JP2010167428A - Laser beam welding method - Google Patents

Laser beam welding method Download PDF

Info

Publication number
JP2010167428A
JP2010167428A JP2009010809A JP2009010809A JP2010167428A JP 2010167428 A JP2010167428 A JP 2010167428A JP 2009010809 A JP2009010809 A JP 2009010809A JP 2009010809 A JP2009010809 A JP 2009010809A JP 2010167428 A JP2010167428 A JP 2010167428A
Authority
JP
Japan
Prior art keywords
heat
laser
laser beam
welding
affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009010809A
Other languages
Japanese (ja)
Other versions
JP5312060B2 (en
Inventor
Haruhiko Kobayashi
晴彦 小林
Koji Oda
幸治 小田
Shinichi Miyasaka
慎一 宮坂
Satoshi Okubo
聡士 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009010809A priority Critical patent/JP5312060B2/en
Publication of JP2010167428A publication Critical patent/JP2010167428A/en
Application granted granted Critical
Publication of JP5312060B2 publication Critical patent/JP5312060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform excellent laser beam welding by discharging gas of plating metal simultaneously with forming a bead when welding two plated and lapped metal plates by laser beam. <P>SOLUTION: When a laminated body 10a is welded by the laser beam L1, an irradiation diameter part 18 of the laser beam L1 and a heat-affected zone 20 which is formed on a circumferential edge of the irradiation diameter part 18 and reaches temperature in the range of equal to or higher than that of the evaporation of the plating before completing the annular welding pass through an area during welding, the area is defined as a heat-affected pass 26. The entire area which is heated to the temperature of the evaporation of the plating before completing the annular welding is defined as a heat-affected range 30. The entire range finally surrounded by a weld bead 22 is scanned by the laser beam L1 so as to be heated above the evaporation temperature of the plating before completing the annular welding. The heat-affected range 30 is circular, and its radius R1 is set to be equal to or less than the width W of the heat-affected pass 26. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、重ね合わされた2枚の金属板に対して一方の面からレーザを照射して環状に溶接するレーザ溶接方法に関する。   The present invention relates to a laser welding method in which laser beams are irradiated from one surface to two superimposed metal plates and welded in an annular shape.

従来、自動車の車体等の構造部材として、亜鉛メッキ鋼板等の表面処理された金属板が広く用いられている。   Conventionally, surface-treated metal plates such as galvanized steel plates have been widely used as structural members such as automobile bodies.

これらのメッキ鋼板をレーザ溶接するにあたり、スポット溶接をすると十分な面積が得られないことから、強度を考慮して円ビードで溶接する方法が提案されている(例えば、特許文献1参照)。   When laser welding these plated steel sheets, a sufficient area cannot be obtained when spot welding is performed, and therefore, a method of welding with a circular bead in consideration of strength has been proposed (for example, see Patent Document 1).

特開2007−888号公報Japanese Patent Laid-Open No. 2007-888

しかしながら、円ビードを形成する作業の初期段階において、該円ビードにより囲繞された範囲内はメッキが溶けることなく、そのまま残ることが考えられる。溶けずに残った囲繞部は周囲からの熱伝導により、結局は溶け、ビードが形成されることも考えられるが、該ビードの形成過程で発生するメッキ金属が蒸発したガスは、その発生時点において、中心部がすでに周囲に形成されたビードによって閉塞されているために排出されず、内圧が高まって爆飛の発生の原因となり得る。   However, it is conceivable that in the initial stage of the work of forming the circular bead, the plating is not melted and remains in the area surrounded by the circular bead. It is conceivable that the surrounding portion that has not melted melts due to heat conduction from the surroundings, and eventually a bead is formed. Since the central portion is already closed by the bead formed in the periphery, it is not discharged, and the internal pressure increases, which may cause explosion.

