JP5797034B2 - Linear motor - Google Patents
Linear motor Download PDFInfo
- Publication number
- JP5797034B2 JP5797034B2 JP2011150695A JP2011150695A JP5797034B2 JP 5797034 B2 JP5797034 B2 JP 5797034B2 JP 2011150695 A JP2011150695 A JP 2011150695A JP 2011150695 A JP2011150695 A JP 2011150695A JP 5797034 B2 JP5797034 B2 JP 5797034B2
- Authority
- JP
- Japan
- Prior art keywords
- linear motor
- mover
- fins
- heat
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 claims description 29
- 230000017525 heat dissipation Effects 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000004804 winding Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000191 radiation effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
Landscapes
- Motor Or Generator Cooling System (AREA)
- Linear Motors (AREA)
Description
本発明は鉄心と巻線とを有するコイルを可動子として備えるリニアモータに関し、特に空冷方式のリニアモータ放熱構造に関する。 The present invention relates to a linear motor including a coil having an iron core and a winding as a mover, and more particularly to an air-cooled linear motor heat dissipation structure.
従来のリニアモータは、可動子と固定子とを備え、可動子の直線運動によって、可動子に取り付けられた天板も同時に直線運動する。可動子は、鉄心にコイルを嵌合させ、コイルを含む鉄心を電気絶縁材であるエポキシ樹脂等により樹脂モールドして成るものである。樹脂モールド部は、鉄心に対するコイルの固定と通電励磁時の振動防止等のために必要なものである。反面、通電励磁時に発熱するコイルを熱伝導作用の悪い樹脂モールド部で取り囲むことになり、樹脂モールド部内に熱がこもる。そのため、コイルの冷却効果は非常に低く抑えられ、リニアモータ使用時の効率を高めることができないという課題がある。 A conventional linear motor includes a mover and a stator, and the top plate attached to the mover simultaneously moves linearly by the linear movement of the mover. The mover is formed by fitting a coil to an iron core and resin-molding the iron core including the coil with an epoxy resin or the like that is an electrical insulating material. The resin mold part is necessary for fixing the coil to the iron core and preventing vibration during energization excitation. On the other hand, the coil that generates heat during energization excitation is surrounded by a resin mold portion having a poor thermal conductivity, and heat is trapped in the resin mold portion. Therefore, the cooling effect of the coil can be kept very low, and there is a problem that the efficiency when using the linear motor cannot be increased.
この課題を解決するために、例えば特許文献1において、少なくとも樹脂モールド部の表面に接して鉄心の上半分を覆う金属製ケースを設けると共に、ケースの左右両側面に放熱用フィンを一体に連設し、コイルの表面域からケースの内面域に熱を伝達するヒートパイプを樹脂モールド部に内装して成るリニアモータが開示されている。 In order to solve this problem, for example, in Patent Document 1, a metal case that covers at least the upper half of the iron core in contact with the surface of the resin mold portion is provided, and heat radiating fins are integrally connected to the left and right side surfaces of the case. A linear motor is disclosed in which a heat pipe that transfers heat from the surface area of the coil to the inner surface area of the case is provided in the resin mold portion.
可動子は一般的に直方体形状をしている。この形状を有する可動子が直線運動する場合、直線運動方向に垂直な可動子の前面の中央部によどみ域が生じ、熱伝達率が減少する。そのため、特許文献1の範囲のリニアモータ構造は、熱伝達率の減少を補うために金属製ケースで覆い、さらに、金属製ケース上に放熱フィンを設置し、放熱面積を増加させている。しかし、このような構造の場合、可動子全体が大型化、および重量化する。その結果、可動子内部のコイルに負荷がかかるため、さらに発熱量が増加するという課題を有する。 The mover generally has a rectangular parallelepiped shape. When the mover having this shape moves linearly, a stagnation region is generated at the center of the front surface of the mover perpendicular to the linear movement direction, and the heat transfer coefficient is reduced. Therefore, the linear motor structure in the range of Patent Document 1 is covered with a metal case in order to compensate for a decrease in heat transfer coefficient, and further, heat dissipation fins are installed on the metal case to increase the heat dissipation area. However, in the case of such a structure, the entire mover is increased in size and weight. As a result, since a load is applied to the coil inside the mover, there is a problem that the amount of heat generation further increases.
