JP4541035B2 - motor - Google Patents

motor Download PDF

Info

Publication number
JP4541035B2
JP4541035B2 JP2004161840A JP2004161840A JP4541035B2 JP 4541035 B2 JP4541035 B2 JP 4541035B2 JP 2004161840 A JP2004161840 A JP 2004161840A JP 2004161840 A JP2004161840 A JP 2004161840A JP 4541035 B2 JP4541035 B2 JP 4541035B2
Authority
JP
Japan
Prior art keywords
coil
winding
insulator
shape
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004161840A
Other languages
Japanese (ja)
Other versions
JP2005348462A (en
Inventor
昭 土居
淳 坂本
弘之 菅原
治明 大槻
聡一 遠山
幸之助 北村
弥市 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2004161840A priority Critical patent/JP4541035B2/en
Publication of JP2005348462A publication Critical patent/JP2005348462A/en
Application granted granted Critical
Publication of JP4541035B2 publication Critical patent/JP4541035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円周方向に並べた複数の額縁状巻線を絶縁物により固定した筒状のコイルを磁界中に配置し、電流を供給された巻線に加わる電磁力によりコイルを回転させるモータに関する。   The present invention relates to a motor in which a cylindrical coil in which a plurality of frame-shaped windings arranged in the circumferential direction are fixed by an insulator is arranged in a magnetic field, and the coil is rotated by electromagnetic force applied to the winding supplied with current. About.

図9は、従来の4極モータの正面断面図、図10は従来のコイルの斜視図である。   FIG. 9 is a front sectional view of a conventional four-pole motor, and FIG. 10 is a perspective view of a conventional coil.

軸10の外側には、隙間G1を隔てて磁性体の内側ヨーク11が配置されている。内側ヨーク11の外側には隙間G2を隔てて中空円筒状のコイル4が配置されている。   An inner yoke 11 made of a magnetic material is disposed outside the shaft 10 with a gap G1 therebetween. A hollow cylindrical coil 4 is disposed outside the inner yoke 11 with a gap G2.

コイル4は被覆銅線等の電導体が巻回された額縁状の4個の巻線3をエポキシ樹脂等の絶縁物(以下、「絶縁物」という。)2により一体に成形したものであり、絶縁物2は、隣接する巻線3間および巻線3の巻芯部3aに充填されると共に巻線3の表面、裏面および側面を被覆している。コイル4は軸10の軸線方向の両端で軸10に固定されている。   The coil 4 is formed by integrally forming four frame-shaped windings 3 around which an electric conductor such as a coated copper wire is wound with an insulator 2 (hereinafter referred to as “insulator”) 2 such as an epoxy resin. The insulator 2 is filled between adjacent windings 3 and in the core portion 3a of the winding 3, and covers the front surface, back surface, and side surfaces of the winding 3. The coil 4 is fixed to the shaft 10 at both ends of the shaft 10 in the axial direction.

コイル4の外側には隙間G3を隔てて永久磁石12が配置されている。なお、永久磁石12は非磁性体のセパレータ13により4区画に分割されている。永久磁石12の外側には、磁性体の外側ヨーク14が配置されている。   A permanent magnet 12 is disposed outside the coil 4 with a gap G3 therebetween. The permanent magnet 12 is divided into four sections by a non-magnetic separator 13. An outer yoke 14 made of a magnetic material is disposed outside the permanent magnet 12.

そして、巻線3に電流を供給すると、矢印A方向に電流が流れ、コイル4に電磁力が加わって軸10が回転する。供給された電流により巻線3に熱が発生するが、発生した熱は隙間G2や隙間G3の空気を介して外部に伝達される。   When a current is supplied to the winding 3, a current flows in the direction of arrow A, an electromagnetic force is applied to the coil 4, and the shaft 10 rotates. Heat is generated in the winding 3 by the supplied current, but the generated heat is transmitted to the outside through the air in the gap G2 and the gap G3.