また、囲繞部をなくしてメッキ金属のガスが排出される経路を確保するために、ビードをC字型等で形成した場合は、溶接に必要な面積が無駄に広くなって効率的でなく、疲労強度低下の原因になるとも考えられる。   In addition, when the bead is formed in a C-shape or the like in order to eliminate the surrounding portion and secure a path through which the metal plating gas is discharged, the area required for welding is unnecessarily widened and is not efficient. It may also cause a decrease in fatigue strength.

本発明はこのような課題を考慮してなされたものであり、溶融ビードの形成が完了する前に、該溶融ビードの形成過程で処理材が蒸発して生じるガスを外部へ排出することができ、爆飛の発生を可及的に減少させることを可能にするレーザ溶接方法を提供することを目的とする。   The present invention has been made in consideration of such problems, and before the formation of the molten bead is completed, the gas generated by evaporation of the treatment material in the process of forming the molten bead can be discharged to the outside. An object of the present invention is to provide a laser welding method that makes it possible to reduce the occurrence of explosions as much as possible.

本発明に係るレーザ溶接方法は、重ね合わされた2枚の金属板に対して一方の面からレーザを照射して環状に溶接するレーザ溶接方法において、前記金属板における積層面の少なくとも一方に表面処理が施され、溶融ビードで最終的に囲まれる範囲全域を、環状の溶接が終了する前に前記表面処理の処理材の蒸発温度以上に加熱することを特徴とする。   The laser welding method according to the present invention is a laser welding method in which laser beams are irradiated from one surface to two superimposed metal plates and welded in an annular shape, and at least one of the laminated surfaces of the metal plates is subjected to a surface treatment. And the entire region finally surrounded by the molten bead is heated to a temperature equal to or higher than the evaporation temperature of the surface treatment material before the end of the annular welding.

これにより、金属板の積層面で処理材が蒸発したガスは、外部への排出経路が確保され爆飛の発生を抑制することができる。   Thereby, the gas which the processing material evaporated on the lamination surface of the metal plate can secure the discharge path to the outside, and can suppress the occurrence of explosion.

前記積層面上で、前記レーザの照射直径部及び該照射直径部の周縁に形成されて、環状の溶接が終了する前に前記処理材が蒸発する温度以上の範囲を熱影響部とし、溶融ビードで最終的に囲まれる範囲全域に、前記熱影響部を通過させるようにしてもよい。   On the laminated surface, a laser bead diameter portion and a periphery of the light diameter portion are formed as a heat-affected zone in a range above the temperature at which the treatment material evaporates before the end of the annular welding, The heat-affected zone may be allowed to pass through the entire range that is finally surrounded by the above.

本発明に係るレーザ溶接方法によれば、金属板の積層面で処理材が蒸発したガスは、外部への排出経路が確保され爆飛の発生を抑制することができる。   According to the laser welding method according to the present invention, the gas in which the treatment material has evaporated on the laminated surface of the metal plates can secure a discharge path to the outside and suppress the occurrence of explosion.

積層体及びレーザ溶接機の一部断面側面図である。It is a partial cross section side view of a laminated body and a laser welding machine. 図1に示す状態から、レーザを照射した状態を示す一部断面側面図である。It is a partial cross section side view which shows the state which irradiated the laser from the state shown in FIG. 熱影響範囲について説明する図である。It is a figure explaining the heat influence range. 第1の実施形態に係るレーザ溶接方法で形成されるビード及び熱影響範囲を示す平面図である。It is a top view which shows the bead formed with the laser welding method which concerns on 1st Embodiment, and a heat influence range. 第1の実施形態に係るレーザ溶接方法で形成されるビード及び熱影響範囲を示す断面側面図である。It is a section side view showing the bead formed with the laser welding method concerning a 1st embodiment, and a heat influence range. 第2の実施形態に係るレーザ溶接方法で形成されるビード及び熱影響範囲を示す平面図である。It is a top view which shows the bead formed with the laser welding method which concerns on 2nd Embodiment, and a heat influence range. 変形例に係る積層体及びレーザ溶接機の一部断面側面図である。It is a partial cross section side view of a layered product and a laser welding machine concerning a modification. 図7に示す状態から、レーザを照射した状態を示す一部断面側面図である。It is a partial cross section side view which shows the state which irradiated the laser from the state shown in FIG.

