JP2010103572A - Method for manufacturing solar cell element, and solar cell element - Google Patents

Method for manufacturing solar cell element, and solar cell element Download PDF

Info

Publication number
JP2010103572A
JP2010103572A JP2010025011A JP2010025011A JP2010103572A JP 2010103572 A JP2010103572 A JP 2010103572A JP 2010025011 A JP2010025011 A JP 2010025011A JP 2010025011 A JP2010025011 A JP 2010025011A JP 2010103572 A JP2010103572 A JP 2010103572A
Authority
JP
Japan
Prior art keywords
solar cell
cell element
collector electrode
screen printing
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010025011A
Other languages
Japanese (ja)
Other versions
JP2010103572A5 (en
Inventor
Hironobu Tsujimoto
博信 辻本
Hitoshi Sakata
仁 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010025011A priority Critical patent/JP2010103572A/en
Publication of JP2010103572A publication Critical patent/JP2010103572A/en
Publication of JP2010103572A5 publication Critical patent/JP2010103572A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell element which reduces irregularities of the surface of a collector electrode formed in a screen printing process step to reduce its resistance value, and contributes to improvement in photoelectric conversion performance. <P>SOLUTION: When the collector electrode 5 of the solar cell element is formed (d) by conductive paste screen printing, screen printing treatment is repeated two or more times. At this moment, each screen printing treatment is executed using a different mesh pattern. By repeating screen printing treatment plural times, the surface of the collector electrode 5 formed is flattened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池素子の製造方法及び太陽電池素子に関する。   The present invention relates to a method for manufacturing a solar cell element and a solar cell element.

図5は、結晶系半導体と非晶質半導体とを用いたpin接合を有する太陽電池素子の構造を示す断面図である。図5において、1は単結晶シリコン,多結晶シリコン等の結晶系半導体からなるn型の結晶系シリコン基板である。結晶系シリコン基板1の一方の主面上には、i型の非晶質シリコン層2,p型の非晶質シリコン層3がこの順に積層され、更にその上に、例えばITOからなる透光性導電膜4及びAgからなる櫛形状の集電極5が形成されている。結晶系シリコン基板1の他方の主面上には、i型の非晶質シリコン層6,n型の非晶質シリコン層7がこの順に積層され、更にその上に、例えばITOからなる透光性導電膜8及びAgからなる櫛形状の集電極9が形成されている。   FIG. 5 is a cross-sectional view showing the structure of a solar cell element having a pin junction using a crystalline semiconductor and an amorphous semiconductor. In FIG. 5, reference numeral 1 denotes an n-type crystalline silicon substrate made of a crystalline semiconductor such as single crystal silicon or polycrystalline silicon. On one main surface of the crystalline silicon substrate 1, an i-type amorphous silicon layer 2 and a p-type amorphous silicon layer 3 are laminated in this order, and a light transmitting material made of, for example, ITO is further formed thereon. Comb-shaped collector electrode 5 made of conductive conductive film 4 and Ag is formed. On the other main surface of the crystalline silicon substrate 1, an i-type amorphous silicon layer 6 and an n-type amorphous silicon layer 7 are laminated in this order. Comb-shaped collector electrode 9 made of conductive conductive film 8 and Ag is formed.

このような太陽電池素子は、次のような手順にて製造される。まず、プラズマCVD法を用いて、結晶系シリコン基板1の一方の主面にi型の非晶質シリコン層2,p型の非晶質シリコン層3を連続的に形成し、また、他方の主面にi型の非晶質シリコン層6,n型の非晶質シリコン層7を連続的に形成する。次に、スパッタリング法にて、非晶質シリコン層3及び非晶質シリコン層7上に透光性導電膜4及び透光性導電膜8を形成し、更に、スクリーン印刷法にて、透光性導電膜4及び透光性導電膜8上に櫛形状の集電極5及び集電極9を形成する。   Such a solar cell element is manufactured by the following procedure. First, an i-type amorphous silicon layer 2 and a p-type amorphous silicon layer 3 are continuously formed on one main surface of the crystalline silicon substrate 1 using a plasma CVD method, An i-type amorphous silicon layer 6 and an n-type amorphous silicon layer 7 are continuously formed on the main surface. Next, a light-transmitting conductive film 4 and a light-transmitting conductive film 8 are formed on the amorphous silicon layer 3 and the amorphous silicon layer 7 by a sputtering method, and further, a light-transmitting film is formed by a screen printing method. Comb-shaped collector electrode 5 and collector electrode 9 are formed on conductive conductive film 4 and translucent conductive film 8.

