JP4711182B2 - Linear motor armature and linear motor - Google Patents

Linear motor armature and linear motor Download PDF

Info

Publication number
JP4711182B2
JP4711182B2 JP2005329947A JP2005329947A JP4711182B2 JP 4711182 B2 JP4711182 B2 JP 4711182B2 JP 2005329947 A JP2005329947 A JP 2005329947A JP 2005329947 A JP2005329947 A JP 2005329947A JP 4711182 B2 JP4711182 B2 JP 4711182B2
Authority
JP
Japan
Prior art keywords
armature
linear motor
columns
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005329947A
Other languages
Japanese (ja)
Other versions
JP2007143216A (en
Inventor
健一 貞包
透 鹿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005329947A priority Critical patent/JP4711182B2/en
Publication of JP2007143216A publication Critical patent/JP2007143216A/en
Application granted granted Critical
Publication of JP4711182B2 publication Critical patent/JP4711182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、例えば半導体製造関連のステッパ駆動装置や工作機のテーブル送り装置等、超精密位置決め・高推力が要求される用途に適するリニアモータ電機子およびリニアモータに関する。 The present invention relates to a linear motor armature and a linear motor suitable for applications requiring ultra-precise positioning and high thrust, such as a stepper drive device related to semiconductor manufacturing and a table feed device of a machine tool.

従来、半導体製造関連のステッパ駆動装置や工作機のテーブル送り装置等、超精密位置決め・高推力が要求される用途に適するリニアモータは、図7のようになっている(例えば、特許文献1、特許文献2参照)。
図7は従来のリニアモータの全体構成を示す斜視図であって、後述する本発明と共通な図となっている。
図7において、1はリニアモータ、2は固定子、3は界磁ヨーク、4は永久磁石、5は可動子、6はベースである。
リニアモータ1は固定子2と可動子5で構成されている。このうち、一方の固定子2は平板状の界磁ヨーク3と、界磁ヨーク3上に交互に極性が異なるように配置した複数の永久磁石4とからなる界磁を構成している。また、他方の可動子5は永久磁石4と磁気的空隙を介して対向配置され、ベース6と後述する電機子巻線とからなる電機子を構成している。
図8は図7のA−A線に沿う従来のリニアモータを示す正断面図、図9は図7の可動子を構成する電機子を矢視C方向から見た側面図、図10は図9の電機子のB−B線に沿う平断面図、図11は図10のD部の詳細図を示している。
図8〜図11において、6aは凹部、7は電機子巻線、7aおよび7bは成形コイル、8は結線基板、9はモールド樹脂、10はセンターブロックである。
電機子巻線7は集中巻にした複数個のコイル群を平板状に成形してなる成形コイル7aおよび7bを2列に並べて整列する構成にしており、この電機子巻線を構成する複数の各成形コイル7aおよび7b間および電機子外部間を結線基板8により電気的に接続すると共に、その両面に長手方向に沿って固定している。それから、結線基板8上に整列された電機子巻線7の一端をベース6の凹部6aに固着するようにしている。
このような構成において、成形コイル7aおよび7bの位置決めにあたっては、結線基板8上に予め設けられたセンターブロック10の周囲に複数の成形コイル7a、7bをはめ込み、結線基板8との間でハンダ付けを行うことにより実施している。それから、結線を行った結線基板8をベース6の凹部6aにはめ込み、結線基板8の固定および絶縁保護を行うためにベース6と結線基板8の外周にモールド樹脂9を充填して固着する。本図の例では、電機子は1枚の結線基板8、12個のセンターブロック10、6個の成形コイル7a、6個の成形コイル7bで構成しており、この時、成形コイル7aと成形コイル7bは、推力リップル低減を図ることを目的としてδ=α×nの量だけ位置をずらして配置している。
但し、αはコイル位置のずらし量で、基本電気角60°の位相差に相当し、コイルピッチをA(mm)とすると、α=A/4で表わされる。また、nは自然数である。
このように構成され電機子に、電気的相対位置に応じた3相交流電流を成形コイル7aと成形コイル7bに流すことにより、図示しない永久磁石の作る磁界と作用して、電機子に対して図示しない界磁ヨークに推力が発生する。
特開2001−231246号公報 特開2004−88844号公報
Conventionally, a linear motor suitable for applications requiring ultra-precise positioning and high thrust, such as a semiconductor manufacturing-related stepper driving device and a machine tool table feeding device, is as shown in FIG. Patent Document 2).
FIG. 7 is a perspective view showing the entire configuration of a conventional linear motor, which is common to the present invention described later.
In FIG. 7, 1 is a linear motor, 2 is a stator, 3 is a field yoke, 4 is a permanent magnet, 5 is a mover, and 6 is a base.
The linear motor 1 includes a stator 2 and a mover 5. Of these, one stator 2 constitutes a field composed of a flat field yoke 3 and a plurality of permanent magnets 4 arranged on the field yoke 3 so as to have different polarities alternately. The other armature 5 is disposed opposite to the permanent magnet 4 via a magnetic gap, and constitutes an armature composed of a base 6 and an armature winding described later.
8 is a front sectional view showing a conventional linear motor along the line AA in FIG. 7, FIG. 9 is a side view of the armature constituting the mover in FIG. 7 as viewed from the direction C, and FIG. FIG. 11 is a detailed cross-sectional view taken along line B-B of FIG.
8 to 11, 6a is a recess, 7 is an armature winding, 7a and 7b are molded coils, 8 is a wiring board, 9 is a mold resin, and 10 is a center block.
The armature winding 7 has a configuration in which formed coils 7a and 7b formed by forming a plurality of concentrated coil groups into a flat plate shape are arranged in two rows and aligned. The molded coils 7a and 7b and the armature exterior are electrically connected by the wiring board 8, and are fixed to both surfaces along the longitudinal direction. Then, one end of the armature winding 7 aligned on the connection board 8 is fixed to the recess 6 a of the base 6.
In such a configuration, when positioning the formed coils 7 a and 7 b, a plurality of formed coils 7 a and 7 b are fitted around the center block 10 provided in advance on the connection board 8, and soldered between the connection boards 8. We carry out by doing. Then, the connected wiring board 8 is fitted into the recess 6a of the base 6 and the outer periphery of the base 6 and the wiring board 8 is filled and fixed with a mold resin 9 in order to fix the wiring board 8 and protect the insulation. In the example shown in the figure, the armature is composed of one connection board 8, 12 center blocks 10, six formed coils 7a, and six formed coils 7b. At this time, the formed coil 7a and the formed coil 7b are formed. The coil 7b is arranged with a position shifted by an amount of δ = α × n for the purpose of reducing thrust ripple.
However, α is a shift amount of the coil position, which corresponds to a phase difference of a basic electrical angle of 60 °, and is expressed by α = A / 4 when the coil pitch is A (mm). N is a natural number.
A three-phase alternating current corresponding to the electrical relative position is caused to flow through the forming coil 7a and the forming coil 7b to the armature thus configured, thereby acting on a magnetic field created by a permanent magnet (not shown) and Thrust is generated in a field yoke (not shown).
JP 2001-231246 A JP 2004-88844 A