以下、本発明に係るレーザ溶接方法について第1及び第2の実施形態を挙げ、添付の図1〜図8を参照しながら説明する。   Hereinafter, the laser welding method according to the present invention will be described with reference to FIGS.

先ず、各実施の形態で共通する基本的な手段について説明する。各実施の形態に係るレーザ溶接方法では、図1に示すように、上板12と下板14が重ね合わされた積層体10aに対して一方の面(以下、上板12側の面とする。)に対して、図2に示すように、レーザ溶接機16からレーザL1を照射させ、その照射位置を移動させながら溶接を行う。各実施の形態に係るレーザ溶接方法で溶接対象するワークは、後述する積層体10b(図7、図8参照)等でもよい。   First, basic means common to the embodiments will be described. In the laser welding method according to each embodiment, as shown in FIG. 1, one surface (hereinafter referred to as a surface on the upper plate 12 side) is formed on the laminated body 10 a in which the upper plate 12 and the lower plate 14 are overlapped. 2), as shown in FIG. 2, laser L1 is irradiated from the laser welding machine 16, and welding is performed while moving the irradiation position. The workpiece to be welded by the laser welding method according to each embodiment may be a laminated body 10b (see FIGS. 7 and 8) described later.

レーザL1の照射位置を移動させる手段としては、レーザ溶接機16のレーザ照射部の向きを変えたり、所定の光学手段を介して照射方向を変えたり、又はワーク側を移動させればよい。レーザL1の照射位置を移動させる手段としては、ロボットによってレーザ溶接機16を移動させてもよい。レーザL1は、例えばYAGレーザである。レーザL1の照射位置を移動する速度は基本的には一定速度とする。   As a means for moving the irradiation position of the laser L1, the direction of the laser irradiation part of the laser welding machine 16 may be changed, the irradiation direction may be changed via a predetermined optical means, or the work side may be moved. As a means for moving the irradiation position of the laser L1, the laser welding machine 16 may be moved by a robot. The laser L1 is, for example, a YAG laser. The moving speed of the irradiation position of the laser L1 is basically a constant speed.

上板12には表面処理として亜鉛メッキが施され、鋼板12cの上面12a及び下面12bにメッキ層(処理材)が設けられている。同様に下板14には亜鉛メッキが施され、鋼板14cの上面14a及び下面14bにメッキ層が設けられている。   The upper plate 12 is galvanized as a surface treatment, and a plating layer (treatment material) is provided on the upper surface 12a and the lower surface 12b of the steel plate 12c. Similarly, the lower plate 14 is galvanized, and a plating layer is provided on the upper surface 14a and the lower surface 14b of the steel plate 14c.

上板12の下面12bと、下板14の上面14aとの間にはスペーサ15を介して適度に狭い隙間G1が確保されている。   A moderately narrow gap G <b> 1 is secured between the lower surface 12 b of the upper plate 12 and the upper surface 14 a of the lower plate 14 via the spacer 15.

図2は、上板12の上面12a側からレーザ溶接機16より照射されたレーザL1が、上板12及び下板14に照射している状態を示す断面側面図である。レーザL1の照射直径部18(図3参照)、及び該照射直径部18の周縁に形成され、亜鉛メッキが蒸発する温度以上の範囲である熱影響部20が、上板12及び下板14に形成されている。熱影響部20は、環状の溶接が終了する前に亜鉛メッキが蒸発する範囲とする。   FIG. 2 is a cross-sectional side view illustrating a state in which the laser L1 irradiated from the upper surface 12a side of the upper plate 12 is irradiated to the upper plate 12 and the lower plate 14. An irradiation diameter portion 18 (see FIG. 3) of the laser L1 and a heat-affected portion 20 formed on the periphery of the irradiation diameter portion 18 and in a range equal to or higher than a temperature at which galvanization evaporates are formed on the upper plate 12 and the lower plate 14. Is formed. The heat-affected zone 20 has a range in which galvanization evaporates before the end of the annular welding.