このような構造の太陽電池素子では、結晶系シリコン基板1以外の各層の形成を、プラズマCVD法,スパッタリング法,スクリーン印刷法等の方法を用いて全て200℃以下の温度で行うことができるので、基板の反りの発生を防止でき、しかも製造コストの低減化を図ることができる。このような構造の太陽電池素子では、非晶質シリコン層2,3,6,7への熱的ダメージを抑えるために、低温環境にて作製されるので、集電極5,9用のAgペーストも低温・乾燥用のペーストが使用されており、このため抵抗値が高くなっている。   In the solar cell element having such a structure, each layer other than the crystalline silicon substrate 1 can be formed at a temperature of 200 ° C. or lower using a method such as plasma CVD, sputtering, or screen printing. Further, it is possible to prevent the substrate from warping and to reduce the manufacturing cost. Since the solar cell element having such a structure is manufactured in a low temperature environment in order to suppress thermal damage to the amorphous silicon layers 2, 3, 6, 7, the Ag paste for the collector electrodes 5, 9 is used. Also, pastes for low temperature and drying are used, and thus the resistance value is high.

図6は、上述した太陽電池素子の製造方法で利用される導電性ペースト(Agペースト)のスクリーン印刷工程を示す模式図であり、図6(a)はその処理工程の中途を示し、図6(b)はそれが終了した後の電極の形状を示している。乳剤11及びメッシュ12を一体化させ、電極を形成する部位に対応して乳剤11を欠損させたスクリーンメッシュ17を下地体13に被せ、スキージ14を移動させて導電ペースト15を下地体13上に塗布して、所定幅の電極16を形成する。   FIG. 6 is a schematic diagram showing a screen printing process of a conductive paste (Ag paste) used in the above-described method for manufacturing a solar cell element, and FIG. 6 (a) shows the middle of the processing process. (B) shows the shape of the electrode after it is finished. Emulsion 11 and mesh 12 are integrated, and screen mesh 17 lacking emulsion 11 corresponding to the part where the electrode is to be formed is placed on base 13, and squeegee 14 is moved to place conductive paste 15 on base 13 The electrode 16 having a predetermined width is formed by coating.

このようなスクリーン印刷処理にあっては、1回の印刷処理で120 μmの線幅に対して40μmの厚さが限界でありバラツキも多い。また、図6(b)に示すように、メッシュ12のパターン形状に起因する電極16の凹凸が大きい。このような原因により、抵抗が高くなって、電流のロスが大きく、光電変換特性の向上を阻害する要因となっている。   In such a screen printing process, the thickness of 40 μm is the limit with respect to the line width of 120 μm in one printing process, and there are many variations. Further, as shown in FIG. 6B, the unevenness of the electrode 16 due to the pattern shape of the mesh 12 is large. Due to such a cause, the resistance becomes high, the loss of current is large, and the improvement of the photoelectric conversion characteristics is hindered.

本発明は斯かる事情に鑑みてなされたものであり、スクリーン印刷工程にて形成する電極の表面の凹凸を低減してその抵抗値の低減化を図ることができ、光電変換特性の向上にも寄与できる太陽電池素子の製造方法及び太陽電池素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to reduce the unevenness of the surface of the electrode formed in the screen printing process to reduce its resistance value, and to improve the photoelectric conversion characteristics. It aims at providing the manufacturing method of a solar cell element which can contribute, and a solar cell element.

本発明の他の目的は、タブを容易に集電極に付けることができ、集電極とリード線との密着性も良好となる太陽電池素子の製造方法及び太陽電池素子を提供することにある。   Another object of the present invention is to provide a method of manufacturing a solar cell element and a solar cell element in which a tab can be easily attached to a collector electrode and the adhesion between the collector electrode and a lead wire is good.

