JP2010074977A - Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus - Google Patents

Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus Download PDF

Info

Publication number
JP2010074977A
JP2010074977A JP2008240958A JP2008240958A JP2010074977A JP 2010074977 A JP2010074977 A JP 2010074977A JP 2008240958 A JP2008240958 A JP 2008240958A JP 2008240958 A JP2008240958 A JP 2008240958A JP 2010074977 A JP2010074977 A JP 2010074977A
Authority
JP
Japan
Prior art keywords
armature
winding
resin mold
mounting base
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008240958A
Other languages
Japanese (ja)
Inventor
Kenjo Akiyoshi
建丞 秋吉
Yuji Noda
勇次 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2008240958A priority Critical patent/JP2010074977A/en
Publication of JP2010074977A publication Critical patent/JP2010074977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of resin molding a coreless linear motor armature, a coreless linear motor armature, a coreless linear motor, and a table feed apparatus, which reduce an increase in the temperature of an armature coil unit while securing the insulation distance between a coil of the armature coil unit and a mount to which the coil is mounted, and ensure moldability to provide a quality resin mold for the armature. <P>SOLUTION: According to the coreless linear motor armature, a gap between a recession 8a of the armature mount 8 and an upper side 11 of a coil group of the armature coil unit 7 is filled with a first resin mold 20, and a second resin mold 21 having heat conductivity smaller than that of the first resin mold 20 is applied to cover the under surface of the recession 8a of the armature mount 8 and the periphery of the armature coil unit 7. Hence the armature mount 8 and the armature coil unit 7 are integrally molded. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体製造装置や工作機の分野で、推力リプルや低発熱が要求される一定速送り用や高精度位置決め用のテーブル送り装置などに使用されると共に、その直動機構の駆動用に好適なコアレスリニアモータ電機子の樹脂モールド方法およびコアレスリニアモータ電機子並びにコアレスリニアモータ、テーブル送り装置に関するものである。   The present invention is used in the fields of semiconductor manufacturing equipment and machine tools for constant speed feed and table feed equipment for high precision positioning that require thrust ripple and low heat generation, and for driving the linear motion mechanism. And a coreless linear motor armature, a coreless linear motor, and a table feeding device.

従来、半導体製造装置や工作機の分野で、推力リプルや低発熱が要求される一定速送り用や高精度位置決め用のテーブル送り装置などに使用されると共に、その直動機構の駆動用に好適なコアレスリニアモータとしては、例えば、特許文献1および特許文献2に開示されるものがある。図4は特許文献1および特許文献2に開示されると共に、従来技術と後述の本発明に共通な一般のコアレスリニアモータの全体斜視図であって、固定子と可動子のみを示したものである。
図5は第1従来技術を示す可動子の進行方向から見たコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。
図5において、1はコアレスリニアモータ、2は固定子、3は永久磁石、4はバックヨーク、5はヨーク支持台、6は可動子、7は電機子巻線、8は電機子取付台、9はコイル、10は巻線固定板、11はコイル上辺、12はコイル下辺、13はリード線、14は樹脂モールドである。
コアレスリニアモータ1における固定子2は、左右両側に配置された2つのバックヨーク4と、該バックヨーク4の可動子の進行方向(紙面に垂直方向)に沿って交互に極性が異極となるように配置され、かつ、該2つのバックヨーク4に対面する側の極性が異極となるように配置された永久磁石3と、該2つのバックヨーク4の一方端部を固定支持するヨーク支持台5から構成されている。
また、可動子6は、2つのバックヨーク4の内側に永久磁石3と磁気的空隙を介して配置されると共に複数個のコイル9から構成される電機子巻線7と、該電機子巻線7を構成する左右のコイル9を間に挟むように固定すると共に非磁性の金属や樹脂からなる巻線固定板10と、該巻線固定板10に固定された電機子巻線7を可動子に取付けるための断面が凹形状の電機子取付台8から構成されている。電機子取付台8は、負荷となるテーブル等に取り付けられるため、強度が確保されるアルミ等の金属部材で構成される。
ここで、コイルの上側にあたるコイル上辺11は、電機子取付台8の凹部8a内に挿入されている。またコイルの下側にあたるコイル下辺12にてコイル9間は結線され、その先ではリード線13と結線されている。また、コイル9間を結線するためのスペースとリード線13のスペースは、前記コイルの下側にあたるコイル下辺の近傍に設けられている。また、コイル9間や電機子巻線7と電機子取付台8の凹内部は樹脂モールド14によって覆われ、電機子巻線7と電機子取付台8が一体となって可動子6が構成されている。
以上のように構成された固定子2と可動子6は、図示しないリニアガイド等の支持機構によって、その進行方向に移動自在となっている。この場合、コイル9間同士やリード線13との結線が行われるためのスペースがコイル下辺12に設けられているため、主な放熱経路であるコイル上辺11と電機子取付台8の凹部8aの間隔を近接させることができ、コイル9で発生した熱が電機子取付台8へと逃げやすくしている。その結果、コイル9の温度上昇が低減できるようになっている。
Conventionally used in the fields of semiconductor manufacturing equipment and machine tools for table feed devices for constant speed feed and high precision positioning that require thrust ripple and low heat generation, and suitable for driving the linear motion mechanism Examples of such coreless linear motors include those disclosed in Patent Document 1 and Patent Document 2. FIG. 4 is an overall perspective view of a general coreless linear motor that is disclosed in Patent Document 1 and Patent Document 2 and is common to the prior art and the present invention to be described later, and shows only a stator and a mover. is there.
FIG. 5 is a front sectional view of the coreless linear motor viewed from the moving direction of the mover showing the first prior art, and corresponds to a sectional view taken along the line AA of FIG.
In FIG. 5, 1 is a coreless linear motor, 2 is a stator, 3 is a permanent magnet, 4 is a back yoke, 5 is a yoke support, 6 is a mover, 7 is an armature winding, 8 is an armature mount, 9 is a coil, 10 is a winding fixing plate, 11 is an upper side of the coil, 12 is a lower side of the coil, 13 is a lead wire, and 14 is a resin mold.
The stator 2 in the coreless linear motor 1 has different polarities alternately along the two back yokes 4 arranged on the left and right sides and the moving direction (perpendicular to the paper surface) of the mover of the back yoke 4. And the permanent magnet 3 arranged so that the polarities on the side facing the two back yokes 4 are different from each other, and the yoke support for fixing and supporting one end of the two back yokes 4 It is comprised from the stand 5.
Further, the mover 6 is disposed inside the two back yokes 4 via the permanent magnet 3 and a magnetic gap, and has an armature winding 7 composed of a plurality of coils 9, and the armature winding. A coil fixing plate 10 made of non-magnetic metal or resin and an armature winding 7 fixed to the winding fixing plate 10 are fixed to the left and right coils 9 constituting the coil 7 and the mover The armature mounting base 8 has a concave cross section for mounting on the armature. Since the armature mounting base 8 is mounted on a table or the like that becomes a load, the armature mounting base 8 is made of a metal member such as aluminum that ensures strength.
Here, the coil upper side 11 corresponding to the upper side of the coil is inserted into the recess 8 a of the armature mounting base 8. Further, the coil 9 is connected at the coil lower side 12 corresponding to the lower side of the coil, and is connected to the lead wire 13 at the tip. A space for connecting the coils 9 and a space for the lead wires 13 are provided in the vicinity of the lower side of the coil corresponding to the lower side of the coil. Further, the inside of the coil 9 and the concave inside of the armature winding 7 and the armature mounting base 8 are covered with a resin mold 14, and the armature winding 7 and the armature mounting base 8 are integrated to constitute the mover 6. ing.
The stator 2 and the mover 6 configured as described above are movable in the advancing direction by a support mechanism such as a linear guide (not shown). In this case, a space for connecting between the coils 9 and the lead wire 13 is provided in the coil lower side 12, so the coil upper side 11, which is the main heat dissipation path, and the recess 8 a of the armature mounting base 8 are provided. The interval can be made close, and the heat generated in the coil 9 can easily escape to the armature mount 8. As a result, the temperature rise of the coil 9 can be reduced.