レーザL1の照射直径部18及び熱影響部20の断面は、積層面の下面12bと上面14aで実質的に同じ面積となっている。亜鉛メッキを蒸発させることで発生する亜鉛ガス24は、破線矢印で示すように、隙間G1から排出される。   The cross sections of the irradiation diameter portion 18 and the heat affected zone 20 of the laser L1 have substantially the same area on the lower surface 12b and the upper surface 14a of the laminated surface. The zinc gas 24 generated by evaporating the galvanizing is discharged from the gap G1, as indicated by the dashed arrow.

図3の矢印で示すように、照射直径部18の中心O1を点P1から点P2まで移動させたとき、該照射直径部18が移動して通過した範囲(図3におけるダブルハッチ範囲)は溶接が行われる範囲であり、この範囲を溶融ビード22とする。また、熱影響部20が溶接途中で通過する領域(図3におけるハッチング範囲)は、環状の溶接が終了する前に亜鉛メッキが蒸発する領域であって、熱影響パス26とする。   As indicated by the arrows in FIG. 3, when the center O1 of the irradiation diameter portion 18 is moved from the point P1 to the point P2, the range through which the irradiation diameter portion 18 has moved and moved (the double hatched range in FIG. 3) is a weld. The range is defined as a molten bead 22. Further, the region through which the heat affected zone 20 passes during welding (hatched range in FIG. 3) is a region in which galvanization evaporates before the end of the annular welding, and is defined as a heat affected path 26.

環状の溶接が終了する前にメッキが蒸発する温度まで加熱される全域を熱影響範囲30(図4参照)とする。溶融ビード22は熱影響パス26に含まれる。熱影響パス26の幅をWとする。厳密には、熱影響パス26の幅は必ずしも一定ではないが、発明の理解が容易となるように一定幅であるものとする。   The entire region heated to a temperature at which the plating evaporates before the end of the annular welding is defined as a heat affected range 30 (see FIG. 4). The molten bead 22 is included in the heat affected path 26. Let W be the width of the heat affected path 26. Strictly speaking, the width of the heat-affected path 26 is not necessarily constant, but is assumed to be constant so that the invention can be easily understood.

本実施の形態に係るレーザ溶接方法では、溶融ビード22で最終的に囲まれる範囲全域が、環状の溶接が終了する前に亜鉛メッキの蒸発温度以上に加熱されるように、レーザL1を走査して上板12と下板14との溶接を行う。また、移動途中で熱影響パス26により囲繞される領域が生じないようにレーザL1の照射位置を所定の経路で移動させてもよい。   In the laser welding method according to the present embodiment, the laser L1 is scanned so that the entire range finally surrounded by the molten bead 22 is heated to the evaporating temperature of the galvanizing before the annular welding is finished. Then, the upper plate 12 and the lower plate 14 are welded. Further, the irradiation position of the laser L1 may be moved along a predetermined route so that a region surrounded by the heat affected path 26 does not occur during the movement.

次に、個別の実施形態について説明する。   Next, individual embodiments will be described.

図4に示すように、第1の実施形態に係るレーザ溶接方法では、照射直径部18の中心O1の経路32を、基点(重心)Aを中心として環状に一巡する閉経路として、積層面上において熱影響範囲30を円形に形成する。このとき、最終的に形成される熱影響範囲30の半径R1は熱影響パス26の幅W以下に設定する。これにより、最終的な熱影響範囲30は基点Aを含み、しかも、溶融ビード22で最終的に囲まれる範囲全域が、環状の溶接が終了する前に亜鉛メッキの蒸発温度以上に加熱される。また、レーザL1の移動途中で熱影響パス26により囲繞される領域が生じない。図4に示す例では、熱影響部20の端部を基点Aに一致させている。   As shown in FIG. 4, in the laser welding method according to the first embodiment, the path 32 of the center O1 of the irradiation diameter portion 18 is a closed path that makes a circular loop around the base point (center of gravity) A, and is on the laminated surface. The heat-affected area 30 is formed in a circular shape. At this time, the radius R1 of the heat-affected area 30 that is finally formed is set to be equal to or smaller than the width W of the heat-affected path 26. As a result, the final heat-affected area 30 includes the base point A, and the entire area finally surrounded by the molten bead 22 is heated to the evaporating temperature of the galvanizing or higher before the end of the annular welding. Further, there is no region surrounded by the heat affected path 26 during the movement of the laser L1. In the example shown in FIG. 4, the end of the heat affected zone 20 is matched with the base point A.

