JP2006136904A - Apparatus and method of laser beam welding - Google Patents

Apparatus and method of laser beam welding Download PDF

Info

Publication number
JP2006136904A
JP2006136904A JP2004326724A JP2004326724A JP2006136904A JP 2006136904 A JP2006136904 A JP 2006136904A JP 2004326724 A JP2004326724 A JP 2004326724A JP 2004326724 A JP2004326724 A JP 2004326724A JP 2006136904 A JP2006136904 A JP 2006136904A
Authority
JP
Japan
Prior art keywords
welding
bead
underfill
laser
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004326724A
Other languages
Japanese (ja)
Inventor
Toshihiko Ishizuka
俊彦 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004326724A priority Critical patent/JP2006136904A/en
Publication of JP2006136904A publication Critical patent/JP2006136904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam welding apparatus which can carry out excellent welding work by taking into consideration the dispersion of joint clearances before the welding work. <P>SOLUTION: The shape of a bead B is measured just after welding by means of a bead shape measuring apparatus 11. Then, the underfill b of the bead B is calculated in real time by means of a control unit 1 based on the measured data. Then, a target value of the underfill is compared with the value of the measured underfill. When the value of the measured underfill is larger than the target value of the underfill, the speed for supplying a wire is increased stepwise, and also the welding speed is reduced stepwise. On the contrary, when the value of the measured underfill is smaller than the target value of the underfill, the speed for supplying the wire is reduced stepwise, and also the welding speed is increased stepwise. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶加材としてフィラーワイヤを併用するレーザ溶接装置およびレーザ溶接方法に関し、特に溶接動作と並行して溶接直後のビードの形状を測定し、その測定結果に応じてフィラーワイヤの供給量等の溶接条件を可変制御するようにしたレーザ溶接装置およびレーザ溶接方法に関するものである。   The present invention relates to a laser welding apparatus and a laser welding method in which a filler wire is used in combination as a filler material, and in particular, the shape of a bead immediately after welding is measured in parallel with the welding operation, and the amount of filler wire supplied according to the measurement result The present invention relates to a laser welding apparatus and a laser welding method in which welding conditions such as the above are variably controlled.

周知のように、レーザ溶接は局部加熱による溶接法であるが故に母材に対する入熱および溶接歪みが少なく、突き合わせ溶接や重ね溶接等に多用されている。その一方、レーザ溶接は母材におけるエネルギー入熱部のみを溶融して接合を行うために、溶融池での溶融金属の量が少なく、溶接継手としての母材間の隙間許容度(隙間余裕度もしくは隙間裕度)が小さいという欠点がある。例えば、板厚が1mm程度の薄鋼板の重ね溶接に際してフィラーワイヤを併用しない場合、その隙間許容度は0.3mm程度と言われている。そこで、一般的には特許文献1に記載のように溶加材としてフィラーワイヤを併用することで隙間許容度の拡大化が行われており、上記の例では、0.3mm程度であった隙間許容度が1.0mm程度まで拡大可能と言われている。
特開2003−71583号公報(図5)
As is well known, laser welding is a welding method based on local heating, and therefore, heat input to the base metal and welding distortion are small, and it is frequently used for butt welding, lap welding, and the like. On the other hand, since laser welding melts and joins only the heat input part of the base metal, the amount of molten metal in the molten pool is small, and the gap tolerance between the base metals as a welded joint (gap margin) (Also, the gap tolerance) is small. For example, when a filler wire is not used at the time of lap welding of a thin steel plate having a thickness of about 1 mm, the clearance tolerance is said to be about 0.3 mm. Therefore, generally, as described in Patent Document 1, the gap tolerance is increased by using a filler wire as a filler material. In the above example, the gap is about 0.3 mm. It is said that the tolerance can be expanded to about 1.0 mm.
Japanese Patent Laying-Open No. 2003-71583 (FIG. 5)

しかしながら、上記のようにフィラーワイヤの併用により隙間許容度の拡大化を図ろうとする場合、最大でもフィラーワイヤを併用しない場合の半分以下の溶接速度となり、生産性の低下が余儀なくされるほか、薄鋼板の溶接に多用される重ね溶接もしくはすみ肉溶接の場合には、継手隙間の度合いに応じた適正な溶接条件、特にワイヤ供給量や溶接速度等を設定しないと隙間許容度の拡大化の効果が十分に得られないだけでなく、場合によってはビードの外観が極端に悪化するおそれがある。   However, when trying to increase the clearance tolerance by using filler wire as described above, the welding speed is at most half that of the case where filler wire is not used at the maximum. In the case of lap welding or fillet welding, which is often used for welding steel plates, it is effective to increase the clearance tolerance unless appropriate welding conditions are set according to the degree of joint clearance, especially the wire supply rate and welding speed. Is not sufficiently obtained, and in some cases, the appearance of the bead may be extremely deteriorated.

また、特許文献1に記載の技術では、フィラーワイヤの供給量や溶接速度等を積極的に可変調整することを前提としてはいても、その調整は溶接前の開先の状態に応じてワイヤ供給量等を調整するだけであるから、薄鋼板の溶接に多用される重ね溶接もしくはすみ肉溶接には適用することができず、溶接品質の向上と安定化の上でなおも課題を残している。   Further, in the technique described in Patent Document 1, even if it is assumed that the supply amount of filler wire, the welding speed, and the like are variably adjusted, the adjustment is performed according to the state of the groove before welding. Because it only adjusts the amount, etc., it cannot be applied to lap welding or fillet welding, which is often used for welding thin steel sheets, and there are still problems in improving and stabilizing the welding quality. .

本発明はこのような課題に着目してなされたものであり、溶接後のビードの形状を測定して実測アンダフィルを求め、それに応じてフィラーワイヤの供給量等を可変制御することで溶接の高速化および溶接品質の向上と安定化を図ったレーザ溶接装置とレーザ溶接方法を提供するものである。特に本発明は、重ね溶接やすみ肉溶接においてとかく定量的に把握しにくい母材同士の隙間(継手隙間)の大きさにばらつきがある場合であっても、その隙間の大きさのばらつきを予め考慮した良好な溶接を行えるようにしたレーザ溶接装置とレーザ溶接方法を提供するものである。   The present invention has been made paying attention to such problems, and measures the shape of the bead after welding to obtain an actual underfill, and variably controls the supply amount of the filler wire and the like according to the measurement. The present invention provides a laser welding apparatus and a laser welding method which are intended to increase the speed and improve and stabilize the welding quality. In particular, the present invention takes into account the variation in the size of the gap in advance even if there is a variation in the size of the gap (joint gap) between the base materials that is difficult to grasp quantitatively in lap welding or fillet welding. The present invention provides a laser welding apparatus and a laser welding method capable of performing satisfactory welding.

請求項1に記載の発明は、溶接部位に対しレーザ光を照射するレーザ光学系と、上記溶接部位に対しフィラーワイヤを供給するワイヤ供給手段と、溶接動作と並行して溶接直後のビードの形状を測定する例えば非接触式のビード形状測定手段と、上記ビード形状測定手段の測定データから得られた実測アンダフィルが所定の範囲内のものとなるように溶接動作中にフィラーワイヤの供給量および溶接速度を可変制御する制御手段とを備えていることを特徴とする。   According to the first aspect of the present invention, there is provided a laser optical system for irradiating a welding site with laser light, wire supply means for supplying a filler wire to the welding site, and the shape of the bead immediately after welding in parallel with the welding operation. For example, non-contact type bead shape measuring means, and the amount of filler wire supplied during the welding operation so that the actual underfill obtained from the measurement data of the bead shape measuring means is within a predetermined range, and And a control means for variably controlling the welding speed.

すなわち、この請求項1に記載の発明では、とかく定量的に把握しにくい継手隙間とアンダフィルとの相関関係に着目し、特定の条件下では継手隙間がばらついても溶接後のビードでのアンダフィルは一定しているとの前提に下に成り立っている。   That is, the invention according to claim 1 pays attention to the correlation between the joint gap and the underfill, which are difficult to grasp quantitatively anyway, and under certain conditions, even if the joint gap varies, the under-bead after welding Phil is based on the assumption that it is constant.

上記フィラーワイヤの供給量の可変制御には、フィラーワイヤの供給を停止する場合をも含むものとする。これは、例えば重ね継手を形成することになる母材間の隙間がきわめて小さい場合には、フィラーワイヤの供給をしなくても良好なビードのもとで適正な溶接が行われることもあるからである。   The variable control of the supply amount of the filler wire includes a case where the supply of the filler wire is stopped. This is because, for example, when the gap between the base materials forming the lap joint is very small, proper welding may be performed under a good bead without supplying the filler wire. It is.

ここで、溶接形態が重ね溶接またはすみ肉溶接である場合には、請求項3に記載のように、溶接部位において母材同士のなす隙間を矯正する隙間矯正手段を備えていることが隙間の極小化の上で好ましい。   Here, when the welding form is lap welding or fillet welding, as described in claim 3, it is possible to provide gap correction means for correcting a gap between the base materials at the welded portion. It is preferable for minimization.

また、請求項4に記載のように、ビード形状測定手段とは別にビードの裏側での当該ビードの貫通度合いを測定する貫通度測定手段とを備えていて、上記制御手段は、実測アンダフィル量に応じてフィラーワイヤの供給量を、ビードの貫通度合いに応じて溶接速度をそれぞれ可変制御するものであることが望ましい。   According to a fourth aspect of the present invention, in addition to the bead shape measuring means, a penetration degree measuring means for measuring the degree of penetration of the bead on the back side of the bead is provided, and the control means includes an actual underfill amount. It is desirable that the welding wire supply amount and the welding speed be variably controlled in accordance with the degree of penetration of the beads.

さらに、請求項5に記載の発明は、実質的に請求項1に記載の発明を溶接方法として捉えたものであって、溶接部位に対しレーザ光を照射するとともに同部位に対しフィラーワイヤを供給しながら溶接を行うにあたり、溶接動作と並行して溶接直後のビードの形状を測定し、そのビード形状の測定データから得られた実測アンダフィルが所定の範囲内のものとなるようにフィラーワイヤの供給量および溶接速度を可変制御することを特徴とする。   Further, the invention described in claim 5 is substantially the same as the invention described in claim 1 as a welding method, and irradiates the welded portion with laser light and supplies a filler wire to the same portion. During welding, the shape of the bead immediately after welding is measured in parallel with the welding operation, and the filler wire is measured so that the actual underfill obtained from the measurement data of the bead shape is within a predetermined range. The supply amount and the welding speed are variably controlled.

したがって、少なくとも請求項1,5に記載の発明では、溶接直後のビードの形状の測定結果として得られた実測アンダフィルが所定範囲内のものとなるように、フィラーワイヤの供給量と溶接速度を積極的に可変制御することにより、例えば継手隙間である母材同士の隙間にばらつきがあったとしても全体としての溶接条件が適正化されて、溶接線全体を通して溶接品質が良好なものとなる。   Therefore, in at least the first and fifth aspects of the invention, the amount of filler wire supplied and the welding speed are set so that the measured underfill obtained as a result of measuring the shape of the bead immediately after welding is within a predetermined range. By actively performing variable control, for example, even if there are variations in the gaps between the base metals, which are joint gaps, the overall welding conditions are optimized, and the welding quality is improved throughout the entire weld line.

請求項1,5に記載の発明によれば、溶接直後のビード形状の測定結果として得られた実測アンダフィルが所定範囲内のものとなるように、フィラーワイヤの供給量および溶接速度を積極的に可変制御することにより、母材同士の隙間にばらつきがあったとしても全体としての溶接条件が適正化されることから、フィラーワイヤを併用しながらも高速溶接が可能になることによって生産性が向上するとともに、溶接品質の向上と安定化が図れる。   According to the first and fifth aspects of the present invention, the filler wire supply rate and the welding speed are positively set so that the measured underfill obtained as a measurement result of the bead shape immediately after welding is within a predetermined range. Even if there are variations in the gaps between the base materials, the overall welding conditions are optimized, so that high-speed welding is possible while using filler wires together. As well as improving, welding quality can be improved and stabilized.

図1は本発明のより具体的な実施の形態として重ね溶接の場合を示している。   FIG. 1 shows the case of lap welding as a more specific embodiment of the present invention.

図1に示すように、制御手段たる制御装置1からの指示(レーザ出力指令および焦点深度指令等)によりYAGレーザ発振器2から出力されたレーザ光3が光ファイバケーブル4を通してレーザ光学系5に導かれ、そのレーザ光3はレーザ光学系の一部を形成することになる集光レンズ6にて集光された上で母材(被溶接部材)W1,W2同士の重合部の溶接点(溶接部位)Pに照射される。   As shown in FIG. 1, a laser beam 3 output from a YAG laser oscillator 2 in accordance with an instruction (laser output command, depth of focus command, etc.) from a control device 1 as control means is guided to a laser optical system 5 through an optical fiber cable 4. The laser beam 3 is condensed by a condenser lens 6 that forms a part of the laser optical system, and then welded (welded) at the overlapping portion between the base materials (members to be welded) W1 and W2. The part) P is irradiated.

そして、上記のレーザ光学系5を母体として一体型のレーザヘッド7が構成されており、このレーザヘッド7には、ワイヤ供給手段として溶加材であるフィラーワイヤ8をワイヤガイド9を介して供給するワイヤ供給装置10のほか、ビード形状測定手段たるビード形状測定装置11がそれぞれ付帯していて、制御装置1からの指示によりレーザヘッド7が母材W1,W2に対して溶接方向に所定速度で移動することで溶接を施すことになる。なお、必要に応じてアシストガスを併用することもある。   An integrated laser head 7 is configured using the laser optical system 5 as a base body, and a filler wire 8 as a filler material is supplied to the laser head 7 through a wire guide 9 as a wire supply means. A bead shape measuring device 11 as a bead shape measuring means is attached to each of the wire feeding device 10 and the laser head 7 at a predetermined speed in the welding direction with respect to the base materials W1 and W2 according to an instruction from the control device 1. It will be welded by moving. In addition, an assist gas may be used in combination as necessary.

ワイヤ供給装置10は制御装置1からのワイヤ供給速度指令により制御されるもので、周知のように図示外のモータ駆動のローラにて所定速度でフィラーワイヤ8をワイヤガイド9を通して送り出しながら、レーザ光照射部位(溶接部位)Pにできている溶融池12内にそのフィラーワイヤ8を順次供給する。   The wire supply device 10 is controlled by a wire supply speed command from the control device 1, and as is well known, a laser beam is sent while feeding a filler wire 8 through a wire guide 9 at a predetermined speed by a motor-driven roller (not shown). The filler wires 8 are sequentially supplied into the molten pool 12 formed at the irradiation site (welding site) P.

ビード形状測定装置11は、溶接直後のビードBの位置すなわちレーザ光3の照射によってできる溶融池12の後方位置を指向して、その溶接直後のビードBの形状を非接触にて光量変化もしくは画像情報として捉えて測定するためのもので、例えばレーザセンサ等が用いられる。ビード形状測定装置11はビードB表面からの反射光を受光してビードB表面のプロファイルデータを取得する。そして、ビード形状測定装置11の測定データは制御装置1に取り込まれ、内部処理により図2の(B)に示すようにビードBの幅寸法aのほかビードBの表面にできる窪みの深さであるところのアンダフィルbがリアルタイムで算出され、後述するようにこの実測アンダフィルbの大きさに応じてフィラーワイヤ8の供給量であるところのワイヤ供給量と溶接速度が可変制御される。なお、図2の(B)に示すように例えば差厚鋼板である母材W3,W4同士の突き合わせ溶接の場合でも同様にアンダフィルbが算出可能である。   The bead shape measuring device 11 is directed to the position of the bead B immediately after welding, that is, the rear position of the molten pool 12 formed by the irradiation of the laser beam 3, and the shape of the bead B immediately after welding is changed in a light amount or image without contact. For example, a laser sensor or the like is used. The bead shape measuring device 11 receives reflected light from the surface of the bead B and acquires profile data of the bead B surface. Then, the measurement data of the bead shape measuring device 11 is taken into the control device 1, and the internal processing is performed with the depth of the depression formed on the surface of the bead B in addition to the width dimension a of the bead B as shown in FIG. A certain underfill b is calculated in real time, and the wire supply amount and the welding speed as the supply amount of the filler wire 8 are variably controlled according to the size of the measured underfill b, as will be described later. As shown in FIG. 2B, for example, underfill b can be calculated in the case of butt welding of base materials W3 and W4, which are differential thickness steel plates.

ここで、図3〜6に示すように、溶接速度とその溶接の結果として形成されるビードBの幅aを4段階に変化させた時のフィラーワイヤ8の供給量であるワイヤ供給量と溶接可能な継手隙間Gの大きさとの関係を調べてみた。なお、レーザ出力および集光レンズ6の焦点距離は一定とした。また、ここではワイヤ供給量をワイヤ供給速度で管理している。   Here, as shown in FIGS. 3 to 6, the wire supply amount, which is the supply amount of the filler wire 8 when the welding speed and the width a of the bead B formed as a result of the welding are changed in four stages, and welding. The relationship with the size of the possible joint gap G was examined. The laser output and the focal length of the condenser lens 6 were constant. Here, the wire supply amount is managed by the wire supply speed.

図2に示したように、アンダフィルbはビードBの表面にできる窪みの深さであり、しかもアンダフィルbと溶接継手の強度との間には図7に示すような相関があることから、安定した溶接品質を確保する上ではアンダフィルbを所定範囲内のものとなるように管理する必要がある。図3〜6から明らかなように、溶接状態が良好(図3〜6では「OK」と表示)であるためには、溶接速度やビード幅aの大きさにかかわらずアンダフィルbが0.1〜0.2mmである必要がある。逆に、図8の(A)に示すようにビードBの表面が窪みとならずに盛り上がり(余盛)となった場合には、継手隙間が過大のためにビードBが未形成で未溶着状態である蓋然性が高いことになる。なお、この傾向は同図(A)の重ね溶接の場合だけでなく、同図(B),(C)の突き合わせ溶接およびすみ肉溶接の場合にも言い得ることである。   As shown in FIG. 2, the underfill b is the depth of the depression formed on the surface of the bead B, and there is a correlation as shown in FIG. 7 between the underfill b and the strength of the welded joint. In order to ensure stable welding quality, it is necessary to manage the underfill b to be within a predetermined range. As is apparent from FIGS. 3 to 6, in order to achieve a good welded state (indicated as “OK” in FIGS. 3 to 6), the underfill b is set to 0. 0 regardless of the welding speed and the bead width a. It must be 1 to 0.2 mm. On the other hand, as shown in FIG. 8A, when the surface of the bead B is raised (excessive) without becoming a depression, the bead B is not formed and is not welded because the joint gap is excessive. The probability of being in a state is high. This tendency can be said not only in the case of lap welding in FIG. 10A but also in the case of butt welding and fillet welding in FIGS.

さらに、図2から明らかなようにビードBが母材W2(同図(B)の突き合わせ溶接の場合には母材W3,W4)の裏面まで貫通していることもまた溶接継手としての強度の上で重要であり、図2,9に示すように貫通幅cがビードbの全幅(図2の(A)の幅寸法a)をもって貫通している状態を100%とした場合、ビードBの裏面貫通率が10〜100%(例えば0〜0.5mm程度)の範囲内であれば溶接継手としての強度が十分であることが判明している。逆に、ビードBの裏面貫通率が100%を越えてもビード幅bが貫通幅cとともに増加するだけでフィラーワイヤ8を余分に消費するだけであり、コスト的に不利になる。   Further, as apparent from FIG. 2, the fact that the bead B penetrates to the back surface of the base material W2 (base materials W3 and W4 in the case of butt welding shown in FIG. 2B) is also a strength of the welded joint. 2 and 9, when the penetration width c penetrates the entire width of the bead b (the width dimension a in FIG. 2A) is assumed to be 100%, It has been found that the strength as a welded joint is sufficient when the back surface penetration rate is in the range of 10 to 100% (for example, about 0 to 0.5 mm). On the contrary, even if the back surface penetration rate of the bead B exceeds 100%, only the filler wire 8 is consumed only by increasing the bead width b together with the penetration width c, which is disadvantageous in terms of cost.

そこで、図3〜6のうち「☆印(星印)」をもって表示した条件が「アンダフィルbが0.1〜0.2mmの範囲」で且つ「ビードBの裏面貫通率が10〜100%の範囲内」を満たす最適条件ということになり、これを整理すると表1のようになる。ここで、表1は図3〜6のうち星印で表示された条件のみを抜粋して整理したものであって、継手隙間Gの大きさに応じてフィラーワイヤ8の供給量が最小となり且つ溶接速度が最大となるときの条件と、その条件下でのビードBの形状を示している。つまり、表1からは、継手隙間GとビードBの幅aとは比例関係にあるものの、それらの継手隙間GおよびビードBの幅aの大小にかかわらずアンダフィルbは一定していることが理解できる。   Therefore, in FIG. 3 to FIG. 6, the condition indicated by “☆ (star)” is “underfill b is in the range of 0.1 to 0.2 mm” and “bead B has a back surface penetration rate of 10 to 100%. It is an optimum condition that satisfies “within the range of”. Here, Table 1 is an excerpt of only the conditions indicated by stars in FIGS. 3 to 6, and the supply amount of the filler wire 8 is minimized according to the size of the joint gap G, and The conditions when the welding speed is maximized and the shape of the bead B under the conditions are shown. That is, from Table 1, although the joint gap G and the width a of the bead B are proportional, the underfill b is constant regardless of the size of the joint gap G and the width a of the bead B. Understandable.

Figure 2006136904
Figure 2006136904

本実施の形態では「アンダフィルbが0.1〜0.2mmの範囲」の条件を満たすように当該範囲を設定目標値として、ワイヤ供給量であるところのフィラーワイヤ8の供給速度と溶接速度をそれぞれ可変制御するものとする。言い換えるならば、図3〜6から明らかなように、同じ溶接速度でも継手隙間Gが異なると「アンダフィルbが0.1〜0.2mmの範囲」となる領域が複数存在し、しかも図3〜6の星印以外の領域ではさらに溶接速度を高めることが可能なため、フィラーワイヤ8の供給量に応じた溶接速度を表1のように予め設定しておくものとする。   In this embodiment, the range is set as a target value so as to satisfy the condition of “underfill b is in the range of 0.1 to 0.2 mm”, and the supply speed and welding speed of the filler wire 8 as the wire supply amount. Are variably controlled. In other words, as is apparent from FIGS. 3 to 6, when the joint gap G is different even at the same welding speed, there are a plurality of regions where “underfill b is in the range of 0.1 to 0.2 mm”, and FIG. Since it is possible to further increase the welding speed in the region other than the asterisks of ˜6, the welding speed corresponding to the supply amount of the filler wire 8 is set in advance as shown in Table 1.

より詳しくは、図1の状態において、レーザ光3の照射部位付近には溶融池12が形成され、レーザ光3の移動に伴い溶融池12の後方側では溶融金属が再凝固してビードBを形成することから、そのビードBの形状をビード形状測定装置11にて測定するとともに、その測定データに基づき制御装置1にてビードBの該当部位の幅寸法a(図2参照)のほか実測アンダフィルbをリアルタイムで算出する。さらに、制御装置1では予め設定されているアンダフィルbの設定目標値と実測アンダフィルbとを比較し、実測アンダフィルbが設定目標値よりも大きい場合には、表1のようにフィラーワイヤ8の供給量であるワイヤ供給速度を段階的に高くする(ワイヤ供給量を増加させる)とともに、それに合わせて溶接速度を段階的に低下させる。   More specifically, in the state of FIG. 1, a molten pool 12 is formed in the vicinity of the irradiated portion of the laser beam 3, and the molten metal resolidifies on the rear side of the molten pool 12 with the movement of the laser beam 3, and the bead B is formed. Since the shape of the bead B is measured, the bead shape measuring device 11 measures the shape of the bead B, and based on the measurement data, the control device 1 measures the undersize of the corresponding part of the bead B (see FIG. 2) and the measured under. Fill b is calculated in real time. Further, the control device 1 compares the preset target value of the underfill b with the actually measured underfill b. If the actually measured underfill b is larger than the set target value, the filler wire as shown in Table 1 is used. The wire supply speed, which is the supply amount of 8, is increased stepwise (the wire supply amount is increased), and the welding speed is decreased stepwise accordingly.

逆に、実測アンダフィルbが設定目標値よりも小さい場合には、表1のようにワイヤ供給速度を段階的に小さくする(ワイヤ供給量を増加させる)とともに、それに合わせて溶接速度を段階的に増加させる。   On the contrary, when the measured underfill b is smaller than the set target value, the wire supply speed is decreased stepwise (increase the wire supply amount) as shown in Table 1, and the welding speed is increased stepwise accordingly. Increase to.

また、表1のように、ワイヤ供給速度(ワイヤ供給量)が「0」の場合にアンダフィルbも「0」になった場合、およびフィラーワイヤ8を供給している場合にアンダフィルbに代えて逆に図8の(A)のような盛り上がりが例えば許容限界である0.2mmを越えたような場合には、同図で示したような未溶着が発生したものと判断して異常信号の発生、アラーム停止等の処理を行う。なお、上記のような盛り上がりの許容限界値は予め設定しておくものとする。   Further, as shown in Table 1, when the wire supply speed (wire supply amount) is “0”, the underfill b also becomes “0”, and when the filler wire 8 is supplied, the underfill b is changed. Instead, if the bulge as shown in FIG. 8A exceeds the allowable limit of 0.2 mm, for example, it is judged that unwelding as shown in FIG. Processes such as signal generation and alarm stop. It should be noted that the above-described allowable limit value for swell is set in advance.

同様に、上記のような処理と並行して、表1の溶接速度ごとに予め設定されているビードBの幅寸法の設定目標値と実測ビード幅aとを比較して、実測ビード幅aが設定目標値の範囲から外れた場合には、レーザ出力の低下、焦点の異常等が発生している可能性があるため、上記と同様に異常信号の発生、アラーム停止等の処理を行う。   Similarly, in parallel with the processing as described above, the set target value of the width dimension of the bead B set in advance for each welding speed in Table 1 is compared with the measured bead width a, and the measured bead width a is determined. If it is out of the set target value range, there is a possibility that the laser output is reduced, the focus is abnormal, etc., so that processing such as generation of an abnormal signal and alarm stop is performed as described above.

このように継手隙間Gの変化に起因して溶接後のビードBの形状が変化したとしても、常に継手隙間Gの大きさに応じたほぼ理想的な溶接条件で溶接が可能となり、フィラーワイヤ8の供給量の適正化と、許容される溶接速度の最大速度での溶接が可能となる。   Thus, even if the shape of the bead B after welding changes due to the change in the joint gap G, welding can always be performed under almost ideal welding conditions according to the size of the joint gap G, and the filler wire 8 Therefore, it is possible to optimize the supply amount and to weld at the maximum allowable welding speed.

なお、亜鉛めっき鋼板の重ね溶接では、常に継手隙間Gを確保していないとポロシテー(溶着金属中の小さなブローホールの群)が発生して溶接不良となる。そこで、このような場合には、例えば表1の最上段のようにフィラーワイヤ8を供給することなしに溶接が可能な条件下であっても極少量(極低速)にてフィラーワイヤ8を供給しながら溶接を行うものとする。   In the lap welding of galvanized steel sheets, if the joint gap G is not always ensured, porosity (group of small blow holes in the weld metal) is generated, resulting in poor welding. In such a case, for example, the filler wire 8 is supplied in a very small amount (very low speed) even under conditions where welding is possible without supplying the filler wire 8 as shown in the uppermost table of Table 1. Welding shall be performed.

さらに、ビード形状測定装置11として非接触式のものを採用したことにより、溶接部位の近くにビード形状測定装置11を設置する必要がなく、スパッタやビードB生成直後の熱的影響による機能劣化を未然に防止できるほか、溶接部位の近くでの設計自由度を大きく確保することが可能となる。   Furthermore, by adopting a non-contact type bead shape measuring device 11, it is not necessary to install the bead shape measuring device 11 near the welded portion, and functional deterioration due to thermal influence immediately after spattering or bead B generation is achieved. In addition to being able to prevent this, it is possible to ensure a large degree of design freedom near the welded part.

図10は本発明の第2の実施の形態を示し、図1と共通する部分には同一符号を付してある。   FIG. 10 shows a second embodiment of the present invention, and the same reference numerals are given to the portions common to FIG.

この第2の実施の形態では、ビード形状測定装置11とは別にビードB裏面の貫通率(貫通度)を非接触で測定するする貫通度測定装置(貫通度測定手段)13を併用するようにしたものである。   In this second embodiment, a penetration measuring device (penetration measuring means) 13 that measures the penetration rate (penetration) of the back surface of the bead B in a non-contact manner is used in addition to the bead shape measuring device 11. It is a thing.

ここでの貫通度測定装置13としてはビード形状測定装置11と同様の非接触式のものが用いられ、ビード形状測定装置11による測定部位の反対側において母材W1,W2の裏面まで貫通したビードBの貫通幅c(図2参照)を光学的もしくは画像情報として測定する。そして、貫通度測定装置13にて得られた測定データもまた制御装置1に取り込まれて、ビードBの幅寸法aを100%とした場合の百分率でビードBの裏面貫通率をリアルタイムで算出した上で、予め設定されている設定目標値と照合することになる。   As the penetration measuring device 13, a non-contact type device similar to the bead shape measuring device 11 is used, and a bead penetrating to the back surfaces of the base materials W1 and W2 on the opposite side of the measurement site by the bead shape measuring device 11. The penetration width c (see FIG. 2) of B is measured as optical or image information. Then, the measurement data obtained by the penetration measuring device 13 is also taken into the control device 1, and the back surface penetration rate of the bead B is calculated in real time as a percentage when the width dimension a of the bead B is 100%. Above, it collates with the preset target value set beforehand.

なお、貫通度測定装置13は図11に示すようにブラケット14を介してレーザヘッド7に一体的に取り付けてある。ただし、貫通度測定装置13がレーザヘッド7と一体であることは必ずしも必要ではなく、要はビード形状測定装置11による測定部位と反対側の位置にてビードBの貫通幅cを測定できればよく、例えば図12のように母材W1,W2の裏面側に貫通度測定装置13を独立配置して、その貫通度測定装置13をレーザヘッド7と同期して移動させるようにしてもよい。   The penetration measuring device 13 is integrally attached to the laser head 7 via a bracket 14 as shown in FIG. However, it is not always necessary for the penetration measuring device 13 to be integrated with the laser head 7, and the point is that the penetration width c of the bead B can be measured at a position opposite to the measurement site by the bead shape measuring device 11. For example, as shown in FIG. 12, the penetration measuring device 13 may be arranged independently on the back side of the base materials W1 and W2, and the penetration measuring device 13 may be moved in synchronization with the laser head 7.