次に、従来のコアレスリニアモータの可動子を構成する電機子の樹脂モールド方法について、図3、図4を用いて説明する。
図6は第1従来技術に示したリニアモータの電機子巻線と電機子取付台を成形金型に設置した状態の正断面図、図7は図6を矢視A方向から見た側面図で、電機子取付台を除く部分(ゲート、樹脂オーバーフロー口、電機子巻線)を透視したものとなっている。
図6、図7において、15は成形金型、15aは上型、15bは下型、16はゲート、17は樹脂オーバーフロー口である。
電機子巻線7は電機子取付台8の凹部8aに接着などの手法で固定して成形金型15を構成する下型15bに取り付ける。次に、同じく成形金型15を構成する上型15aを取り付けて型締めし、図示しない注型装置に設置する。注型装置のヒータにより成形金型15を加温後、図示しない脱泡した樹脂モールド14をゲート16から流し込む。ゲート16から流し込まれた樹脂モールド14は、コイル9の隙間やコイル間、また電機子取付台8の凹部8aを覆いながら最終的にオーバーフロー口17まで到達する。その後、所定時間加温して樹脂モールド14を硬化させた後、脱型して樹脂モールドした可動子6を得る。
Next, the resin mold method of the armature which comprises the needle | mover of the conventional coreless linear motor is demonstrated using FIG. 3, FIG.
6 is a front sectional view showing a state in which the armature winding and the armature mounting base of the linear motor shown in the first prior art are installed in the molding die, and FIG. 7 is a side view of FIG. Thus, the portion (gate, resin overflow port, armature winding) excluding the armature mounting base is seen through.
6 and 7, 15 is a molding die, 15a is an upper die, 15b is a lower die, 16 is a gate, and 17 is a resin overflow port.
The armature winding 7 is fixed to the concave portion 8a of the armature mounting base 8 by a technique such as adhesion and attached to the lower mold 15b constituting the molding die 15. Next, an upper mold 15a that also constitutes the molding die 15 is attached and clamped, and is installed in a casting apparatus (not shown). After heating the molding die 15 with the heater of the casting device, a defoamed resin mold 14 (not shown) is poured from the gate 16. The resin mold 14 poured from the gate 16 finally reaches the overflow port 17 while covering the gaps between the coils 9 and the coils and the recess 8 a of the armature mounting base 8. Thereafter, the resin mold 14 is cured by heating for a predetermined time, and then the mold 6 is removed from the mold to obtain the resin-molded movable element 6.

図8は第2従来技術を示す可動子の進行方向から見たコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。なお、固定子の構造は前述の第1従来技術と同じであるので説明を省略する。
可動子6は、結線をパターン化したプリント基板18と、該プリント基板18の左右にコイル9を配置した電機子巻線7と、これを固定する断面が凹形状の電機子取付台8から構成されている。ここで、プリント基板18は第1従来技術で述べた巻線固定板と同等の機能を有するものである。コイルの上側にあたるコイル上辺11は、電機子取付台8の凹部8a内に挿入されている。また、電機子巻線7と電機子取付台8の凹内部は樹脂モールド14によって覆われ、電機子巻線7と電機子取付台8が一体となって可動子6が構成されている。この場合、結線をパターン化したプリント基板18を使用しているので結線やリード線13のためのスペースが必要無く、よってコイル上辺11と電機子取付台8の凹部8aを近接させることができ、コイル9で発生した熱が電機子取付台8へと逃げやすくなっている。その結果、コイル9の温度上昇が低減できるようになっている。
また、図9は第2従来技術に示したリニアモータの電機子巻線と電機子取付台を成形金型に設置した状態の側面図で、電機子取付台を除く部分(ゲート、樹脂オーバーフロー口、電機子巻線)を透視したものとなっている。
図9において、15は成形金型、16はゲート、17は樹脂オーバーフロー口である。可動子6の樹脂モールド方法は、先の例と同じであるので省略する。
特許第3870413号 特許第3550678号
FIG. 8 is a front sectional view of the coreless linear motor as viewed from the moving direction of the mover showing the second prior art, and corresponds to a sectional view taken along the line AA of FIG. Since the structure of the stator is the same as that of the first prior art described above, description thereof is omitted.
The mover 6 includes a printed circuit board 18 with a patterned connection, an armature winding 7 in which coils 9 are arranged on the left and right sides of the printed circuit board 18, and an armature mounting base 8 having a concave cross section for fixing the armature winding 7. Has been. Here, the printed circuit board 18 has a function equivalent to that of the winding fixing plate described in the first prior art. A coil upper side 11 corresponding to the upper side of the coil is inserted into the recess 8 a of the armature mount 8. The concave portions of the armature winding 7 and the armature mounting base 8 are covered with a resin mold 14, and the armature winding 7 and the armature mounting base 8 are integrated to constitute the mover 6. In this case, since the printed circuit board 18 in which the connection is patterned is used, there is no need for a space for the connection and the lead wire 13, and therefore the coil upper side 11 and the recess 8a of the armature mounting base 8 can be brought close to each other. Heat generated in the coil 9 is easily escaped to the armature mount 8. As a result, the temperature rise of the coil 9 can be reduced.
FIG. 9 is a side view showing the state in which the armature winding and the armature mounting base of the linear motor shown in the second prior art are installed in the molding die, and the portion excluding the armature mounting base (gate, resin overflow port) , Armature winding).
In FIG. 9, 15 is a molding die, 16 is a gate, and 17 is a resin overflow port. Since the resin mold method of the mover 6 is the same as the previous example, it is omitted.
Patent No. 3870413 Japanese Patent No. 3550678

しかしながら、従来技術では次のような問題があった。
(1)さらなる電機子巻線のコイル温度低減化には、主な放熱経路であるコイル上辺と電機子取付台の間隔を縮める方法があるが、絶縁を確保するためには限界がある。
(2)また、樹脂モールドの熱伝導率を上げる方法があるが。成形性が悪化し、電機子取付台の凹部などの狭い隙間に樹脂モールドを確実に充填することが難しくなる。よって樹脂モールドの熱伝導率は1W/mK前後が限界である。
(3)樹脂モールドする電機子巻線は長物であり、また薄肉注型が必要であり、さらにコイルの隙間や電機子取付台の凹部など狭く複雑な空間が存在するため、樹脂モールドを一度に隅々まで充填する事が難しい。
本発明はこのような問題点に鑑みてなされたものであり、電機子巻線のコイルと該コイルを取付ける電機子取付台間の絶縁距離を確保しつつ、電機子巻線の温度上昇を低減させることができると共に、成形性を確保し、高品質な電機子の樹脂モールドが得られるコアレスリニアモータ電機子の樹脂モールド方法およびコアレスリニアモータ電機子並びにコアレスリニアモータ、テーブル送り装置を提供することを目的とするものである。
However, the prior art has the following problems.
(1) To further reduce the coil temperature of the armature winding, there is a method of reducing the distance between the upper side of the coil, which is the main heat dissipation path, and the armature mounting base, but there is a limit to ensuring insulation.
(2) There is also a method of increasing the thermal conductivity of the resin mold. The moldability deteriorates and it becomes difficult to reliably fill the resin mold into a narrow gap such as a recess of the armature mount. Therefore, the limit of the thermal conductivity of the resin mold is around 1 W / mK.
(3) The armature winding to be resin-molded is long and requires thin-wall casting, and there are narrow and complex spaces such as coil gaps and armature mounting recesses. It is difficult to fill every corner.
The present invention has been made in view of such problems, and reduces an increase in the temperature of the armature winding while ensuring an insulation distance between the armature winding coil and the armature mounting base to which the coil is attached. A coreless linear motor armature resin molding method, a coreless linear motor armature, a coreless linear motor, and a table feeding device are provided that can ensure moldability and obtain a high-quality armature resin mold. It is intended.

上記問題を解決するため、本発明は次のように構成したものである。
請求項1に記載の発明は、巻線固定板と、前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、を具備してなるコアレスリニアモータ電機子の樹脂モールド方法において、前記電機子巻線を配設した巻線固定板を前記電機子取付台の凹部内に挿入し、前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間に第1の樹脂モールドを充填した後、硬化させ、前記電機子取付台の凹部内に前記第1の樹脂モールドにより固着してなる前記電機子巻線および前記巻線固定板を成形金型にセットし、前記成形金型にセットされた前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填し、前記電機子取付台と前記電機子巻線とを一体的に成形することを特徴としている。
また、請求項2に記載の発明は、巻線固定板と、前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、を具備してなるコアレスリニアモータ電機子の樹脂モールド方法において、前記電機子取付台の凹部内に第1の樹脂モールドを充填し、前記電機子巻線を配設した巻線固定板を前記電機子取付台の凹部内に挿入すると共に、前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間を前記第1の樹脂モールドで覆うように硬化させ、前記電機子取付台の凹部内に前記第1の樹脂モールドにより固着してなる前記電機子巻線および前記巻線固定板を成形金型にセットし、前記成形金型にセットされた前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填し、前記電機子取付台と前記電機子巻線とを一体的に成形することを特徴としている。
また、請求項3に記載の発明は、請求項1または2記載のコアレスリニアモータ電機子の樹脂モールド方法において、前記第1の樹脂モールドの熱伝導率λ1は、2W/mK<λ1≦5W/mKであり、前記第2の樹脂モールドの熱伝導率λ2は、0.2W/mK≦λ2≦2W/mKであることを特徴としている。
また、請求項4に記載の発明は、巻線固定板と、前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、を具備してなるコアレスリニアモータ電機子において、前記電機子巻線を配設した巻線固定板は前記電機子取付台の凹部内に挿入してあり、前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間に第1の樹脂モールドを充填してあり、前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填してあり、前記電機子取付台と前記電機子巻線とを一体的に成形してあることを特徴としている。
また、請求項5に記載の発明は、請求項4記載のコアレスリニアモータ電機子において、前記第1の樹脂モールドの熱伝導率λ1は、2W/mK<λ1≦5W/mKであり、前記第2の樹脂モールドの熱伝導率λ2は、0.2W/mK≦λ2≦2W/mKであることを特徴としている。
また、請求項6に記載の発明は、請求項4または5に記載の電機子と、前記電機子と磁気的空隙を介して対向配置されると共に平板状のバックヨークに交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁とを備え、前記電機子と前記界磁の何れか一方を固定子に、他方を可動子として、前記界磁と前記電機子を相対的に走行するようにしたコアレスリニアモータとしたことを特徴としている。
また、請求項7に記載の発明は、請求項6に記載のコアレスリニアモータを直動機構の駆動源として用いたテーブル送り装置としたことを特徴としている。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is provided with a winding fixing plate, an armature winding in which a plurality of coil groups are arranged along a longitudinal direction of the winding fixing plate, and the armature winding. A coreless linear motor armature resin molding method comprising: an armature mounting base that supports a winding fixing plate; and a winding fixing plate on which the armature winding is disposed is a recess of the armature mounting base. Inserted into the first resin mold in the gap between the recess of the armature mounting base and the upper side of the coil group of the armature winding, and then cured, and into the recess of the armature mounting base The armature winding fixed by a first resin mold and the winding fixing plate are set in a molding die, and the lower surface of the recess of the armature mounting base set in the molding die and the armature Smaller than the thermal conductivity of the first resin mold so as to cover the periphery of the winding There was filled with the second resin mold is characterized in that integrally molded with said armature winding and the armature mount.
According to a second aspect of the present invention, there is provided a winding fixing plate, an armature winding in which a plurality of coil groups are disposed along a longitudinal direction of the winding fixing plate, and the armature winding. In the resin molding method of the coreless linear motor armature comprising the armature mounting base that supports the winding fixing plate provided, the first resin mold is filled in the recess of the armature mounting base, A winding fixing plate on which the armature winding is disposed is inserted into the recess of the armature mount, and a gap between the recess of the armature mount and the upper side of the coil group of the armature winding is The armature winding and the winding fixing plate, which are hardened so as to be covered with one resin mold and fixed by the first resin mold in the recess of the armature mounting base, are set in a molding die, A lower surface in a recess of the armature mounting base set in the molding die; A second resin mold having a thermal conductivity lower than that of the first resin mold is filled so as to cover the periphery of the armature winding, and the armature mounting base and the armature winding are integrally formed. It is characterized by that.
The invention according to claim 3 is the resin molding method of the coreless linear motor armature according to claim 1 or 2, wherein the thermal conductivity λ1 of the first resin mold is 2 W / mK <λ1 ≦ 5 W / The thermal conductivity λ2 of the second resin mold is 0.2 W / mK ≦ λ2 ≦ 2 W / mK.
According to a fourth aspect of the present invention, there is provided a winding fixing plate, an armature winding in which a plurality of coil groups are arranged along the longitudinal direction of the winding fixing plate, and the armature winding. A coreless linear motor armature comprising an armature mounting base that supports the winding fixing plate provided, wherein the winding fixing plate on which the armature winding is disposed is in a recess of the armature mounting base. A first resin mold is filled in a gap between the concave portion of the armature mounting base and the upper side of the coil group of the armature winding, and the lower surface of the concave portion of the armature mounting base and the electric machine A second resin mold smaller than the thermal conductivity of the first resin mold is filled so as to cover the periphery of the child winding, and the armature mounting base and the armature winding are integrally formed. It is characterized by that.
According to a fifth aspect of the present invention, in the coreless linear motor armature according to the fourth aspect, the thermal conductivity λ1 of the first resin mold is 2 W / mK <λ1 ≦ 5 W / mK, The heat conductivity λ2 of the resin mold 2 is 0.2 W / mK ≦ λ2 ≦ 2 W / mK.
According to a sixth aspect of the present invention, there is provided a plurality of armatures according to the fourth or fifth aspect, and a plurality of plates having opposite polarities alternately arranged on the armature and the plate-like back yoke through magnetic gaps. Each of the armature and the field magnet as a stator and the other as a mover, and the field and the armature travel relatively. The coreless linear motor is made as described above.
The invention as set forth in claim 7 is characterized in that a table feeding device using the coreless linear motor as set forth in claim 6 as a drive source of the linear motion mechanism is provided.