この溶接方法では、照射直径部18が始点と終点で少なくとも一部が重なり合っていれば、経路32は実質的に環状となり、これらの始点及び終点における応力の発生を防止できる。   In this welding method, if the irradiation diameter portion 18 is at least partially overlapped at the start point and the end point, the path 32 is substantially annular, and the generation of stress at these start point and end point can be prevented.

第1の実施形態に係るレーザ溶接方法において、レーザL1を走査させ、照射直径部18の中心O1が上板12上で一巡閉経路である円形状を描いた後の、積層体10aの断面側面図を図5に示す。図5に示すように、溶融ビード22の形成開始と同時に、上板12と下板14との積層面で亜鉛メッキが溶けて蒸発し、亜鉛ガス24が発生するが、破線矢印で示すように隙間G1から亜鉛ガス24は排出される。   In the laser welding method according to the first embodiment, the laser L1 is scanned, and the cross-sectional side surface of the laminated body 10a after drawing the circular shape in which the center O1 of the irradiation diameter portion 18 is a circular path on the upper plate 12 The figure is shown in FIG. As shown in FIG. 5, simultaneously with the start of the formation of the molten bead 22, the zinc plating melts and evaporates on the laminated surface of the upper plate 12 and the lower plate 14, and the zinc gas 24 is generated. The zinc gas 24 is discharged from the gap G1.

このように、第1の実施の形態に係るレーザ溶接方法によれば、溶融ビード22で最終的に囲まれる範囲全域が、環状の溶接が終了する前に亜鉛メッキの蒸発温度以上に加熱される。   As described above, according to the laser welding method according to the first embodiment, the entire range finally surrounded by the molten bead 22 is heated to the evaporating temperature of the galvanizing or higher before the annular welding is finished. .

これにより、溶融ビード22が環状に閉じる前に、上板12と下板14との積層面で発生する亜鉛ガス24を外部へ排出する排出路が確保され、換言すれば、溶融ビード22が閉じたときには、その内部の亜鉛メッキはすでに蒸発して外部に排出されており、その内圧が高まることはなく爆飛の発生を抑制することができる。   Thereby, before the molten bead 22 is closed in an annular shape, a discharge path for discharging the zinc gas 24 generated on the laminated surface of the upper plate 12 and the lower plate 14 to the outside is secured. In other words, the molten bead 22 is closed. In this case, the galvanizing inside thereof has already been evaporated and discharged to the outside, and the internal pressure does not increase and the occurrence of explosion can be suppressed.

仮に、環状の内部にガスが発生しても、その内圧が高まらない程度に微量であり、爆飛の発生を抑制することができる。また、経路32は環状であって、溶接後には始点及び終点の区別がなく、疲労強度の低下を防止できる。さらに、溶融ビード22の面積が、照射直径部18より大きくなり、溶接の接合強度が高まる。   Even if gas is generated inside the annular shape, the amount is so small that the internal pressure does not increase, and the occurrence of explosion can be suppressed. Moreover, the path | route 32 is cyclic | annular, Comprising: There is no distinction of a starting point and an end point after welding, and the fall of fatigue strength can be prevented. Furthermore, the area of the molten bead 22 is larger than the irradiation diameter portion 18, and the welding joint strength is increased.

さらにまた、熱影響範囲30を円形とすることによって、強度指向性のない安定した溶接が可能となるとともに、外観がよくなる。照射の経路を、一巡する閉経路に設定することにより安定し且つ無駄のない溶接が可能となる。   Furthermore, by making the heat-affected area 30 circular, stable welding without strength directivity is possible and the appearance is improved. By setting the irradiation route to a closed route that makes a round, stable and lean welding is possible.

図6に示すように、第2の実施形態に係るレーザ溶接方法では、照射直径部18の中心O1の経路34を、基点Aを基準とする正三角形となるような環状の一巡経路とし、且つ、基点Aから経路34による正三角形の頂点までの距離αを熱影響部20の半径β(=W/2)以下に設定しておく。これにより、三角形状の溶融ビード22が得られ、例えば、板材36の隅部形状に略合わせて溶接をすることができる。   As shown in FIG. 6, in the laser welding method according to the second embodiment, the path 34 of the center O1 of the irradiation diameter portion 18 is a circular circuit that forms an equilateral triangle with the base point A as a reference, and The distance α from the base point A to the vertex of the regular triangle along the path 34 is set to be equal to or less than the radius β (= W / 2) of the heat affected zone 20. As a result, a triangular molten bead 22 is obtained, and for example, welding can be performed in accordance with the shape of the corner of the plate 36.

上記の各実施例では、上板12と下板14との間に隙間G1(図2参照)が設けられており、該隙間G1からガスが排出されるものとしたが、次に示すように、上板12と下板14は接触して積層されていてもよい。   In each of the above-described embodiments, the gap G1 (see FIG. 2) is provided between the upper plate 12 and the lower plate 14, and the gas is discharged from the gap G1. The upper plate 12 and the lower plate 14 may be laminated in contact with each other.

すなわち、図7に示すように、上板12と下板14を接して積層させて、その間に隙間はない。この場合、レーザL2は、所定の光学手段によって比較的短い焦点距離とし、照射直径部18及び熱影響部20の断面を、上板12の上面を長辺、下板14の下面14b側を短辺として、ある程度傾斜角度のある台形にしておくとよい。   That is, as shown in FIG. 7, the upper plate 12 and the lower plate 14 are laminated in contact with each other, and there is no gap between them. In this case, the laser L2 has a relatively short focal length by a predetermined optical means, and the cross section of the irradiation diameter portion 18 and the heat-affected zone 20 is such that the upper surface of the upper plate 12 is long and the lower surface 14b side of the lower plate 14 is short. As a side, a trapezoid with a certain inclination angle may be used.

このようにレーザL2を照射していると、照射直径部18、又は熱影響部20の範囲に溶融ビード22が形成されるが、該溶融ビード22の凝固、冷却過程で上板12及び下板14には体積収縮が生じる。このとき、図8に示すように、レーザL2の照射直径部18及び熱影響部20の断面図の形状から、レーザ溶接機16に近い方が、照射直径部18及び熱影響部20を合わせた領域が広いために、前記体積収縮は大きく、遠い方が前記体積収縮は小さい。よって、上板12と下板14との間には前記体積収縮の差に伴う隙間G2が周囲に形成される。   When the laser L2 is irradiated in this way, a molten bead 22 is formed in the range of the irradiation diameter portion 18 or the heat affected zone 20, and the upper plate 12 and the lower plate are solidified and cooled in the melting bead 22 solidification process. 14 has volume shrinkage. At this time, as shown in FIG. 8, from the shape of the sectional view of the irradiation diameter portion 18 and the heat affected zone 20 of the laser L2, the one closer to the laser welding machine 16 is combined with the irradiation diameter portion 18 and the heat affected zone 20. Since the area is wide, the volume shrinkage is large, and the volume shrinkage is small in the far side. Therefore, a gap G <b> 2 is formed around the difference between the volume shrinkage between the upper plate 12 and the lower plate 14.

これによって、所定経路によって溶融ビード22が形成される前に、該溶融ビード22の形成過程で発生する亜鉛ガス24を隙間G2から外部へ排出することができ、爆飛の発生を可及的に減少させるという効果を達成することができる。   Thus, before the molten bead 22 is formed by a predetermined path, the zinc gas 24 generated in the process of forming the molten bead 22 can be discharged to the outside from the gap G2, and the occurrence of explosions is made as much as possible. The effect of reducing can be achieved.

上述した実施の形態では、レーザL1、L2の照射により溶融ビード22で最終的に囲まれる範囲全域を、環状の溶接が終了する前に表面処理材の蒸発温度以上となるように加熱しているが、加熱方法としてはこれに限らず、例えば、溶接用のレーザL1、L2とは別の熱源を用意してもよい。別の熱源による加熱は、レーザL1、L2と同期する必要はなく、適度に早い段階から加熱してもよい。   In the above-described embodiment, the entire range finally surrounded by the molten beads 22 by the irradiation of the lasers L1 and L2 is heated so as to be equal to or higher than the evaporation temperature of the surface treatment material before the end of the annular welding. However, the heating method is not limited to this, and for example, a heat source other than the welding lasers L1 and L2 may be prepared. The heating by another heat source does not need to be synchronized with the lasers L1 and L2, and may be heated from a reasonably early stage.

一方、本実施例のように加熱にレーザ走査を利用すると、構成がシンプルになり好適である。   On the other hand, if laser scanning is used for heating as in the present embodiment, the configuration becomes simple, which is preferable.

また、上板12及び下板14は、その上下両面に亜鉛メッキが施されたものであるとしたが、これに限らず、上板12と下板14との間の重ね面の少なくとも一方、すなわち、上板12の下面12b、又は下板14の上面14aの少なくとも一方にメッキが施されていれば、本実施の形態に係るレーザ溶接方法は有効に適用することができる。   In addition, the upper plate 12 and the lower plate 14 are galvanized on both upper and lower surfaces, but not limited thereto, at least one of the overlapping surfaces between the upper plate 12 and the lower plate 14, That is, if at least one of the lower surface 12b of the upper plate 12 or the upper surface 14a of the lower plate 14 is plated, the laser welding method according to the present embodiment can be effectively applied.

上述した実施の形態では、亜鉛メッキ鋼板であるとしたが、アルミメッキ鋼板やクロムメッキ鋼板等の表面処理でもよく、亜鉛メッキ鋼板に限定されない。   In the above-described embodiment, the galvanized steel sheet is used. However, surface treatment such as an aluminized steel sheet or a chrome plated steel sheet may be used, and the present invention is not limited to the galvanized steel sheet.

本発明に係るレーザ溶接方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The laser welding method according to the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

10a、10b…積層体 12…上板
12a、14a…上面 12b、14b…下面
14…下板 16…レーザ溶接機
18…照射直径部 20…熱影響部
22…溶融ビード 24…亜鉛ガス
26…熱影響パス 30…熱影響範囲
32、34、36 G1、G2…隙間
L1、L2…レーザ O1…照射直径部の中心
DESCRIPTION OF SYMBOLS 10a, 10b ... Laminated body 12 ... Upper plate 12a, 14a ... Upper surface 12b, 14b ... Lower surface 14 ... Lower plate 16 ... Laser welding machine 18 ... Irradiation diameter part 20 ... Heat affected zone 22 ... Molten bead 24 ... Zinc gas 26 ... Heat Influence path 30 ... Heat influence range 32, 34, 36 G1, G2 ... Gap L1, L2 ... Laser O1 ... Center of irradiation diameter part

Claims (2)

重ね合わされた2枚の金属板に対して一方の面からレーザを照射して環状に溶接するレーザ溶接方法において、
前記金属板における積層面の少なくとも一方に表面処理が施され、
溶融ビードで最終的に囲まれる範囲全域を、環状の溶接が終了する前に前記表面処理の処理材の蒸発温度以上に加熱することを特徴とするレーザ溶接方法。
In a laser welding method in which a laser beam is irradiated from one surface to two stacked metal plates and welded in an annular shape,
Surface treatment is applied to at least one of the laminated surfaces of the metal plate,
A laser welding method characterized in that the entire range finally surrounded by a molten bead is heated to a temperature equal to or higher than the evaporation temperature of the surface-treated material before the end of annular welding.
請求項1記載のレーザ溶接方法において、
前記積層面上で、前記レーザの照射直径部及び該照射直径部の周縁に形成されて、環状の溶接が終了する前に前記処理材が蒸発する温度以上の範囲を熱影響部とし、
溶融ビードで最終的に囲まれる範囲全域に、前記熱影響部を通過させることを特徴とするレーザ溶接方法。
The laser welding method according to claim 1, wherein
On the laminated surface, formed on the periphery of the irradiation diameter portion of the laser and the irradiation diameter portion, a range above the temperature at which the treatment material evaporates before the end of the annular welding is a heat affected zone,
A laser welding method, wherein the heat-affected zone is allowed to pass through an entire range finally surrounded by a molten bead.
JP2009010809A 2009-01-21 2009-01-21 Laser welding method Expired - Fee Related JP5312060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010809A JP5312060B2 (en) 2009-01-21 2009-01-21 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010809A JP5312060B2 (en) 2009-01-21 2009-01-21 Laser welding method

Publications (2)

Publication Number Publication Date
JP2010167428A true JP2010167428A (en) 2010-08-05
JP5312060B2 JP5312060B2 (en) 2013-10-09

Family

ID=42700054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010809A Expired - Fee Related JP5312060B2 (en) 2009-01-21 2009-01-21 Laser welding method

Country Status (1)

Country Link
JP (1) JP5312060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682911A (en) * 2022-03-31 2022-07-01 西安航天发动机有限公司 Laser welding spot and laser welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071480A (en) * 1996-08-28 1998-03-17 Nippon Steel Corp Lap laser beam welding method of plated steel plate
JP2009148781A (en) * 2007-12-19 2009-07-09 Mazda Motor Corp Laser welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071480A (en) * 1996-08-28 1998-03-17 Nippon Steel Corp Lap laser beam welding method of plated steel plate
JP2009148781A (en) * 2007-12-19 2009-07-09 Mazda Motor Corp Laser welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682911A (en) * 2022-03-31 2022-07-01 西安航天发动机有限公司 Laser welding spot and laser welding method

Also Published As

Publication number Publication date
JP5312060B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP6846619B2 (en) Laser welding method
JP5129717B2 (en) Laser welding method for metal plated plate
JP2009262186A (en) Method of laser welding metal plated plate
JP2010023047A (en) Laser beam welding method for thin plate
JP2012228715A5 (en)
JP2009148781A (en) Laser welding method
JP3115456B2 (en) Laser welding method for galvanized steel sheet
JP2008272826A (en) Stiffened plate and process for producing the same
JP6302314B2 (en) Welding process, welding system, and welded article
US20090134131A1 (en) Laser welding method for galvanized steel sheets
US9889526B2 (en) Laser welding method for welding dissimilar metal plates
JP5866790B2 (en) Laser welded steel pipe manufacturing method
JP5366499B2 (en) Welding method
JP5312060B2 (en) Laser welding method
JP5177745B2 (en) Laminated laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
KR101428973B1 (en) Method of laser welding
KR20170058427A (en) Laser-welded joint and method for producing same
JP2011156572A (en) Laser welding method
JP2017087263A (en) Welding method
JP6885088B2 (en) Steel members with welded joints and their manufacturing methods
JP2015147237A (en) Manufacturing method for junction, and high energy beam welding junction member
WO2023167045A1 (en) Sheet material, bonded body, method for bonding sheet material, and method for manufacturing sheet material
KR101425800B1 (en) Method of laser welding
KR101249397B1 (en) Laser welding method for steel sheet
WO2023223797A1 (en) Plate material, joined body, plate material joining method, and plate material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees