing the angle of the movable mirror 9 along the spot welding diameter, and the laser welding LA is applied to the spot welding diameter at the center of the welding target portion 14. A plurality of intersecting linear welding patterns (first welding patterns), for example, a “×” type welding pattern 18 shown in FIG. 3 is formed, and heat at the time of “×” type welding pattern welding is a portion to be welded. It spreads toward the outer peripheral side of 14, and the whole region of the welding object part 14 is heated substantially.

レーザ溶接時において、上側鋼板16と下側鋼板17の重ね合わせ部25に隙間がない場合、鋼板溶融直前又は溶融中に、亜鉛の融点が鉄の融点よりも低く凝固が遅れるため、溶接対象部14の亜鉛メッキ15が蒸発し、この亜鉛蒸気が、溶接対象部14内で気泡(ブローホールやピット)として残存し、又は圧力によって周りの溶融金属を吹き飛ばして爆飛する。この爆飛により溶接対象部14の亜鉛メッキ15が外部へ除去される。溶接対象部14内には爆飛による穴あき等の欠陥部位が形成される。他方、上側鋼板16と下側鋼板17の重ね合わせ部25の隙間が大きい場合、レーザ溶接時に蒸発した亜鉛メッキ15が溶接対象部14から外周側へ離散して除去される。   At the time of laser welding, if there is no gap in the overlapping portion 25 of the upper steel plate 16 and the lower steel plate 17, the melting point of zinc is lower than the melting point of iron and solidification is delayed immediately before or during melting of the steel plate. The zinc plating 15 of 14 evaporates, and this zinc vapor remains as bubbles (blowholes or pits) in the welding target portion 14 or blows off the surrounding molten metal by pressure and blows away. By this explosion, the zinc plating 15 of the welding target portion 14 is removed to the outside. Defects such as holes due to explosions are formed in the welding target portion 14. On the other hand, when the gap between the overlapping portions 25 of the upper steel plate 16 and the lower steel plate 17 is large, the zinc plating 15 evaporated during laser welding is discretely removed from the welding target portion 14 toward the outer peripheral side.

次に、第2工程において、溶接対象部14の外周部に焦点を合わせ,上側鋼板W1の上面に高エネルギー密度のレーザ光LAが照射される。そして、そのレーザ光LAが溶接対象部14の外周部に沿って可動ミラー9の角度変化により高速で移動照射され、このレーザ溶接により、前記の複数の直線状溶接パターンの外側端部を通過する環状の溶接パターン(第2溶接パターン)、例えば、図3に示すように、前記の「×」型の溶接パターンの外側端部を通過する「○」型の円環状溶接パターン19が形成される。その結果、上側鋼板16と下側鋼板17の重ね合わせ部25に局所的に「×」型の周囲に「○」型が形成された溶接パターンの溶接部が形成される。   Next, in the second step, the outer peripheral portion of the welding target portion 14 is focused, and the upper surface of the upper steel plate W1 is irradiated with a laser beam LA having a high energy density. Then, the laser beam LA is moved and irradiated at high speed along the outer peripheral portion of the welding target portion 14 due to the change in the angle of the movable mirror 9, and passes through the outer end portions of the plurality of linear welding patterns by this laser welding. An annular welding pattern (second welding pattern), for example, as shown in FIG. 3, a “◯” shaped annular welding pattern 19 that passes through the outer end of the “×” shaped welding pattern is formed. . As a result, a weld portion having a weld pattern in which a “◯” shape is locally formed around the “x” shape is formed in the overlapping portion 25 of the upper steel plate 16 and the lower steel plate 17.

レーザ溶接時において、溶接対象部14の全域が予熱された状態でレーザ溶接が行われることで溶融金属量が増加し、上側鋼板16と下側鋼板17の重ね合わせ部25に隙間がない場合に発生した溶接対象部14の亜鉛メッキ15の爆飛による溶接対象部14の欠陥部位へ溶融金属が供給される。また、溶接対象部14に残存していた気泡が再加熱されることで蒸発して離散する。   During laser welding, the amount of molten metal is increased by performing laser welding in a state where the entire welding target portion 14 is preheated, and there is no gap in the overlapping portion 25 of the upper steel plate 16 and the lower steel plate 17. Molten metal is supplied to the defect site | part of the welding target part 14 by the explosion of the zinc plating 15 of the generated welding target part 14. FIG. Further, the bubbles remaining in the welding target portion 14 are reheated to evaporate and become discrete.

一方、上側鋼板16と下側鋼板17の重ね合わせ部25の隙間が大きい場合、溶接対象部14の全域が予熱された状態でレーザ溶接が行われるので溶融金属量が増加し、安定した状態でレーザ溶接による溶接接合が行われることになる。   On the other hand, when the gap between the overlapping portion 25 of the upper steel plate 16 and the lower steel plate 17 is large, since the laser welding is performed in a state in which the entire area of the welding target portion 14 is preheated, the amount of molten metal is increased, and in a stable state. The welding joining by laser welding will be performed.

次に、上述した実施例のレーザ溶接方法によりレーザ溶接された種々の溶接パターンの接合部の効果検証試験について図4に基づいて説明する。
[ワーク材料]
金属板として、厚み1.4mmの440系亜鉛メッキ鋼板を準備した。
[溶接方法]
上述のレーザ溶接装置1を用いたレーザ溶接方法に基づいて、複数の亜鉛メッキ鋼板を重ね合わせ、亜鉛メッキ鋼板の重ね合わせ部の溶接対象部14に鉄の融点以上のエネルギー密度のレーザ光LAを照射して複数の亜鉛メッキ鋼板をスポット状に溶融接合した。
Next, the effect verification test of the joint part of the various welding patterns laser-welded by the laser welding method of the Example mentioned above is demonstrated based on FIG.
[Work material]
A 440 galvanized steel sheet having a thickness of 1.4 mm was prepared as a metal plate.
[Welding method]
Based on the laser welding method using the laser welding apparatus 1 described above, a plurality of galvanized steel plates are overlapped, and laser light LA having an energy density equal to or higher than the melting point of iron is applied to the welding target portion 14 of the overlapped portion of the galvanized steel plates. Irradiation was performed, and a plurality of galvanized steel sheets were melt-joined in a spot shape.

[溶接パターン]
「×」型溶接パターンを溶接後、この「×」型溶接パターンの外側端部を通過する「○」型の円環状溶接パターン(25.7mm溶接)の接合部を溶接した。比較例の溶接パターンとして、直線型溶接パターン(20mm溶接)、C字型溶接パターン(20mm溶接)の接合部を夫々を溶接した。
[Welding pattern]
After welding the “×” type welding pattern, the joint portion of the “◯” type annular welding pattern (25.7 mm welding) passing through the outer end portion of this “×” type welding pattern was welded. As welding patterns of the comparative examples, the joints of a linear welding pattern (20 mm welding) and a C-shaped welding pattern (20 mm welding) were welded respectively.