請求項1に記載の発明によると、主な放熱経路である電機子巻線のコイルと電機子取付台の凹部との間に後述の第2の樹脂モールドよりも熱伝導率の高い第1の樹脂モールド(以下、樹脂モールドAと呼ぶ)を確実に充填でき、コイル温度が低減化できる。さらに、前述の第1の樹脂モールドよりも熱伝導率の低い第2の樹脂モールド(以下、樹脂モールドBと呼ぶ)での成形では、電機子取付台の凹部以外の部分を樹脂モールドすればよく、充填する空間の形状も単純化されているので、樹脂モールドBでの成形も容易になり、高品質な電機子の樹脂モールドが得られる。
また、請求項2に記載の発明によると、電機子取付台の凹部と前記電機子巻線のコイル上辺との隙間が狭く樹脂モールドAを充填し難い場合でも、確実に樹脂モールドAを充填することができる。
また、請求項3に記載の発明によると、樹脂モールドAの熱伝導率λ1を、2W/mK<λ1≦5W/mKとし、樹脂モールドBの熱伝導率λ2を、0.2W/mK≦λ2≦2W/mKとしたので、電機子巻線の温度上昇を低減させる事ができると共に、成形性も確保できる。
また、請求項4に記載の発明によると、コイルで発生した熱の主な放熱経路であるコイルと電機子取付台の凹部との間に充填されている樹脂モールドAの熱伝導率が、電機子取付台の凹部における下面と電機子巻線の周囲を覆うように充填されている樹脂モールドBの熱伝導率よりも高いので、コイルと電機子取付台間の絶縁距離を確保しつつ、コイルと電機子取付台間の熱抵抗が小さくなることから、電機子巻線の温度上昇を低減させることができる。
また、請求項5に記載の発明によると、樹脂モールドAの熱伝導率λ1を、2W/mK<λ1≦5W/mKとし、樹脂モールドBの熱伝導率λ2を、0.2W/mK≦λ2≦2W/mKとしたので、樹脂モールドBの熱伝導率が関係するコイル周囲と外気との間の熱抵抗に比べて、樹脂モールドAの熱伝導率が関係するコイルと電機子取付台間の放熱経路の熱抵抗が小さくなることから、電機子巻線の温度上昇を低減させる事ができると共に、成形性も確保できる。
また、請求項6に記載の発明によると、請求項4、5記載の効果を有する電機子と、界磁を組み合わせたコアレスリニアモータを提供することができる。
また、請求項7に記載の発明によると、請求項6に記載のコアレスリニアモータの効果を有するテーブル送り装置を提供することができる。
According to the first aspect of the present invention, the first heat conductivity higher than that of the second resin mold described later is provided between the coil of the armature winding, which is the main heat dissipation path, and the recess of the armature mounting base. A resin mold (hereinafter referred to as “resin mold A”) can be reliably filled, and the coil temperature can be reduced. Furthermore, in the molding with the second resin mold (hereinafter referred to as the resin mold B) having a lower thermal conductivity than the first resin mold described above, the portion other than the concave portion of the armature mounting base may be resin molded. Since the shape of the space to be filled is also simplified, molding with the resin mold B is facilitated, and a high-quality armature resin mold can be obtained.
According to the invention described in claim 2, even when the gap between the concave portion of the armature mounting base and the upper side of the coil of the armature winding is narrow, it is difficult to fill the resin mold A. be able to.
According to the invention described in claim 3, the thermal conductivity λ1 of the resin mold A is 2 W / mK <λ1 ≦ 5 W / mK, and the thermal conductivity λ2 of the resin mold B is 0.2 W / mK ≦ λ2. Since ≦ 2 W / mK, the temperature rise of the armature winding can be reduced and the moldability can be secured.
According to the invention of claim 4, the thermal conductivity of the resin mold A filled between the coil, which is the main heat dissipation path of the heat generated in the coil, and the recess of the armature mounting base is Since it is higher than the thermal conductivity of the resin mold B filled so as to cover the lower surface of the recess of the child mount and the periphery of the armature winding, the coil is secured while ensuring an insulation distance between the coil and the armature mount. Since the thermal resistance between the armature mount and the armature mount becomes small, the temperature rise of the armature winding can be reduced.
Further, according to the invention described in claim 5, the thermal conductivity λ1 of the resin mold A is 2 W / mK <λ1 ≦ 5 W / mK, and the thermal conductivity λ2 of the resin mold B is 0.2 W / mK ≦ λ2. Since ≦ 2 W / mK, compared to the thermal resistance between the coil periphery related to the thermal conductivity of the resin mold B and the outside air, between the coil related to the thermal conductivity of the resin mold A and the armature mounting base Since the thermal resistance of the heat dissipation path is reduced, the temperature rise of the armature winding can be reduced and the moldability can be secured.
Further, according to the invention described in claim 6, it is possible to provide a coreless linear motor in which the armature having the effects described in claims 4 and 5 and a field are combined.
According to the invention described in claim 7, it is possible to provide a table feeding device having the effect of the coreless linear motor described in claim 6.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示すコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。図2は、本発明の第1実施例を示すコアレスリニアモータに係る樹脂モールドAで樹脂モールドした電機子巻線と電機子取付台の正断面図、図3は、本発明の第2実施例を示すコアレスリニアモータの成形金型の正断面図である。なお、本発明が従来技術と同じ構成要素についてはその説明を省略し、異なる点のみ説明する。
図1に示すコアレスリニアモータ電機子において、巻線固定板を構成する結線をパターン化したプリント基板18と、プリント基板18の長手方向に沿って複数のコイル群が配設される電機子巻線7と、電機子巻線7を配設したプリント基板18を支持する電機子取付台8と、プリント基板18の左右にコイル9を配置した電機子巻線7とから構成されており、電機子巻線7のコイル9の上側にあたるコイル上辺11を、電機子取付台8の凹部8a内に挿入すると共に、電機子巻線7と電機子取付台8を樹脂モールドによって一体化して可動子6を構成している点は第2従来技術と同じである。
本発明が第1および第2従来技術と異なる点は、電機子取付台8の凹部8aと電機子巻線7のコイル群の上辺11との隙間に樹脂モールドA20を充填してあり、電機子取付台8の凹部8aにおける下面と電機子巻線7の周囲を覆うように樹脂モールドA20の熱伝導率より小さい樹脂モールドB21を充填してあり、電機子取付台8と電機子巻線7とを一体的に成形してある点である。
また、樹脂モールドA20の熱伝導率λ1を、2W/mK<λ1≦5W/mKとし、樹脂モールドB21の熱伝導率λ2を、0.2W/mK≦λ2≦2W/mKとしたものとなっている。樹脂モールドA20は、流動性、熱伝導性、絶縁性、耐熱性、機械的な強度などの点から、Al、SiO、AlN、Si、TiO、MgOなどのセラミック粉末が添加されたエポキシ系の液状注型レジンが好ましい。またその熱伝導率は、熱伝導性と流動性のバランスを考慮すると2W/mKから5W/mKのものが好ましい。
これにより、コイルの発熱の主な放熱経路であるコイル9と電機子取付台8間における熱抵抗が小さくなるので、コイル9の温度上昇を低減できる。樹脂モールドB21も、樹脂モールドA20と同様に、Al、SiO、AlN、Si、TiO、MgOなどのセラミック粉末が添加されたエポキシ系の液状注型レジン、または不飽和ポリエステル成形材料なども使用できる。熱伝導率は熱伝導性と流動性のバランスを考慮すると0.2W/mKから2W/mKのものが好ましい。
次に、可動子を構成する電機子の樹脂モールド方法について、図2、図3を用いて説明する。
図2において、7は電機子巻線、8は電機子取付台、18はプリント基板、11はコイル上辺、12はコイル下辺。20は樹脂モールドAである。電機子取付台8の凹部8aを上に向けた状態で、電機子取付台8の凹部8aに電機子巻線7を接着などの手法で取り付け、コイル上辺11と電機子取付台8の凹部8aとの隙間へ脱泡した樹脂モールドA20を注ぎ入れる。なお、樹脂モールドA20の注入量は電機子取付台8の下面までが好ましく、注入後、必要に応じて再度樹脂モールドA20の脱泡を行っても良い。その後、所定温度で樹脂モールドA20の硬化を行う。これを、図3に示す成形金型15の下型15bに取り付ける。次に、上型15aを取り付けて型締めし、図示しない注型装置に設置する。注型装置のヒータにより成形金型15を加温後、図示しない脱泡した樹脂モールドB21をゲート16から流し込む。ゲート16から流し込まれた樹脂モールドB21は、コイル9の隙間やコイル間を覆いながら最終的にオーバーフロー口17まで到達する。その後、所定時間加温して樹脂モールドB21を硬化させた後、脱型して2種類の樹脂モールドにて樹脂モールドした可動子6を得る。この様な方法をとることにより、主な放熱経路であるコイル上辺11と電機子取付台8の凹部8aとの間に熱伝導率の高い樹脂モールドA20を確実に充填でき、コイル温度が低減化できる。さらに、樹脂モールドB21での成形では、電機子取付台8の凹部8a以外の部分を樹脂モールドすればよく、充填する空間の形状も単純化されているので、樹脂モールドB21での成形も容易になり、高品質な樹脂モールド可動子が得られる。
FIG. 1 is a front sectional view of a coreless linear motor showing a first embodiment of the present invention, and corresponds to a sectional view taken along line AA of FIG. FIG. 2 is a front sectional view of an armature winding and an armature mount that are resin-molded with a resin mold A according to a coreless linear motor according to a first embodiment of the present invention, and FIG. 3 is a second embodiment of the present invention. It is a front sectional view of a molding die of a coreless linear motor showing. It should be noted that the description of the same constituent elements as those of the prior art is omitted, and only different points will be described.
In the coreless linear motor armature shown in FIG. 1, the armature winding in which the printed circuit board 18 on which the wiring constituting the winding fixing plate is patterned and a plurality of coil groups are arranged along the longitudinal direction of the printed circuit board 18 7, the armature mounting base 8 that supports the printed circuit board 18 on which the armature winding 7 is disposed, and the armature winding 7 in which the coils 9 are disposed on the left and right sides of the printed circuit board 18. The coil upper side 11 corresponding to the upper side of the coil 9 of the winding 7 is inserted into the concave portion 8a of the armature mounting base 8, and the armature winding 7 and the armature mounting base 8 are integrated by a resin mold so that the mover 6 is integrated. The configuration is the same as in the second prior art.
The present invention differs from the first and second prior arts in that a resin mold A20 is filled in the gap between the recess 8a of the armature mount 8 and the upper side 11 of the coil group of the armature winding 7, A resin mold B21 smaller than the thermal conductivity of the resin mold A20 is filled so as to cover the lower surface of the recess 8a of the mounting base 8 and the periphery of the armature winding 7, and the armature mounting base 8, the armature winding 7, Is integrally formed.
Further, the thermal conductivity λ1 of the resin mold A20 is 2 W / mK <λ1 ≦ 5 W / mK, and the thermal conductivity λ2 of the resin mold B21 is 0.2 W / mK ≦ λ2 ≦ 2 W / mK. Yes. Resin mold A20 is made of ceramic powder such as Al 2 O 3 , SiO 2 , AlN, Si 3 N 4 , TiO 2 , and MgO in terms of fluidity, thermal conductivity, insulation, heat resistance, mechanical strength, and the like. An epoxy-type liquid casting resin to which is added is preferable. The thermal conductivity is preferably 2 W / mK to 5 W / mK considering the balance between thermal conductivity and fluidity.
Thereby, since the thermal resistance between the coil 9 which is the main heat dissipation path of the heat generation of the coil and the armature mount 8 is reduced, the temperature rise of the coil 9 can be reduced. Similarly to the resin mold A20, the resin mold B21 is an epoxy type liquid casting resin to which ceramic powder such as Al 2 O 3 , SiO 2 , AlN, Si 3 N 4 , TiO 2 , MgO is added, or unsaturated. Polyester molding materials can also be used. The thermal conductivity is preferably 0.2 W / mK to 2 W / mK considering the balance between thermal conductivity and fluidity.
Next, the resin mold method of the armature which comprises a needle | mover is demonstrated using FIG. 2, FIG.
In FIG. 2, 7 is an armature winding, 8 is an armature mounting base, 18 is a printed circuit board, 11 is a coil upper side, and 12 is a coil lower side. Reference numeral 20 denotes a resin mold A. With the concave portion 8a of the armature mounting base 8 facing upward, the armature winding 7 is attached to the concave portion 8a of the armature mounting base 8 by a technique such as adhesion, and the coil upper side 11 and the concave portion 8a of the armature mounting base 8 are attached. The resin mold A20 defoamed is poured into the gap. The injection amount of the resin mold A20 is preferably up to the lower surface of the armature mounting base 8, and after injection, the resin mold A20 may be defoamed again as necessary. Thereafter, the resin mold A20 is cured at a predetermined temperature. This is attached to the lower mold 15b of the molding die 15 shown in FIG. Next, the upper mold 15a is attached and the mold is clamped, and is installed in a casting apparatus (not shown). After heating the molding die 15 with the heater of the casting apparatus, a defoamed resin mold B21 (not shown) is poured from the gate 16. The resin mold B21 poured from the gate 16 finally reaches the overflow port 17 while covering the gaps between the coils 9 and between the coils. After that, the resin mold B21 is cured by heating for a predetermined time, and then the mold 6 is removed and the movable element 6 molded by resin with two types of resin molds is obtained. By adopting such a method, the resin mold A20 having high thermal conductivity can be surely filled between the coil upper side 11 which is the main heat radiation path and the recess 8a of the armature mounting base 8, and the coil temperature is reduced. it can. Furthermore, in the molding with the resin mold B21, the portion other than the recess 8a of the armature mounting base 8 may be molded with the resin, and the shape of the space to be filled is simplified, so the molding with the resin mold B21 is easy. Thus, a high-quality resin mold movable element is obtained.