請求項1に係る太陽電池素子の製造方法は、導電性ペーストをスクリーン印刷して集電極を形成する工程を有する太陽電池素子の製造方法において、前記導電性ペーストのスクリーン印刷処理を複数回繰り返すことを特徴とする。   The method for manufacturing a solar cell element according to claim 1 is a method for manufacturing a solar cell element including a step of screen-printing a conductive paste to form a collecting electrode, and repeating the screen printing process of the conductive paste a plurality of times. It is characterized by.

請求項2に係る太陽電池素子の製造方法は、請求項1において、前記複数回のスクリーン印刷処理毎に、スクリーンメッシュのパターンを異ならせることを特徴とする。   According to a second aspect of the present invention, there is provided a method for manufacturing a solar cell element according to the first aspect, wherein the screen mesh pattern is changed for each of the plurality of screen printing processes.

請求項3に係る太陽電池素子の製造方法は、請求項1または2において、前記導電性ペーストはAgを主成分とすることを特徴とする。   The method for producing a solar cell element according to claim 3 is characterized in that, in claim 1 or 2, the conductive paste contains Ag as a main component.

請求項4に係る太陽電池素子の製造方法は、請求項1〜3の何れかにおいて、前記複数回のスクリーン印刷処理において、1回目のスクリーン印刷処理と2回目以降のスクリーン印刷処理とで導電性ペーストの材料が異なっており、1回目のスクリーン印刷処理での導電性ペーストの材料に比べて2回目以降のスクリーン印刷処理での導電性ペーストの材料は、半田との接続性が良いことを特徴とする。   The method for producing a solar cell element according to claim 4 is the method according to any one of claims 1 to 3, wherein in the plurality of screen printing processes, the first screen printing process and the second and subsequent screen printing processes are electrically conductive. The paste material is different, and the conductive paste material in the second and subsequent screen printing processes has better connectivity with the solder than the conductive paste material in the first screen printing process. And

請求項5に係る太陽電池素子は、導電性ペーストの複数回のスクリーン印刷処理により形成された集電極を備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided a solar cell element comprising a collector electrode formed by a plurality of screen printing processes of a conductive paste.

本発明では、集電極を形成する際に、スクリーン印刷工程を複数回繰り返す。これにより、形成した集電極の表面の凹凸を低減して平坦化が可能となる。また、この際、使用するメッシュのパターンを異ならせて、各回のスクリーン印刷工程を行う。これにより、集電極表面の更なる平坦化を実現できる。表面の凹凸の低減によって、低温環境で使用される高抵抗な導電ペーストを用いても、集電極の抵抗が高くなることを防止でき、光電変換特性、特にF.F.(曲線因子)を向上できる。また、集電極の表面が平坦であるので、後工程のタブ付けを容易に行える。   In the present invention, the screen printing process is repeated a plurality of times when the collector electrode is formed. Thereby, the unevenness | corrugation of the surface of the formed collector electrode is reduced, and planarization is attained. At this time, the screen printing process is performed each time using different mesh patterns. Thereby, further planarization of the collector electrode surface is realizable. By reducing the unevenness on the surface, it is possible to prevent the resistance of the collector electrode from increasing even if a high-resistance conductive paste used in a low-temperature environment is used, and to improve photoelectric conversion characteristics, particularly F.F. (curve factor). Further, since the surface of the collecting electrode is flat, it is possible to easily attach a tab in a later process.

本発明では、2回目以降のスクリーン印刷工程では、1回目のスクリーン印刷工程より、半田付け性が良い材料の導電ペーストを使用する。このようにすると、形成される集電極の表面が半田との接続性が良好な材質となるので、タブが付け易く電流取り出し用のリード線の密着性も向上できる。   In the present invention, in the second and subsequent screen printing processes, a conductive paste made of a material having better solderability than the first screen printing process is used. In this case, since the surface of the collector electrode to be formed is made of a material having good connectivity with the solder, the tab can be easily attached and the adhesion of the lead wire for current extraction can be improved.

以上のように、本発明の太陽電池素子の製造方法では、導電性ペーストのスクリーン印刷処理を2回以上繰り返して集電極を形成するようにしたので、スクリーンメッシュのパターンに起因する集電極表面の凹凸を低減でき、集電極を低抵抗化でき、光電変換特性の向上に寄与できる。また、この際、各印刷処理工程において、パターンが異なるスクリーンメッシュを使用すれば、より大きな効果を奏することができる。   As described above, in the method for manufacturing a solar cell element of the present invention, since the collector electrode is formed by repeating the screen printing process of the conductive paste twice or more, the surface of the collector electrode due to the pattern of the screen mesh is formed. Unevenness can be reduced, the resistance of the collector electrode can be reduced, and the photoelectric conversion characteristics can be improved. At this time, if a screen mesh having a different pattern is used in each printing process, a greater effect can be obtained.

本発明の太陽電池素子の製造方法の工程を示す断面図である。It is sectional drawing which shows the process of the manufacturing method of the solar cell element of this invention. 本発明の1回目のスクリーン印刷処理で使用するスクリーンメッシュと、それを用いた場合に形成される電極の形状とを示す図である。It is a figure which shows the screen mesh used by the screen printing process of the 1st time of this invention, and the shape of the electrode formed when it is used. 本発明の2回目のスクリーン印刷処理で使用するスクリーンメッシュと、それを用いた場合に形成される電極の形状とを示す図である。It is a figure which shows the screen mesh used by the screen printing process of the 2nd time of this invention, and the shape of the electrode formed when it is used. 本発明により形成される集電極の形状を示す図である。It is a figure which shows the shape of the collector electrode formed by this invention. 太陽電池素子の断面図である。It is sectional drawing of a solar cell element. 従来のスクリーン印刷工程を示す模式図である。It is a schematic diagram which shows the conventional screen printing process.

以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。図1は、本発明の太陽電池素子の製造方法の工程を示す断面図である。   Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a cross-sectional view showing steps of a method for manufacturing a solar cell element of the present invention.

まず、n型の結晶系シリコン基板1の一方の主面に、SiHを用いたプラズマCVD法により、i型の非晶質シリコン層2を形成し、続いてその上に、SiHとBとの混合ガスを用いたプラズマCVD法により、p型の非晶質シリコン層3を形成する(図1(a))。また、結晶系シリコン基板1の他方の主面に、SiHを用いたプラズマCVD法により、i型の非晶質シリコン層6を形成し、続いてその上に、SiHとPHとの混合ガスを用いたプラズマCVD法により、n型の非晶質シリコン層7を形成する(図1(b))。 First, an i-type amorphous silicon layer 2 is formed on one main surface of an n-type crystalline silicon substrate 1 by a plasma CVD method using SiH 4 , and then SiH 4 and B are formed thereon. A p-type amorphous silicon layer 3 is formed by a plasma CVD method using a mixed gas with 2 H 6 (FIG. 1A). Further, an i-type amorphous silicon layer 6 is formed on the other main surface of the crystalline silicon substrate 1 by a plasma CVD method using SiH 4 , and then SiH 4 and PH 3 are formed thereon. An n-type amorphous silicon layer 7 is formed by plasma CVD using a mixed gas (FIG. 1B).

次に、スパッタリング法により、非晶質シリコン層3と非晶質シリコン層7との上に、何れもITOからなる透光性導電膜4と透光性導電膜8とをそれぞれ形成する(図1(c))。最後に、Agペーストを用いたスクリーン印刷法により、透光性導電膜4と透光性導電膜8との上に、集電極5と集電極9とをそれぞれ形成する(図1(d))。   Next, a light-transmitting conductive film 4 and a light-transmitting conductive film 8 each made of ITO are formed on the amorphous silicon layer 3 and the amorphous silicon layer 7 by sputtering, respectively (see FIG. 1 (c)). Finally, the collector electrode 5 and the collector electrode 9 are formed on the translucent conductive film 4 and the translucent conductive film 8 by screen printing using Ag paste, respectively (FIG. 1D). .