本実施の形態では、表1のようなワイヤ供給量と溶接速度との関係を予め設定しておくことなしに、アンダフィルbの設定目標値と裏面貫通率の設定目標値のみを予め設定しておき、実測アンダフィルbの度合いに応じてフィラーワイヤ8のワイヤ供給量(ワイヤ供給速度)を、実測裏面貫通率の度合いに応じて溶接速度をそれぞれ可変制御するものとする。より具体的には、実測アンダフィルbが設定目標値よりも大きい場合には、ワイヤ供給速度を高くする(ワイヤ供給量を増加させる)一方、実測アンダフィルbが設定目標値よりも小さい場合には、ワイヤ供給速度を小さくする(ワイヤ供給量を増加させる)。また、実測裏面貫通率が設定目標値よりも大きい場合には、溶接速度を増加させる一方、実測裏面貫通率が設定目標値よりも小さい場合には、溶接速度を低下させる。   In the present embodiment, without setting the relationship between the wire supply amount and the welding speed as shown in Table 1, only the set target value for the underfill b and the set target value for the back surface penetration rate are set in advance. It is assumed that the wire supply amount (wire supply speed) of the filler wire 8 is variably controlled according to the measured underfill b and the welding speed is variably controlled according to the measured back surface penetration rate. More specifically, when the measured underfill b is larger than the set target value, the wire supply speed is increased (the wire supply amount is increased), while when the measured underfill b is smaller than the set target value. Reduces the wire feed rate (increases the wire feed rate). Further, when the actually measured back surface penetration rate is larger than the set target value, the welding speed is increased. On the other hand, when the actually measured back surface penetration rate is smaller than the set target value, the welding speed is decreased.

この場合において、表1のようなワイヤ供給量と溶接速度との関係を予め設定しておき、ワイヤ供給量および溶接速度を先の第1の実施の形態と同様に段階的に可変制御するようにすることももちろん可能である。   In this case, the relationship between the wire supply amount and the welding speed as shown in Table 1 is set in advance, and the wire supply amount and the welding speed are variably controlled stepwise as in the first embodiment. Of course, it is also possible.

図13,14は本発明の第3,第4の実施の形態を示し、図1と共通する部分には同一符号を付してあるとともに、要部以外の構成は図示省略してある。   13 and 14 show the third and fourth embodiments of the present invention. The same reference numerals are given to the parts common to FIG. 1, and the configuration other than the main parts is not shown.

図13,14に示す第3,第4の実施の形態では、溶接継手を形成することになる母材W1,W2同士の間にできる隙間Gを極小化するべく、溶接部位の近傍を強制的に加圧拘束する隙間矯正手段としての加圧ピン15または加圧ローラ16をブラケット17を介してレーザヘッド7に付帯させたものである。   In the third and fourth embodiments shown in FIGS. 13 and 14, the vicinity of the welded portion is forcibly made to minimize the gap G formed between the base materials W1 and W2 that form the weld joint. A pressure pin 15 or a pressure roller 16 is attached to the laser head 7 via a bracket 17 as a gap correction means for restraining the pressure.

この実施の形態によれば、継手隙間Gが小さくなることで溶接速度の向上とともにワイヤ供給量の低減化を実現でき、生産性が一段と向上するほか、矯正前の継手隙間Gが隙間許容度を超えている場合でも矯正により溶接可能となる。その上、母材とレーザ光学系の距離を一定に保てることで溶接品質が安定化する。特に、焦点距離のずれによるビードBの形状の変化を未然に防止できることで、そのビードBの形状の変化による継手隙間Gの変化を高精度で検知可能となる利点がある。   According to this embodiment, the joint gap G can be reduced, so that the welding speed can be improved and the wire supply amount can be reduced, the productivity can be further improved, and the joint gap G before correction can increase the gap tolerance. Even if it exceeds, welding becomes possible by straightening. In addition, the welding quality is stabilized by keeping the distance between the base material and the laser optical system constant. In particular, since the change in the shape of the bead B due to the deviation of the focal length can be prevented in advance, there is an advantage that the change in the joint gap G due to the change in the shape of the bead B can be detected with high accuracy.

ここで、上記の各実施の形態において溶接品質をより厳格に管理する必要がある場合には、例えば特開2003−320467号公報に開示されているようなモニタリングシステムを併用することが望ましい。   Here, when it is necessary to more strictly manage the welding quality in each of the above-described embodiments, it is desirable to use a monitoring system as disclosed in, for example, JP-A-2003-320467.

すなわち、レーザ溶接のために溶接部位に照射されたYAGレーザ光3の反射光および同溶接部位で発生するプラズマ光を光センサにて検出し、これを電気信号に変換した上でその電気信号の経時変化として記憶し、当該信号のFFT波形を算出する。そして、算出されたFFT波形周波数帯(α)における信号強度の総和f(α)と周波数帯(β)における信号強度の総和f(β)とを算出し、それぞれの信号強度の総和f(α)とf(β)を、二次元座標系を構成するX軸とY軸にそれぞれプロットして、直線X=f(α)とY=f(β)の交点を求める。さらに、YAGレーザ光によって溶接されたワークの溶接部の品質の検査結果に基づいて、求められた交点の品質の種類を特定し、上記一連の段階を繰り返すことによって品質の種別(良品、ポロシテー、アンダフィル、未溶着)の領域を二次元座標系内に作成するようにするのが望ましい。   That is, the reflected light of the YAG laser beam 3 irradiated to the welded part for laser welding and the plasma light generated at the welded part are detected by an optical sensor, converted into an electric signal, and the electric signal This is stored as a change with time, and the FFT waveform of the signal is calculated. Then, a total signal strength sum f (α) in the calculated FFT waveform frequency band (α) and a total signal strength f (β) in the frequency band (β) are calculated, and the total sum f (α of each signal strength is calculated. ) And f (β) are respectively plotted on the X axis and the Y axis constituting the two-dimensional coordinate system, and the intersection of the straight lines X = f (α) and Y = f (β) is obtained. Furthermore, based on the inspection result of the quality of the welded part of the workpiece welded by the YAG laser beam, the type of quality of the obtained intersection point is specified, and the type of quality (good product, porositating, It is desirable to create a region of underfill and non-welding in a two-dimensional coordinate system.