次に第2実施例について説明する。
第2実施例に関わる固定子2、可動子6の構成は第1実施例と同じであるので説明を省略し、可動子を構成する電機子の樹脂モールド方法について、図3、図9を用いて説明する。
第2実施例が第1実施例と異なる点は、電機子取付台8の凹部8aを上に向けた状態で、電機子取付台8の凹部8aに樹脂モールドA20を注入し、これに電機子巻線7を取り付ける。電機子取付台8と電機子巻線7とは図示しない冶具を用いて固定し、必要に応じて再度樹脂モールドA20の脱泡を行う。その後、所定温度で樹脂モールドA20の硬化を行う。これを、図3に示す成形金型15の下型15bに取り付ける。次に、上型15aを取り付けて型締めし、図示しない注型装置に設置する。注型装置のヒータにより成形金型15を加温後、図示しない脱泡した樹脂モールドB21を図9のゲート16から流し込む。ゲート16から流し込まれた樹脂モールドB21は、コイル9の隙間やコイル間を覆いながら最終的にオーバーフロー口17まで到達する。その後、所定時間加温して樹脂モールドB21を硬化させた後、脱型して2種類の樹脂モールドにて樹脂モールドした可動子6を得る。この様な樹脂モールド方法をとることにより、電機子取付台8の凹部8aと電機子巻線7のコイル上辺11との隙間が狭く樹脂モールドA20を充填し難い場合でも、確実に樹脂モールドA20を充填することができる。
Next, a second embodiment will be described.
Since the configurations of the stator 2 and the mover 6 according to the second embodiment are the same as those of the first embodiment, the description thereof will be omitted, and a resin molding method of the armature constituting the mover will be described with reference to FIGS. I will explain.
The second embodiment differs from the first embodiment in that a resin mold A20 is injected into the recess 8a of the armature mount 8 with the recess 8a of the armature mount 8 facing upward, Install winding 7. The armature mount 8 and the armature winding 7 are fixed using a jig (not shown), and the resin mold A20 is defoamed again as necessary. Thereafter, the resin mold A20 is cured at a predetermined temperature. This is attached to the lower mold 15b of the molding die 15 shown in FIG. Next, the upper mold 15a is attached and the mold is clamped, and is installed in a casting apparatus (not shown). After heating the molding die 15 with the heater of the casting apparatus, a defoamed resin mold B21 (not shown) is poured from the gate 16 in FIG. The resin mold B21 poured from the gate 16 finally reaches the overflow port 17 while covering the gaps between the coils 9 and between the coils. After that, the resin mold B21 is cured by heating for a predetermined time, and then the mold 6 is removed and the movable element 6 molded by resin with two types of resin molds is obtained. By adopting such a resin molding method, even when the gap between the recess 8a of the armature mounting base 8 and the coil upper side 11 of the armature winding 7 is narrow and it is difficult to fill the resin mold A20, the resin mold A20 is surely attached. Can be filled.

本発明の第1実施例を示すコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。1 is a front sectional view of a coreless linear motor showing a first embodiment of the present invention, and corresponds to a sectional view taken along line AA of FIG. 本発明の第1実施例を示すコアレスリニアモータに係る樹脂モールドAで樹脂モールドした電機子巻線と電機子取付台の正断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view of an armature winding and an armature mounting base that are resin-molded with a resin mold A according to a coreless linear motor according to a first embodiment of the present invention. 本発明の第2実施例を示すコアレスリニアモータの成形金型の正断面図である。It is a front sectional view of a molding die of a coreless linear motor showing a second embodiment of the present invention. 図4は従来技術と後述の本発明に共通な一般のコアレスリニアモータの全体斜視図であって、固定子と可動子のみを示したものである。FIG. 4 is an overall perspective view of a general coreless linear motor common to the prior art and the present invention to be described later, and shows only the stator and the mover. 図5は第1従来技術を示す可動子の進行方向から見たコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。FIG. 5 is a front sectional view of the coreless linear motor viewed from the moving direction of the mover showing the first prior art, and corresponds to a sectional view taken along the line AA of FIG. 図6は第1従来技術に示したリニアモータの電機子巻線と電機子取付台を成形金型に設置した状態の正断面図である。FIG. 6 is a front sectional view showing a state in which the armature winding and the armature mounting base of the linear motor shown in the first prior art are installed in a molding die. 図7は図6を矢視A方向から見た側面図で、電機子取付台を除く部分を透視したものとなっている。FIG. 7 is a side view of FIG. 6 viewed from the direction of arrow A, and is a perspective view of the portion excluding the armature mounting base. 図8は第2従来技術を示す可動子の進行方向から見たコアレスリニアモータの正断面図であって、図4のA−A線に沿う断面図に相当するものである。FIG. 8 is a front sectional view of the coreless linear motor as viewed from the moving direction of the mover showing the second prior art, and corresponds to a sectional view taken along the line AA of FIG. 図9は第2従来技術に示したリニアモータの電機子巻線と電機子取付台を成形金型に設置した状態の側面図で、電機子取付台を除く部分を透視したものとなっている。FIG. 9 is a side view showing a state in which the armature winding and the armature mounting base of the linear motor shown in the second prior art are installed in a molding die, and a portion excluding the armature mounting base is seen through. .

符号の説明Explanation of symbols

1 コアレスリニアモータ
2 固定子
3 永久磁石
4 バックヨーク
5 ヨーク支持台
6 可動子
7 電機子巻線
8 電機子取付台
8a 凹部
9 コイル
10 巻線固定板
11 コイル上辺
12 コイル下辺
13 リード線
14 樹脂モールド
15 成形金型
15a 上型
15b 下型
16 ゲート
17 オーバーフロー口
18 プリント基板(巻線固定板)
20 樹脂モールドA
21 樹脂モールドB
1 Coreless Linear Motor 2 Stator 3 Permanent Magnet 4 Back Yoke 5 Yoke Support Base 6 Movable Element 7 Armature Winding 8 Armature Mounting Base 8a Recess 9 Coil 10 Winding Fixing Plate 11 Coil Upper Side 12 Coil Lower Side 13 Lead Wire 14 Resin Mold 15 Mold 15a Upper die 15b Lower die 16 Gate 17 Overflow port 18 Printed circuit board (winding fixing plate)
20 Resin mold A
21 Resin mold B

Claims (7)

巻線固定板と、
前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、
前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、
を具備してなるコアレスリニアモータ電機子の樹脂モールド方法において、
前記電機子巻線を配設した巻線固定板を前記電機子取付台の凹部内に挿入し、
前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間に第1の樹脂モールドを充填した後、硬化させ、
前記電機子取付台の凹部内に前記第1の樹脂モールドにより固着してなる前記電機子巻線および前記巻線固定板を成形金型にセットし、
前記成形金型にセットされた前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填し、前記電機子取付台と前記電機子巻線とを一体的に成形することを特徴とするコアレスリニアモータ電機子の樹脂モールド方法。
Winding fixing plate,
An armature winding in which a plurality of coil groups are disposed along the longitudinal direction of the winding fixing plate;
An armature mounting base that supports a winding fixing plate in which the armature winding is disposed;
In a resin molding method of a coreless linear motor armature comprising:
Inserting the winding fixing plate on which the armature winding is disposed in the recess of the armature mounting base,
After filling the first resin mold in the gap between the concave portion of the armature mounting base and the upper side of the coil group of the armature winding, it is cured,
The armature winding and the winding fixing plate formed by being fixed by the first resin mold in the recess of the armature mounting base are set in a molding die,
Filling a second resin mold smaller than the thermal conductivity of the first resin mold so as to cover the lower surface of the recess of the armature mounting base set in the molding die and the periphery of the armature winding; A resin molding method for a coreless linear motor armature, wherein the armature mounting base and the armature winding are integrally formed.
巻線固定板と、
前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、
前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、
を具備してなるコアレスリニアモータ電機子の樹脂モールド方法において、
前記電機子取付台の凹部内に第1の樹脂モールドを充填し、
前記電機子巻線を配設した巻線固定板を前記電機子取付台の凹部内に挿入すると共に、前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間を前記第1の樹脂モールドで覆うように硬化させ、
前記電機子取付台の凹部内に前記第1の樹脂モールドにより固着してなる前記電機子巻線および前記巻線固定板を成形金型にセットし、
前記成形金型にセットされた前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填し、前記電機子取付台と前記電機子巻線とを一体的に成形することを特徴とするコアレスリニアモータ電機子の樹脂モールド方法。
Winding fixing plate,
An armature winding in which a plurality of coil groups are disposed along the longitudinal direction of the winding fixing plate;
An armature mounting base that supports a winding fixing plate in which the armature winding is disposed;
In a resin molding method of a coreless linear motor armature comprising:
Fill the first resin mold in the recess of the armature mounting base,
The winding fixing plate on which the armature winding is disposed is inserted into the recess of the armature mount, and the gap between the recess of the armature mount and the upper side of the coil group of the armature winding is Cure to cover with the first resin mold,
The armature winding and the winding fixing plate formed by being fixed by the first resin mold in the recess of the armature mounting base are set in a molding die,
Filling a second resin mold smaller than the thermal conductivity of the first resin mold so as to cover the lower surface of the recess of the armature mounting base set in the molding die and the periphery of the armature winding; A resin molding method for a coreless linear motor armature, wherein the armature mounting base and the armature winding are integrally formed.
前記第1の樹脂モールドの熱伝導率λ1は、2W/mK<λ1≦5W/mKであり、
前記第2の樹脂モールドの熱伝導率λ2は、0.2W/mK≦λ2≦2W/mKであることを特徴とする請求項1または2記載のコアレスリニアモータ電機子の樹脂モールド方法。
The thermal conductivity λ1 of the first resin mold is 2 W / mK <λ1 ≦ 5 W / mK,
3. The resin molding method for a coreless linear motor armature according to claim 1, wherein the second resin mold has a thermal conductivity λ <b> 2 of 0.2 W / mK ≦ λ <b> 2 ≦ 2 W / mK. 4.
巻線固定板と、
前記巻線固定板の長手方向に沿って複数のコイル群が配設される電機子巻線と、
前記電機子巻線を配設した巻線固定板を支持する電機子取付台と、
を具備してなるコアレスリニアモータ電機子において、
前記電機子巻線を配設した巻線固定板は前記電機子取付台の凹部内に挿入してあり、
前記電機子取付台の凹部と前記電機子巻線のコイル群の上辺との隙間に第1の樹脂モールドを充填してあり、
前記電機子取付台の凹部における下面と前記電機子巻線の周囲を覆うように前記第1の樹脂モールドの熱伝導率より小さい第2の樹脂モールドを充填してあり、
前記電機子取付台と前記電機子巻線とを一体的に成形してあることを特徴とするコアレスリニアモータ電機子。
Winding fixing plate,
An armature winding in which a plurality of coil groups are disposed along the longitudinal direction of the winding fixing plate;
An armature mounting base that supports a winding fixing plate in which the armature winding is disposed;
In a coreless linear motor armature comprising:
The winding fixing plate on which the armature winding is disposed is inserted into a recess of the armature mounting base,
Filling the first resin mold in the gap between the recess of the armature mounting base and the upper side of the coil group of the armature winding;
A second resin mold smaller than the thermal conductivity of the first resin mold is filled so as to cover the lower surface of the recess of the armature mount and the periphery of the armature winding;
A coreless linear motor armature, wherein the armature mounting base and the armature winding are integrally formed.
前記第1の樹脂モールドの熱伝導率λ1は、2W/mK<λ1≦5W/mKであり、
前記第2の樹脂モールドの熱伝導率λ2は、0.2W/mK≦λ2≦2W/mKであることを特徴とする請求項4記載のコアレスリニアモータ電機子。
The thermal conductivity λ1 of the first resin mold is 2 W / mK <λ1 ≦ 5 W / mK,
5. The coreless linear motor armature according to claim 4, wherein the second resin mold has a thermal conductivity λ2 of 0.2 W / mK ≦ λ2 ≦ 2 W / mK.
請求項4または5に記載の電機子と、前記電機子と磁気的空隙を介して対向配置されると共に平板状のバックヨークに交互に極性が異なる複数の永久磁石を隣り合わせて並べて配置した界磁とを備え、前記電機子と前記界磁の何れか一方を固定子に、他方を可動子として、前記界磁と前記電機子を相対的に走行するようにしたことを特徴とするコアレスリニアモータ。   6. The field element according to claim 4, wherein the armature is arranged opposite to the armature via a magnetic gap, and a plurality of permanent magnets having different polarities are arranged next to each other on a flat back yoke. A coreless linear motor, wherein either one of the armature and the field is used as a stator and the other is used as a mover, so that the field and the armature travel relatively. . 請求項5に記載のコアレスリニアモータを直動機構の駆動源として用いたことを特徴とするテーブル送り装置。   6. A table feeding apparatus, wherein the coreless linear motor according to claim 5 is used as a drive source for a linear motion mechanism.
JP2008240958A 2008-09-19 2008-09-19 Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus Pending JP2010074977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240958A JP2010074977A (en) 2008-09-19 2008-09-19 Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240958A JP2010074977A (en) 2008-09-19 2008-09-19 Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus

Publications (1)

Publication Number Publication Date
JP2010074977A true JP2010074977A (en) 2010-04-02

Family

ID=42206235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240958A Pending JP2010074977A (en) 2008-09-19 2008-09-19 Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus

Country Status (1)

Country Link
JP (1) JP2010074977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143783A1 (en) * 2012-03-27 2013-10-03 Beckhoff Automation Gmbh Stator device for a linear motor and linear transport system
CN105305768A (en) * 2014-07-24 2016-02-03 株式会社安川电机 Coreless linear motor armature and manufacturing method thereof, and coreless linear motor
US9689712B2 (en) 2012-03-27 2017-06-27 Beckhoff Automation Gmbh Position detection device for a movable element in a drive device
US9997985B2 (en) 2012-03-27 2018-06-12 Beckhoff Automation Gmbh Stator device for a linear motor, and linear transport system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143783A1 (en) * 2012-03-27 2013-10-03 Beckhoff Automation Gmbh Stator device for a linear motor and linear transport system
CN104272569A (en) * 2012-03-27 2015-01-07 德商倍福自动化有限公司 Stator device for a linear motor and linear transport system
US9689712B2 (en) 2012-03-27 2017-06-27 Beckhoff Automation Gmbh Position detection device for a movable element in a drive device
US9997985B2 (en) 2012-03-27 2018-06-12 Beckhoff Automation Gmbh Stator device for a linear motor, and linear transport system
US10177640B2 (en) 2012-03-27 2019-01-08 Beckhoff Automation Gmbh Stator device for a linear motor and linear transport system
US10181780B2 (en) 2012-03-27 2019-01-15 Beckhoff Automation Gmbh Stator device for a linear motor and linear transport system
CN105305768A (en) * 2014-07-24 2016-02-03 株式会社安川电机 Coreless linear motor armature and manufacturing method thereof, and coreless linear motor

Similar Documents

Publication Publication Date Title
US8063547B2 (en) Rotating electric machine and manufacturing method thereof
TWI288521B (en) Coreless linear motor
US7576452B2 (en) Coreless linear motor and canned linear motor
TWI338431B (en)
JP2004088992A (en) Production of voice-coil type linear actuators, arrangement using the actuators, and the actuators
WO2007037298A9 (en) Linear motor and method of manufacturing the same
US9118237B2 (en) Mover for a linear motor and linear motor
US8664808B2 (en) Linear motor coil assembly with cooling device
JP5355105B2 (en) Linear drive device and electronic circuit component mounting machine
WO2009101852A1 (en) Linear motor
JP2010074977A (en) Method of resin molding coreless linear motor armature, coreless linear motor armature, coreless linear motor, and table feed apparatus
JP2009261086A (en) Stator and method for manufacturing stator
JP5413641B2 (en) Coreless linear motor
JP2009254025A (en) Cylindrical linear motor and its manufacturing method
WO2019150718A1 (en) Linear motor and method for manufacturing linear motor
JP2004289911A (en) Linear slider
JP5126652B2 (en) Moving coil linear motor
JP4580847B2 (en) Linear motor unit and its combination method
JP2004350419A (en) Linear motor
JPH11122904A (en) Linear motor and manufacture of coil supporting member thereof
JP5755890B2 (en) Linear motor and manufacturing method thereof
JP4048557B2 (en) Linear motor cooling system
JP7304251B2 (en) Slide device with built-in moving magnet type linear motor
JP5403008B2 (en) Linear motor armature and linear motor
JP4711182B2 (en) Linear motor armature and linear motor