本発明では、上述した工程において、Agペーストを用いたスクリーン印刷法により集電極5を形成する際に、スクリーンメッシュのパターンを換えて印刷処理を2回繰り返す。図2,図3は、本発明で使用する、パターンが異なる2種のスクリーンメッシュと、それらのスクリーンメッシュを使用して形成される電極の形状を示す図である。図2(a),(b)は1回目の印刷処理に使用するスクリーンメッシュA,それを使用した場合の印刷後の電極の形状を表し、図3(a),(b)は2回目の印刷処理に使用するスクリーンメッシュB,それを使用した場合の印刷後の電極の形状を表している。電極を形成する部分において、スクリーンメッシュA,Bの横線のピーク位置がずれており、形成される電極の凹凸形状も異なっている。   In the present invention, when the collector electrode 5 is formed by the screen printing method using Ag paste in the above-described steps, the printing process is repeated twice by changing the screen mesh pattern. 2 and 3 are diagrams showing two types of screen meshes having different patterns used in the present invention and the shapes of electrodes formed using the screen meshes. 2A and 2B show the screen mesh A used for the first printing process and the shape of the electrode after printing when the screen mesh A is used, and FIGS. 3A and 3B show the second time. The screen mesh B used for the printing process and the shape of the electrode after printing when using it are shown. In the portion where the electrode is formed, the peak positions of the horizontal lines of the screen meshes A and B are shifted, and the uneven shape of the formed electrode is also different.

本発明では、1回目の印刷処理では図2に示すようなスクリーンメッシュAを使用し、2回目の印刷処理では図3に示すようなスクリーンメッシュBを使用する。このようにして線幅0.12mmの集電極5を形成した場合の各回の印刷処理終了後における厚さのバラツキの実験結果を下記表1に示す。   In the present invention, the screen mesh A as shown in FIG. 2 is used in the first printing process, and the screen mesh B as shown in FIG. 3 is used in the second printing process. Table 1 below shows experimental results of thickness variation after the end of each printing process when the collector electrode 5 having a line width of 0.12 mm is formed in this manner.

Figure 2010103572
Figure 2010103572

表1の結果から、このように2つの異なるパターンを有するスクリーンメッシュA,Bを用いて重ね印刷を行うことにより、形成される電極の凹凸を低減できていることが分かる。これは、各スクリーンメッシュA,Bのパターンに起因する凹凸が重ね印刷により相殺されたことと、Agペーストは粘性が高くて印刷処理を2回繰り返すことにより圧力の低い所にAgが流れたこととに起因する。   From the results of Table 1, it can be seen that the unevenness of the formed electrodes can be reduced by performing overprinting using the screen meshes A and B having two different patterns in this way. This is because the unevenness caused by the patterns of the screen meshes A and B was offset by overprinting, and the Ag paste was highly viscous and the printing process was repeated twice. Due to and.

以上のようにして、メッシュのパターンを異ならせて印刷処理を2回繰り返すことにより、図4に示すように、表面の凹凸を低減して平坦化した集電極5を形成することができる。   As described above, by repeating the printing process twice with different mesh patterns, the planarized collector electrode 5 can be formed with reduced surface irregularities, as shown in FIG.

次に、以上のようにして製造された太陽電池素子の特性について説明する。まず、集電極5の抵抗値は、その表面の凹凸の低減に応じて、従来の方法(1回のスクリーン印刷)で製造した太陽電池素子に比べて、25%だけ低減できた。また、光電変換特性の1つであるF.F.は、従来例が0.70であったのに対して0.75となり、7.1%向上することができた。更に、この太陽電池素子を多数直列接続して配置した103mm角の太陽電池の出力を調べ
た結果、従来例に比して6%向上できたことを確認した。
Next, the characteristics of the solar cell element manufactured as described above will be described. First, the resistance value of the collector electrode 5 could be reduced by 25% compared with the solar cell element manufactured by the conventional method (one screen printing) according to the reduction | decrease in the unevenness | corrugation of the surface. Further, FF, which is one of photoelectric conversion characteristics, was 0.75, which was 7.1% compared to 0.70 in the conventional example, which was improved by 7.1%. Furthermore, as a result of examining the output of a 103 mm square solar cell in which a large number of these solar cell elements were connected in series, it was confirmed that the solar cell element was improved by 6% as compared with the conventional example.

なお、上記例では、パターンが異なるスクリーンメッシュを使用したが、同一のスクリーンメッシュを用いて2回の印刷処理を繰り返した場合にも、従来例と比較して、抵抗値を20%低減でき、F.F.も6.3%向上することができた。   In the above example, a screen mesh having a different pattern was used, but when the printing process was repeated twice using the same screen mesh, the resistance value could be reduced by 20% compared to the conventional example, FF also improved by 6.3%.

また、使用する導電性ペーストとして、CuペーストまたはAlペーストを上述のAgペーストに代えて用いた場合にも、Agペーストの場合と同様な特性が得られた。   Further, when Cu paste or Al paste was used instead of the above Ag paste as the conductive paste to be used, the same characteristics as in the case of Ag paste were obtained.

上記例では、2回のスクリーン印刷工程において同種の導電性ペーストを使用したが、異種の導電性ペーストを使用するようにしても良い。このような場合には、1回目にはAgペーストを使用し、2回目にはこのAgペーストより半田付け性に優れたCuペースト,Crペースト等を使用するようにすれば、後工程においてタブを集電極5に付け易くなり、集電極5からタブが外れ難くなり、後のプロセスで太陽電池素子が取り扱い易くなるという利点がある。   In the above example, the same type of conductive paste is used in the two screen printing steps, but different types of conductive paste may be used. In such a case, if the Ag paste is used for the first time and the Cu paste, Cr paste or the like having better solderability than this Ag paste is used for the second time, tabs can be formed in the subsequent process. There is an advantage that it is easy to attach to the collector electrode 5, and it is difficult to remove the tab from the collector electrode 5, and the solar cell element can be easily handled in a later process.

1 結晶系シリコン基板
2,6 非晶質シリコン層(i型)
3 非晶質シリコン層(p型)
4,8 透光性導電膜
5,9 集電極
7 非晶質シリコン層(n型)
A,B スクリーンメッシュ
1 Crystalline silicon substrate 2,6 Amorphous silicon layer (i-type)
3 Amorphous silicon layer (p-type)
4,8 Translucent conductive film 5,9 Collector 7 Amorphous silicon layer (n-type)
A, B Screen mesh

Claims (3)

結晶系シリコン基板を含み、表面に集電極を有する太陽電池素子の製造方法であって、
前記集電極の形成を、集電極形成位置における導電性ペーストの複数回の重ね印刷により行うことを特徴とする、太陽電池素子の製造方法。
A method for producing a solar cell element comprising a crystalline silicon substrate and having a collector electrode on the surface,
The method of manufacturing a solar cell element, wherein the collector electrode is formed by multiple printing of a conductive paste at a collector electrode forming position.
前記導電性ペーストの複数回の重ね印刷において、1回目に用いる導電性ペーストと2回目に用いる導電性ペーストの材料が異なっており、1回目に用いる導電性ペーストの材料に比べて2回目に用いる導電性ペーストの材料は半田との接続性が良い、請求項1記載の太陽電池素子の製造方法。   In the multiple overprinting of the conductive paste, the material of the conductive paste used for the first time is different from the material of the conductive paste used for the second time, and is used for the second time compared to the material of the conductive paste used for the first time. The method for manufacturing a solar cell element according to claim 1, wherein the material of the conductive paste has good connectivity with solder. 結晶系シリコン基板を含み、表面に形成された集電極を有する太陽電池素子であって、
前記集電極は、集電極形成位置における導電性ペーストの複数回の重ね印刷により形成されていることを特徴とする太陽電池素子。
A solar cell element comprising a crystalline silicon substrate and having a collector electrode formed on the surface,
The solar cell element, wherein the collector electrode is formed by overprinting a conductive paste at a collector electrode forming position a plurality of times.
JP2010025011A 2010-02-08 2010-02-08 Method for manufacturing solar cell element, and solar cell element Pending JP2010103572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025011A JP2010103572A (en) 2010-02-08 2010-02-08 Method for manufacturing solar cell element, and solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025011A JP2010103572A (en) 2010-02-08 2010-02-08 Method for manufacturing solar cell element, and solar cell element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007167066A Division JP4549367B2 (en) 2007-06-26 2007-06-26 Method for manufacturing solar cell element and solar cell element

Publications (2)

Publication Number Publication Date
JP2010103572A true JP2010103572A (en) 2010-05-06
JP2010103572A5 JP2010103572A5 (en) 2010-06-17

Family

ID=42293845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025011A Pending JP2010103572A (en) 2010-02-08 2010-02-08 Method for manufacturing solar cell element, and solar cell element

Country Status (1)

Country Link
JP (1) JP2010103572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086701A1 (en) 2010-12-24 2012-06-28 信越化学工業株式会社 Method for manufacturing solar cell element and solar cell element
WO2014162934A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Optical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186255U (en) * 1985-05-09 1986-11-20
JPH0563218A (en) * 1991-08-30 1993-03-12 Canon Inc Solar battery and manufacture thereof
JPH0637340A (en) * 1992-07-15 1994-02-10 Canon Inc Photovoltaic element
JPH06204530A (en) * 1992-12-28 1994-07-22 Canon Inc Optical generator element, method and apparatus for manufacturing same
JPH07117323A (en) * 1993-10-21 1995-05-09 Ricoh Co Ltd Method for forming applied layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186255U (en) * 1985-05-09 1986-11-20
JPH0563218A (en) * 1991-08-30 1993-03-12 Canon Inc Solar battery and manufacture thereof
JPH0637340A (en) * 1992-07-15 1994-02-10 Canon Inc Photovoltaic element
JPH06204530A (en) * 1992-12-28 1994-07-22 Canon Inc Optical generator element, method and apparatus for manufacturing same
JPH07117323A (en) * 1993-10-21 1995-05-09 Ricoh Co Ltd Method for forming applied layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086701A1 (en) 2010-12-24 2012-06-28 信越化学工業株式会社 Method for manufacturing solar cell element and solar cell element
RU2570814C2 (en) * 2010-12-24 2015-12-10 Син-Эцу Кемикал Ко., Лтд. Fabrication of solar cell and solar cell thus made
US10439094B2 (en) 2010-12-24 2019-10-08 Shin-Etsu Chemical Co., Ltd. Method for manufacturing solar cell element and solar cell element
WO2014162934A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Optical device
JPWO2014162934A1 (en) * 2013-04-01 2017-02-16 パイオニア株式会社 Optical device
US9825248B2 (en) 2013-04-01 2017-11-21 Pioneer Corporation Optical device
US10008686B2 (en) 2013-04-01 2018-06-26 Pioneer Corporation Optical device
US10249840B2 (en) 2013-04-01 2019-04-02 Pioneer Corporation Optical device

Similar Documents

Publication Publication Date Title
JP4004114B2 (en) Method for manufacturing solar cell element and solar cell element
JP4986945B2 (en) Manufacturing method of solar cell
CN105247686B (en) Solar battery cell and its manufacture method, solar module
US20160233352A1 (en) Photovoltaic electrode design with contact pads for cascaded application
JP2006339342A (en) Solar cell and method of manufacturing same
TW201248872A (en) Screen printing plate for solar cell and method for printing solar cell electrode
JPWO2005109524A1 (en) Solar cell and manufacturing method thereof
JP5318478B2 (en) Method for forming solar cell electrode and method for manufacturing solar cell using the same
JP2007134387A (en) Photoelectric conversion element and its method for forming electrode
JP2016122749A (en) Solar battery element and solar battery module
JP5482911B2 (en) Method for manufacturing solar cell element
US20100190290A1 (en) Solar cell patterning and metallization
JP2013030665A (en) Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device
WO2013031751A1 (en) Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
JP2013201282A (en) Screen, manufacturing method of solar cell, and solar cell
JP2010103572A (en) Method for manufacturing solar cell element, and solar cell element
JP4222991B2 (en) Photovoltaic device
CN104425651A (en) Process for preparing heterojunction solar cell without grid electrode on front surface at low temperature
JP4549367B2 (en) Method for manufacturing solar cell element and solar cell element
JP2017139351A (en) Manufacturing method of solar cell element, and solar cell element
KR101154571B1 (en) Solar cell module and method of fabricating the same
JP2012054441A (en) Method of manufacturing solar cell and solar cell
JP6564199B2 (en) Back electrode type photoelectric conversion element and method for manufacturing back electrode type photoelectric conversion element
JP5858025B2 (en) Manufacturing method of solar cell
JP2011138922A (en) Solar cell and screen printing plate for manufacturing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611