本発明に係るレーザ溶接装置のより具体的な第1の実施の形態を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing which shows more concrete 1st Embodiment of the laser welding apparatus which concerns on this invention. (A)は重ね溶接継手の断面説明図、(B)は突き合わせ溶接継手の断面説明図。(A) is sectional explanatory drawing of a lap welding joint, (B) is sectional explanatory drawing of a butt-welding joint. 溶接速度とビード幅を一定としたときのワイヤ供給速度と溶接可能な継手隙間との関係を示す特性図。The characteristic view which shows the relationship between the wire supply speed when welding speed and bead width are made constant, and the joint clearance gap which can be welded. 溶接速度とビード幅を一定としたときのワイヤ供給速度と溶接可能な継手隙間との関係を示す特性図。The characteristic view which shows the relationship between the wire supply speed when welding speed and bead width are made constant, and the joint clearance gap which can be welded. 溶接速度とビード幅を一定としたときのワイヤ供給速度と溶接可能な継手隙間との関係を示す特性図。The characteristic view which shows the relationship between the wire supply speed when welding speed and bead width are made constant, and the joint clearance gap which can be welded. 溶接速度とビード幅を一定としたときのワイヤ供給速度と溶接可能な継手隙間との関係を示す特性図。The characteristic view which shows the relationship between the wire supply speed when welding speed and bead width are made constant, and the joint clearance gap which can be welded. アンダフィルと溶接継手としての強度との関係を示す特性図。The characteristic view which shows the relationship between underfill and the intensity | strength as a welded joint. (A)は重ね溶接継手の断面説明図、(B)は突き合わせ溶接継手の断面説明図。(C)はすみ肉溶接継手の断面説明図。(A) is sectional explanatory drawing of a lap welding joint, (B) is sectional explanatory drawing of a butt-welding joint. (C) Cross-sectional explanatory drawing of a fillet weld joint. ビードの裏面貫通度と溶接継手としての強度との関係を示す特性図。The characteristic view which shows the relationship between the back surface penetration degree of a bead, and the intensity | strength as a welded joint. 本発明の第2の実施の形態を示す構成説明図。The structure explanatory view showing the 2nd embodiment of the present invention. 図10の要部の詳細説明図。Detailed explanatory drawing of the principal part of FIG. 図11の変形例を示す説明図。Explanatory drawing which shows the modification of FIG. 本発明の第3の実施の形態を示す要部構成説明図。The principal part structure explanatory drawing which shows the 3rd Embodiment of this invention. 本発明の第4の実施の形態を示す要部構成説明図。The principal part structure explanatory drawing which shows the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1…制御装置(制御手段)
2…YAGレーザ発振器
3…レーザ光
5…レーザ光学系
6…集光レンズ(レーザ光学系)
7…レーザヘッド
8…フィラーワイヤ
10…ワイヤ供給装置(ワイヤ供給手段)
11…ビード形状測定装置
13…貫通度測定装置(貫通度測定手段)
15…加圧ピン(隙間矯正手段)
16…加圧ローラ(隙間矯正手段)
a…ビード幅
B…ビード
b…アンダフィル
c…裏面貫通幅
G…継手隙間
P…溶接部位
W1,W2…母材
1 ... Control device (control means)
2 ... YAG laser oscillator 3 ... Laser light 5 ... Laser optical system 6 ... Condensing lens (laser optical system)
7 ... Laser head 8 ... Filler wire 10 ... Wire supply device (wire supply means)
11 ... Bead shape measuring device 13 ... Penetration measuring device (penetration measuring means)
15 ... Pressure pin (clearance correction means)
16 ... Pressure roller (clearance correction means)
a ... bead width B ... bead b ... underfill c ... back surface penetration width G ... joint gap P ... welding site W1, W2 ... base material

Claims (6)

溶接部位に対しレーザ光を照射するレーザ光学系と、
上記溶接部位に対しフィラーワイヤを供給するワイヤ供給手段と、
溶接動作と並行して溶接直後のビードの形状を測定するビード形状測定手段と、
上記ビード形状測定手段の測定データから得られた実測アンダフィルが所定の範囲内のものとなるように溶接動作中にフィラーワイヤの供給量および溶接速度を可変制御する制御手段と、
を備えていることを特徴とするレーザ溶接装置。
A laser optical system for irradiating the welding site with laser light;
Wire supply means for supplying a filler wire to the weld site;
Bead shape measuring means for measuring the shape of the bead immediately after welding in parallel with the welding operation;
Control means for variably controlling the supply amount and welding speed of the filler wire during the welding operation so that the measured underfill obtained from the measurement data of the bead shape measuring means is within a predetermined range;
A laser welding apparatus comprising:
上記ビード形状測定手段が非接触式のものであることを特徴とする請求項1に記載のレーザ溶接装置。   2. The laser welding apparatus according to claim 1, wherein the bead shape measuring means is a non-contact type. 溶接形態が重ね溶接またはすみ肉溶接であって、溶接部位において母材同士のなす隙間を矯正する隙間矯正手段を備えていることを特徴とする請求項1または2に記載のレーザ溶接装置。   3. The laser welding apparatus according to claim 1, wherein the welding mode is lap welding or fillet welding, and includes a gap correction unit that corrects a gap between the base materials at a welding site. ビード形状測定手段とは別にビードの裏側での当該ビードの貫通度合いを測定する貫通度測定手段とを備えていて、
上記制御手段は、実測アンダフィルに応じてフィラーワイヤの供給量を、ビードの貫通度合いに応じて溶接速度をそれぞれ可変制御するものであることを特徴とする請求項1〜3のいずれかに記載のレーザ溶接装置。
In addition to the bead shape measuring means, a penetration degree measuring means for measuring the degree of penetration of the bead on the back side of the bead is provided,
The said control means variably controls the supply rate of the filler wire according to the measured underfill, and the welding speed according to the penetration degree of the bead, respectively. Laser welding equipment.
溶接部位に対しレーザ光を照射するとともに同部位に対しフィラーワイヤを供給しながら溶接を行う方法であって、
溶接動作と並行して溶接直後のビードの形状を測定し、
そのビード形状の測定データから得られた実測アンダフィルが所定の範囲内のものとなるようにフィラーワイヤの供給量および溶接速度を可変制御することを特徴とするレーザ溶接方法。
A method of performing welding while irradiating a laser beam to a welding part and supplying a filler wire to the same part,
In parallel with the welding operation, measure the shape of the bead immediately after welding,
A laser welding method characterized by variably controlling the amount of filler wire supplied and the welding speed so that the measured underfill obtained from the measurement data of the bead shape falls within a predetermined range.
ビード形状の測定とは別にビードの裏側での当該ビードの貫通度合いを測定し、
上記ビード形状測定に基づく実測アンダフィルに応じてフィラーワイヤの供給量を、上記ビードの貫通度合いに応じて溶接速度をそれぞれ可変制御することを特徴とする請求項5に記載のレーザ溶接方法。
In addition to measuring the bead shape, measure the degree of penetration of the bead on the back side of the bead,
6. The laser welding method according to claim 5, wherein the supply amount of the filler wire is variably controlled according to the measured underfill based on the bead shape measurement, and the welding speed is variably controlled according to the penetration degree of the bead.
JP2004326724A 2004-11-10 2004-11-10 Apparatus and method of laser beam welding Pending JP2006136904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326724A JP2006136904A (en) 2004-11-10 2004-11-10 Apparatus and method of laser beam welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326724A JP2006136904A (en) 2004-11-10 2004-11-10 Apparatus and method of laser beam welding

Publications (1)

Publication Number Publication Date
JP2006136904A true JP2006136904A (en) 2006-06-01

Family

ID=36618038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326724A Pending JP2006136904A (en) 2004-11-10 2004-11-10 Apparatus and method of laser beam welding

Country Status (1)

Country Link
JP (1) JP2006136904A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179329A (en) * 2009-02-04 2010-08-19 Mazda Motor Corp Laser welding method and laser welding equipment
JP2010184273A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Laser welding method and laser welding apparatus
JP2010188350A (en) * 2009-02-16 2010-09-02 Mazda Motor Corp Laser welding method and apparatus
JP2011050997A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Laser beam welding apparatus and laser beam welding method
JP2011056556A (en) * 2009-09-11 2011-03-24 Mazda Motor Corp Laser beam welding method and laser beam welding apparatus
JP2011062703A (en) * 2009-09-15 2011-03-31 Mazda Motor Corp Laser beam welding apparatus and laser beam welding method
JP2013002985A (en) * 2011-06-17 2013-01-07 Denso Corp Weld inspection device
JP2016087694A (en) * 2014-11-05 2016-05-23 エーエスエム・テクノロジー・シンガポール・ピーティーイー・リミテッド Laser fiber array for dicing semiconductor wafer
JP2020531290A (en) * 2017-08-31 2020-11-05 バオスチール テイラード ブランクス ゲゼルシャフトミット ベシュレンクテル ハフツングBaosteel Tailored Blanks GmbH Methods for Laser Beam Welding of One or More Steel Sheets Made of Press-Curable Manganese-Boron Steel
WO2021149683A1 (en) * 2020-01-20 2021-07-29 株式会社ニコン Processing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179329A (en) * 2009-02-04 2010-08-19 Mazda Motor Corp Laser welding method and laser welding equipment
JP2010184273A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Laser welding method and laser welding apparatus
JP2010188350A (en) * 2009-02-16 2010-09-02 Mazda Motor Corp Laser welding method and apparatus
JP2011050997A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Laser beam welding apparatus and laser beam welding method
JP2011056556A (en) * 2009-09-11 2011-03-24 Mazda Motor Corp Laser beam welding method and laser beam welding apparatus
JP2011062703A (en) * 2009-09-15 2011-03-31 Mazda Motor Corp Laser beam welding apparatus and laser beam welding method
JP2013002985A (en) * 2011-06-17 2013-01-07 Denso Corp Weld inspection device
JP2016087694A (en) * 2014-11-05 2016-05-23 エーエスエム・テクノロジー・シンガポール・ピーティーイー・リミテッド Laser fiber array for dicing semiconductor wafer
US10307867B2 (en) 2014-11-05 2019-06-04 Asm Technology Singapore Pte Ltd Laser fiber array for singulating semiconductor wafers
JP2020531290A (en) * 2017-08-31 2020-11-05 バオスチール テイラード ブランクス ゲゼルシャフトミット ベシュレンクテル ハフツングBaosteel Tailored Blanks GmbH Methods for Laser Beam Welding of One or More Steel Sheets Made of Press-Curable Manganese-Boron Steel
WO2021149683A1 (en) * 2020-01-20 2021-07-29 株式会社ニコン Processing system

Similar Documents

Publication Publication Date Title
US20120024828A1 (en) Method of hybrid welding and hybrid welding apparatus
US10807191B2 (en) Laser welding method, laser welding conditions determining method, and laser welding system
WO2016189855A1 (en) Laser welding method
US6770840B2 (en) Method of butt-welding hot-rolled steel materials by laser beam and apparatus therefor
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JP2006136904A (en) Apparatus and method of laser beam welding
JP2005313236A (en) Butt welding method
JP2005254282A (en) Method for manufacturing butt-welded metallic plates by laser
KR100375544B1 (en) Method and apparatus for butt welding of hot rolled billet with laser beam
JP6335602B2 (en) Laser welding method
JP2004330299A (en) Laser welding method excellent in weld strength
JP2010120023A (en) Laser welding method and laser welding device used for the same
JP2007000909A (en) Laser beam welding equipment and laser beam welding method
JP2008119708A (en) Laser beam welding method for metal plate
US11801573B2 (en) Tack welding method and tack welding apparatus
JP2008000764A (en) Method, device and equipment for laser beam welding
JP2005138126A (en) Welding system
JP2014024078A (en) Laser welding apparatus
JP7284014B2 (en) Laser-arc hybrid welding equipment
JP6261406B2 (en) Welding apparatus and welding method
JP6211340B2 (en) Welding apparatus and welding method
JP2009202222A (en) Laser beam welding method and laser beam welding apparatus
KR101360562B1 (en) Welding apparatus and operating method thereof
WO2023153018A1 (en) Laser beam welding method, welding machine for same, and butt welded joint
WO1995029034A1 (en) Method for welding automatic pipe forming machine