ところが、従来技術は、リニアモータ電機子の大きさに対するモールド樹脂の量、すなわち、電機子の単位体積あたりのモールド樹脂の重量比(密度)が相対的に多くなると、リニアモータ電機子自身の固有振動数を高くすることが出来ないという問題があった。そのため、実稼動時に発振したりして、安定した高速位置決め制御を行うことが非常に困難である。
本発明はこのような問題点に鑑みてなされたものであり、縦弾性係数/密度比の高い複数の非金属製支柱や連結バーを採用したり、また断面形状が同一である複数の非鉄金属製支柱や連結バーを採用することで、リニアモータ電機子自身の固有振動数が高く、安定した高速位置決め制御を行うことができるリニアモータ電機子およびリニアモータを提供することを目的とする。
However, when the amount of the mold resin relative to the size of the linear motor armature, that is, the weight ratio (density) of the mold resin per unit volume of the armature is relatively large, the conventional technology has a unique characteristic of the linear motor armature itself. There was a problem that the frequency could not be increased. For this reason, it is very difficult to perform stable high-speed positioning control by oscillating during actual operation.
The present invention has been made in view of such problems, and employs a plurality of non-metallic columns and connecting bars having a high longitudinal elastic modulus / density ratio, and a plurality of non-ferrous metals having the same cross-sectional shape. It is an object of the present invention to provide a linear motor armature and a linear motor that can perform stable high-speed positioning control by adopting a column and a connecting bar that have a high natural frequency of the linear motor armature itself.

上記問題を解決するため、請求項1に記載の発明は、リニアモータ電機子に係り、結線基板の両側に複数個のコイル群を平板状に成形してなる成形コイルを2列に並べて整列させた電機子巻線と、前記結線基板上に整列された電機子巻線の一端を固着するベースとより構成される電機子を備えており、前記電機子巻線の各列における成形コイルの間に、非金属材料または同一断面形状の非鉄金属材料からなる複数の支柱を設けると共に、前記支柱を以下の式で表わされるピッチPで配置するようにしたことを特徴としている。
P=A×N+α×n
但し、Aはコイルピッチ、Nは同一列中の各支柱間に入るコイル数で0を除く自然数、αは各電機子巻線列のコイル位置の基本ずらし量であって、推力リップル低減のための電気角60°に相当し(α=A/4)、nは自然数である。
請求項2に記載の発明は、請求項1記載のリニアモータ電機子において、前記複数の支柱の一端を前記ベースに固定すると共に、他端に該支柱を連結するための連結バーを設けて固定したことを特徴としている。
請求項3に記載の発明は、請求項1または2記載のリニアモータ電機子と、前記電機子の両側に磁気的空隙を介して対向配置された界磁ヨークと、前記界磁ヨーク上に交互に極性が異なるように並べて配置した複数の永久磁石とより構成される界磁を備え、前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として相対的に走行するようにしたリニアモータを特徴としている。
In order to solve the above-mentioned problem, the invention according to claim 1 relates to a linear motor armature, wherein a plurality of coil groups formed in a flat plate shape on both sides of a connection board are arranged in two rows and aligned. Armature windings and a base for fixing one end of the armature windings aligned on the wiring board, and between the formed coils in each row of the armature windings In addition, a plurality of struts made of a non-metallic material or a non-ferrous metal material having the same cross-sectional shape are provided, and the struts are arranged at a pitch P expressed by the following formula.
P = A × N + α × n
Where A is the coil pitch, N is the number of coils entering between the columns in the same row and is a natural number excluding 0, and α is the basic shift amount of the coil position of each armature winding row, for reducing thrust ripple The electrical angle is 60 ° (α = A / 4), and n is a natural number.
According to a second aspect of the present invention, in the linear motor armature according to the first aspect, one end of the plurality of support columns is fixed to the base, and a connection bar for connecting the support columns to the other end is provided and fixed. It is characterized by that.
According to a third aspect of the present invention, there is provided the linear motor armature according to the first or second aspect, a field yoke disposed opposite to both sides of the armature via a magnetic gap, and alternately on the field yoke. And a plurality of permanent magnets arranged side by side with different polarities so that either one of the field and the armature serves as a stator and the other serves as a mover. It features a linear motor.

請求項1、2に記載の発明によると、縦弾性係数/密度比の高い材料より形成された支柱、連結バーの採用により、結線基板部の位置決め固定、絶縁確保および保護の目的により用いているモールド樹脂の量を、リニアモータ電機子の大きさに対して従来よりも相対的に少なくし、リニアモータ電機子自身の固有振動数を高くすることが出来る。
その結果、安定した高速位置決め制御を行うことが出来る。
また、特に、非鉄金属製の支柱を用いる場合は非金属製の支柱の場合に比べて渦電流損等の問題が生じるが、支柱の断面形状を同一にすることで、渦電流損を低減することが出来る。
According to the first and second aspects of the present invention, by using a support column and a connection bar formed of a material having a high longitudinal elastic modulus / density ratio, the connection board portion is used for positioning and fixing, ensuring insulation and protecting. The amount of the mold resin can be made relatively smaller than that of the conventional linear motor armature to increase the natural frequency of the linear motor armature itself.
As a result, stable high-speed positioning control can be performed.
In particular, when non-ferrous metal columns are used, problems such as eddy current loss occur compared to non-metallic columns. However, by making the column cross-sectional shape the same, eddy current loss is reduced. I can do it.