本発明の目的は、可動子全体を小型化、軽量化しつつ、表面からの放熱効果を高めた可動子を備えるリニアモータを提供することである。 The objective of this invention is providing the linear motor provided with the needle | mover which improved the thermal radiation effect from the surface, reducing the whole needle | mover downsized and reduced in weight.
上記目的を達成するため、本発明の一態様に係るリニアモータは、異なる磁極が交互に配列された固定子と、固定子に対向配置され、第1方向に沿って直線運動する可動子とを備えるリニアモータであって、可動子は、固定子に向けて磁界を発生するコイルと、コイルの周囲を覆うモールド部材とを備え、モールド部材は、第1方向に対して交差する第1面と、第1方向に沿った第2面を有し、第1面と第2面が交差する角部が、曲面状に形成されていることを特徴とする。 In order to achieve the above object, a linear motor according to an aspect of the present invention includes a stator in which different magnetic poles are alternately arranged, and a mover that is arranged to face the stator and linearly moves along a first direction. The mover includes a coil that generates a magnetic field toward the stator and a mold member that covers the periphery of the coil, and the mold member includes a first surface that intersects the first direction. The corner portion where the second surface along the first direction intersects the first surface and the second surface is formed in a curved surface.
本発明によれば、第1面と第2面が交差する角部が、曲面状に形成されているため、可動子の直線運動時において、第1面に生じるよどみ域が減少する。そのため、第1面に係る平均熱伝達率が向上し、従来に比べ、可動子表面からの放熱効果を高めることが可能になる。 According to the present invention, since the corner portion where the first surface and the second surface intersect is formed in a curved surface shape, the stagnation region generated on the first surface is reduced during the linear movement of the mover. Therefore, the average heat transfer coefficient according to the first surface is improved, and the heat dissipation effect from the surface of the mover can be enhanced as compared with the conventional case.
本発明の実施形態であるリニアモータについて、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。 A linear motor according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals.
実施の形態1.
図1は、本発明の実施の形態1に係るリニアモータの斜視図である。リニアモータの可動子20は、複数のコイル13、および複数のコイル13の周囲を覆うモールド部材21を備える。コイル13は、直方体形状の鉄心11周りに巻線12を巻いた構造である。図中では6つのコイル13を図示しているが、6つに限定されない。鉄心11と巻線12との間は電気絶縁材料(不図示)によって電気絶縁されている。隣り合うコイル13どうしは非接触であり、モールド部材21により電気絶縁状態が保持される。モールド部材21は、コイル13を収容するハウジング部材として機能し、電気絶縁性のモールド樹脂で形成してもよい。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a linear motor according to Embodiment 1 of the present invention. The mover 20 of the linear motor includes a plurality of coils 13 and a mold member 21 that covers the periphery of the plurality of coils 13. The coil 13 has a structure in which a winding 12 is wound around a rectangular parallelepiped iron core 11. Although six coils 13 are illustrated in the drawing, the number is not limited to six. The iron core 11 and the winding 12 are electrically insulated by an electrically insulating material (not shown). Adjacent coils 13 are not in contact with each other and are electrically insulated by the mold member 21. The mold member 21 functions as a housing member that houses the coil 13 and may be formed of an electrically insulating mold resin.
固定子2は、x方向に沿って交互に配列された異なる磁極の直方体形状の永久磁石3を備え、例えば取付板に対してモールド樹脂で固定される。可動子20は、ガイド(不図示)を介して固定子2の上面に、例えば1.0mm以下の距離を隔てて対向配置されている。 The stator 2 includes cuboid-shaped permanent magnets 3 having different magnetic poles arranged alternately along the x direction, and is fixed to a mounting plate with a mold resin, for example. The mover 20 is opposed to the upper surface of the stator 2 via a guide (not shown) with a distance of, for example, 1.0 mm or less.
コイル13は、電源およびコントローラ(不図示)に接続されている。複数のコイル13を通電すると、直線運動に伴って磁極変化を繰り返す磁界が発生する。可動子20は、該磁界と永久磁石3との間に生じる吸引力および反発力により推進力を得て、x方向(第1方向)に直線運動する。可動子20は、コントローラによって運動速度を制御され、+x方向および−x方向に往復運動する。図1に複数のコイル13の1つを取り出して示すように、モールド部材21の頂面26には複数の締結棒15を介して天板16が取り付けられており、天板16は、可動子20と一体となって直線運動する。 The coil 13 is connected to a power source and a controller (not shown). When a plurality of coils 13 are energized, a magnetic field is generated that repeats magnetic pole changes with linear motion. The mover 20 obtains a propulsive force by an attractive force and a repulsive force generated between the magnetic field and the permanent magnet 3 and linearly moves in the x direction (first direction). The mover 20 is controlled in speed by the controller and reciprocates in the + x direction and the −x direction. As shown in FIG. 1, one of the plurality of coils 13 is taken out, and a top plate 16 is attached to the top surface 26 of the mold member 21 via a plurality of fastening rods 15. 20 and a linear motion.
通電している間、巻線12にはジュール熱が発生する。また、鉄心11にも誘導加熱によるジュール熱が発生する。コイル13で発生した熱は、コイル13を覆うモールド部材21に熱伝導して、モールド部材21の表面から周囲へ放熱される。 During energization, Joule heat is generated in the winding 12. Further, Joule heat is also generated in the iron core 11 by induction heating. The heat generated in the coil 13 is conducted to the mold member 21 covering the coil 13 and is radiated from the surface of the mold member 21 to the surroundings.
可動子20のモールド部材21は、略直方体形状を有し、前面22、後面23、側面24、25、頂面26、底面27を有する。可動子20は、前述のように+x方向および−x方向に往復運動する。+x方向に運動する間は、面22が前面、面23が後面であり、−x方向に運動する間は、面23が前面、面22が後面である。本実施形態において、モールド部材21の前面22および後面23と側面24、25が交差する角部31〜34が曲面状、例えば断面円弧状、断面楕円弧状、断面放物線状、または断面多角形状に形成されている。これによる放熱効果を以下で説明する。 The mold member 21 of the mover 20 has a substantially rectangular parallelepiped shape, and has a front surface 22, a rear surface 23, side surfaces 24 and 25, a top surface 26, and a bottom surface 27. The mover 20 reciprocates in the + x direction and the −x direction as described above. While moving in the + x direction, the surface 22 is the front surface and the surface 23 is the rear surface, and while moving in the −x direction, the surface 23 is the front surface and the surface 22 is the rear surface. In the present embodiment, the corners 31 to 34 where the front surface 22 and the rear surface 23 of the mold member 21 intersect with the side surfaces 24 and 25 are formed in a curved shape, for example, a cross-sectional arc shape, a cross-sectional elliptical arc shape, a cross-sectional parabolic shape, or a cross-sectional polygonal shape. Has been. The heat radiation effect by this is demonstrated below.
尚、角部31〜34の円弧の曲率半径は大きい方が好ましいが、モールド部材21と巻線12との最小距離が5.0mmである場合、曲率半径も5.0mm以上が好ましい。 In addition, although the one where the curvature radius of the circular arc of the corner | angular parts 31-34 is larger is preferable, when the minimum distance of the mold member 21 and the coil | winding 12 is 5.0 mm, a curvature radius is also preferable 5.0 mm or more.
図2は、比較例を示す斜視図である。比較例のモールド部材71は、直方体形状を有する。モールド部材71の前面72と側面74、75は直交している。 FIG. 2 is a perspective view showing a comparative example. The mold member 71 of the comparative example has a rectangular parallelepiped shape. The front surface 72 and the side surfaces 74 and 75 of the mold member 71 are orthogonal to each other.
図3は、比較例のリニアモータの可動子がx方向に速度1.0m/sで移動した時の、前面(第1面)に生じる熱伝達率分布を示す。前面72の中央部分を中心として、熱伝達率の低い領域(10〜20W/m2K)(以下「淀み域」)が広がっていることがわかる。また、前面72の外周部に熱伝達率が少し大きくなる領域が存在することがわかる。 FIG. 3 shows a heat transfer coefficient distribution generated on the front surface (first surface) when the mover of the linear motor of the comparative example moves in the x direction at a speed of 1.0 m / s. It can be seen that a region having a low heat transfer coefficient (10 to 20 W / m 2 K) (hereinafter referred to as “stagnation region”) spreads around the central portion of the front surface 72. Further, it can be seen that there is a region where the heat transfer coefficient is slightly increased in the outer peripheral portion of the front surface 72.
図4は、比較例のリニアモータの可動子がx方向に速度1.0m/sで移動した時の、前面を+z方向から見た場合のA−A’断面の気流速度の様子を示す。前面72の中央部分に、気流の衝突速度の小さい領域が存在することがわかる。熱伝達率は、気流の衝突速度と正の相関を有し、図4において衝突速度の小さい領域は、淀み域と対応している。図4において、モールド部材の角部31〜34において衝突速度の大きい領域が存在する。これは気流が淀み領域を避けて増速した結果であり、これにより、前述のように、前面72の外周部に熱伝達率が少し大きくなる領域が生じる。しかし、同時に側面74、75の前方で気流が大きく剥離するため、側面74、75の熱伝達率は減少することが容易に予想できる。 FIG. 4 shows the state of the air velocity of the A-A ′ cross section when the front surface is viewed from the + z direction when the mover of the linear motor of the comparative example moves in the x direction at a velocity of 1.0 m / s. It can be seen that a region where the collision speed of the airflow is small exists in the central portion of the front surface 72. The heat transfer coefficient has a positive correlation with the collision speed of the airflow, and the area where the collision speed is low in FIG. 4 corresponds to the stagnation area. In FIG. 4, there is a region where the collision speed is high in the corner portions 31 to 34 of the mold member. This is a result of the airflow speeding up avoiding the stagnation region. As a result, a region where the heat transfer coefficient is slightly increased is generated on the outer peripheral portion of the front surface 72 as described above. However, at the same time, since the air flow is largely separated in front of the side surfaces 74 and 75, it can be easily predicted that the heat transfer coefficient of the side surfaces 74 and 75 will decrease.
図5は、本発明の実施の形態1に係るリニアモータの可動子がx方向に速度1.0m/sで移動した時の、前面に生じる熱伝達率分布を示す。可動子の前面と側面が交差する角部における円弧の効果をみるため、円弧の局率半径が前面の幅(y方向)の半分である場合について示す。図3と比較して、淀み域が大きく減少していることがわかる。 FIG. 5 shows a heat transfer coefficient distribution generated on the front surface when the mover of the linear motor according to the first embodiment of the present invention moves in the x direction at a speed of 1.0 m / s. In order to see the effect of the arc at the corner where the front and side surfaces of the mover intersect, the case where the local radius of the arc is half the width (y direction) of the front is shown. Compared with FIG. 3, it can be seen that the stagnation area is greatly reduced.
図6は、本実施形態のリニアモータの可動子がx方向に速度1.0m/sで移動した時の、前面を+z方向から見た場合のB−B’断面の気流速度の様子を示す。図4と比較して、前面22の中央部分において、気流の衝突速度の小さい領域が減少していることがわかる。これにより、前述のように前面22において淀み域が大きく減少し、熱伝達率が向上する。また、図4と比較して、気流が側面24、25の前方で剥離していないことがわかる。これにより、側面24、25の熱伝達率は、比較例の可動子の側面74、75に比較して増加する。 FIG. 6 shows the state of the air velocity of the BB ′ section when the front surface is viewed from the + z direction when the mover of the linear motor of this embodiment moves in the x direction at a velocity of 1.0 m / s. . Compared to FIG. 4, it can be seen that the region where the air velocity collision speed is small is reduced in the central portion of the front surface 22. Thereby, as described above, the stagnation region on the front surface 22 is greatly reduced, and the heat transfer rate is improved. Moreover, it turns out that the airflow is not peeling ahead of the side surfaces 24 and 25 compared with FIG. Thereby, the heat transfer coefficient of the side surfaces 24 and 25 is increased as compared with the side surfaces 74 and 75 of the mover of the comparative example.
以上より、可動子の前面22および後面23と側面24、25が交差する角部31〜34を断面円弧状に形成することが、モールド部材21の熱伝達率向上に極めて有効であることがわかる。 From the above, it can be seen that forming the corners 31 to 34 where the front surface 22 and the rear surface 23 of the mover intersect the side surfaces 24 and 25 in a circular arc shape is extremely effective in improving the heat transfer coefficient of the mold member 21. .
尚、本実施形態において、前面22および後面23と側面24、25が交差する角部31〜34のみを断面円弧状に形成しているが、それに限定されることなく、頂面26および底面27と側面24、25が交差する角部、頂面26および底面27と側面24、25が交差する角部を、曲面状、例えば断面円弧状、断面楕円弧状、断面放物線状、または断面多角形状に形成してもよい。 In the present embodiment, only the corners 31 to 34 where the front surface 22 and the rear surface 23 intersect with the side surfaces 24 and 25 are formed in a circular arc shape, but the top surface 26 and the bottom surface 27 are not limited thereto. And the corners where the top surface 26 and the bottom surface 27 intersect with the side surfaces 24 and 25 are curved, for example, a cross-sectional arc shape, a cross-sectional elliptical arc shape, a cross-sectional parabolic shape, or a cross-sectional polygonal shape. It may be formed.
実施の形態2.
図7は、本発明の実施の形態2に係るリニアモータの斜視図である。本実施形態では、角部31〜34に放熱フィン41〜43を設置した構成について説明する。
Embodiment 2. FIG.
FIG. 7 is a perspective view of a linear motor according to Embodiment 2 of the present invention. This embodiment demonstrates the structure which installed the radiation fins 41-43 in the corner | angular parts 31-34.
実施の形態1において、モールド部材21の角部31〜34を断面円弧状にすることで、前面22、後面23および側面24、25の熱伝達率が向上することを示した。一方、可動子のモールド面における表面積は、図2で示した従来構造の可動子の表面積に比べて減少している。可動子の表面積の減少による放熱量の減少量が、熱伝達率の向上による放熱量の増加量よりも大きい可能性もある。本実施形態により、放熱フィン41〜43を設置することで、表面積の減少が防止され、さらには増加するため、可動子表面からの優れた放熱特性を有する可動子20を提供することができる。 In the first embodiment, it has been shown that the heat transfer coefficient of the front surface 22, the rear surface 23, and the side surfaces 24 and 25 is improved by making the corner portions 31 to 34 of the mold member 21 have a circular arc shape in cross section. On the other hand, the surface area of the mover on the mold surface is smaller than the surface area of the mover having the conventional structure shown in FIG. There is a possibility that the amount of decrease in heat dissipation due to the decrease in the surface area of the mover is larger than the amount of increase in heat dissipation due to the improvement of the heat transfer coefficient. By installing the radiation fins 41 to 43 according to the present embodiment, the surface area is prevented from decreasing and further increased, and therefore the movable element 20 having excellent heat radiation characteristics from the surface of the movable element can be provided.
放熱フィン41〜43は、モールド部材21と同じ材料で形成されることが好ましい。この場合、放熱フィン41〜43とモールド部材21を一体成形すると、製造コストを省き、製造工程を簡素化できる。 The heat radiation fins 41 to 43 are preferably formed of the same material as the mold member 21. In this case, if the radiation fins 41 to 43 and the mold member 21 are integrally formed, the manufacturing cost can be saved and the manufacturing process can be simplified.
平板状フィン41〜43を複数設置する場合、気流がモールド部材21の表面を円滑に流れるよう、放熱フィン41〜43を第1方向と平行に設置することが好ましい。 When a plurality of flat fins 41 to 43 are installed, it is preferable to install the radiation fins 41 to 43 in parallel with the first direction so that the airflow smoothly flows on the surface of the mold member 21.
放熱フィン41〜43は、図8に示すように、複数のピン状フィン45でもよい。ピン状フィン45は、気流がモールド部材21の表面を円滑に流れるよう、円弧状の角部31〜34に沿って間隔を存して複数配置することが好ましい。 The radiation fins 41 to 43 may be a plurality of pin-shaped fins 45 as shown in FIG. A plurality of pin-shaped fins 45 are preferably arranged at intervals along the arc-shaped corners 31 to 34 so that the airflow smoothly flows on the surface of the mold member 21.
図9は、本発明の実施の形態2に係るリニアモータの可動子に設置された放熱フィンの斜視図である。放熱フィン41〜43は、前面22および後面23に対して平行に延びる第1仮想面36と、側面24、25に対して平行に延びる第2仮想面37で規定される空間内に収まるようにする。 FIG. 9 is a perspective view of the radiation fins installed on the mover of the linear motor according to the second embodiment of the present invention. The radiation fins 41 to 43 are accommodated in a space defined by a first virtual surface 36 extending in parallel to the front surface 22 and the rear surface 23 and a second virtual surface 37 extending in parallel to the side surfaces 24 and 25. To do.
これにより、可動子全体を小型化、軽量化しつつ、表面からの放熱効果を高めた可動子20を備えるリニアモータを提供することができる。 Thereby, a linear motor provided with the needle | mover 20 which improved the heat dissipation effect from the surface, reducing the whole needle | mover downsized and reduced in weight can be provided.
実施の形態3.
図10(a)は、本発明の実施の形態3に係るリニアモータの可動子に設置された放熱フィンの斜視図である。また、図10(b)は、本発明の実施の形態3に係るリニアモータの可動子に設置された放熱フィンを+x方向から−x方向に向かって見たyz面を示す。本実施形態において、放熱フィン41〜43の厚さが、フィン根元からフィン先端に向かって単調減少する。
Embodiment 3 FIG.
Fig.10 (a) is a perspective view of the radiation fin installed in the needle | mover of the linear motor which concerns on Embodiment 3 of this invention. FIG. 10B shows a yz plane in which the radiation fins installed on the mover of the linear motor according to Embodiment 3 of the present invention are viewed from the + x direction toward the −x direction. In the present embodiment, the thickness of the radiation fins 41 to 43 monotonously decreases from the fin base toward the fin tip.
これにより、放熱フィン41〜43をモールド成形する際、容易に離型可能となり、製造コストを省き、製造工程を簡素化できる。また、根元での厚さは先端での厚さより大きいため、放熱フィン全体のフィン効率も向上する。この結果、放熱フィン41〜43が、熱伝導率の小さいモールド樹脂と同じ材料で形成された場合でも放熱特性に優れた放熱フィンを提供することができる。 Thereby, when the heat radiation fins 41 to 43 are molded, the mold can be easily released, and the manufacturing cost can be saved and the manufacturing process can be simplified. Moreover, since the thickness at the base is larger than the thickness at the tip, the fin efficiency of the entire heat radiation fin is also improved. As a result, even when the radiation fins 41 to 43 are formed of the same material as the mold resin having a low thermal conductivity, it is possible to provide a radiation fin having excellent heat radiation characteristics.
実施の形態4.
図11は、本発明の実施の形態3に係るリニアモータの斜視図である。本実施形態では、可動子20のモールド部材21の角部31〜34は、金属の放熱フィン41〜44と一体成形したベース部材41a〜44aを備える構成について説明する。ベース部材41a〜44aとモールド部材21とは、例えば熱伝導性接着剤のような接合剤で接合され、または螺合されるのが好ましい。
Embodiment 4 FIG.
FIG. 11 is a perspective view of a linear motor according to Embodiment 3 of the present invention. In the present embodiment, a configuration in which the corner portions 31 to 34 of the mold member 21 of the mover 20 include base members 41 a to 44 a integrally formed with metal heat radiation fins 41 to 44 will be described. The base members 41a to 44a and the mold member 21 are preferably joined or screwed together with a bonding agent such as a heat conductive adhesive.
本実施形態を採用することにより、モールド部材21の成形後、放熱フィン41〜43を可動子20に設置するので、歩留まりを向上させることが可能である。 By adopting this embodiment, since the heat radiation fins 41 to 43 are installed on the movable element 20 after the molding of the mold member 21, it is possible to improve the yield.
本実施形態の放熱フィン41〜44およびベース部材41a〜44aにおいて、例えば銅、アルミニウム、鉄、その他熱伝導率の大きい金属材料を使用することが好ましい。前述のように、モールド部材21および放熱フィン41〜44をモールド樹脂で成形した場合、モールド樹脂は一般に熱伝導率が小さいため、大きい放熱特性が期待できない。熱伝導率の大きい金属材料で成形した放熱フィン41〜44およびベース部材41a〜44aを角部に備えることで、表面からの放熱特性に優れた可動子を有するリニアモータを提供することができる。 In the heat radiation fins 41 to 44 and the base members 41a to 44a of the present embodiment, it is preferable to use, for example, copper, aluminum, iron, or other metal material having a high thermal conductivity. As described above, when the mold member 21 and the heat radiation fins 41 to 44 are molded from a mold resin, since the mold resin generally has a low thermal conductivity, a large heat dissipation characteristic cannot be expected. By providing the corners with the radiation fins 41 to 44 and the base members 41a to 44a formed of a metal material having a high thermal conductivity, a linear motor having a mover having excellent heat radiation characteristics from the surface can be provided.
放熱フィン41〜44は、図8に示すように、複数のピン状フィン45でもよい。ピン状フィン45は、気流がモールド部材21の表面を円滑に流れるよう、円弧状の角部31〜34に沿って間隔を存して複数配置することが好ましい。 As shown in FIG. 8, the radiation fins 41 to 44 may be a plurality of pin-shaped fins 45. A plurality of pin-shaped fins 45 are preferably arranged at intervals along the arc-shaped corners 31 to 34 so that the airflow smoothly flows on the surface of the mold member 21.
尚、本発明に係るリニアモータは、鉄心を有しないコイル、および凹形状を有する固定子を備えるいわゆるコアレスタイプのリニアモータでもよい。 The linear motor according to the present invention may be a so-called coreless type linear motor including a coil having no iron core and a stator having a concave shape.
さらに、本発明に係るリニアモータは、円筒形状を有する固定子、および該固定子を取り囲むように配置される可動子を備えるいわゆるシャフト型リニアモータでもよい。 Furthermore, the linear motor according to the present invention may be a so-called shaft type linear motor including a stator having a cylindrical shape and a mover disposed so as to surround the stator.
2,52 固定子、 3 永久磁石、 11,61 鉄心、 12,62 巻線、 13,63 コイル、 15,65 締結棒、 16,66 天板、 20,70 可動子 21,71 モールド部材、 22,72 前面、 23,73 後面、 24,25,74,75 側面、 26,76 頂面、 27,77 底面、 31,32,33,34 角部、 41,42,43,44 放熱フィン、 41a,42a,43a,44a ベース、 45 ピン状フィン。 2,52 Stator, 3 Permanent magnet, 11,61 Iron core, 12,62 Winding, 13,63 Coil, 15,65 Fastening bar, 16,66 Top plate, 20,70 Movable member 21,71 Mold member, 22 , 72 Front surface, 23, 73 Rear surface, 24, 25, 74, 75 Side surface, 26, 76 Top surface, 27, 77 Bottom surface, 31, 32, 33, 34 Corner portion, 41, 42, 43, 44 Radiation fin, 41a , 42a, 43a, 44a base, 45 pin-shaped fins.
Claims (6)
可動子は、固定子に向けて磁界を発生するコイルと、コイルの周囲を覆うハウジング部材とを備え、
ハウジング部材は、第1方向に対して交差する第1面と、第1方向に沿った第2面を有し、
第1面と第2面が交差する角部が、曲面状に形成され、
角部には、放熱フィンが設置され、
放熱フィンは、第1面に対して平行に延びる第1仮想面、および第2面に対して平行に延びる第2仮想面で規定される空間内に収まる
ことを特徴とするリニアモータ。 A linear motor comprising a stator in which different magnetic poles are alternately arranged, and a mover that is arranged opposite to the stator and linearly moves along a first direction,
The mover includes a coil that generates a magnetic field toward the stator, and a housing member that covers the periphery of the coil.
The housing member has a first surface intersecting the first direction, and a second surface along the first direction;
A corner where the first surface and the second surface intersect is formed into a curved surface ,
In the corner, heat dissipation fins are installed,
The heat radiation fin is contained in a space defined by a first virtual surface extending in parallel to the first surface and a second virtual surface extending in parallel to the second surface .
請求項1または請求項3〜5のいずれかに記載のリニアモータ。 The corner portion is provided with a base member integrally formed with a metal radiating fin,
The linear motor in any one of Claim 1 or Claims 3-5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011150695A JP5797034B2 (en) | 2011-07-07 | 2011-07-07 | Linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011150695A JP5797034B2 (en) | 2011-07-07 | 2011-07-07 | Linear motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013021750A JP2013021750A (en) | 2013-01-31 |
JP5797034B2 true JP5797034B2 (en) | 2015-10-21 |
Family
ID=47692660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011150695A Active JP5797034B2 (en) | 2011-07-07 | 2011-07-07 | Linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5797034B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018132024A (en) * | 2017-02-17 | 2018-08-23 | エドワーズ株式会社 | Controller and vacuum pump device |
JP7211323B2 (en) | 2019-10-08 | 2023-01-24 | 株式会社村田製作所 | INDUCTOR COMPONENT AND METHOD OF MANUFACTURING INDUCTOR COMPONENT |
JP7211322B2 (en) | 2019-10-08 | 2023-01-24 | 株式会社村田製作所 | inductor components |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006077511A1 (en) * | 2005-01-18 | 2006-07-27 | Koninklijke Philips Electronics N.V. | Coil assembly for use with an electric motor |
JP2008220003A (en) * | 2007-03-01 | 2008-09-18 | Mitsubishi Electric Corp | Linear motor |
-
2011
- 2011-07-07 JP JP2011150695A patent/JP5797034B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013021750A (en) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6653011B2 (en) | Axial gap type rotary electric machine | |
US8110950B2 (en) | Coreless linear motor having a non-magnetic reinforcing member | |
CN107408453B (en) | Coil unit for non-contact power transmission | |
US20120126653A1 (en) | Axial-flux thin-plate motor | |
JP5693419B2 (en) | Electrical equipment housing | |
JP4983708B2 (en) | Reactor | |
JP2015122856A (en) | Rotary electric machine integrated control device | |
JP2004080938A (en) | Coreless linear motor | |
WO2018192234A1 (en) | Electric motor heat sink member, electric motor and aircraft | |
JP2014023198A (en) | Electric motor | |
JP5797034B2 (en) | Linear motor | |
JP7395592B2 (en) | Electric motor and air conditioner using it | |
US8558417B2 (en) | Cooling unit for nuclear reactor control rod driving apparatus | |
JP5135984B2 (en) | Linear motor | |
JP4512874B2 (en) | Linear motor and method of manufacturing the linear motor | |
JP2002165434A (en) | Coreless linear motor | |
JP2000228843A (en) | Rotating machine | |
JP6788664B2 (en) | Linear motor, voice coil motor, stage device | |
JPWO2018154943A1 (en) | motor | |
JP2009130958A (en) | Rotating electric machine | |
KR100518438B1 (en) | Heat Radiation Structure for Mover of Linear Motor | |
JP7116661B2 (en) | Cylindrical linear motor | |
KR101393843B1 (en) | The ISG motor | |
JP4541035B2 (en) | motor | |
JP5023257B2 (en) | Rotating motor and its heat transfer structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150721 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5797034 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |