JP2010099692A - Arc welding controller - Google Patents

Arc welding controller Download PDF

Info

Publication number
JP2010099692A
JP2010099692A JP2008272933A JP2008272933A JP2010099692A JP 2010099692 A JP2010099692 A JP 2010099692A JP 2008272933 A JP2008272933 A JP 2008272933A JP 2008272933 A JP2008272933 A JP 2008272933A JP 2010099692 A JP2010099692 A JP 2010099692A
Authority
JP
Japan
Prior art keywords
coil
reactor
arc welding
cooling plate
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008272933A
Other languages
Japanese (ja)
Inventor
Isamu Gamo
勇 蒲生
Kosaku Yamaguchi
耕作 山口
Toshimitsu Doi
敏光 土井
Yasushi Hattori
靖 服部
Akihiko Manabe
陽彦 真鍋
Tetsuya Eto
哲弥 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2008272933A priority Critical patent/JP2010099692A/en
Publication of JP2010099692A publication Critical patent/JP2010099692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in which an air blowing rate of a cooling fan is reduced, making cooling of a DC reactor insufficient, when a dust filter is attached to the cooling fan for the purpose of preventing dust particles such as iron powder from infiltrating from the outside into an arc welding machine through the cooling fan. <P>SOLUTION: An arc welding controller includes: a DC reactor which is structured with a core, a coil wound on the periphery of the core through a spacer, a molding resin covering the periphery of the coil to form a near rectangular parallelepiped or a near cube, a starting end part and a terminating end part formed by projecting the chip end of the coil to one surface of the periphery of the molding resin, and a metallic cooling plate mounted on one face among other surfaces of the periphery; and a heat sink which is built in the housing of the arc welding machine and which is mounted with the DC reactor through the cooling plate. Heat generated in the coil is dissipated through the heat sink in the arc welding controller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アーク溶接制御装置に用いる直流リアクトルに関するものである。   The present invention relates to a DC reactor used in an arc welding control device.

アーク溶接機に用いる従来の直流リアクトルは、電力損失によって発生する熱を放熱するために、直流リアクトルを形成するコイル1の外周部に冷却ファンから送風される冷却風をあて冷却を行っていた。   Conventional DC reactors used for arc welding machines cool by applying cooling air blown from a cooling fan to the outer periphery of the coil 1 forming the DC reactor in order to dissipate heat generated by power loss.

図6は、従来技術の直流リアクトルの斜視図である。この直流リアクトルは、コア6及びコア6に巻装されたコイル1によって形成されている。   FIG. 6 is a perspective view of a conventional DC reactor. This DC reactor is formed by a core 6 and a coil 1 wound around the core 6.

図6に示すコア6は、磁性を有する薄板を複数枚重ね合わせて柱状の形状を有するコアを形成する。   The core 6 shown in FIG. 6 forms a core having a columnar shape by overlapping a plurality of magnetic thin plates.

スペーサ4は、コイル1の巻回部にコアを収納させた状態において、コア6の外周面とコイル1の巻回部の内周面との間にできる隙間を埋め、コア6が巻回部内で不必要に動かないようにする。   The spacer 4 fills a gap formed between the outer peripheral surface of the core 6 and the inner peripheral surface of the winding portion of the coil 1 in a state where the core is housed in the winding portion of the coil 1. To prevent it from moving unnecessarily.

コイル1は、図6に示す4つのスペーサ4を介しコア6と所定の絶縁距離を有して巻装され、コイル1は表面が絶縁皮膜、例えば、ノーメックスにより被着された厚板状の平角線をその幅方向へ屈曲加工して形成される。そして、コイル1は平角線を一層巻きして形成され平角線の厚さ方向はコア6の磁路方向と平行になっている。   The coil 1 is wound with a predetermined insulating distance from the core 6 via the four spacers 4 shown in FIG. 6, and the coil 1 is a thick plate-shaped rectangular plate whose surface is attached by an insulating film, for example, Nomex. It is formed by bending a line in its width direction. The coil 1 is formed by winding a single flat wire, and the thickness direction of the flat wire is parallel to the magnetic path direction of the core 6.

図6に示す取り付け金具7は、コア6の両端部に、例えば、MAG溶接によって固定される。   The mounting bracket 7 shown in FIG. 6 is fixed to both ends of the core 6 by, for example, MAG welding.

図6に示す直流リアクトルは、図示省略のアーク溶接機に内蔵された冷却ファンから冷却風が送風される場所に取り付け金具7を介して固定される。そして、直流リアクトルの電力損失によって発生する熱を放熱するために、コイル1の外周部に冷却風を当てて冷却を行っていた。(例えば、特許文献1)   The DC reactor shown in FIG. 6 is fixed via a mounting bracket 7 at a place where cooling air is blown from a cooling fan built in an arc welding machine (not shown). And in order to radiate the heat | fever which generate | occur | produces by the power loss of a direct current reactor, it cooled by applying cooling air to the outer peripheral part of the coil 1. FIG. (For example, Patent Document 1)

特開平4−330338号公報JP-A-4-330338 特開2007−173700号公報JP 2007-173700 A

図6に示す従来技術の直流リアクトルの冷却は、図示省略のアーク溶接機の冷却ファンによって冷却風が送風される場所に取り付け金具7を介して固定し、コアに巻装されたコイル1の表面に冷却風を当て上昇するコイル1の温度を抑制していた。このとき、外部から鉄粉等の粉塵が冷却ファンを介しアーク溶接機内部に侵入し、この鉄粉等の粉塵の侵入を防止するために、防塵フィルターを冷却ファンに取り付けていた。
しかし、防塵フィルターによって冷却ファンの送風量が減少しコイル1の温度が上昇するので、送風量が大きい冷却ファンを使用していた。
The cooling of the DC reactor of the prior art shown in FIG. 6 is fixed to a place where cooling air is blown by a cooling fan of an arc welding machine (not shown) via a mounting bracket 7 and the surface of the coil 1 wound around the core. The temperature of the coil 1 rising by applying cooling air was suppressed. At this time, dust such as iron powder entered the arc welding machine from the outside through the cooling fan, and a dustproof filter was attached to the cooling fan in order to prevent the dust such as iron powder from entering.
However, since the air blowing amount of the cooling fan is decreased by the dustproof filter and the temperature of the coil 1 is increased, the cooling fan having a large air blowing amount is used.

そこで、本発明では、冷却ファンに防塵フィルターを付けたままで使用できる、直流リアクトルを提供することにある。   Therefore, an object of the present invention is to provide a DC reactor that can be used with a dustproof filter attached to a cooling fan.

上述した課題を解決するために、本発明は、コアの外周にスペーサを介してコイルを巻装し、前記コイルの外周をモールド樹脂で覆い略直方体又は略立方体を生成し、前記モールド樹脂の外周部の1つの面に前記コイルの始端部及び終端部を突出し、前記外周部の他面のうち1つの面に金属製の冷却板を取着して形成する直流リアクトルと、アーク溶接機の筐体内に内蔵され前記冷却板を介して前記直流リアクトルを載置するヒートシンクと、前記ヒートシンクに冷却風を送風する冷却ファンとを備え、前記コイルで発生する熱を前記ヒートシンクで放熱することを特徴とするアーク溶接制御装置である。   In order to solve the above-described problems, the present invention provides a coil that is wound around the outer periphery of a core via a spacer, and the outer periphery of the coil is covered with a mold resin to form a substantially rectangular parallelepiped or a substantially cube. A DC reactor formed by projecting a starting end and a terminal end of the coil on one surface of the part and attaching a metal cooling plate to one of the other surfaces of the outer peripheral part, and a housing of the arc welding machine. A heat sink built in the body and mounting the DC reactor via the cooling plate; and a cooling fan for blowing cooling air to the heat sink, and the heat generated by the coil is dissipated by the heat sink. This is an arc welding control device.

第2の発明は、前記冷却板が取着されているモールド樹脂の面を底面とし、前記底面に接する4つの面のうち少なくとも1つ以上の面に冷却板を取着すること、を特徴とする請求項1記載のアーク溶接制御装置である。   The second invention is characterized in that the surface of the mold resin to which the cooling plate is attached is a bottom surface, and the cooling plate is attached to at least one of the four surfaces in contact with the bottom surface. The arc welding control device according to claim 1.

第3の発明は、請求項1に記載のアーク溶接制御装置を構成すること、を特徴とする直流リアクトルである。   3rd invention comprises the arc welding control apparatus of Claim 1, It is a direct-current reactor characterized by the above-mentioned.

本発明の直流リアクトルは、外周をモールド樹脂で覆い略直方体又は略立方体を生成し、このモールド樹脂の外周部の一面に金属製の冷却板を取着し、アーク溶接機の筐体内に内蔵されているヒートシンクの表面に冷却板を介し直流リアクトルに載置するので、直流リアクトルのコイルで発生する熱がモールド樹脂及び冷却板を介してヒートシンクに伝導することで、効率よく放熱でき冷却ファンからの送風量が大幅に減少し冷却風が当たらなくなっても直流リアクトルのコイルの冷却が可能となる。   The direct current reactor of the present invention covers the outer periphery with a mold resin to produce a substantially rectangular parallelepiped or a substantially cubic body, and a metal cooling plate is attached to one surface of the outer periphery of the mold resin, and is built in the casing of the arc welder. Since the heat generated in the DC reactor coil is conducted to the heat sink via the mold resin and the cooling plate, the heat can be efficiently radiated from the cooling fan. The coil of the DC reactor can be cooled even if the amount of blown air is greatly reduced and the cooling air is no longer applied.

第2の発明では、冷却板が取着されているモールド樹脂の面を底面とし、底面に接する4つの面のうち少なくとも1つ以上の面に冷却板を取着するため、直流リアクトルによって発生する熱が追加した冷却板を介して効率良くヒートシンクに伝導できるので、冷却効果がより改善できる。   In the second invention, the surface of the mold resin to which the cooling plate is attached is the bottom surface, and the cooling plate is attached to at least one of the four surfaces in contact with the bottom surface. Since heat can be efficiently conducted to the heat sink through the added cooling plate, the cooling effect can be further improved.

第3の発明では、アーク溶接制御装置を構成する直流リアクトルは、外周部を覆うモールド樹脂が熱伝導性に加えて耐衝撃性に優れているので、直流リアクトルの耐衝撃性の向上にもつながる。   In the third invention, the direct current reactor constituting the arc welding control device has improved impact resistance in addition to thermal conductivity because the mold resin covering the outer peripheral portion is excellent in heat resistance, leading to improvement in impact resistance of the direct current reactor. .

図1は、直流リアクトルのコイルの外周をモールド樹脂8で覆い、例えば、略直方体を形成し、同図に示す、直方体の底面部に金属製の冷却板9を取着し、冷却板9を図示省略のアーク溶接機の筐体内の所定位置に設けられている、ヒートシンク11の表面に載置したときの斜視図であり、図2は、モールド樹脂8で覆われた直流リアクトルの断面図である。図1及び図2において、図6に示す従来の直流リアクトルと同一符号は、同一構成であるので説明は省略し、符号の相違する構成物についてのみ説明する。   In FIG. 1, the outer periphery of the coil of the DC reactor is covered with a mold resin 8, for example, a substantially rectangular parallelepiped is formed, and a metal cooling plate 9 is attached to the bottom surface of the rectangular parallelepiped shown in FIG. FIG. 2 is a perspective view when placed on a surface of a heat sink 11 provided at a predetermined position in a housing of an arc welding machine (not shown), and FIG. 2 is a cross-sectional view of a DC reactor covered with a mold resin 8. is there. 1 and 2, the same reference numerals as those of the conventional DC reactor shown in FIG. 6 have the same configuration, and thus description thereof will be omitted. Only components having different reference numerals will be described.

図2に示すコイル1は、裸線の厚板状の平角線をその幅方向へ屈曲加工し、4つのスペーサ4を介しコア6と所定の絶縁距離を有して巻装される。そして、コイル1は平角線を一層巻きして形成され平角線の厚さ方向はコア6の磁路方向と平行になっている。   A coil 1 shown in FIG. 2 is wound with a predetermined insulation distance from a core 6 through four spacers 4 by bending a bare flat plate-like rectangular wire in the width direction. The coil 1 is formed by winding a single flat wire, and the thickness direction of the flat wire is parallel to the magnetic path direction of the core 6.

図2及び図3に示すクシ5は、コア6に巻装された裸線のコイル1の上下に固定し、テープを巻き付けてコイル1のばらけ止めを行ない、層間の距離を維持する。   The comb 5 shown in FIG. 2 and FIG. 3 is fixed to the top and bottom of the bare wire coil 1 wound around the core 6, and the tape 1 is wound to prevent the coil 1 from being scattered, thereby maintaining the distance between the layers.

図2に示すコイル1の始端部2はコイル1の前端部の左辺から上方向へ突出し、コイル1の終端部3はコイル1の後端部の右辺から上方向へ所定寸法でけ突出している。   The starting end 2 of the coil 1 shown in FIG. 2 protrudes upward from the left side of the front end of the coil 1, and the terminal end 3 of the coil 1 protrudes upward from the right side of the rear end of the coil 1 by a predetermined dimension. .

図2に示すように、直流リアクトルのコイル1の外周にモールド樹脂8で覆い略直方体を形成する。このとき、コイル1の始端部2及びコイル1の終端部3がモールド樹脂8で覆われた直方体の上面部から突出する。そして、底面部には金属製の冷却板9を取り付ける。   As shown in FIG. 2, a substantially rectangular parallelepiped is formed by covering the outer periphery of the coil 1 of the DC reactor with a mold resin 8. At this time, the starting end portion 2 of the coil 1 and the terminal end portion 3 of the coil 1 protrude from the upper surface portion of the rectangular parallelepiped covered with the mold resin 8. And the metal cooling plate 9 is attached to a bottom face part.

つぎに、図1に示すヒートシンク12の表面と直流リアクトルの冷却板9とが接着したときの直流リアクトルのコイル1から発生する熱の伝導について説明する。
このモールド樹脂8は、熱伝導性に優れ、直流リアクトルを形成するコイル1及びコア6に充分に接触した状態で覆い、コア6から発生する熱がモールド樹脂8を介して直流リアクトルの冷却板9に伝導する。
Next, conduction of heat generated from the coil 1 of the DC reactor when the surface of the heat sink 12 shown in FIG. 1 and the cooling plate 9 of the DC reactor are bonded will be described.
This mold resin 8 is excellent in thermal conductivity and covers the coil 1 and the core 6 forming the DC reactor in a sufficiently contacted state, and the heat generated from the core 6 is passed through the mold resin 8 to the DC reactor cooling plate 9. Conduct to.

図1に示す直流リアクトルの冷却板9とアーク溶接機の筐体内に内蔵されたヒートシンク12の表面とが接着しているので、コア6によって発生する熱が冷却板9を介してヒートシンク12に伝導され、ヒートシンク12によって伝導された熱が効率よく放熱される。よって、本発明では、冷却ファンに防塵フィルターを付けたままでも直流リアクトルのコイル1の温度上昇が抑制される。
上述において、コイル1の始端部2及びコイル1の終端部3が突出する面の反対側を底面部とし、この底面部に冷却板9を取り付けたが、他面(4面)のうち1つの面に冷却板9を取り付けてもよい。
Since the cooling plate 9 of the DC reactor shown in FIG. 1 and the surface of the heat sink 12 built in the casing of the arc welder are bonded, the heat generated by the core 6 is conducted to the heat sink 12 via the cooling plate 9. The heat conducted by the heat sink 12 is efficiently radiated. Therefore, in the present invention, the temperature rise of the coil 1 of the DC reactor is suppressed even with the dustproof filter attached to the cooling fan.
In the above description, the opposite side of the surface from which the starting end portion 2 of the coil 1 and the terminal end portion 3 of the coil 1 protrude is defined as the bottom surface portion, and the cooling plate 9 is attached to this bottom surface portion. A cooling plate 9 may be attached to the surface.

また、モールド樹脂は熱伝導性に優れているのは勿論であるが、電気絶縁性及び耐衝撃性にも優れていることが好ましい。このようなモールド樹脂として、例えば、エポキシ樹脂、シリコン樹脂又はウレタン樹脂が挙げられる。また、直流リアクトルの冷却板9の材質には、アルミ材を使用しているが金属以外に熱伝導率のファインセラミックス等を使用してもよい。   In addition, the molding resin is excellent in thermal conductivity, but it is preferable that the molding resin is also excellent in electrical insulation and impact resistance. Examples of such a mold resin include an epoxy resin, a silicon resin, and a urethane resin. Moreover, although the aluminum material is used for the material of the cooling plate 9 of a direct current reactor, you may use fine ceramics etc. of heat conductivity other than a metal.

図3、図4及び図5は、実施形態2に係る直流リアクトルの図面であり、同図において、図1に示す直流リアクトルと同一符号の構成物は、同一動作を行うので説明は省略し、符号の相違する構成物についてのみ説明する。   3, FIG. 4 and FIG. 5 are drawings of a DC reactor according to the second embodiment. In FIG. 3, components having the same reference numerals as those of the DC reactor shown in FIG. Only components having different reference numerals will be described.

図5に示すように、直流リアクトルのコイル1の外周をモールド樹脂8で覆い、例えば、略直方体を形成する。このとき、コイル1の始端部2及びコイル1の終端部3がモールド樹脂8で覆われた直方体の上面部から突出するようにする。
そして、冷却板9が取着されているモールド樹脂8の面を底面とし、この底面に接する4つの面のうち少なくとも1つ以上の面に冷却板を取着する。実施形態2では、図4及び図5に示すように底面部に接する右側面部に冷却板10及び左側面部に冷却板11を取り付けている。
As shown in FIG. 5, the outer periphery of the DC reactor coil 1 is covered with a mold resin 8 to form, for example, a substantially rectangular parallelepiped. At this time, the start end portion 2 of the coil 1 and the end portion 3 of the coil 1 are projected from the upper surface portion of the rectangular parallelepiped covered with the mold resin 8.
Then, the surface of the mold resin 8 to which the cooling plate 9 is attached is the bottom surface, and the cooling plate is attached to at least one of the four surfaces in contact with the bottom surface. In the second embodiment, as shown in FIGS. 4 and 5, the cooling plate 10 is attached to the right side surface portion in contact with the bottom surface portion, and the cooling plate 11 is attached to the left side surface portion.

つぎに、ヒートシンク12の表面と図5に示す直流リアクトルの冷却板9とが接着したときの直流リアクトルから発生する熱の伝導について説明する。
直流リアクトルを形成するコイル1がモールド樹脂8と充分に接触され、図4に示す、コイル1の底面で発生する熱が冷却板9に伝導し、コイル1の右側面で発生する熱が冷却板10に伝導し、コイル1左側面で発生する熱が冷却板11に伝導する。
Next, conduction of heat generated from the DC reactor when the surface of the heat sink 12 and the cooling plate 9 of the DC reactor shown in FIG. 5 are bonded will be described.
The coil 1 forming the DC reactor is sufficiently brought into contact with the mold resin 8, and heat generated at the bottom surface of the coil 1 shown in FIG. 4 is conducted to the cooling plate 9, and heat generated at the right side surface of the coil 1 is cooled by the cooling plate. The heat generated in the left side surface of the coil 1 is conducted to the cooling plate 11.