モータの特性を維持するためには、コイル4の温度変化を抑える必要がある。しかし、絶縁物2は金属と比べて熱伝導率が小さい(熱を伝えにくい)。このため、巻線3で発生した熱は絶縁物2には余り伝達されず、ほとんどの熱は巻線3から直接、空気に伝導される。すなわち、絶縁物2は熱放出に関して余り寄与しないので、コイル4の温度上昇値が大きくなる。   In order to maintain the characteristics of the motor, it is necessary to suppress the temperature change of the coil 4. However, the insulator 2 has a lower thermal conductivity than a metal (it is difficult to transfer heat). For this reason, the heat generated in the winding 3 is hardly transmitted to the insulator 2, and most of the heat is directly conducted from the winding 3 to the air. That is, since the insulator 2 does not contribute much to the heat release, the temperature rise value of the coil 4 becomes large.

コイル4で発生する熱を外部に効率よく放出させるための改善策として、絶縁物2部分に熱伝導に優れる金属等(以下、「金属」という。)を配置することが考えられる。このようにすると、コイル4で発生する熱は金属からも放出されるので、コイル4の温度上昇を小さなものにすることが期待できる。   As an improvement measure for efficiently releasing the heat generated in the coil 4 to the outside, it is conceivable to arrange a metal or the like (hereinafter referred to as “metal”) excellent in heat conduction in the insulator 2 portion. If it does in this way, since the heat | fever which generate | occur | produces in the coil 4 is also discharge | released from a metal, it can be anticipated that the temperature rise of the coil 4 is made small.

しかし、金属の入れ方によっては、金属の内部に巻線3に流れる電流を打ち消すような渦電流が発生する結果、モータの性能が低下する。そこで、蛇行させた配管を冷却配管として採用することにより、渦電流の発生を防ぐようにしたリニアモータがある(特許文献1)。
特開2003−224961号公報
However, depending on how the metal is inserted, an eddy current that cancels the current flowing through the winding 3 is generated inside the metal, resulting in a reduction in motor performance. Thus, there is a linear motor that prevents the generation of eddy currents by adopting meandering pipes as cooling pipes (Patent Document 1).
Japanese Patent Laying-Open No. 2003-224961

ところで、エポキシ樹脂等の密度が1.2〜1.4g/cmであるのに対し、金属は密度が大きく、エポキシ樹脂等の密度よりも遙かに大きい。すなわち、比較的軽い金属であるアルミニウムであってもその密度は2.7g/cmであり、マグネシウムであってもその密度は2.3g/cmである。このため、絶縁物中に金属を入れると、コイルの慣性モーメントが増大し、モータの応答性能が低下する。また、金属の設置位置が絶縁物中でずれると、コイルのバランスが狂い、コイルの回転に伴ってガタツキが発生する。このため、部品精度だけでなく、高い組み立て精度が要求される。 By the way, while the density of an epoxy resin etc. is 1.2-1.4 g / cm < 3 >, a metal has a large density and is much larger than the density of an epoxy resin etc. That is, the density of aluminum, which is a relatively light metal, is 2.7 g / cm 3 , and the density of magnesium is 2.3 g / cm 3 . For this reason, when a metal is put in the insulator, the moment of inertia of the coil increases, and the response performance of the motor decreases. Further, when the metal installation position is shifted in the insulator, the balance of the coil is out of order, and rattling occurs with the rotation of the coil. For this reason, not only the component accuracy but also high assembly accuracy is required.

本発明の目的は、上記した課題を解決し、巻線で発生する熱を効率よく放出させることによりコイルの温度上昇を抑えることができるモータを提供するにある。   An object of the present invention is to solve the above-described problems and to provide a motor that can suppress the temperature rise of the coil by efficiently releasing the heat generated in the winding.

上記した課題を解決するため、本発明のモータの基本構造の1つは、円周方向に並べた複数の額縁状巻線を絶縁物により固定した筒状のコイルを磁界中に配置し、電流を供給された前記額縁状巻線に加わる電磁力により前記コイルを回転させるモータにおいて、少なくとも幅方向及び長手方向の何れか一方の端部が前記額縁状巻線に接するか、或いは隙間を小さくして当該額縁状巻線の巻芯部に配置された放熱部材を有し、前記放熱部材は、熱伝導率が前記絶縁物の熱伝導率よりも大きい電導体による棒状部材を等間隔で屈曲させた形状、×字型の形状、または、×字型に縦方向の構造体を設けた形状の何れかの閉ループを作らない形状であることを特徴とする。また、本発明のモータの基本構造のもう1つは、円周方向に並べた複数の額縁状巻線を絶縁物により固定した筒状のコイルを磁界中に配置し、電流を供給された前記額縁状巻線に加わる電磁力により前記コイルを回転させるモータにおいて、熱伝導率が前記絶縁物の熱伝導率よりも大きい電導体による棒状部材を等間隔で屈曲させた形状、×字型の形状、または、×字型に縦方向の構造体を設けた形状の何れかの形状の放熱部材を前記額縁状巻線の巻芯部に対して絶縁物を介して接触させて配置したことを特徴とする。 In order to solve the above-described problems, one of the basic structures of the motor of the present invention is that a cylindrical coil in which a plurality of frame-shaped windings arranged in the circumferential direction are fixed by an insulator is disposed in a magnetic field, In the motor for rotating the coil by the electromagnetic force applied to the frame-shaped winding supplied with at least one end in either the width direction or the longitudinal direction is in contact with the frame-shaped winding, or the gap is reduced. A heat radiating member disposed on the core of the frame-shaped winding, and the heat radiating member bends a rod-like member made of an electric conductor having a thermal conductivity larger than the thermal conductivity of the insulator at equal intervals. It is a shape that does not form a closed loop of any of the following shapes: an X-shape, or a shape in which an X-shape is provided with a vertical structure. Another aspect of the basic structure of the motor of the present invention is that a cylindrical coil in which a plurality of frame-shaped windings arranged in the circumferential direction are fixed by an insulator is disposed in a magnetic field, and the current is supplied thereto. In a motor that rotates the coil by electromagnetic force applied to the frame-shaped winding, a bar-shaped member made of an electric conductor having a thermal conductivity larger than the thermal conductivity of the insulator is bent at equal intervals, an X-shaped shape Or a heat dissipation member having a shape in which a vertical structure is provided in an X-shape is arranged in contact with the core portion of the frame-shaped winding via an insulator. And

巻線に発生した熱は絶縁物中の放熱部材から効率よく放出される。コイルの温度上昇が抑制されるので、応答性能を向上させることができると共に、コイルの大きさを変えずに出力を大きくすることができる。   The heat generated in the winding is efficiently released from the heat radiating member in the insulator. Since the temperature rise of the coil is suppressed, the response performance can be improved and the output can be increased without changing the size of the coil.

図1は本発明に係る4極モータの正面断面図、図2はコイルの斜視図、図3は放熱部材の断面図であり、図9と同じものまたは同一機能のものは同一の符号を付して重複する説明を省略する。   FIG. 1 is a front sectional view of a four-pole motor according to the present invention, FIG. 2 is a perspective view of a coil, and FIG. 3 is a sectional view of a heat radiating member. Therefore, a duplicate description is omitted.

放熱部材1は、棒状のアルミニウムを等間隔で屈曲させた形状であり、屈曲の間隔をできるだけ小さくして放熱部材の面積を大きくする。放熱部材1は、巻線3で発生した熱が十分に伝わるように、少なくとも幅方向および長手方向の一方の端部が巻線3に接するかあるいは隙間を小さくして(例えば、0.2mm)巻芯部3aに配置され、絶縁性の接着材5により巻芯部3aに配置されている。図3に示すように、放熱部材1は内部に空洞1aが設けられたパイプ状であり、見かけ上の密度(放熱部材1の単位長さ当たりの重量/空洞部を含む体積)は絶縁物2の密度とほぼ同じである。また、放熱部材1をコイル3に接着している接着剤5の密度も絶縁物2の密度とほぼ同じである。また、接着剤5が内部に入らないようにするため、放熱部材1の両端部は密閉されている。 The heat radiating member 1 has a shape in which rod-shaped aluminum is bent at equal intervals, and the bending interval is made as small as possible to increase the area of the heat radiating member. The heat radiating member 1 has at least one end in the width direction and the longitudinal direction in contact with the winding 3 or a small gap (for example, 0.2 mm) so that heat generated in the winding 3 is sufficiently transmitted. It arrange | positions at the core part 3a, and is arrange | positioned at the core part 3a with the insulating adhesive material 5. FIG. As shown in FIG. 3, the heat dissipating member 1 is in the form of a pipe having a cavity 1a therein, and the apparent density (weight per unit length of the heat dissipating member 1 / volume including the cavity) is the insulator 2 The density is almost the same. Further, the density of the adhesive 5 that bonds the heat dissipating member 1 to the coil 3 is substantially the same as the density of the insulator 2. Moreover, in order to prevent the adhesive 5 from entering the inside, both ends of the heat radiating member 1 are sealed.

このように構成された本発明の実施形態に係るモータでは、巻線3に電流が流れると、巻線3に熱が発生する。放熱部材1は巻線3に接触あるいは隣接しているので、発生した熱は巻線3から放熱部材1に容易に伝わる。この場合、放熱部材1の熱伝導率はエポキシ樹脂や接着剤に比べて遙かに大きいので、放熱部材1は巻線3と同程度の温度になり、熱は巻線3と放熱部材1の表面から空気に伝達される。この結果、巻線3の温度上昇は放熱部材1が無い場合よりも抑制される。
また、巻線3に電流が流れると、電磁誘導により、放熱部材1には図に点線で示す矢印B方向に渦電流が発生しようとする。しかし、放熱部材1は渦電流の流れるループが形成されない構造であるので、渦電流は発生しない。したがって、モータに生じる電磁力は変化せず、トルクは一定に維持される。
In the motor according to the embodiment of the present invention configured as described above, when a current flows through the winding 3, heat is generated in the winding 3. Since the heat radiating member 1 is in contact with or adjacent to the winding 3, the generated heat is easily transmitted from the winding 3 to the heat radiating member 1. In this case, since the heat conductivity of the heat radiating member 1 is much higher than that of the epoxy resin or the adhesive , the heat radiating member 1 has a temperature similar to that of the winding 3, and heat is generated between the winding 3 and the heat radiating member 1. It is transmitted from the surface to the air. As a result, the temperature rise of the winding 3 is suppressed as compared with the case where the heat radiating member 1 is not provided.
Further, a current flows through the winding 3, by electromagnetic induction, eddy current to be generated in the direction of arrow B indicated by dotted lines in FIG. 2 to the heat dissipating member 1. However, since the heat dissipation member 1 has a structure in which a loop through which eddy current flows is not formed, eddy current does not occur. Therefore, the electromagnetic force generated in the motor does not change and the torque is kept constant.

この実施形態では、放熱部材1の見かけ上の密度を絶縁物2とほぼ同じにしたので、例えば長手方向の位置が軸10の軸線に対して傾いても、軸回りのバランスが崩れることはない。したがって、回転中に放熱部材1に起因する振動が発生することはない。また、コイル4の慣性モーメントも従来と同じにすることができる。   In this embodiment, since the apparent density of the heat dissipating member 1 is substantially the same as that of the insulator 2, for example, even if the position in the longitudinal direction is inclined with respect to the axis of the shaft 10, the balance around the axis is not lost. . Therefore, vibration due to the heat dissipation member 1 does not occur during rotation. Further, the moment of inertia of the coil 4 can be made the same as the conventional one.

なお、放熱部材1の材料としてアルミニウムを採用したが、マグネシウムを採用してもよい。この場合、熱伝導率が大きく、比重が小さい金属を用いると、コイルの慣性モーメントを小さくできるので、モータの応答性能の向上を図ることができる。   In addition, although aluminum was employ | adopted as a material of the heat radiating member 1, you may employ | adopt magnesium. In this case, if a metal having a high thermal conductivity and a low specific gravity is used, the moment of inertia of the coil can be reduced, so that the response performance of the motor can be improved.

図4は、本発明に係る他のコイルの正面要部断面図である。   FIG. 4 is a front cross-sectional view of a main part of another coil according to the present invention.