以下、本発明の実施例を図に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1実施例を示すリニアモータ電機子であって、(a)は図7のA−A線に沿う正断面図に相当し、(b)は(a)の側面図、図2は図1(b)の電機子のB−B線に沿う平断面図、図3は図2のD部の詳細図を示したものである。なお、本発明の構成要素が従来技術と同じものについては、同一符号を付してその説明を省略し、異なる点のみ説明する。   FIG. 1 shows a linear motor armature according to a first embodiment of the present invention, wherein (a) corresponds to a front sectional view taken along line AA in FIG. 7, and (b) is a side view of (a). 2 is a plan sectional view taken along line BB of the armature of FIG. 1B, and FIG. 3 is a detailed view of a portion D of FIG. In addition, about the same component as this invention, the same code | symbol is attached | subjected and the description is abbreviate | omitted, and only a different point is demonstrated.

本発明が従来技術と異なる点は以下のとおりである。
すなわち、電機子巻線7の各列における成形コイル7a、7bの間に、非金属材料からなる複数の支柱11a、11b、11cを設けると共に、該支柱を以下の式で表わされるピッチPで配置するようにした点である。
P=A×N+α×n
但し、Aはコイルピッチ、Nは同一列中の各支柱間に入るコイル数で0を除く自然数、αは各電機子巻線列のコイル位置の基本ずらし量であって、推力リップル低減のための電気角60°に相当し(α=A/4)、nは自然数である。
また、成形コイル7a、7bを電気結線するための結線基板8は軸方向に二分割されており、2枚の結線基板8の一方の側面および両基板間に該支柱を配置するように設けている。ここで、図1(b)は2枚の結線基板8が支柱11bで仕切られた状態となっており、この場合、隣り合うコイルのコイルピッチBは、B=A+α×nで表わされる。
また、複数の支柱11a、11b、11cの一端をベース6に固定すると共に、他端に該支柱を連結するための連結バー12を設けて固定する点である。
なお、複数の支柱11a、11b、11cは、例えば、設計上密度に対する縦弾性係数の比が30(GPa/(g/cm))以上の機械的特性を有する、セラミックが好ましく、各支柱の断面形状は必ずしも一定でなくても構わない。
The present invention is different from the prior art as follows.
That is, a plurality of columns 11a, 11b, and 11c made of a non-metallic material are provided between the formed coils 7a and 7b in each row of the armature windings 7, and the columns are arranged at a pitch P expressed by the following formula. This is the point that I tried to do.
P = A × N + α × n
Where A is the coil pitch, N is the number of coils entering between the columns in the same row and is a natural number excluding 0, and α is the basic shift amount of the coil position of each armature winding row, for reducing thrust ripple The electrical angle is 60 ° (α = A / 4), and n is a natural number.
In addition, the connection board 8 for electrically connecting the formed coils 7a and 7b is divided into two parts in the axial direction, and is provided so that the support is disposed between one side surface of the two connection boards 8 and both the boards. Yes. Here, FIG. 1B shows a state in which the two connection boards 8 are partitioned by the support 11b. In this case, the coil pitch B of the adjacent coils is represented by B = A + α × n.
In addition, one end of the plurality of columns 11a, 11b, and 11c is fixed to the base 6 and a connection bar 12 for connecting the column to the other end is provided and fixed.
The plurality of support pillars 11a, 11b, and 11c are preferably made of ceramics having a mechanical characteristic in which the ratio of the longitudinal elastic modulus to the design density is 30 (GPa / (g / cm 3 )) or more. The cross-sectional shape is not necessarily constant.

次に、リニアモータの組立について説明する。
本実施例では、2枚の結線基板8、12個のセンターブロック10、6個の成形コイル7a、6個の成形コイル7bで構成しており、成形コイル7aと成形コイル7bは、まず、2枚の結線基板8上を用意し、結線基板8上に予め設けられたセンターブロック10の周囲に平板状に成形された複数の成形コイル7a、7bをはめ込み、各コイルと結線基板8をハンダ付けした後、結線を行った2枚の結線基板8の軸方向に並べ、2枚の結線基板8の一方の側面および両基板間に金属製部材からなる支柱11a、支柱11b、支柱11cを配置するようにし、結線基板8と支柱11a、11b、11cをベース6の凹部6aにはめ込む。それから、支柱11a、11b、11cの先端に連結バー12を固定し、ベース6と結線基板8の外周の間にモールド樹脂9を充填して固定する。
Next, assembly of the linear motor will be described.
In this embodiment, it is composed of two connection boards 8, twelve center blocks 10, six molded coils 7a, and six molded coils 7b. A plurality of wiring boards 8 are prepared, and a plurality of formed coils 7a and 7b formed in a flat plate shape are fitted around a center block 10 provided in advance on the wiring board 8, and each coil and the wiring board 8 are soldered. After that, the columns 11a, the columns 11b, and the columns 11c, which are made of metal members, are arranged in the axial direction of the two connection substrates 8 that are connected to each other and between one side surface of the two connection substrates 8 and the two substrates. In this way, the wiring board 8 and the columns 11 a, 11 b, 11 c are fitted into the recess 6 a of the base 6. Then, the connecting bar 12 is fixed to the tips of the columns 11a, 11b, and 11c, and the mold resin 9 is filled between the outer periphery of the base 6 and the wiring board 8 and fixed.

次に動作について説明する。
このように構成されたリニアモータ電機子に、電気的相対位置に応じた3相交流電流を成形コイル7aと成形コイル7bに流すことにより、図示しない永久磁石の作る磁界と作用して、電機子に対して図示しない界磁ヨークに推力が発生する。
本発明の第1実施例は上記構成にしたので、縦弾性係数/密度比の高い材料より形成された支柱、連結バーの採用により、結線基板部の位置決め固定、絶縁確保および保護の目的により用いているモールド樹脂の量を、リニアモータ電機子の大きさに対して従来よりも相対的に少なくし、リニアモータ電機子自身の固有振動数を高くすることが出来、その結果安定した高速位置決め制御を行うことが出来る。
Next, the operation will be described.
The linear motor armature configured in this way acts on a magnetic field generated by a permanent magnet (not shown) by causing a three-phase alternating current corresponding to the electrical relative position to flow through the molded coil 7a and the molded coil 7b, and thereby the armature. On the other hand, a thrust is generated in a field yoke (not shown).
Since the first embodiment of the present invention has the above-described configuration, it is used for the purpose of positioning and fixing the wiring board portion, ensuring insulation, and protecting by adopting columns and connecting bars made of a material having a high longitudinal elastic modulus / density ratio. The amount of mold resin that is used is relatively smaller than the conventional size of the linear motor armature, and the natural frequency of the linear motor armature itself can be increased, resulting in stable high-speed positioning control. Can be done.

次に、本発明の第2実施例について説明する。
図4は本発明の第2実施例を示すリニアモータ電機子であって、図7の矢視C方向から見た側面図、図5は図4の電機子のB−B線に沿う平断面図、図6は図5のD部の詳細図を示したものである。
第2実施例が第1実施例と異なる点は以下のとおりである。
すなわち、電機子巻線8の各列における成形コイル7a、7bの間に、非鉄金属材料(例えばアルミ合金)からなる同一の断面形状を有した複数の支柱11a、支柱11b、支柱11cを設ける点である。
なお、成形コイル間に配置される支柱のピッチP、および支柱の他端を連結バーにより固定する点は同じである。また、組立方法、動作については第1実施例と同じなので、説明を省略する。
Next, a second embodiment of the present invention will be described.
4 is a side view of the linear motor armature according to the second embodiment of the present invention as seen from the direction of arrow C in FIG. 7, and FIG. 5 is a cross-sectional view along the line BB of the armature in FIG. FIG. 6 and FIG. 6 show detailed views of part D in FIG.
The second embodiment is different from the first embodiment as follows.
That is, a plurality of struts 11a, struts 11b, and struts 11c having the same cross-sectional shape made of a non-ferrous metal material (for example, an aluminum alloy) are provided between the forming coils 7a and 7b in each row of the armature windings 8. It is.
Note that the pitch P of the columns disposed between the formed coils and the other end of the column are fixed by the connecting bar are the same. Since the assembly method and operation are the same as those in the first embodiment, description thereof is omitted.

本発明の第2実施例は上記構成にしたので、支柱が非金属製の場合は、渦電流損等の問題はないが、非鉄金属製の場合は渦電流損等の問題が生じる。支柱の断面形状を同一にすることで、渦電流損を低減することが出来る。   Since the second embodiment of the present invention has the above-described configuration, there is no problem such as eddy current loss when the support is made of non-metal, but there is a problem such as eddy current loss when the support is made of non-ferrous metal. By making the cross-sectional shapes of the columns the same, eddy current loss can be reduced.

本発明の第1実施例を示すリニアモータ電機子であって、(a)は図7のA−A線に沿う正断面図に相当し、(b)は(a)の側面図に相当するもの、1 is a linear motor armature showing a first embodiment of the present invention, wherein (a) corresponds to a front sectional view taken along the line AA in FIG. 7, and (b) corresponds to a side view of (a). thing, 図1(b)の電機子のB−B線に沿う平断面図、FIG. 1B is a cross-sectional plan view taken along line BB of the armature in FIG. 図2のD部の詳細図を示したもの。FIG. 3 shows a detailed view of part D in FIG. 2. 本発明の第2実施例を示すリニアモータ電機子であって、図7の矢視C方向から見た側面図、A linear motor armature showing a second embodiment of the present invention, a side view seen from the direction C of the arrow in FIG. 図4の電機子のB−B線に沿う平断面図、FIG. 4 is a cross-sectional plan view taken along line BB of the armature of FIG. 図5のD部の詳細図を示したもの、FIG. 5 shows a detailed view of part D of FIG. 従来および本発明と共通なリニアモータの全体構成を示す斜視図、The perspective view which shows the whole linear motor common structure with the past and this invention, 図7のA−A線に沿う従来のリニアモータを示す正断面図、Front sectional view showing a conventional linear motor along line AA in FIG. 図7の可動子を構成する電機子を矢視C方向から見た側面図、The side view which looked at the armature which comprises the needle | mover of FIG. 7 from the arrow C direction, 図9の電機子のB−B線に沿う平断面図、FIG. 9 is a cross-sectional plan view taken along line BB of the armature of FIG. 図10のD部の詳細図を示したものDetailed view of part D in FIG. 10

1 リニアモータ、
2 固定子、
3 界磁ヨーク、
4 永久磁石、
5 可動子、
6 ベース、
7 電機子巻線、
7a、7b 成形コイル、
8 結線基板、
9 モールド樹脂、
10 センターブロック、
11a、11b、11c 支柱、
12 連結バー、
P 支柱のピッチ(P=A×N+α×n)、
A コイルピッチ、
N 各支柱間に配置されるコイル数(自然数)、
α コイル位置の基本ズラシ量(α=A/4)
1 linear motor,
2 Stator,
3 Field yoke,
4 Permanent magnet,
5 Mover,
6 base,
7 Armature winding,
7a, 7b molded coil,
8 Connection board,
9 Mold resin,
10 Center block,
11a, 11b, 11c struts,
12 connecting bar,
P Pitch pitch (P = A × N + α × n),
A coil pitch,
N Number of coils (natural number) placed between each support,
α Basic displacement of the coil position (α = A / 4)

Claims (3)

結線基板の両側に複数個のコイル群を平板状に成形してなる成形コイルを2列に並べて整列させた電機子巻線と、前記結線基板上に整列された電機子巻線の一端を固着するベースとより構成される電機子を備えており、  An armature winding formed by arranging a plurality of coil groups formed in a flat plate shape on both sides of the wiring board and arranged in two rows, and one end of the armature winding aligned on the wiring board are fixed. Armature composed of a base and
前記電機子巻線の各列における成形コイルの間に、非金属材料または同一断面形状の非鉄金属材料からなる複数の支柱を設けると共に、前記支柱を以下の式で表わされるピッチPで配置するようにしたことを特徴とするリニアモータ電機子。  A plurality of columns made of a non-metallic material or a non-ferrous metal material having the same cross-sectional shape are provided between the formed coils in each row of the armature windings, and the columns are arranged at a pitch P represented by the following formula: A linear motor armature characterized by the above.
P=A×N+α×n      P = A × N + α × n
但し、Aはコイルピッチ、Nは同一列中の各支柱間に入るコイル数で0を除く自然数、αは各電機子巻線列のコイル位置の基本ずらし量であって、推力リップル低減のための電気角60°に相当し(α=A/4)、nは自然数である。Where A is the coil pitch, N is the number of coils entering between the columns in the same row and is a natural number excluding 0, and α is the basic shift amount of the coil position of each armature winding row, to reduce thrust ripple. The electrical angle is 60 ° (α = A / 4), and n is a natural number.
前記複数の支柱の一端を前記ベースに固定すると共に、他端に該支柱を連結するための連結バーを設けて固定したことを特徴とする請求項1に記載のリニアモータ電機子2. The linear motor armature according to claim 1, wherein one end of each of the plurality of support columns is fixed to the base and a connection bar for connecting the support columns to the other end is provided and fixed. 請求項1または2記載のリニアモータ電機子と、  The linear motor armature according to claim 1 or 2,
前記電機子の両側に磁気的空隙を介して対向配置された界磁ヨークと、前記界磁ヨーク上に交互に極性が異なるように並べて配置した複数の永久磁石とより構成される界磁を備え、  A field yoke comprising opposing field yokes arranged on both sides of the armature via magnetic air gaps, and a plurality of permanent magnets arranged alternately on the field yoke so as to have different polarities; ,
前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として相対的に走行するようにしたことを特徴とするリニアモータ。  A linear motor characterized in that either one of the field magnet or the armature travels relatively as a stator and the other as a mover.
JP2005329947A 2005-11-15 2005-11-15 Linear motor armature and linear motor Expired - Fee Related JP4711182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329947A JP4711182B2 (en) 2005-11-15 2005-11-15 Linear motor armature and linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329947A JP4711182B2 (en) 2005-11-15 2005-11-15 Linear motor armature and linear motor

Publications (2)

Publication Number Publication Date
JP2007143216A JP2007143216A (en) 2007-06-07
JP4711182B2 true JP4711182B2 (en) 2011-06-29

Family

ID=38205411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329947A Expired - Fee Related JP4711182B2 (en) 2005-11-15 2005-11-15 Linear motor armature and linear motor

Country Status (1)

Country Link
JP (1) JP4711182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780850B (en) * 2023-08-24 2024-01-09 中国科学院宁波材料技术与工程研究所 Primary modularized secondary bias structure permanent magnet synchronous linear motor and optimization method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351221A (en) * 1993-06-11 1994-12-22 Hitachi Metals Ltd Linear motor
JPH08172765A (en) * 1994-12-20 1996-07-02 Hitachi Metals Ltd Linear motor
WO1999041825A1 (en) * 1998-02-13 1999-08-19 Kabushiki Kaisha Yaskawa Denki Linear motor
JP2003061330A (en) * 2001-08-20 2003-02-28 Yaskawa Electric Corp Linear motor
JP2004048919A (en) * 2002-07-12 2004-02-12 Nikon Corp Linear motor and stage device, and exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351221A (en) * 1993-06-11 1994-12-22 Hitachi Metals Ltd Linear motor
JPH08172765A (en) * 1994-12-20 1996-07-02 Hitachi Metals Ltd Linear motor
WO1999041825A1 (en) * 1998-02-13 1999-08-19 Kabushiki Kaisha Yaskawa Denki Linear motor
JP2003061330A (en) * 2001-08-20 2003-02-28 Yaskawa Electric Corp Linear motor
JP2004048919A (en) * 2002-07-12 2004-02-12 Nikon Corp Linear motor and stage device, and exposure device

Also Published As

Publication number Publication date
JP2007143216A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4860222B2 (en) Linear motor and manufacturing method thereof
JP5253114B2 (en) Linear motor
US8446054B2 (en) Periodic magnetic field generation device, and linear motor and rotary motor using the same
TWI338431B (en)
JP5770417B2 (en) Linear motor
US10700585B2 (en) Linear motor
JP3360606B2 (en) Linear motor
JP5527426B2 (en) Linear motor
JP2005168243A (en) Permanent magnet type synchronous linear motor
JP5224050B2 (en) Linear motor armature, linear motor, and table feed device using the same.
JP2006174583A (en) Linear motor
JP5240563B2 (en) XY axis coreless linear motor and stage apparatus using the same
JP4711182B2 (en) Linear motor armature and linear motor
JP2001119919A (en) Linear motor
JP2001197718A (en) Coreless linear motor
KR20190065454A (en) Linear motor
JP2007068326A (en) Linear motor unit and method of combining same
JP2005102487A (en) Linear motor
JP2010166704A (en) Coreless linear motor armature and coreless linear motor
JP5413640B2 (en) Multi-connected cylindrical linear motor
JP3824061B2 (en) Linear motor
JP2011193553A (en) Coreless linear motor of two-degrees-of-freedom
JP2000278929A (en) Linear motor
JP2006121814A (en) Linear motor
JP2006014391A (en) Linear motor armature, linear motor and flat surface motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

LAPS Cancellation because of no payment of annual fees