冷却板10及び冷却板11に、例えば、アルミ材を使用すると、モールド樹脂8よりも熱伝導率が高いために、コイル1の右側面で発生する熱が冷却板10を介してヒートシンク12に伝導し、左側面で発生する熱が冷却板11を介してヒートシンク12に伝導するので直流リアクトルのコイル1の温度上昇の抑制が更に改善される。
上述において、ヒートシンク12は、空気を流通させる空洞部を形成させる外周部を備えたトンネル型形状とし、その空洞部に冷却ファンから冷却風を送風し、その空洞部を形成させる外周部に冷却板9を有する直流リアクトルを載置してもよい。
For example, when an aluminum material is used for the cooling plate 10 and the cooling plate 11, heat generated at the right side surface of the coil 1 is conducted to the heat sink 12 via the cooling plate 10 because the heat conductivity is higher than that of the mold resin 8. And since the heat | fever generate | occur | produced by the left side is conducted to the heat sink 12 via the cooling plate 11, suppression of the temperature rise of the coil 1 of a DC reactor is further improved.
In the above description, the heat sink 12 has a tunnel-type shape including an outer peripheral portion for forming a hollow portion through which air is circulated, cooling air is blown from the cooling fan to the hollow portion, and a cooling plate is formed on the outer peripheral portion to form the hollow portion. A DC reactor having 9 may be mounted.

実施形態1の直流リアクトルをヒートシンクに載置したときの斜視図である 。It is a perspective view when the direct-current reactor of Embodiment 1 is mounted on a heat sink. モールド樹脂で覆った直流リアクトルの断面図である。It is sectional drawing of the direct current reactor covered with mold resin. 実施形態2の直流リアクトルの斜視図である。It is a perspective view of the direct current reactor of Embodiment 2. モールド樹脂で覆った実施形態2の直流リアクトルの断面図である。It is sectional drawing of the direct current reactor of Embodiment 2 covered with the mold resin. モールド樹脂で覆った実施形態2の直流リアクトルの斜視図である。It is a perspective view of the direct current reactor of Embodiment 2 covered with mold resin. 従来技術の直流リアクトルの斜視図である。It is a perspective view of the DC reactor of a prior art.

符号の説明Explanation of symbols

1 コイル
2 コイルの始端部
3 コイルの終端部
4 スペーサ
5 クシ
6 コア
7 取り付け金具
8 モールド樹脂
9 底板部の冷却板
10 右側面部の冷却板
11 左側面部の冷却板
12 ヒートシンク
DESCRIPTION OF SYMBOLS 1 Coil 2 Coil start part 3 Coil end part 4 Spacer 5 Comb 6 Core 7 Mounting bracket 8 Mold resin 9 Bottom plate cooling plate 10 Right side cooling plate 11 Left side cooling plate 12 Heat sink

Claims (3)

コアの外周にスペーサを介してコイルを巻装し、前記コイルの外周をモールド樹脂で覆い略直方体又は略立方体を生成し、前記モールド樹脂の外周部の1つの面に前記コイルの始端部及び終端部を突出し、前記外周部の他面のうち1つの面に金属製の冷却板を取着して形成する直流リアクトルと、アーク溶接機の筐体内に内蔵され前記冷却板を介して前記直流リアクトルを載置するヒートシンクと、前記ヒートシンクに冷却風を送風する冷却ファンとを備え、前記コイルで発生する熱を前記ヒートシンクで放熱することを特徴とするアーク溶接制御装置。   A coil is wound on the outer periphery of the core via a spacer, the outer periphery of the coil is covered with a mold resin to generate a substantially rectangular parallelepiped or a substantially cube, and the start end and end of the coil are formed on one surface of the outer periphery of the mold resin. A direct current reactor formed by attaching a metal cooling plate to one of the other surfaces of the outer peripheral portion, and the direct current reactor built in the casing of an arc welding machine via the cooling plate An arc welding control device comprising: a heat sink on which the heat sink is mounted; and a cooling fan that blows cooling air to the heat sink, wherein the heat generated by the coil is radiated by the heat sink. 前記冷却板が取着されているモールド樹脂の面を底面とし、前記底面に接する4つの面のうち少なくとも1つ以上の面に冷却板を取着すること、を特徴とする請求項1記載のアーク溶接制御装置。   The surface of the mold resin to which the cooling plate is attached is a bottom surface, and the cooling plate is attached to at least one of four surfaces in contact with the bottom surface. Arc welding control device. 請求項1に記載のアーク溶接制御装置を構成すること、を特徴とする直流リアクトル。   A direct-current reactor comprising the arc welding control device according to claim 1.
JP2008272933A 2008-10-23 2008-10-23 Arc welding controller Pending JP2010099692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272933A JP2010099692A (en) 2008-10-23 2008-10-23 Arc welding controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272933A JP2010099692A (en) 2008-10-23 2008-10-23 Arc welding controller

Publications (1)

Publication Number Publication Date
JP2010099692A true JP2010099692A (en) 2010-05-06

Family

ID=42290801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272933A Pending JP2010099692A (en) 2008-10-23 2008-10-23 Arc welding controller

Country Status (1)

Country Link
JP (1) JP2010099692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
WO2019057333A1 (en) * 2017-09-22 2019-03-28 Sks Welding Systems Gmbh Welding power supply having a cooling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197444A (en) * 2001-10-15 2003-07-11 Tokyo Seiden Kk Reactor device and manufacturing method therefor
JP2005286020A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Mounting structure of reactor and vibration damping method
JP2006007255A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Arc welding control device
JP2007173700A (en) * 2005-12-26 2007-07-05 Denso Corp Magnetic component
JP2007180224A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197444A (en) * 2001-10-15 2003-07-11 Tokyo Seiden Kk Reactor device and manufacturing method therefor
JP2005286020A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Mounting structure of reactor and vibration damping method
JP2006007255A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Arc welding control device
JP2007173700A (en) * 2005-12-26 2007-07-05 Denso Corp Magnetic component
JP2007180224A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Cooling structure of reactor and electrical apparatus unit
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165597A (en) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd Power conditioner
WO2019057333A1 (en) * 2017-09-22 2019-03-28 Sks Welding Systems Gmbh Welding power supply having a cooling device
US11780024B2 (en) 2017-09-22 2023-10-10 Sks Welding Systems Gmbh Welding power supply having a cooling device

Similar Documents

Publication Publication Date Title
JP4411543B2 (en) Magnetic parts
US7531923B2 (en) Coreless linear motor
JP2007180140A (en) Magnetic component
JP6499124B2 (en) Conductive member and electrical junction box
JP2015089179A (en) Power conversion device
JP2007173702A (en) Temperature detecting type magnetic device
US20110198946A1 (en) Linear motor coil assembly with cooling device
JP2010099692A (en) Arc welding controller
JP5135984B2 (en) Linear motor
JP5046087B2 (en) Motor control device
JP2009259985A (en) Electronic component
JP4512874B2 (en) Linear motor and method of manufacturing the linear motor
JP2013212024A (en) Linear motor
JP4480937B2 (en) Linear motor and method of manufacturing the linear motor
JP2011124242A (en) Reactor device
JP6744152B2 (en) Coil parts
JP5552661B2 (en) Induction equipment
JP4454270B2 (en) Power supply heat dissipation structure
JP4380484B2 (en) Reactor device
JP5797034B2 (en) Linear motor
JP2015216209A (en) Electronic apparatus
JP2010074977A (en) Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus
JP2013232476A (en) Heat radiation structure of reactor
JP2017184294A (en) Motor controller
JP6251468B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813