図1では、放熱部材1をコイルの外形に合わせるため、表面および裏面を曲面に形成したが、同図に示すように、隙間G2、G3を確保できる範囲で表面および裏面を平面にしてもよい。   In FIG. 1, in order to match the heat radiating member 1 to the outer shape of the coil, the front and back surfaces are formed as curved surfaces. However, as shown in the figure, the front and back surfaces may be flat as long as the gaps G2 and G3 can be secured. .

次に、放熱部材1の変形例について説明する。   Next, a modified example of the heat dissipation member 1 will be described.

図5は、本発明に係る放熱部材1の変形例を適用したコイルの斜視図、図6は放熱部材1の断面図、図7は放熱部材1の平面図であり、図1と同じものまたは同一機能のものは重複する説明を省略する。   5 is a perspective view of a coil to which a modification of the heat radiating member 1 according to the present invention is applied, FIG. 6 is a cross-sectional view of the heat radiating member 1, and FIG. 7 is a plan view of the heat radiating member 1. A duplicate description of the same function is omitted.

図5における放熱部材1は、形状を×字型に形成したものであり、渦電流の流れるループが形成されないので、渦電流の発生を防止することができる。また、放熱部材1が巻芯部3aの対角線方向に入るので、コイル4の強度を補強することができる。したがって、巻線3に流す電流を増大させて出力トルクを増大させた場合でも、電磁力によってコイル4が変形することを防止できる。なお、この放熱部材1の場合も上記実施例1の場合と同様に中空構造にすると、見かけ上の密度を小さくすることができる。   The heat dissipating member 1 in FIG. 5 is formed in an X shape, and since a loop through which eddy current flows is not formed, generation of eddy current can be prevented. Moreover, since the heat radiating member 1 enters the diagonal direction of the core part 3a, the strength of the coil 4 can be reinforced. Therefore, even when the current flowing through the winding 3 is increased to increase the output torque, the coil 4 can be prevented from being deformed by the electromagnetic force. In the case of the heat radiating member 1, the apparent density can be reduced by using a hollow structure as in the case of the first embodiment.

すなわち、図6(a)に示すような空洞1aを持たせたり、(b)に示すような溝1bを設けるようにしてもよい。   That is, a cavity 1a as shown in FIG. 6A may be provided, or a groove 1b as shown in FIG. 6B may be provided.

また、図7に示すように、放熱部材1に空洞や溝を設けることに代えて、多数の孔15を設けるようにしてもよい。このようにすると、見かけ上の密度の調整が容易になる。なお、空洞や溝を設けると共に孔15を設けるようにしてもよい。   Moreover, as shown in FIG. 7, it may replace with providing a cavity and a groove | channel in the heat radiating member 1, and you may make it provide many holes 15. FIG. This makes it easy to adjust the apparent density. In addition, you may make it provide the hole 15 while providing a cavity and a groove | channel.

図8は、さらに他の変形例を示す放熱部材1の平面図である。この放熱部材1は×字型に縦方向の構造体1cを設けたものであり、コイル4の剛性を更に向上させることができる。この場合も、図6に示した空洞や溝を設けることにより見かけ上の密度を調整することができる。   FIG. 8 is a plan view of the heat dissipation member 1 showing still another modification. The heat radiating member 1 is provided with a vertical structure 1c in an X shape, and the rigidity of the coil 4 can be further improved. In this case as well, the apparent density can be adjusted by providing the cavities and grooves shown in FIG.

以上説明したように、本発明によれば、放熱部材1の見かけ上の密度を絶縁物と同じにすることができるので、固定位置に関する精度はほとんど要求されない。したがって、組み立てが容易である。   As described above, according to the present invention, since the apparent density of the heat dissipating member 1 can be made the same as that of the insulator, almost no accuracy with respect to the fixed position is required. Therefore, assembly is easy.

なお、上記では、予め形成されている巻芯部3aに放熱部材1を挿入して接着するようにしたが、放熱部材1と接着剤により方形の巻芯を形成しておき、この巻芯に巻線3を巻き付け、放熱部材1と巻線3が一体になったもの絶縁物2で一体にしてもよい。 In the above description, the heat radiating member 1 is inserted and bonded to the core portion 3a formed in advance. However, a rectangular core is formed with the heat radiating member 1 and an adhesive, and the core is attached to the core. The winding 3 may be wound, and the heat dissipation member 1 and the winding 3 may be integrated with the insulator 2.

本発明に係る4極モータの正面断面図である。It is front sectional drawing of the 4 pole motor which concerns on this invention. 本発明に係るコイルの斜視図である。It is a perspective view of the coil which concerns on this invention. 本発明に係る放熱部材の断面図である。It is sectional drawing of the heat radiating member which concerns on this invention. 本発明に係るコイルの正面要部断面図である。It is a front principal part sectional view of the coil concerning the present invention. 本発明に係る放熱部材の変形例を適用したコイルの斜視図である。It is a perspective view of the coil to which the modification of the heat radiating member which concerns on this invention is applied. 本発明に係る放熱部材の断面図である。It is sectional drawing of the heat radiating member which concerns on this invention. 本発明に係る放熱部材の平面図である。It is a top view of the heat radiating member concerning the present invention. 本発明に係る放熱部材の平面図である。It is a top view of the heat radiating member concerning the present invention. 従来の4極モータの正面断面図である。It is front sectional drawing of the conventional 4 pole motor. 従来のコイルの斜視図である。It is a perspective view of the conventional coil.

符号の説明Explanation of symbols

1 放熱部材
2 絶縁物
3 巻線
3a 巻芯部
4 コイル
15 孔
DESCRIPTION OF SYMBOLS 1 Heat radiation member 2 Insulator 3 Winding 3a Winding core part 4 Coil 15 Hole

Claims (4)

円周方向に並べた複数の額縁状巻線を絶縁物により固定した筒状のコイルを磁界中に配置し、電流を供給された前記額縁状巻線に加わる電磁力により前記コイルを回転させるモータにおいて、
少なくとも幅方向及び長手方向の何れか一方の端部が前記額縁状巻線に接するか、或いは隙間を小さくして当該額縁状巻線の巻芯部に配置された放熱部材を有し、
前記放熱部材は、熱伝導率が前記絶縁物の熱伝導率よりも大きい電導体による棒状部材を等間隔で屈曲させた形状、×字型の形状、または、×字型に縦方向の構造体を設けた形状の何れかの閉ループを作らない形状であることを特徴とするモータ。
A motor in which a cylindrical coil in which a plurality of frame windings arranged in the circumferential direction are fixed by an insulator is disposed in a magnetic field, and the coil is rotated by electromagnetic force applied to the frame winding supplied with a current. In
At least one end in either the width direction or the longitudinal direction is in contact with the frame-shaped winding, or has a heat radiating member disposed in the core of the frame-shaped winding with a small gap.
The heat dissipating member has a shape in which a bar-shaped member made of an electric conductor having a thermal conductivity larger than the thermal conductivity of the insulator is bent at equal intervals, an X-shaped shape, or an X-shaped vertical structure A motor having a shape that does not form a closed loop of any of the shapes provided with.
円周方向に並べた複数の額縁状巻線を絶縁物により固定した筒状のコイルを磁界中に配置し、電流を供給された前記額縁状巻線に加わる電磁力により前記コイルを回転させるモータにおいて、
熱伝導率が前記絶縁物の熱伝導率よりも大きい電導体による棒状部材を等間隔で屈曲させた形状、×字型の形状、または、×字型に縦方向の構造体を設けた形状の何れかの形状の放熱部材を前記額縁状巻線の巻芯部に対して絶縁物を介して接触させて配置したことを特徴とするモータ。
A motor in which a cylindrical coil in which a plurality of frame windings arranged in the circumferential direction are fixed by an insulator is disposed in a magnetic field, and the coil is rotated by electromagnetic force applied to the frame winding supplied with a current. In
A shape in which a bar-shaped member made of an electric conductor having a thermal conductivity larger than the thermal conductivity of the insulator is bent at equal intervals, an X-shaped shape, or a shape in which a vertical structure is provided in an X-shaped shape motor, wherein the kite is placed in contact through an insulator to the heat radiation member of any shape with respect to the core portion of the frame-like winding.
前記放熱部材を中空材料で形成することを特徴とする請求項1または2記載のモータ。   3. The motor according to claim 1, wherein the heat radiating member is made of a hollow material. 前記放熱部材に多数の孔を設けることを特徴とする請求項1または2記載のモータ。   The motor according to claim 1, wherein a plurality of holes are provided in the heat radiating member.
JP2004161840A 2004-05-31 2004-05-31 motor Active JP4541035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161840A JP4541035B2 (en) 2004-05-31 2004-05-31 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161840A JP4541035B2 (en) 2004-05-31 2004-05-31 motor

Publications (2)

Publication Number Publication Date
JP2005348462A JP2005348462A (en) 2005-12-15
JP4541035B2 true JP4541035B2 (en) 2010-09-08

Family

ID=35500335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161840A Active JP4541035B2 (en) 2004-05-31 2004-05-31 motor

Country Status (1)

Country Link
JP (1) JP4541035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043133A (en) 2006-08-09 2008-02-21 Hitachi Via Mechanics Ltd Rocking actuator device and laser machining device
CN112737277A (en) * 2020-12-30 2021-04-30 青岛理工大学 Magnetic suspension inertial actuator capable of reducing eddy current effect and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130769A (en) * 1982-01-26 1983-08-04 Hitachi Ltd Manufacture of saddle type superconductive field coil
JPS62159158U (en) * 1986-03-26 1987-10-09
JPS62172248U (en) * 1986-04-21 1987-10-31
JPS63274336A (en) * 1987-04-30 1988-11-11 Hitachi Ltd Fixing method of coil end
JPH03270665A (en) * 1990-03-16 1991-12-02 Meidensha Corp Permanent magnet rotating machine
JPH0645137A (en) * 1992-07-24 1994-02-18 Toshiba Corp Coil for electromagnet and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130769A (en) * 1982-01-26 1983-08-04 Hitachi Ltd Manufacture of saddle type superconductive field coil
JPS62159158U (en) * 1986-03-26 1987-10-09
JPS62172248U (en) * 1986-04-21 1987-10-31
JPS63274336A (en) * 1987-04-30 1988-11-11 Hitachi Ltd Fixing method of coil end
JPH03270665A (en) * 1990-03-16 1991-12-02 Meidensha Corp Permanent magnet rotating machine
JPH0645137A (en) * 1992-07-24 1994-02-18 Toshiba Corp Coil for electromagnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005348462A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP3870413B2 (en) Coreless linear motor
JP6653011B2 (en) Axial gap type rotary electric machine
JP5216038B2 (en) Rotating motor
JP5569289B2 (en) Rotating electric machine stator
KR20060101518A (en) Coreless linear motor
JP4983708B2 (en) Reactor
JP2008283730A (en) Split stator for electric motor, stator for electric motor equipped with this split stator, electric motor equipped with this stator for electric motor, and manufacturing method of split stator for electric motor
JP2002051530A (en) Linear motor
JP2008125242A (en) Permanent magnet type synchronous electric motor
JP2015177723A (en) Rotary electric machine
JP2008220003A (en) Linear motor
JP2014023198A (en) Electric motor
KR20200093868A (en) Structure for cooling of a motor
JP4512874B2 (en) Linear motor and method of manufacturing the linear motor
JP4541035B2 (en) motor
JP3780164B2 (en) Rotating electric machine
JP4480937B2 (en) Linear motor and method of manufacturing the linear motor
CN219759350U (en) Magnetic device and electronic apparatus
JPWO2020071035A1 (en) Stator and motor using it
JP2009130958A (en) Rotating electric machine
JP3669343B2 (en) Cooling structure of rotating electric machine
JPH10323012A (en) Linear motor
US20150022041A1 (en) Method of cooling a generator or motor rotor with end disks and a hybrid shaft assembly
WO2018198217A1 (en) Permanent magnet-type motor
JP4721211B2 (en) Coreless linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4541035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350