[接合強度の試験及び評価]
各種形状の溶接パターンの接合部の引張り剪断強度を測定した。図4に示すように、鋼板の重ね合わせ部に亜鉛蒸気を溶接対象部から逃がすだけの隙間がある場合(0.1mm〜0.4mm)、全ての溶接パターンの接合部が高い剪断強度を示した。一方、鋼板の重ね合わせ部に隙間がない場合(0.0mm)や隙間が大きい場合(0.5mm〜0.8mm)、実施例の溶接パターンの接合部のみが高い剪断強度を示した。一方、直線型やC字型溶接パターンの接合部は、鋼板の重ね合わせ部の隙間が大きくなるほど剪断強度が低くなる。特に、重ね合わせ部の隙間の大きさが0.5mm以上の場合、エッジ切れや鋼板の溶接対象部が十分に溶接されておらず溶接不良が発生していると考えられる。
[Test and evaluation of bonding strength]
The tensile shear strength of the joints of various shapes of weld patterns was measured. As shown in FIG. 4, when there is a gap (0.1 mm to 0.4 mm) that allows zinc vapor to escape from the welding target part in the overlapping part of the steel plates, the joints of all the welding patterns exhibit high shear strength. It was. On the other hand, when there was no gap in the overlapped portion of the steel plates (0.0 mm) or when the gap was large (0.5 mm to 0.8 mm), only the joint portion of the welding pattern of the example showed high shear strength. On the other hand, in the joint portion of the linear type or C-shaped welding pattern, the shear strength decreases as the gap between the overlapping portions of the steel plates increases. In particular, when the size of the gap between the overlapping portions is 0.5 mm or more, it is considered that the edge breakage or the welding target portion of the steel plate is not sufficiently welded and a welding failure occurs.

この検証試験結果から、実施例の溶接パターンを溶接することにより、2つの効果を確認できた。1つ目の効果は、×型溶接により、溶接対象部14に対し予熱効果及び亜鉛メッキ除去効果が得られ、予熱状態での○型溶接により溶融金属量が増加して、×型溶接時に発生した溶接対象部の亜鉛メッキの爆飛による穴あき等の欠陥部位へ溶融金属が供給され、鋼板の重ね合わせ部に隙間がない場合でも高い溶接強度を有する溶接部が形成されることが確認できた。また、2つ目の効果としては、×型溶接での予熱効果により○型溶接時の溶融金属量が増加して鋼板の重ね合わせ部の隙間が大きい場合でもロバストな溶接が可能となり、高い接合強度を有する接合部が形成されることが確認できた。更に、×型溶接での予熱効果により○型溶接時のスパッタの発生が低減する効果も確認できた。   From this verification test result, two effects could be confirmed by welding the welding pattern of the example. The first effect is that X-type welding provides a preheating effect and galvanizing removal effect on the welded part 14, and the amount of molten metal is increased by ○ -type welding in the preheating state, which occurs during X-type welding. It can be confirmed that molten metal is supplied to defective parts such as perforations due to galvanized explosion of the welded part, and a weld with high welding strength is formed even when there is no gap in the overlapped part of the steel plates It was. Also, as a second effect, robust welding is possible even when the amount of molten metal during ○ -type welding increases due to the preheating effect in X-type welding and the gap between the overlapping parts of the steel plates is large, and high bonding is achieved. It was confirmed that a joint having strength was formed. Furthermore, the effect of reducing the occurrence of spatter during ○ -type welding was also confirmed by the preheating effect in X-type welding.

以上説明した実施例のレーザ溶接方法の作用効果について説明する。
第1工程において、溶接対象部14の全域を予熱可能な「×」型溶接パターン18となるようにレーザ溶接するので、溶接対象部14の全域の亜鉛メッキ15を蒸発除去できる。また、第2工程において、「×」型溶接パターン18により溶接対象部14の全域が予熱された状態で、「×」型溶接パターン18の外側端部を通過する「○」型溶接パターン19となるようにレーザ溶接するので、溶接パターン溶接時の溶融金属量が増加して鋼板16,17の重ね合わせ部25の隙間が大きい場合でも安定して溶接接合を行うことができる。
The effect of the laser welding method of the Example demonstrated above is demonstrated.
In the first step, laser welding is performed so that the entire area of the welding target portion 14 has an “×” type welding pattern 18 that can be preheated, so that the zinc plating 15 in the entire area of the welding target portion 14 can be removed by evaporation. Further, in the second step, in the state where the entire area of the welding target portion 14 is preheated by the “×” type welding pattern 18, Therefore, even if the amount of molten metal at the time of welding pattern welding is increased and the gap between the overlapping portions 25 of the steel plates 16 and 17 is large, welding can be performed stably.

また、鋼板16,17の重ね合わせ部25に隙間がない場合に発生する亜鉛メッキ15の爆飛による溶接対象部14の穴あき等の欠陥部位へ溶融金属を供給でき、内部欠陥の発生を低減できると共に、溶接不良を確実に防止することができる。その結果、鋼板16,17の重ね合わせ部25の隙間の大きさにかかわらず、溶接品質に優れ且つ安定したレーザ溶接を効率良く行うことができる。   In addition, molten metal can be supplied to a defective portion such as a hole in the welding target portion 14 due to the blasting of the zinc plating 15 that occurs when there is no gap in the overlapping portion 25 of the steel plates 16 and 17, thereby reducing the occurrence of internal defects. In addition, it is possible to reliably prevent welding defects. As a result, regardless of the size of the gap between the overlapping portions 25 of the steel plates 16 and 17, laser welding excellent in welding quality and stable can be performed efficiently.

次に、前記実施例を部分的に変更した変更例について説明する。
1〕溶接パターンは実施例で示した形状に限定されるものではなく、種々の形状の溶接パターンを適用可能であり、特に、第1溶接パターン溶接時の熱が溶接対象部14の中心から外周へ放射状に広がる溶接パターンが有効である。
Next, a modified example in which the above embodiment is partially modified will be described.
1) The welding pattern is not limited to the shape shown in the embodiment, and various types of welding patterns can be applied. In particular, the heat during the first welding pattern welding is from the center of the welding target portion 14 to the outer periphery. A welding pattern that spreads radially is effective.

例えば、図5に示すように、「◎」型溶接パターン20でもよい。即ち、第1溶接パターン溶接時の予熱が第1溶接パターンの領域と第2溶接パターンの領域に均等に伝わるようにする為、第1溶接パターンが溶接対象部14の中心を中心とし且つ溶接対象部14の面積の約1/2の面積を囲繞する円環状溶接パターン21からなり、第2溶接パターンが円環状の溶接パターンの外側端部を通過する円環状溶接パターン19とする。この溶接パターンにより、第1溶接パターン溶接時の熱が溶接対象部14の全域に広がる予熱効果と、亜鉛メッキ蒸発除去効果が得られ、第2溶接パターン溶接時の溶融金属量が増加して、鋼板16,17の溶接対象部14の隙間に対しロバストな溶接部を形成することができる。   For example, as shown in FIG. That is, the first welding pattern is centered on the center of the welding target portion 14 and is to be welded so that the preheating at the time of the first welding pattern welding is uniformly transmitted to the first welding pattern region and the second welding pattern region. The annular welding pattern 21 is formed of an annular welding pattern 21 that surrounds an area that is approximately ½ of the area of the portion 14. By this welding pattern, the preheating effect in which the heat at the time of the first welding pattern welding spreads over the entire area of the welding target portion 14 and the galvanization evaporation removing effect are obtained, and the amount of molten metal at the time of the second welding pattern welding is increased. A robust welded portion can be formed with respect to the gap between the welded portions 14 of the steel plates 16 and 17.

この場合、溶接対象部14において、第1溶接パターンの半径をxRとし、第2溶接パターンの半径をRとした場合、第2溶接パターンの半径Rに対し、第1溶接パターンの半径を約0.707Rとすることで溶接対象部14の1/2の面積を囲繞する第1溶接パターンにより、第1溶接パターンの領域と第2溶接パターンの領域とが均等に予熱されると考えられる   In this case, when the radius of the first welding pattern is xR and the radius of the second welding pattern is R, the radius of the first welding pattern is about 0 with respect to the radius R of the second welding pattern. .707R, it is considered that the first welding pattern region and the second welding pattern region are preheated equally by the first welding pattern surrounding a half area of the welding target portion 14.

2〕また、図6に示すように、「渦巻き」型溶接パターン24でもよい。即ち、第1溶接パターンが第2溶接パターン23に渦巻き状に連なる渦巻き状溶接パターン22となる形状としてもよい。この溶接パターンにより、第1溶接パターン溶接時の熱が溶接対象部14の全域に広がる予熱効果と、亜鉛メッキ蒸発除去効果が得られ、第2溶接パターン溶接時の溶融金属量が増加する。 2] Alternatively, as shown in FIG. In other words, the first welding pattern may be a spiral welding pattern 22 that is spirally connected to the second welding pattern 23. By this welding pattern, the preheating effect that the heat at the time of the first welding pattern welding spreads over the entire area of the welding target portion 14 and the galvanization evaporation removing effect are obtained, and the amount of molten metal at the time of the second welding pattern welding is increased.

3〕実施例では、低融点金属メッキを亜鉛メッキ15としたが、その他、亜鉛合金メッキ、沸点109℃のマグネシウム合金メッキ、アルミニウム合金メッキ等でもよい。母材の融点よりも低い融点の低融点金属メッキであれば、本発明の適用が可能である。 3] In the embodiment, the low melting point metal plating is the zinc plating 15. However, zinc alloy plating, magnesium alloy plating having a boiling point of 109 ° C., aluminum alloy plating, etc. may be used. The present invention can be applied to any low melting point metal plating having a melting point lower than that of the base material.

4〕実施例では、亜鉛メッキ15が形成された上側鋼板16と下側鋼板17の溶接対象部14をレーザ溶接したが、亜鉛メッキ15が形成されていない上側鋼板と、亜鉛メッキが形成された下側鋼板17の溶接対象部14をレーザ溶接してもよい。また、下側鋼板は、複数枚であってもよく、それらは亜鉛メッキが形成されたものでも、形成されていないものでもよい。 4] In the example, the welding target portion 14 of the upper steel plate 16 and the lower steel plate 17 on which the zinc plating 15 was formed was laser-welded, but the upper steel plate on which the zinc plating 15 was not formed and the zinc plating were formed. The welding target portion 14 of the lower steel plate 17 may be laser welded. Further, the lower steel plate may be a plurality of sheets, and they may be formed with galvanization or not formed.

5〕本発明のレーザ溶接方法は、自動車、鉄道車両、航空機などの生産ラインに適用可能であり、その適用分野や用途の範囲を制限することを意図するものではない。
6〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態が実施可能であり、本発明はそのような変更形態を包含するものである。
5] The laser welding method of the present invention can be applied to production lines of automobiles, railway vehicles, aircrafts, etc., and is not intended to limit the field of application or the range of uses.
6] In addition, those skilled in the art can implement embodiments in which various modifications are added to the embodiment without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

レーザ溶接装置の概要とスキャナ加工ヘッドの概要を示す図である。It is a figure which shows the outline | summary of a laser welding apparatus, and the outline | summary of a scanner processing head. 亜鉛メッキ鋼板の重ね合わせ部の溶接対象部の拡大斜視図である。It is an expansion perspective view of the welding object part of the overlap part of a galvanized steel plate. 第1溶接パターンと第2溶接パターンの拡大図である。It is an enlarged view of the 1st welding pattern and the 2nd welding pattern. 接合部の引張り剪断強度を示すデータである。It is data which shows the tensile shear strength of a junction part. 変更形態に係る溶接パターンを示す図である。It is a figure which shows the welding pattern which concerns on a change form. 変更形態に係る溶接パターンを示す図である。It is a figure which shows the welding pattern which concerns on a change form.

符号の説明Explanation of symbols

LA レーザ光
14 溶接対象部
15 亜鉛メッキ
16、17 鋼板
18、21、22 第1溶接パターン
19、23 第2溶接パターン
25 重ね合わせ部
LA laser beam 14 welding target portion 15 galvanized 16, 17 steel plates 18, 21, 22 first welding pattern 19, 23 second welding pattern
25 Superposition part

Claims (5)

低融点金属メッキが形成された金属板を含む複数の金属板を重ね、金属板の重ね合わせ部にレーザ光を照射して複数の金属板をスポット状に溶接するレーザ溶接方法において、
前記金属板の外形がほぼ円形の溶接対象部の外周よりも内側の領域内に、溶接対象部の全域を予熱可能な第1溶接パターンとなるようにレーザ光を照射して溶接する第1工程と、
次に溶接対象部の外周部に沿った環状の第2溶接パターンとなるようにレーザ光を照射して溶接する第2工程とを備えたことを特徴とするレーザ溶接方法。
In a laser welding method in which a plurality of metal plates including a metal plate on which a low-melting point metal plating is formed are overlapped, and a plurality of metal plates are welded in a spot shape by irradiating a laser beam on the overlapping portion of the metal plates,
A first step of welding by irradiating a laser beam in a region on the inner side of the outer periphery of the welding target portion having a substantially circular outer shape of the metal plate so as to form a first welding pattern capable of preheating the entire welding target portion. When,
Next, a laser welding method comprising: a second step of welding by irradiating a laser beam so as to form an annular second welding pattern along the outer peripheral portion of the welding target portion.
前記第1溶接パターンが溶接対象部の中心で交差する複数の直線状溶接パターンからなり、前記第2溶接パターンが複数の直線状溶接パターンの外側端部を通過する円環状溶接パターンからなることを特徴とする請求項1に記載のレーザ溶接方法。   The first welding pattern is composed of a plurality of linear welding patterns intersecting at the center of the welding target portion, and the second welding pattern is composed of an annular welding pattern passing through the outer ends of the plurality of linear welding patterns. The laser welding method according to claim 1, wherein: 前記第1溶接パターンが溶接対象部の中心を中心とし且つ溶接対象部の面積の約1/2の面積を囲繞する円環状溶接パターンからなることを特徴とする請求項1に記載のレーザ溶接方法。   2. The laser welding method according to claim 1, wherein the first welding pattern is formed of an annular welding pattern that is centered on the center of the welding target portion and surrounds an area that is approximately ½ of the area of the welding target portion. . 前記第1溶接パターンが前記第2溶接パターンに渦巻き状に連なる渦巻き状溶接パターンからなることを特徴とする請求項1に記載のレーザ溶接方法。   2. The laser welding method according to claim 1, wherein the first welding pattern is a spiral welding pattern that is spirally connected to the second welding pattern. 前記低融点金属メッキが形成された金属板が、亜鉛メッキを形成した鋼板であることを特徴とする請求項1〜4の何れかに記載のレーザ溶接方法。   The laser welding method according to any one of claims 1 to 4, wherein the metal plate on which the low melting point metal plating is formed is a steel plate on which galvanization is formed.
JP2007327220A 2007-12-19 2007-12-19 Laser welding method Active JP5196128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327220A JP5196128B2 (en) 2007-12-19 2007-12-19 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327220A JP5196128B2 (en) 2007-12-19 2007-12-19 Laser welding method

Publications (2)

Publication Number Publication Date
JP2009148781A true JP2009148781A (en) 2009-07-09
JP5196128B2 JP5196128B2 (en) 2013-05-15

Family

ID=40918590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327220A Active JP5196128B2 (en) 2007-12-19 2007-12-19 Laser welding method

Country Status (1)

Country Link
JP (1) JP5196128B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167428A (en) * 2009-01-21 2010-08-05 Honda Motor Co Ltd Laser beam welding method
JP2011173146A (en) * 2010-02-24 2011-09-08 Mazda Motor Corp Laser welding method
JP2012115876A (en) * 2010-12-01 2012-06-21 Toyota Motor Corp Laser welding method
CN103100795A (en) * 2011-11-11 2013-05-15 株式会社星宇Hitech Method of laser welding
KR20140128447A (en) * 2012-02-20 2014-11-05 스캔소닉 엠아이 게엠베하 Method for stitch-welding a front flange joint
JP2015074012A (en) * 2013-10-09 2015-04-20 日産自動車株式会社 Method and device of laser welding of steel plate
JP2015077610A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Laser joining structure and laser joining method
JP2015131335A (en) * 2014-01-15 2015-07-23 トヨタ車体株式会社 Instruction method using laser processing robot system
WO2015159852A1 (en) * 2014-04-15 2015-10-22 シロキ工業株式会社 Laser welding method for metal plate laminate, and manufacturing method for vehicle door frame using laser welding method for metal plate laminate
WO2016151740A1 (en) * 2015-03-23 2016-09-29 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device
EP2628563A4 (en) * 2010-10-12 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Laser welding method
JP2018069285A (en) * 2016-10-28 2018-05-10 株式会社総合車両製作所 Laser welding method and laser welding device
CN108778610A (en) * 2016-03-31 2018-11-09 株式会社村谷机械制作所 Laser processing device and laser processing
US10155285B2 (en) 2014-01-10 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Laser welding method and laser welding device
KR20190019434A (en) * 2017-08-17 2019-02-27 주식회사 새한산업 Laser spot welding apparatus and method
CN110560895A (en) * 2018-06-04 2019-12-13 丰田自动车株式会社 laser welding method
DE102016118986B4 (en) 2015-10-15 2024-03-28 GM Global Technology Operations LLC Laser beam welding process with a spiral welding path of first-class continuity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068185A (en) * 1983-06-27 1985-04-18 シヤ−キ・エス・ア Spot welding method by laser beam
JPS60177983A (en) * 1984-02-23 1985-09-11 Nippon Denso Co Ltd Spot welding method
JPH026083A (en) * 1988-06-14 1990-01-10 Mitsubishi Electric Corp Spot welding method
JPH04231190A (en) * 1990-12-28 1992-08-20 Fanuc Ltd Method and device for laser welding galvanized steel sheet
JP2001162389A (en) * 1999-12-08 2001-06-19 Honda Motor Co Ltd Method of laser beam welding for plated steel plate
JP2006110565A (en) * 2004-10-12 2006-04-27 Daihatsu Motor Co Ltd Laser welding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068185A (en) * 1983-06-27 1985-04-18 シヤ−キ・エス・ア Spot welding method by laser beam
JPS60177983A (en) * 1984-02-23 1985-09-11 Nippon Denso Co Ltd Spot welding method
JPH026083A (en) * 1988-06-14 1990-01-10 Mitsubishi Electric Corp Spot welding method
JPH04231190A (en) * 1990-12-28 1992-08-20 Fanuc Ltd Method and device for laser welding galvanized steel sheet
JP2001162389A (en) * 1999-12-08 2001-06-19 Honda Motor Co Ltd Method of laser beam welding for plated steel plate
JP2006110565A (en) * 2004-10-12 2006-04-27 Daihatsu Motor Co Ltd Laser welding method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167428A (en) * 2009-01-21 2010-08-05 Honda Motor Co Ltd Laser beam welding method
JP2011173146A (en) * 2010-02-24 2011-09-08 Mazda Motor Corp Laser welding method
EP2628563A4 (en) * 2010-10-12 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Laser welding method
JP2012115876A (en) * 2010-12-01 2012-06-21 Toyota Motor Corp Laser welding method
CN103100795A (en) * 2011-11-11 2013-05-15 株式会社星宇Hitech Method of laser welding
US9873168B2 (en) 2011-11-11 2018-01-23 Sungwoo Hitech Co., Ltd. Method of laser welding
KR102092038B1 (en) 2012-02-20 2020-03-23 스캔소닉 엠아이 게엠베하 Method for stitch-welding a front flange joint
KR20140128447A (en) * 2012-02-20 2014-11-05 스캔소닉 엠아이 게엠베하 Method for stitch-welding a front flange joint
JP2015074012A (en) * 2013-10-09 2015-04-20 日産自動車株式会社 Method and device of laser welding of steel plate
JP2015077610A (en) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 Laser joining structure and laser joining method
US10155285B2 (en) 2014-01-10 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Laser welding method and laser welding device
JP2015131335A (en) * 2014-01-15 2015-07-23 トヨタ車体株式会社 Instruction method using laser processing robot system
JP2015202513A (en) * 2014-04-15 2015-11-16 シロキ工業株式会社 Laser welding method for metal plate laminate, and method of manufacturing vehicular door frame by using the same
CN106102984A (en) * 2014-04-15 2016-11-09 白木工业株式会社 The method for laser welding of sheet-metal layers stack and employ the manufacture method of vehicle door frame of method for laser welding of sheet-metal layers stack
WO2015159852A1 (en) * 2014-04-15 2015-10-22 シロキ工業株式会社 Laser welding method for metal plate laminate, and manufacturing method for vehicle door frame using laser welding method for metal plate laminate
JPWO2016151740A1 (en) * 2015-03-23 2017-04-27 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional modeling apparatus
WO2016151740A1 (en) * 2015-03-23 2016-09-29 技術研究組合次世代3D積層造形技術総合開発機構 Laser heating control mechanism, laser heating control method, laser heating control program, and three-dimensional molding device
DE102016118986B4 (en) 2015-10-15 2024-03-28 GM Global Technology Operations LLC Laser beam welding process with a spiral welding path of first-class continuity
CN108778610A (en) * 2016-03-31 2018-11-09 株式会社村谷机械制作所 Laser processing device and laser processing
JPWO2017170890A1 (en) * 2016-03-31 2019-02-14 株式会社村谷機械製作所 Laser processing apparatus and laser processing method
CN108778610B (en) * 2016-03-31 2020-08-07 株式会社村谷机械制作所 Laser processing apparatus and laser processing method
JP2018069285A (en) * 2016-10-28 2018-05-10 株式会社総合車両製作所 Laser welding method and laser welding device
KR20190019434A (en) * 2017-08-17 2019-02-27 주식회사 새한산업 Laser spot welding apparatus and method
KR102003194B1 (en) * 2017-08-17 2019-07-25 주식회사 새한산업 Laser spot welding apparatus and method
CN110560895A (en) * 2018-06-04 2019-12-13 丰田自动车株式会社 laser welding method

Also Published As

Publication number Publication date
JP5196128B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196128B2 (en) Laser welding method
JP6518945B2 (en) Laser welding method and laser welding apparatus
WO2016189855A1 (en) Laser welding method
CN109202287B (en) Laser welding method and laser welding device
JP5527526B2 (en) Laser welding method
US20180029162A1 (en) Laser welding apparatus and laser welding method
CN108367391A (en) The laser spot welding of stacked aluminium workpiece
JPWO2017022238A1 (en) Laser welding method
JP4867599B2 (en) Laser welding method and apparatus
WO2016021586A1 (en) Laser welding device and laser welding method
JP2009262186A (en) Method of laser welding metal plated plate
JP2008264793A (en) Laser welding method for superimposed workpiece
CN110355471B (en) Welding method
JP2014018804A (en) One side welding method
JP2008126298A (en) Laser beam welding method and its apparatus
JP5730139B2 (en) Butt welding method for steel
JP4915315B2 (en) Laser welding method and laser welding apparatus
JP2011115836A (en) Method of laser welding metal plated plate
KR102087664B1 (en) Laser-welded joint and method for producing same
KR101428973B1 (en) Method of laser welding
JP2011156572A (en) Laser welding method
JP4620753B2 (en) Laser welding method for metal plated plate
JP4386431B2 (en) Laser welding method
KR102158855B1 (en) Laser welding apparatus and method
KR20180013481A (en) Laser welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150