JP2010098140A - Through electrode substrate, manufacturing method thereof, and semiconductor device using the through electrode substrate - Google Patents

Through electrode substrate, manufacturing method thereof, and semiconductor device using the through electrode substrate Download PDF

Info

Publication number
JP2010098140A
JP2010098140A JP2008267865A JP2008267865A JP2010098140A JP 2010098140 A JP2010098140 A JP 2010098140A JP 2008267865 A JP2008267865 A JP 2008267865A JP 2008267865 A JP2008267865 A JP 2008267865A JP 2010098140 A JP2010098140 A JP 2010098140A
Authority
JP
Japan
Prior art keywords
electrode substrate
substrate
hole
metal material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267865A
Other languages
Japanese (ja)
Other versions
JP5428280B2 (en
Inventor
Shinji Maekawa
慎志 前川
Miyuki Suzuki
美雪 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008267865A priority Critical patent/JP5428280B2/en
Publication of JP2010098140A publication Critical patent/JP2010098140A/en
Application granted granted Critical
Publication of JP5428280B2 publication Critical patent/JP5428280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Abstract

<P>PROBLEM TO BE SOLVED: To provide a through electrode substrate wherein current loss in a conduction part making front and rear sides of a substrate conductive to each other is reduced, and a semiconductor device using the same. <P>SOLUTION: The through electrode substrate 100 includes the substrate 102 having a through hole 104 piercing through front and rear sides of the substrate and a conduction part 106 including a metal material filling the through hole 104, wherein the metal material of the conduction part 106 includes crystal particles having a particle size of ≥29 μm and an area-weighted average grain size of ≥13 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板の表裏を貫通する貫通電極を備えた貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置に関する。本明細書において、半導体装置とは、半導体特性を利用して機能し得る装置全般を指し、半導体集積回路、電子機器は半導体装置の範囲に含むものとする。 The present invention relates to a through electrode substrate provided with a through electrode penetrating the front and back of the substrate, a manufacturing method thereof, and a semiconductor device using the through electrode substrate. In this specification, a semiconductor device refers to all devices that can function using semiconductor characteristics, and a semiconductor integrated circuit and an electronic device are included in the scope of the semiconductor device.

近年、電子機器の高密度、小型化が進み、LSIチップが半導体パッケージと同程度まで縮小化しており、LSIチップを2次元配置することのみによる高密度化は限界に達しつつある。そこで実装密度を上げるためにLSIチップを分け、それらを3次元に積層する必要がある。また、LSIチップを積層した半導体パッケージ全体を高速動作させるために積層回路同士を近づけ、積層回路間の配線距離を短くする必要がある。 In recent years, electronic devices have been increased in density and size, and LSI chips have been reduced to the same extent as semiconductor packages. Densification only by arranging LSI chips two-dimensionally is reaching its limit. Therefore, in order to increase the packaging density, it is necessary to divide LSI chips and stack them three-dimensionally. Further, in order to operate the entire semiconductor package in which LSI chips are stacked at high speed, it is necessary to bring the stacked circuits closer together and to shorten the wiring distance between the stacked circuits.

そこで、上記の要求に応えるべく、LSIチップ間のインターポーザとして基板の表裏を導通する導通部を備えた貫通電極基板が提案されている(特許文献1)。特許文献1によれば、貫通電極基板は、基板に設けられた貫通孔内部を電解めっきによって導電材(Cu)を充填することで形成される。
特開2006−54307号公報 特開2006−147971号公報
Accordingly, in order to meet the above requirements, a through electrode substrate having a conductive portion that conducts the front and back of the substrate as an interposer between LSI chips has been proposed (Patent Document 1). According to Patent Document 1, the through electrode substrate is formed by filling a through hole provided in the substrate with a conductive material (Cu) by electrolytic plating.
JP 2006-54307 A JP 2006-147971 A

貫通電極基板を複数のLSIチップ間の接続あるいはLSIチップとMEMSデバイスなどとの間の接続に用いる場合には、電解めっきで形成された導通部において確実に導通性が確保できること、そして電流損失が少ないことが求められる。 When the through electrode substrate is used for connection between a plurality of LSI chips or between an LSI chip and a MEMS device, it is possible to ensure continuity in a conductive portion formed by electrolytic plating, and current loss is reduced. Less is required.

一方、貫通電極の製造工程において、ボイド(空隙)を低減する技術が特許文献2などに開示されている。しかしながら、特許文献2では、導通部の導通性確保に対するアプローチが検討されているが、導通部における電流損失に関して検討がなされていない。 On the other hand, Patent Document 2 discloses a technique for reducing voids in the through electrode manufacturing process. However, in Patent Document 2, an approach to ensuring the conductivity of the conductive portion is studied, but no study is made regarding the current loss in the conductive portion.

そこで、本発明は上記の課題を鑑みてなされたものであり、基板の表裏を導通する導通部における電流損失を低減した貫通電極基板及びそれを用いた半導体装置を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a through electrode substrate in which a current loss is reduced in a conduction portion that conducts the front and back of the substrate, and a semiconductor device using the same.

本発明の一実施形態によると、表裏を貫通する貫通孔を有する基板と、前記貫通孔内に充填され、金属材料を含む導通部と、を備え、前記導通部の前記金属材料は、結晶粒径が29μm以上の結晶粒を含むことを特徴とする貫通電極基板が提供される。 According to one embodiment of the present invention, a substrate having a through hole penetrating the front and back, and a conductive portion filled in the through hole and including a metal material, the metal material of the conductive portion is a crystal grain There is provided a through electrode substrate including crystal grains having a diameter of 29 μm or more.

前記導通部の前記金属材料は、面積重み付けした平均結晶粒径が13μm以上であることが好ましい。 The metal material of the conductive portion preferably has an area-weighted average crystal grain size of 13 μm or more.

前記導通部の前記金属材料の断面は、後方散乱電子回折法で検出される{101}面の以下の式(A)で示される配向率が21%以上であり、且つ、後方散乱電子回折法で検出される{221}面の以下の式(B)で示される配向率が11%以上であることが好ましい。
配向率(%)={101}面と前記導通部の断面の表面とがなす角が8°以内の測定点の和/測定点の全数 ・・・(A)
配向率(%)={221}面と前記導通部の断面の表面とがなす角が8°以内の測定点の和/測定点の全数 ・・・(B)
The cross section of the metal material of the conducting portion has an orientation rate of 21% or more expressed by the following formula (A) of the {101} plane detected by backscattered electron diffraction, and backscattered electron diffraction It is preferable that the orientation ratio represented by the following formula (B) of the {221} plane detected by is 11% or more.
Orientation ratio (%) = the sum of measurement points where the angle formed by the {101} plane and the cross-sectional surface of the conducting portion is within 8 ° / total number of measurement points (A)
Orientation ratio (%) = the sum of measurement points where the angle formed by the {221} plane and the cross-sectional surface of the conducting portion is within 8 ° / total number of measurement points (B)

前記基板はシリコンからなり、前記導通部は、少なくとも前記基板側に設けた絶縁層上に形成されているようにしてもよい。 The substrate may be made of silicon, and the conductive portion may be formed on at least an insulating layer provided on the substrate side.

前記貫通孔の開口径は10μm〜100μmであり、かつ前記基板の厚みは20〜100μmであるのが好ましい。 It is preferable that the opening diameter of the through hole is 10 μm to 100 μm and the thickness of the substrate is 20 to 100 μm.

前記貫通孔の開口径は10μm〜100μmであり、かつ前記基板の厚みは300〜800μmであるのが好ましい。 The opening diameter of the through hole is preferably 10 μm to 100 μm, and the thickness of the substrate is preferably 300 to 800 μm.

前記貫通電極基板を複数積層してもよい。 A plurality of the through electrode substrates may be stacked.

接続端子部を備えた半導体チップを少なくとも1つ含み、前記接続端子部と前記貫通電極基板の導通部とを接続して半導体装置を構成してもよい。 A semiconductor device may be configured by including at least one semiconductor chip provided with a connection terminal portion and connecting the connection terminal portion and a conduction portion of the through electrode substrate.

また、本発明の一実施形態によると、基板に表裏を貫通する貫通孔を形成し、前記基板及び前記貫通孔の表面に絶縁膜を形成し、前記基板の少なくとも一方の面及び/又は前記貫通孔に金属からなるシード膜を形成し、前記シード膜にパルス電圧を給電する電解めっき法により、前記貫通孔内に金属材料を充填する貫通電極基板の製造方法が提供される。 According to one embodiment of the present invention, a through hole penetrating front and back is formed in the substrate, an insulating film is formed on a surface of the substrate and the through hole, and at least one surface of the substrate and / or the through hole is formed. There is provided a method of manufacturing a through electrode substrate in which a metal material is filled in the through hole by an electrolytic plating method in which a seed film made of metal is formed in the hole and a pulse voltage is supplied to the seed film.

前記電解めっき法は、前記シード膜にプラス電圧とマイナス電圧を周期的に印加することによって行うようにしてもよい。 The electrolytic plating method may be performed by periodically applying a positive voltage and a negative voltage to the seed film.

本発明よれば、基板の表裏を導通する導通部における電流損失を低減した貫通電極基板及びその製造方法並びにそれを用いた半導体装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the through-electrode board | substrate which reduced the current loss in the conduction | electrical_connection part which conducts the front and back of a board | substrate, its manufacturing method, and a semiconductor device using the same can be provided.

以下、図面を参照して本発明に係る貫通電極基板及びその製造方法について説明する。但し、本発明の貫通電極基板は多くの異なる態様で実施することが可能であり、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, a through electrode substrate and a manufacturing method thereof according to the present invention will be described with reference to the drawings. However, the through electrode substrate of the present invention can be implemented in many different modes, and is not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

(1.貫通電極基板の構成)
図1は本実施形態に係る本発明の貫通電極基板100の断面図である。本実施形態に係る本発明の貫通電極基板100は、コアとなる基板102の表裏を貫通する貫通孔104を備えている。貫通孔104の内部には導通部106が形成されている。基板102はシリコンなどの半導体材料からなり、後述するがエッチング、レーザー、サンドブラスなどの方法により貫通孔104が形成されている。基板102の厚みは例えば10〜800μmであるが、これに限定されるものではない。なお、図1においては、説明の便宜上、貫通孔104を1つしか示していないが、基板102に複数の貫通孔104が形成され、それぞれの貫通孔104に導通部106が形成されるようにしてもよい。また、好ましくは、300〜800μm、又は20〜100μmの範囲の厚さの基板を用途に合わせて適宜選択すればよい。
(1. Configuration of the through electrode substrate)
FIG. 1 is a cross-sectional view of a through electrode substrate 100 of the present invention according to this embodiment. The through electrode substrate 100 of the present invention according to this embodiment includes a through hole 104 penetrating the front and back of the substrate 102 serving as a core. A conduction portion 106 is formed inside the through hole 104. The substrate 102 is made of a semiconductor material such as silicon, and a through hole 104 is formed by a method such as etching, laser, or sandblasting, which will be described later. Although the thickness of the board | substrate 102 is 10-800 micrometers, for example, it is not limited to this. In FIG. 1, for convenience of explanation, only one through hole 104 is shown, but a plurality of through holes 104 are formed in the substrate 102, and a conduction portion 106 is formed in each through hole 104. May be. Preferably, a substrate having a thickness in the range of 300 to 800 μm or 20 to 100 μm may be appropriately selected according to the application.

本実施形態において、貫通孔104の内壁及び基板102の表面には電気絶縁性確保のための絶縁膜108が設けられている。絶縁膜108は例えばSiO2からなり、熱酸化法、CVD法などにより形成される。絶縁膜108の厚みは0.1〜2μm程度であり、十分な絶縁性が確保できればその厚みは特に限定されない。 In the present embodiment, an insulating film 108 for ensuring electrical insulation is provided on the inner wall of the through hole 104 and the surface of the substrate 102. The insulating film 108 is made of, for example, SiO 2 and is formed by a thermal oxidation method, a CVD method, or the like. The thickness of the insulating film 108 is about 0.1 to 2 μm, and the thickness is not particularly limited as long as sufficient insulation can be secured.

本実施形態においては、貫通孔104の開口径は10〜100μm程度である。なお、貫通孔104の開口径はこれに限定されるわけではなく、貫通電極基板100の用途等に応じて適宜設定し得る。 In this embodiment, the opening diameter of the through hole 104 is about 10 to 100 μm. The opening diameter of the through hole 104 is not limited to this, and can be set as appropriate according to the use of the through electrode substrate 100 and the like.

本実施形態において、導通部106は貫通電極基板100の表裏の導通をとる配線であり、金属材料を含む導電材料が充填されている。本実施形態においては、導通部106は、後述するように電解めっきにより金属材料が充填される。導通部106に用いる金属材料としては、例えば、銅を用いることができる。 In the present embodiment, the conductive portion 106 is a wiring that provides conduction between the front and back of the through electrode substrate 100 and is filled with a conductive material including a metal material. In the present embodiment, the conductive portion 106 is filled with a metal material by electrolytic plating as will be described later. As a metal material used for the conductive portion 106, for example, copper can be used.

本実施形態に係る本発明の貫通電極基板100において、導通部106の金属材料は、後述するとおり、最大結晶粒径が29μm以上の結晶粒を含んでいる。また、本実施形態に係る本発明の貫通電極基板100において、導通部106の金属材料は、後述するとおり、面積重み付けした平均結晶粒径が13μm以上の結晶粒を含んでいる。本実施形態に係る本発明の貫通電極基板100において、上記構成により導通部106での電流損失を低減することができる。 In the through electrode substrate 100 of the present invention according to the present embodiment, the metal material of the conducting portion 106 includes crystal grains having a maximum crystal grain size of 29 μm or more, as will be described later. Further, in the through electrode substrate 100 of the present invention according to the present embodiment, the metal material of the conductive portion 106 includes crystal grains having an area-weighted average crystal grain size of 13 μm or more, as will be described later. In the through electrode substrate 100 of the present invention according to this embodiment, the current loss in the conductive portion 106 can be reduced by the above configuration.

また、本実施形態に係る本発明の貫通電極基板100において、後述するとおり、導通部106の断面領域は、後方散乱電子回折法で検出される{101}面の導通部断面の表面となす角が8度以内である割合が21%以上であり、且つ、後方散乱電子回折法で検出される{221}面の導通部断面の表面となす角が8度以内である割合が11%以上であることが好ましい。このように、特定の方向に結晶配向している割合が多いことで、導通部106における電流損失をさらに低減することができる。 Further, in the through electrode substrate 100 of the present invention according to the present embodiment, as will be described later, the cross-sectional area of the conducting part 106 is an angle formed with the surface of the conducting part cross section of the {101} plane detected by the backscattered electron diffraction method. Is 8% or less, and the ratio of the angle between the surface of the conducting part cross section of the {221} plane detected by the backscattered electron diffraction method is 8 degrees or less is 11% or more. Preferably there is. As described above, since the ratio of the crystal orientation in a specific direction is large, the current loss in the conductive portion 106 can be further reduced.

(2.貫通電極基板100の製造方法)
ここで、図2及び図3を参照して本実施形態に係る本発明の貫通電極基板100の製造方法について説明する。
(2. Manufacturing method of through electrode substrate 100)
Here, with reference to FIG.2 and FIG.3, the manufacturing method of the penetration electrode substrate 100 of this invention which concerns on this embodiment is demonstrated.

(2−1.貫通電極基板100の製造方法1)
(1)基板102の準備及び貫通孔104の穿設(図2(A))
本実施形態においては、シリコンからなる基板102を準備する。基板102の厚みは特に限定されないが、300〜800μmである。基板102の一方の面側にレジスト、シリコン酸化膜、シリコン窒化膜、金属などから選択されるマスク(図示せず)を形成した後、そのマスクを介して基板102を厚み方向にエッチングし、貫通孔104を形成する。エッチング方法としてはRIE法、DRIE法などを用いることができる。なお、基板102に対して表裏貫通する貫通孔104をエッチングのみで形成してもよいし、基板102に有底孔を形成した後バックグラインドにより研磨して開口させることによって貫通孔104を形成してもよい。研磨により、基板102の厚みを300μm以下にしてもよい。
(2-1. Manufacturing Method 1 of Through Electrode Substrate 100)
(1) Preparation of substrate 102 and drilling of through-hole 104 (FIG. 2A)
In this embodiment, a substrate 102 made of silicon is prepared. Although the thickness of the board | substrate 102 is not specifically limited, It is 300-800 micrometers. A mask (not shown) selected from a resist, a silicon oxide film, a silicon nitride film, a metal, or the like is formed on one surface side of the substrate 102, and then the substrate 102 is etched in the thickness direction through the mask and penetrated. Hole 104 is formed. As an etching method, an RIE method, a DRIE method, or the like can be used. Note that the through-hole 104 penetrating front and back with respect to the substrate 102 may be formed only by etching, or the through-hole 104 is formed by forming a bottomed hole in the substrate 102 and then polishing and opening it with a back grind. May be. The thickness of the substrate 102 may be reduced to 300 μm or less by polishing.

(2)絶縁膜108の形成(図2(B))
基板102の表面に絶縁膜108を形成する。本実施形態においては、絶縁膜108は酸化シリコン膜であり、熱酸化法あるいはCVD法により形成する。絶縁膜108には、酸化シリコン膜の他、窒化シリコン膜、窒化酸化シリコン膜、それらの積層膜などを用いてもよい。
(2) Formation of the insulating film 108 (FIG. 2B)
An insulating film 108 is formed on the surface of the substrate 102. In this embodiment, the insulating film 108 is a silicon oxide film and is formed by a thermal oxidation method or a CVD method. As the insulating film 108, a silicon oxide film, a silicon nitride film, a silicon nitride oxide film, a stacked film thereof, or the like may be used.

(3)シード層の形成(図2(C))
基板102の少なくとも一方の面にシード層110を形成する。シード層110は基板102側にTi層、その上にCu層(以下、Cu/Ti層)、Cu層/TiN層又はCu/Cr層などにより構成される。本実施形態においては、シード層110にはCu/Cr層を用いる。シード層110の成膜方法は、PVD、スパッタ法などから適宜選択できる。シード層110に用いる金属材料は、導通部106の金属材料によって適宜選択することができる。シード層110は、電解メッキによって導通部106を形成するためのシード部及び給電部となる。
(3) Formation of seed layer (FIG. 2C)
A seed layer 110 is formed on at least one surface of the substrate 102. The seed layer 110 is composed of a Ti layer on the substrate 102 side, a Cu layer (hereinafter referred to as Cu / Ti layer), a Cu layer / TiN layer, or a Cu / Cr layer thereon. In the present embodiment, a Cu / Cr layer is used for the seed layer 110. A method for forming the seed layer 110 can be appropriately selected from PVD, sputtering, and the like. The metal material used for the seed layer 110 can be appropriately selected depending on the metal material of the conductive portion 106. The seed layer 110 becomes a seed part and a power feeding part for forming the conductive part 106 by electrolytic plating.

(4)導通部106の形成(図2(D))
電解めっき法を用いてシード層110に給電し、貫通孔104内に金属材料を充填していく。本実施形態においては、貫通孔104に充填する金属材料として、銅(Cu)を用いる。本実施形態においては、図4又は図5に示すように、シード層110に電流をパルス状に供給する電解めっき法によって、貫通孔104内に金属材料を充填する。図4に示すパルス電流の供給方法は、極性を反転させないパルス電流をシード層110に供給する方法である。また、図5に示すパルス電流の供給方法は、周期的に極性を反転させたパルス電流をシード層110に印加する方法である。図5に示すパルス電流の供給によるめっき方法は、PRC(Periodical Reversed Current)法と呼ばれ、シード層110にプラス電圧とマイナス電圧を周期的に印加することによって、シード層110に流れる電流を一定の周期でフォワード(めっきされる側、即ちシード層110側がマイナス電位となる状態(正電流が流れる状態))とリバース(めっきされる側、即ちシード層110側がプラス電位となる状態(負電流が流れる状態))とを切り替えて行うめっき方法の一つであり、好ましいめっき方法の一つである。また、本実施形態のパルス電流による電解めっきにおいては、印加電圧、供給電流、電流密度、パルス切り替え時間(デューティー比)を適宜選択することができる。また、印加電圧、電流密度、パルス切り替え時間(デューティー比)を電解めっきの途中で変化させてもよい。パルス電流を供給することによってシード層110に流れる電流は、正電圧が印加されているときには0.5以上1.5A以下の電流が流れ、負電圧が印加されているときには−6以上−2A以下の電流が流れるようにしてもよい。
(4) Formation of conductive portion 106 (FIG. 2D)
Electric power is supplied to the seed layer 110 using an electrolytic plating method, and the through hole 104 is filled with a metal material. In the present embodiment, copper (Cu) is used as the metal material that fills the through hole 104. In this embodiment, as shown in FIG. 4 or FIG. 5, the through hole 104 is filled with a metal material by an electrolytic plating method that supplies current to the seed layer 110 in a pulsed manner. The pulse current supply method shown in FIG. 4 is a method of supplying a pulse current that does not reverse the polarity to the seed layer 110. The pulse current supply method shown in FIG. 5 is a method in which a pulse current whose polarity is periodically reversed is applied to the seed layer 110. The plating method by supplying a pulse current shown in FIG. 5 is called a PRC (Periodical Reversed Current) method. By periodically applying a positive voltage and a negative voltage to the seed layer 110, the current flowing through the seed layer 110 is constant. Forward (the state where the plating side, ie, the seed layer 110 side has a negative potential (a state where a positive current flows)) and the reverse (the state where the plating side, ie, the seed layer 110 side becomes a positive potential) This is one of the plating methods performed by switching the flowing state)), and is a preferred plating method. In the electroplating using the pulse current of the present embodiment, the applied voltage, supply current, current density, and pulse switching time (duty ratio) can be appropriately selected. Further, the applied voltage, current density, and pulse switching time (duty ratio) may be changed during the electrolytic plating. The current flowing through the seed layer 110 by supplying a pulse current flows between 0.5 and 1.5 A when a positive voltage is applied, and between −6 and −2 A when a negative voltage is applied. The current may flow.

なお、パルス電流を供給する前に、図6に示すように、一定の直流電流をシード層110に供給する電解めっき法により、シード層110が形成されている面の貫通孔104の底部に蓋状の金属層を形成するようにしてもよい。貫通孔104に充填する金属材料としては、Cuの他、金(Au)、ロジウム(Rh)、銀(Ag)、白金(Pt)、スズ(Sn)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)等の金属及びこれらの合金などから選択され組み合わせた材料を用いることができる。 Before supplying the pulse current, as shown in FIG. 6, a lid is formed on the bottom of the through hole 104 on the surface where the seed layer 110 is formed by an electrolytic plating method in which a constant direct current is supplied to the seed layer 110. A metal layer may be formed. As a metal material filling the through-hole 104, in addition to Cu, gold (Au), rhodium (Rh), silver (Ag), platinum (Pt), tin (Sn), aluminum (Al), nickel (Ni), A material selected and combined from metals such as chromium (Cr) and alloys thereof can be used.

(5)不要な部分の除去(図2E)
シード層110及び導通部106の不要部をエッチングあるいはCMP(Chemical Mechanical Polishing:化学機械研磨)により除去することにより、導通部106を形成する。以上のプロセスによって、本実施形態に係る本発明の貫通電極基板100を得ることができる。
(5) Removal of unnecessary parts (FIG. 2E)
By removing unnecessary portions of the seed layer 110 and the conductive portion 106 by etching or CMP (Chemical Mechanical Polishing), the conductive portion 106 is formed. Through the above process, the through electrode substrate 100 of the present invention according to the present embodiment can be obtained.

(2−2.貫通電極基板の製造方法2)
ここでは、本実施形態に係る本発明の貫通電極基板100の製造方法の別の例について説明する。上述の貫通電極基板100の製造方法1と同様の構成については、改めて説明しない場合がある。なお、ここで説明する本実施形態に係る本発明の貫通電極基板100の製造方法2は、貫通孔の深さが比較的浅い場合(例えば、20μm〜100μm程度)の又は厚さが20〜100μm程度の薄い貫通電極基板を得たい場合によく用いられる。
(2-2. Manufacturing method 2 of through electrode substrate)
Here, another example of the manufacturing method of the through electrode substrate 100 of the present invention according to this embodiment will be described. The same configuration as the manufacturing method 1 of the through electrode substrate 100 described above may not be described again. In addition, in the manufacturing method 2 of the through electrode substrate 100 of the present invention according to the present embodiment described here, the depth of the through hole is relatively shallow (for example, about 20 μm to 100 μm) or the thickness is 20 to 100 μm. It is often used when it is desired to obtain a through electrode substrate having a thin thickness.

(1)基板102の準備及び孔の形成(図3(A))
基板102の一方の面側にレジスト、シリコン酸化膜、シリコン窒化膜、金属などから選択されるマスク(図示せず)を形成した後、そのマスクを介して基板102を厚み方向にエッチングし、基板102を貫通しない有底孔112を形成する。エッチング方法としてはRIE法、DRIE法などを用いることができる。
(1) Preparation of substrate 102 and formation of holes (FIG. 3A)
A mask (not shown) selected from a resist, a silicon oxide film, a silicon nitride film, a metal, and the like is formed on one surface side of the substrate 102, and then the substrate 102 is etched in the thickness direction through the mask. A bottomed hole 112 that does not penetrate 102 is formed. As an etching method, an RIE method, a DRIE method, or the like can be used.

(2)絶縁膜108の形成(図3(B))
基板102の表面に絶縁膜108を形成する。
(2) Formation of the insulating film 108 (FIG. 3B)
An insulating film 108 is formed on the surface of the substrate 102.

(3)シード層の形成(図3(C))
絶縁膜108が形成されている基板102面にシード層114を形成する。このシード層114は、図3(C)に示すように、孔112の内部にも形成する。シード層114は、上述のシード層110と同様、Cu層/Ti層などにより構成される。シード層114は、シード層110と同様、電解メッキによって導通部106を形成するためのシード部及び給電部となる。シード層114は、MOCVD法、スパッタ法又は蒸着法等によって形成される。
(3) Formation of seed layer (FIG. 3C)
A seed layer 114 is formed on the surface of the substrate 102 over which the insulating film 108 is formed. The seed layer 114 is also formed inside the hole 112 as shown in FIG. The seed layer 114 is formed of a Cu layer / Ti layer or the like, similar to the seed layer 110 described above. As with the seed layer 110, the seed layer 114 serves as a seed portion and a power feeding portion for forming the conductive portion 106 by electrolytic plating. The seed layer 114 is formed by MOCVD, sputtering, vapor deposition, or the like.

(4)導通部106の形成(図3(D))
電解めっき法を用いてシード層114に給電し、孔112内に金属材料を充填していく。本実施形態の貫通電極基板の製造方法2においても、貫通電極基板の製造方法1と同様、図4又は図5に示すように、シード層110に電流をパルス状に供給する電解めっき法によって、貫通孔112内に金属材料を充填する。なお、パルス電流を供給する前に、図6に示すように、一定の直流電流をシード層110に供給してもよい。本実施形態においては、孔112に充填する金属材料として、銅(Cu)を用いた。貫通孔104に充填する金属材料としては、銅の他、金(Au)、ロジウム(Rh)、銀(Ag)、白金(Pt)、スズ(Sn)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)等の金属及びこれらの合金などから選択され組み合わせた材料を用いることができる。
(4) Formation of conductive portion 106 (FIG. 3D)
Power is supplied to the seed layer 114 using an electrolytic plating method, and the hole 112 is filled with a metal material. Also in the through electrode substrate manufacturing method 2 of the present embodiment, as in the through electrode substrate manufacturing method 1, as shown in FIG. 4 or FIG. 5, by an electroplating method for supplying current to the seed layer 110 in a pulsed manner, The through hole 112 is filled with a metal material. Before supplying the pulse current, a constant direct current may be supplied to the seed layer 110 as shown in FIG. In the present embodiment, copper (Cu) is used as the metal material filling the holes 112. As a metal material filled in the through hole 104, in addition to copper, gold (Au), rhodium (Rh), silver (Ag), platinum (Pt), tin (Sn), aluminum (Al), nickel (Ni), A material selected and combined from metals such as chromium (Cr) and alloys thereof can be used.

(5)不要な部分の除去(図3(E))
シード層114及び導通部106の不要部をエッチングあるいはCMPにより除去する。また、孔112が形成されている側と反対側の基板102面をバックグラインドによって導通部106の表面が露出するまで研磨することにより、導通部106を形成する。研磨により、基板102の厚さを薄くしてもよい。以上のプロセスによって、本実施形態に係る本発明の貫通電極基板100を得ることができる。
(5) Removal of unnecessary portions (FIG. 3E)
Unnecessary portions of the seed layer 114 and the conductive portion 106 are removed by etching or CMP. Further, the conductive portion 106 is formed by polishing the surface of the substrate 102 opposite to the side where the holes 112 are formed until the surface of the conductive portion 106 is exposed by back grinding. The thickness of the substrate 102 may be reduced by polishing. Through the above process, the through electrode substrate 100 of the present invention according to the present embodiment can be obtained.

(実施例1)
以下、本発明の貫通電極基板100の実施例について説明する。厚さ650μmの基板102を洗浄後、基板102の一方の面側にレジストを塗布し、露光、現像することにより、マスク(図示せず)を形成する。その後、そのマスクを介して基板102を厚み方向にDRIE法によりエッチングし、430μmの有底孔112を形成する(図2(A))。レジストからなるマスクを除去した後、バックグラインドにより400μmの厚さとなるまで基板102を研磨する。
Example 1
Hereinafter, examples of the through electrode substrate 100 of the present invention will be described. After the substrate 102 having a thickness of 650 μm is washed, a resist is applied to one surface side of the substrate 102, exposed and developed to form a mask (not shown). After that, the substrate 102 is etched in the thickness direction by the DRIE method through the mask to form a bottomed hole 112 of 430 μm (FIG. 2A). After removing the resist mask, the substrate 102 is polished to a thickness of 400 μm by back grinding.

基板102を洗浄後、熱酸化法により基板102の表面に厚さ1μmの熱酸化膜を形成する。その後、LPCVD法により、厚さ200nmの窒化シリコン膜を形成する。これら熱酸化膜及び窒化シリコン膜が絶縁膜108を構成する(図2(B))。 After cleaning the substrate 102, a thermal oxide film having a thickness of 1 μm is formed on the surface of the substrate 102 by thermal oxidation. Thereafter, a silicon nitride film having a thickness of 200 nm is formed by LPCVD. These thermal oxide film and silicon nitride film form the insulating film 108 (FIG. 2B).

基板102の一方の面に厚さ30nmのCrと厚さ200nmのCuを順に蒸着することによりシード層110を形成する(図2(C))。 A seed layer 110 is formed by sequentially depositing Cr having a thickness of 30 nm and Cu having a thickness of 200 nm on one surface of the substrate 102 (FIG. 2C).

その後、基板102をアッシングする。次に、図6に示す直流電流の供給による電解めっき法を用いて、シード層110に給電し、シード層110が形成されている面の貫通孔104の底部に蓋状の金属層を形成する。本実施例1においては、電流1.54A、電流密度1A/dm2の直流電流を供給したその後、図5に示すパルス電圧の印加による電解めっき法を用いて、シード層110に給電し、貫通孔104内にCuを充填する(図2(D))。パルス切り替え時間は、正電流を80msec、負電流を2msec供給するようにした。正電流が供給されているときには1.05Aの電流が流れ(電流密度3A/dm2)、負電流が供給されているときには−4.2Aの電流(電流密度−12A/dm2)が流れた。 Thereafter, the substrate 102 is ashed. Next, power is supplied to the seed layer 110 using an electrolytic plating method by supplying a direct current shown in FIG. 6, and a lid-like metal layer is formed at the bottom of the through hole 104 on the surface where the seed layer 110 is formed. . In Example 1, a direct current having a current of 1.54 A and a current density of 1 A / dm 2 was supplied, and then power was supplied to the seed layer 110 using an electrolytic plating method by applying a pulse voltage shown in FIG. The hole 104 is filled with Cu (FIG. 2D). The pulse switching time was such that a positive current was supplied for 80 msec and a negative current was supplied for 2 msec. When a positive current is supplied, a current of 1.05 A flows (current density 3 A / dm 2 ), and when a negative current is supplied, a current of -4.2 A (current density −12 A / dm 2 ) flows. .

なお、図5に示すパルス電流の供給による電解めっき法によってCuを充填し始める際、最初の1時間程度は小さな電流を供給し、正電流が供給されているときには0.35Aの電流が流れ(電流密度1A/dm2)、負電流が供給されているときには−1.4Aの電流(電流密度−4A/dm2)が流れるようにしてもよい。 When starting to fill Cu by the electrolytic plating method by supplying the pulse current shown in FIG. 5, a small current is supplied for the first hour or so, and when a positive current is supplied, a current of 0.35 A flows ( Current density 1 A / dm 2 ), and when a negative current is supplied, a current of −1.4 A (current density −4 A / dm 2 ) may flow.

基板102を洗浄後、シード層110及び導通部106の不要部をCMPにより除去することにより、導通部106を形成する。以上のプロセスによって、本実施例に係る本発明の貫通電極基板100を得ることができた。 After cleaning the substrate 102, unnecessary portions of the seed layer 110 and the conductive portion 106 are removed by CMP to form the conductive portion 106. Through the above process, the through electrode substrate 100 of the present invention according to this example was obtained.

(3.後方散乱電子線回折法(Electron backscatter diffraction Pattern:EBSD)による結晶状態の分析)
ここで、図7及び図8を参照して、本実施形態に係る導通部106の金属材料の結晶粒径及び結晶配向状態の分析に用いる後方散乱電子線回折法(Electron backscatter diffraction Pattern:EBSD)について説明する。
(3. Analysis of crystal state by electron backscatter diffraction pattern (EBSD))
Here, referring to FIG. 7 and FIG. 8, a backscatter diffraction pattern (EBSD) used for analyzing the crystal grain size and crystal orientation state of the metal material of the conductive portion 106 according to the present embodiment. Will be described.

(3−1.EBSDの説明)
(A)結晶方位の測定
本実施形態に係る導通部106の断面の結晶方位は、EBSD法によって測定する。図7はEBSD装置の構成を説明する図である。また、図8はEBSD装置により測定する試料測定の概念を説明する図である。本実施形態に係る導通部106の断面の結晶方位を測定するにあたっては、貫通部106の断面部に電子線212が照射されるように調節する。
(3-1. Explanation of EBSD)
(A) Measurement of crystal orientation The crystal orientation of the cross section of the conducting portion 106 according to the present embodiment is measured by the EBSD method. FIG. 7 is a diagram illustrating the configuration of the EBSD device. FIG. 8 is a diagram for explaining the concept of sample measurement measured by an EBSD device. In measuring the crystal orientation of the cross section of the conducting portion 106 according to the present embodiment, adjustment is made so that the electron beam 212 is irradiated to the cross section of the penetrating portion 106.

EBSD装置200は、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)202に専用の検出器204を設け、一次電子の後方散乱電子から結晶方位を分析する手法である。具体的には、電子銃210から出射される電子線212を鏡体214を通して試料室205内の試料台206に載置された結晶構造を持った試料208に入射させる(照射する)と、試料208で非弾性散乱が起こり、後方散乱電子216が発生する。その中には試料208中でブラッグ回折による結晶方位に特有の線状パターン(一般的に菊地像と呼ばれる)も合わせて観察される。この後方散乱電子216をスクリーン218を通してSEM202の検出器204で検出する。そして、検出された菊地像を解析することにより試料208の結晶方位を求めることができる。 The EBSD device 200 is a technique in which a dedicated detector 204 is provided in a scanning electron microscope (SEM) 202 and the crystal orientation is analyzed from backscattered electrons of primary electrons. Specifically, when an electron beam 212 emitted from the electron gun 210 is incident (irradiated) on the sample 208 having a crystal structure placed on the sample stage 206 in the sample chamber 205 through the mirror body 214, the sample is irradiated. Inelastic scattering occurs at 208 and backscattered electrons 216 are generated. Among them, a linear pattern (generally called a Kikuchi image) peculiar to the crystal orientation by Bragg diffraction is also observed in the sample 208. The backscattered electrons 216 are detected by the detector 204 of the SEM 202 through the screen 218. Then, the crystal orientation of the sample 208 can be obtained by analyzing the detected Kikuchi image.

各結晶粒が異なった結晶方位を持っている多結晶構造の場合においては、試料208に当てる電子線212の位置を移動させつつ方位解析を繰り返す(マッピング測定)ことで、面状の試料208について結晶方位または配向の情報を得ることができる。マッピング測定により各結晶方位がすべて決まると、試料208上の膜に対する結晶配向の状態を統計的に表示することができる。なお、多結晶構造を有する結晶体の配向分布を表示する図として逆極点図(逆極点図の例を図12に示す)が多く用いられ、逆極点からは、測定試料のある特定の面が、どの格子面に優先配向しているかという情報を得ることができる。 In the case of a polycrystalline structure in which each crystal grain has a different crystal orientation, the orientation analysis is repeated while moving the position of the electron beam 212 applied to the sample 208 (mapping measurement), whereby the planar sample 208 is obtained. Information on crystal orientation or orientation can be obtained. When all the crystal orientations are determined by the mapping measurement, the crystal orientation state with respect to the film on the sample 208 can be statistically displayed. Note that a reverse pole figure (an example of a reverse pole figure is shown in FIG. 12) is often used as a diagram for displaying the orientation distribution of a crystal body having a polycrystalline structure. From the reverse pole point, a specific surface of the measurement sample is Information on which lattice plane is preferentially oriented can be obtained.

マッピング測定及び逆極点図により、各格子面の特定の指数({100}、{110}、{111}など)において、その指数近傍にどの程度の結晶粒が集まっているか、その割合を数値化することで、各配向の存在比率をよりイメージしやすくなる。そこで、逆極点図において各格子面の特定の指数からのずれ角が8°以下の範囲(許容値)に存在する点数の全体に対するそれぞれの割合を各配向率として以下の式(1)に求めて示すことができる。ここで、許容値を8°としているのは、結晶粒の示す結晶方位には揺らぎがあることが予想されるためである。 By mapping measurement and inverse pole figure, for a specific index ({100}, {110}, {111}, etc.) on each lattice plane, how much crystal grains are gathered in the vicinity of the index is quantified By doing so, it becomes easier to image the existence ratio of each orientation. Therefore, in the inverse pole figure, the following formula (1) is obtained as the ratio of each of the total number of points existing in the range (allowable value) where the deviation angle from each index of each lattice plane is 8 ° or less. Can be shown. Here, the allowable value is set to 8 ° because the crystal orientation indicated by the crystal grains is expected to fluctuate.

配向率(%)=
格子面と膜表面がなす角が許容値以内(8°以下)の測定点の和/測定点の全数
・・・(1)
Orientation rate (%) =
Total number of measurement points / total number of measurement points where the angle between the lattice plane and the film surface is within the allowable range (8 ° or less)
... (1)

(B)結晶粒径の測定
本実施形態に係る本発明の貫通電極基板100の導通部106を構成する金属材料の結晶粒径の測定は、EBSD法によって行う。各結晶粒径が異なった結晶構造の場合には、試料208に照射する電子線の位置を移動させつつ結晶粒径測定を繰り返す(マッピング測定)ことで、面状の試料208について結晶粒径の情報を得ることができる。結晶粒の面積(A)は結晶粒の数(N)に測定のステップサイズ(s)で決まる測定点の面積をかけて算出する。EBSD測定では測定点を六角形として表わすことで、結晶粒の面積(A)は以下の式(2)で表すことができる。
(B) Measurement of crystal grain size The crystal grain size of the metal material constituting the conductive portion 106 of the through electrode substrate 100 of the present invention according to this embodiment is measured by the EBSD method. In the case of a crystal structure in which each crystal grain size is different, the crystal grain size measurement is repeated while moving the position of the electron beam irradiated to the sample 208 (mapping measurement), whereby the crystal grain size of the planar sample 208 is changed. Information can be obtained. The area (A) of the crystal grains is calculated by multiplying the number (N) of crystal grains by the area of the measurement point determined by the measurement step size (s). In the EBSD measurement, the measurement point is expressed as a hexagon, and the area (A) of the crystal grains can be expressed by the following formula (2).

A= N×√3/(2s2) ・・・(2) A = N × √3 / (2s 2 ) (2)

結晶粒径(D)は結晶粒の面積(A)と等しい面積を持つ円の直径として計算する。結晶粒径(D)は以下の式(3)で表すことができる。 The crystal grain size (D) is calculated as the diameter of a circle having an area equal to the crystal grain area (A). The crystal grain size (D) can be expressed by the following formula (3).

D=(4A/π)1/2 (但し、πは円周率) ・・・(3) D = (4A / π) 1/2 (where π is the circumference) (3)

本明細書で定義する「結晶方位」、「結晶粒径」とは、以上のようにして測定した値を指すものとする。また、結晶粒径の測定においては、エッジグレイン(Edge Grain)を含むものとする。 “Crystal orientation” and “crystal grain size” defined in the present specification refer to values measured as described above. Further, in the measurement of the crystal grain size, it is assumed that edge grains are included.

次に、実施例1による本発明の貫通電極基板100の導通部106を構成する金属材料、並びに比較例1及び2による貫通電極基板の導通部を構成する金属材料をEBSD測定した結果について説明する。ここでは、それぞれの導通部を構成する金属材料の断面をアルゴンイオンにより加工する、いわゆるイオンポリッシュ法によって測定試料を作製した。また、EBSD測定における測定ポイントは、それぞれ、導通部の深さ方向中央部辺りである。 Next, the results of EBSD measurement of the metal material forming the conductive portion 106 of the through electrode substrate 100 of the present invention according to Example 1 and the metal material forming the conductive portion of the through electrode substrate according to Comparative Examples 1 and 2 will be described. . Here, a measurement sample was produced by a so-called ion polishing method in which a cross section of a metal material constituting each conductive portion was processed with argon ions. Moreover, the measurement points in the EBSD measurement are each around the central part in the depth direction of the conduction part.

図9は実施例1による本発明の貫通電極基板100の導通部106を構成する金属材料の結晶の面積重み付けした結晶粒径分布図である。結晶粒径(D)を横軸にとり、面積率(R)を縦軸にとったヒストグラムによって、導通部106を構成する結晶粒径の最大値、および平均値を算出できる。 FIG. 9 is an area-weighted crystal grain size distribution diagram of the metal material crystal constituting the conducting portion 106 of the through electrode substrate 100 of the present invention according to the first embodiment. The maximum value and the average value of the crystal grain sizes constituting the conducting portion 106 can be calculated by a histogram with the crystal grain size (D) on the horizontal axis and the area ratio (R s ) on the vertical axis.

ここで、面積率R(結晶粒径を含む割合(面積重み付け))は、測定領域の面積(S)を用いて、以下の式(4)で表すことができる。 Here, the area ratio R s (ratio including the crystal grain size (area weighting)) can be expressed by the following formula (4) using the area (S m ) of the measurement region.

= A×(N/S) ・・・(4) R s = A × (N / S m ) (4)

図9に示すヒストグラムの横軸は結晶粒径の値(D)、縦軸(area fraction)はその値の結晶粒を含む割合を面積重み付けして示している。例えば図9の縦軸の0.15は割合15%を意味している。そして、各結晶粒径(D)に対して、その割合(R)を掛けたものを積算すると以下の式(5)のとおり面積重み付けした平均結晶粒径(D)が決まる。 The horizontal axis of the histogram shown in FIG. 9 indicates the value (D) of the crystal grain size, and the vertical axis (area fraction) indicates the ratio including the crystal grains of that value by area weighting. For example, 0.15 on the vertical axis in FIG. 9 means a ratio of 15%. Then, by multiplying each crystal grain size (D) by the product of the ratio (R s ), the area-weighted average crystal grain size (D s ) is determined as in the following formula (5).

=Σ{R*D} ・・・(5) D s = Σ {R s * D} (5)

本実施例においては、結晶粒径の測定において、測定領域を有限(本実施例では50μm×150μmの領域)とするため、所望の領域から上記面積領域を切出して観測することになる。測定領域の縁(Edge)に含まれた結晶粒(Grain)を含んだ値を本明細書では結晶粒径としている。また、分析結果は誤差を含んでいるため、小数点以下を考慮せず、切り捨てした数値を用いることにする。 In the present embodiment, in the measurement of the crystal grain size, since the measurement region is limited (in this embodiment, a region of 50 μm × 150 μm), the above-mentioned area region is cut out from the desired region and observed. In this specification, the crystal grain size is a value including the crystal grain (Grain) included in the edge (Edge) of the measurement region. In addition, since the analysis result includes an error, the rounded down numerical value is used without considering the decimal point.

測定条件は以下のとおりである。
使用した分析装置
SEM 日本電子製 JSM−7000F
EBSD TSL社製 OIM ソフトウエアVer.4.6
観察条件
EBSD測定
加速電圧 25kV
試料傾斜角 70°
測定ステップ 0.3μm
The measurement conditions are as follows.
Used analyzer SEM JSM-7000F made by JEOL
EBSD TSL OIM Software Ver. 4.6
Observation condition EBSD measurement
Acceleration voltage 25kV
Sample tilt angle 70 °
Measurement step 0.3μm

実施例1による本発明の貫通電極基板100の導通部106の金属材料の最大粒径は29μm、平均粒径(面積重み付け)は13μmであった。高周波領域における伝送特性評価の結果、実施例1による本発明の貫通電極基板100の導通部106の電流損失は小さく、導通部106は優れた電気特性を有し、優位性があることが確認された。 The maximum particle size of the metal material of the conductive portion 106 of the through electrode substrate 100 of the present invention according to Example 1 was 29 μm, and the average particle size (area weighting) was 13 μm. As a result of the evaluation of the transmission characteristics in the high frequency region, it was confirmed that the current loss of the conductive portion 106 of the through electrode substrate 100 of the present invention according to Example 1 was small, and the conductive portion 106 had excellent electrical characteristics and superiority. It was.

一方、比較例1(プロセスの詳細については後述する。)による貫通電極基板の導通部を構成する金属材料の結晶の面積重み付けした結晶粒径分布図を図10に示す。比較例1による貫通電極基板の導通部を構成する金属材料の最大粒径は10μm、平均粒径(面積重み付け)は2μmであった。比較例1による貫通電極基板の導通部106の電流損失は高く、導通部の電気特性は悪かった。 On the other hand, FIG. 10 shows an area weighted crystal grain size distribution diagram of a metal material crystal constituting the conductive portion of the through electrode substrate according to Comparative Example 1 (details of the process will be described later). The maximum particle size of the metal material constituting the conductive portion of the through electrode substrate according to Comparative Example 1 was 10 μm, and the average particle size (area weighting) was 2 μm. The current loss of the conduction part 106 of the through electrode substrate according to Comparative Example 1 was high, and the electrical characteristics of the conduction part were poor.

また、比較例2(プロセスの詳細については後述する。)による貫通電極基板の導通部を構成する金属材料の結晶の面積重み付けした結晶粒径分布図を図11に示す。比較例2による貫通電極基板の導通部を構成する金属材料の最大粒径は11μm、平均粒径(面積重み付け)は2μmであった。比較例2による貫通電極基板の導通部106の電流損失は高く、導通部の電気特性は悪かった。 In addition, FIG. 11 shows an area weighted crystal grain size distribution diagram of the metal material crystal constituting the conductive portion of the through electrode substrate according to Comparative Example 2 (details of the process will be described later). The maximum particle size of the metal material constituting the conducting portion of the through electrode substrate according to Comparative Example 2 was 11 μm, and the average particle size (area weighting) was 2 μm. The current loss of the conduction part 106 of the through electrode substrate according to Comparative Example 2 was high, and the electrical characteristics of the conduction part were poor.

図12はEBSDにより求められる実施例1に係る本発明の貫通電極基板100の導通部106の逆極点図の一例である。マッピングにおける測定点を標準三角形と呼ばれる扇状の枠内プロットしたものである。配向率の高低を等高線図として示している。 FIG. 12 is an example of a reverse pole figure of the conduction part 106 of the through electrode substrate 100 of the present invention according to Example 1 obtained by EBSD. The measurement points in the mapping are plotted in a fan-shaped frame called a standard triangle. The degree of orientation is shown as a contour map.

図13A、図13B及び図13Cは、実施例1に係る本発明の貫通電極基板100の導通部106のマッピング測定及び逆極点図による結晶方位マップである。なお、図14に示すように、得られたEBSDパターンからは、ND(Normal Direction)方向(Z軸方向)の結晶方位マップだけではなく、TD(Transverse Direction)方向(Y軸方向)、RD(Reference Direction)方向(X軸方向)の結晶方位マップを得ることができる。本実施形態においては、基板表面に対して垂直方向をND方向(Z軸方向)、基板表面と平行方向をTD方向(Y軸方向)及びRD方向(X軸方向)(但し、TD方向とRD方向は互いに垂直関係にある)とする。図13A、図13B及び図13Cは、それぞれ、ND方向、TD方向、RD方向の結晶方位マップである。実施例1の導通部106のND軸方向の結晶方位マップにおける上述の式(1)による配向率は、{101}面を有する配向が21%、{111}面を有する配向が1%、{001}面を有する配向が0%、{221}面を有する配向が11%、{511}面を有する配向が1%であった。 13A, 13B, and 13C are crystal orientation maps obtained by mapping measurement and reverse pole figure of the conductive portion 106 of the through electrode substrate 100 of the present invention according to Example 1. FIG. As shown in FIG. 14, from the obtained EBSD pattern, not only the crystal orientation map in the ND (Normal Direction) direction (Z-axis direction) but also the TD (Transverse Direction) direction (Y-axis direction), RD ( A crystal orientation map in the Reference Direction) direction (X-axis direction) can be obtained. In this embodiment, the direction perpendicular to the substrate surface is the ND direction (Z-axis direction), and the direction parallel to the substrate surface is the TD direction (Y-axis direction) and RD direction (X-axis direction) (however, the TD direction and RD direction). Directions are perpendicular to each other). 13A, 13B, and 13C are crystal orientation maps in the ND direction, the TD direction, and the RD direction, respectively. In the crystal orientation map in the ND axis direction of the conductive portion 106 of Example 1, the orientation ratio according to the above formula (1) is 21% for the orientation having the {101} plane, 1% for the orientation having the {111} plane, { The orientation having the 001} plane was 0%, the orientation having the {221} plane was 11%, and the orientation having the {511} plane was 1%.

一方、図15A、図15B及び図15Cは、比較例1に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである。図15A、図15B及び図15Cは、それぞれ、ND方向、TD方向、RD方向の結晶方位マップである。比較例1の導通部のND軸方向の結晶方位マップにおける上述の式(1)による配向率は、{101}面を有する配向が14%、{111}面を有する配向が2%、{001}面を有する配向が1%、{221}面を有する配向が14%、{511}面を有する配向が3%であった。 On the other hand, FIG. 15A, FIG. 15B, and FIG. 15C are crystal orientation maps by mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode board | substrate which concerns on the comparative example 1. FIG. 15A, 15B, and 15C are crystal orientation maps in the ND direction, the TD direction, and the RD direction, respectively. In the crystal orientation map in the ND axis direction of the conductive portion of Comparative Example 1, the orientation ratio according to the above-described formula (1) is 14% for the orientation having the {101} plane, 2% for the orientation having the {111} plane, {001 } Orientation having a {plane} plane was 1%, orientation having a {221} plane was 14%, and orientation having a {511} plane was 3%.

また、図16A、図16B及び図16Cは、比較例2に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである。図15A、図15B及び図15Cは、それぞれ、ND方向、TD方向、RD方向の結晶方位マップである。比較例2の導通部のND軸方向の結晶方位マップにおける上述の式(1)による配向率は、{101}面を有する配向が6%、{111}面を有する配向が2%、{001}面を有する配向が1%、{221}面を有する配向が22%、{511}面を有する配向が2%であった 16A, FIG. 16B, and FIG. 16C are crystal orientation maps obtained by mapping measurement and reverse pole figure of the conduction part of the through electrode substrate according to Comparative Example 2. 15A, 15B, and 15C are crystal orientation maps in the ND direction, the TD direction, and the RD direction, respectively. In the crystal orientation map in the ND axis direction of the conductive portion of Comparative Example 2, the orientation ratio according to the above-described formula (1) is 6% for the orientation having the {101} plane, 2% for the orientation having the {111} plane, {001 } The orientation having a plane is 1%, the orientation having a {221} plane is 22%, and the orientation having a {511} plane is 2%.

ここで、実施例1、比較例1及び比較例2における最大粒径、平均粒径、{101}面を有する配向率、{221}面を有する配向率に注目すると、以下の表のとおり示すことができる。
Here, when attention is paid to the maximum particle size, the average particle size, the orientation rate having a {101} plane, and the orientation rate having a {221} plane in Example 1, Comparative Example 1 and Comparative Example 2, they are shown in the following table. be able to.

以上の結果により、貫通電極基板100の導通部106の最大粒径が29μm以上のとき、電流損失が小さく、導通部106は優れた電気特性を有することがわかる。これは、貫通電極基板100の導通部106の金属粒径が大きいと、電流損失が小さくなり、抵抗が小さくなるためであると考えられる。また、貫通電極基板100の導通部106の平均粒径(面積重み付け)が13μm以上のとき、電流損失が小さく、導通部106は優れた電気特性を有することがわかる。また、貫通電極基板100の導通部106の後方散乱電子回折法で検出される{101}面の配向率が21%以上のとき、且つ{221}面の配向率が11%以上のとき、電流損失が小さく、導通部106は優れた電気特性を有することがわかる。 From the above results, it can be seen that when the maximum particle size of the conductive portion 106 of the through electrode substrate 100 is 29 μm or more, the current loss is small and the conductive portion 106 has excellent electrical characteristics. This is considered to be because when the metal particle size of the conductive portion 106 of the through electrode substrate 100 is large, the current loss is small and the resistance is small. Moreover, when the average particle diameter (area weighting) of the conduction | electrical_connection part 106 of the penetration electrode substrate 100 is 13 micrometers or more, it turns out that a current loss is small and the conduction | electrical_connection part 106 has the outstanding electrical property. Further, when the orientation ratio of the {101} plane detected by the backscattered electron diffraction method of the conductive portion 106 of the through electrode substrate 100 is 21% or more and the orientation ratio of the {221} plane is 11% or more, It can be seen that the loss is small and the conductive portion 106 has excellent electrical characteristics.

これは、本発明の貫通電極基板の貫通孔に充填されている金属材料は、電流が流れる方向への金属結晶の配向割合が多く、結晶粒界が少ないからであると考えられる。本発明の貫通電極基板の製造方法においては、貫通孔の一方向にめっき金属層を成長するものである。従って貫通孔方向に沿った結晶配向の割合が多い結晶が形成される。 This is presumably because the metal material filled in the through-holes of the through-electrode substrate of the present invention has a large orientation ratio of metal crystals in the direction in which current flows and few crystal grain boundaries. In the method for manufacturing a through electrode substrate of the present invention, a plated metal layer is grown in one direction of the through hole. Therefore, a crystal having a high crystal orientation ratio along the through-hole direction is formed.

電流が流れる方向に金属結晶が全て配向し、結晶粒界が無いことが理想的な状態である。EBSDのND方向(Z軸方向)で{001}に全て配向しているのが望ましい。{101}配向も電流が流れる方向に配向しており、電流の流れやすさという点においては{001}面に続いて重要な配向面である。{001}や{101}配向比率が高い程、貫通孔の上下間の電気の流れが優れており望ましい。一般的に多結晶はランダムに配向している状態が多く占めるが、本発明の貫通電極基板の貫通孔は電流が流れる方向に水平に近い{101}面の配向性比率が高いため、従来例と比較して、電流損失が小さくなる効果があることがわかる。 In an ideal state, the metal crystals are all oriented in the direction in which the current flows and there are no crystal grain boundaries. It is desirable that all are oriented in {001} in the ND direction (Z-axis direction) of EBSD. The {101} orientation is also oriented in the direction in which current flows, and is an important orientation plane following the {001} plane in terms of the ease of current flow. The higher the {001} or {101} orientation ratio, the better the electrical flow between the upper and lower sides of the through hole, which is desirable. In general, polycrystals are mostly in a randomly oriented state, but the through holes of the through electrode substrate of the present invention have a high orientation ratio of {101} planes close to the horizontal in the direction of current flow. It can be seen that there is an effect of reducing the current loss as compared with.

以下、上述した比較例1及び2について説明する。
(比較例1)
貫通孔に金属材料を充填する前までの工程については、実施例1と同様である。基板にシード層を形成した後、電解めっき法を用いて図6に示す直流電流をシード層に供給し、導通部に金属材料を充填する。このときの電流は1.54(電流密度1A/dm2)であった。その後の工程は実施例1と同様であった。
Hereinafter, Comparative Examples 1 and 2 described above will be described.
(Comparative Example 1)
The process before filling the through hole with the metal material is the same as that of the first embodiment. After the seed layer is formed on the substrate, the direct current shown in FIG. 6 is supplied to the seed layer using an electrolytic plating method, and the conductive portion is filled with a metal material. The current at this time was 1.54 (current density 1 A / dm 2 ). Subsequent steps were the same as in Example 1.

(比較例2)
貫通孔に金属材料を充填する前までの工程については、2−2.貫通電極基板の製造方法2と同様である基板にシード層を形成した後、電解めっき法を用いて図6に示す直流電流をシード層に供給し、導通部に金属材料を充填する。このときの電流は1.54A(電流密度1A/dm2)であった。その後の工程は実施例1と同様であった。
(Comparative Example 2)
About the process before filling the through hole with the metal material, 2-2. After a seed layer is formed on the same substrate as in the through electrode substrate manufacturing method 2, a direct current shown in FIG. 6 is supplied to the seed layer using an electrolytic plating method, and a conductive material is filled with a metal material. The current at this time was 1.54 A (current density 1 A / dm 2 ). Subsequent steps were the same as in Example 1.

(実施形態2)
本実施形態2においては、実施形態1に係る本発明の貫通電極基板100上にLSIチップが積層された半導体装置の例及び実施形態1に係る本発明の貫通電極基板100を複数層積層した半導体装置の例について説明する。なお、実施形態1と同様の構成や製造方法については、ここでは改めて説明しない。
(Embodiment 2)
In the second embodiment, an example of a semiconductor device in which LSI chips are stacked on the through electrode substrate 100 of the present invention according to the first embodiment and a semiconductor in which a plurality of through electrode substrates 100 of the present invention according to the first embodiment are stacked. An example of the apparatus will be described. The configuration and manufacturing method similar to those of the first embodiment will not be described again here.

図17(A)及び(B)を参照する。図17(A)には、3つの実施形態1に係る本発明の貫通電極基板100が積層された本実施形態に係る半導体装置が示されている。貫通電極基板100にはDRAM等の半導体素子が形成されている。3つの貫通電極基板100は積層され、バンプ302を介して互いに接続されている。貫通電極基板100は、それぞれに形成されたDRAMを電気的に接続するインターボーザとしての役割を果たしている。3層に積層された貫通電極基板100は、バンプ302を介してLSI基板304に接続される。なお、積層する貫通電極基板100の数は3層に限定されない。バンプ304には、In(インジウム)、Cu、Au等の金属を用いることができる。また、貫通電極基板100同士の接合には、主として、ポリイミド、BCB(ベンゾシクロブテン)などの樹脂を用いて、塗布、焼成して接着してもよい。また、貫通電極基板100同士の接合には、エポキシ樹脂を用いてもよい。さらに、貫通電極基板100同士の接合には、プラズマ活性化による接合、共晶接合などを用いてもよい。 Referring to FIGS. 17A and 17B. FIG. 17A shows a semiconductor device according to the present embodiment in which three through electrode substrates 100 according to the present invention according to the first embodiment are stacked. A semiconductor element such as a DRAM is formed on the through electrode substrate 100. The three through electrode substrates 100 are stacked and connected to each other through bumps 302. The through electrode substrate 100 plays a role as an interposer for electrically connecting the DRAMs formed therein. The through electrode substrate 100 laminated in three layers is connected to the LSI substrate 304 via the bumps 302. Note that the number of through electrode substrates 100 to be stacked is not limited to three layers. A metal such as In (indium), Cu, or Au can be used for the bump 304. Further, for bonding between the through electrode substrates 100, a resin such as polyimide or BCB (benzocyclobutene) may be mainly used for application and baking to bond them. Moreover, you may use an epoxy resin for joining of the penetration electrode substrates 100. Further, for the bonding between the through electrode substrates 100, bonding by plasma activation, eutectic bonding, or the like may be used.

本実施形態のように本発明の貫通電極基板100が積層した場合、本発明の貫通電極基板100の導通部106(貫通孔)の抵抗をRi、積層し接続する本発明の貫通電極基板100の積層数をNとすると、直列に接続される導通部106(貫通孔)全体の抵抗はN×Riとなり、導通部106(貫通孔)の抵抗を小さくすることができる。 When the through electrode substrate 100 of the present invention is stacked as in the present embodiment, the resistance of the conductive portion 106 (through hole) of the through electrode substrate 100 of the present invention is Ri, and the through electrode substrate 100 of the present invention is stacked and connected. When the number of stacked layers is N, the resistance of the entire conductive portion 106 (through hole) connected in series is N × Ri, and the resistance of the conductive portion 106 (through hole) can be reduced.

図17(B)には、MEMSデバイスやCPU、メモリ等のLSIチップ(半導体チップ)306−1及び306−2が搭載された貫通電極基板100を有する半導体装置の例を示す。LSIチップ306−1及び306−2の接続端子である電極パッド308−1及び308−2がそれぞれバンプ304を介して貫通電極基板100の導通部106と電気的に接続されている。LSIチップ306−1及び306−2が搭載された貫通電極基板100は、LSI基板306に搭載され、LSI基板306とLSIチップ306−1とがワイヤボンディングによって接続されている。例えば、LSIチップ306−1を3軸加速度センサとし、LSIチップ306−2を2軸磁気センサとすることによって、5軸モーションセンサを一つのモジュールで実現することができる。このように、実施形態1に係る本発明の貫通電極基板100は、複数のLSIチップ同士を3次元実装するためのインターポーザとして用いることができる。
(実施形態3)
本実施形態3においては、上述の実施形態1及び2の貫通電極基板に搭載されるLSIチップとして、MEMSデバイスを用いる場合について説明する。本実施形態においては、MEMSデバイスは、物理量センサ302−1を例にとって説明する。
FIG. 17B shows an example of a semiconductor device having a through electrode substrate 100 on which LSI chips (semiconductor chips) 306-1 and 306-2 such as a MEMS device, a CPU, and a memory are mounted. Electrode pads 308-1 and 308-2, which are connection terminals of the LSI chips 306-1 and 306-2, are electrically connected to the conductive portion 106 of the through electrode substrate 100 via bumps 304, respectively. The through electrode substrate 100 on which the LSI chips 306-1 and 306-2 are mounted is mounted on the LSI substrate 306, and the LSI substrate 306 and the LSI chip 306-1 are connected by wire bonding. For example, by using the LSI chip 306-1 as a 3-axis acceleration sensor and the LSI chip 306-2 as a 2-axis magnetic sensor, a 5-axis motion sensor can be realized with one module. As described above, the through electrode substrate 100 according to the first embodiment of the present invention can be used as an interposer for three-dimensionally mounting a plurality of LSI chips.
(Embodiment 3)
In the third embodiment, a case where a MEMS device is used as an LSI chip mounted on the through electrode substrate of the first and second embodiments will be described. In this embodiment, the MEMS device will be described by taking the physical quantity sensor 302-1 as an example.

以下、物理量センサ302−1により検出される加速度の変位信号を処理する処理回路について説明する。 Hereinafter, a processing circuit for processing an acceleration displacement signal detected by the physical quantity sensor 302-1 will be described.

<処理回路>
上記物理量センサ302−1により検出される加速度の変位信号を処理する各処理回路の構成例について図18を参照して説明する。
<Processing circuit>
A configuration example of each processing circuit that processes a displacement signal of acceleration detected by the physical quantity sensor 302-1 will be described with reference to FIG.

図18は、物理量センサ302−1により検出される加速度の変位信号を処理する加速度処理回路400の回路構成を示す図である。この場合、物理量センサはピエゾ抵抗型加速度センサである。図18において、加速度処理回路400は、増幅回路401と、サンプルホールド回路(S/H)402〜404と、出力抵抗Routと、キャパシタCx,Cy,Czと、から構成される。なお、図中のX軸出力、Y軸出力、Z軸出力は、印加される加速度に応じて物理量センサ302−1から出力されるX軸方向、Y軸方向、Z軸方向の各変位信号である。なお、出力抵抗RoutとキャパシタCx,Cy,Czは、加速度信号に対応する周波数成分を通過させるローパスフィルタとして機能する。 FIG. 18 is a diagram illustrating a circuit configuration of an acceleration processing circuit 400 that processes an acceleration displacement signal detected by the physical quantity sensor 302-1. In this case, the physical quantity sensor is a piezoresistive acceleration sensor. In FIG. 18, the acceleration processing circuit 400 includes an amplifier circuit 401, sample and hold circuits (S / H) 402 to 404, an output resistor Rout, and capacitors Cx, Cy, and Cz. The X-axis output, Y-axis output, and Z-axis output in the figure are displacement signals in the X-axis direction, Y-axis direction, and Z-axis direction that are output from the physical quantity sensor 302-1 according to the applied acceleration. is there. The output resistor Rout and the capacitors Cx, Cy, Cz function as a low-pass filter that allows a frequency component corresponding to the acceleration signal to pass.

増幅回路401は、印加される加速度に応じて物理量センサ302−1から出力されるX軸方向、Y軸方向、Z軸方向の各変位信号(静電容量変化)を所定の増幅率で増幅してサンプルホールド回路402〜404にそれぞれ出力する。サンプルホールド回路402は、増幅回路401で増幅されたX軸方向変位信号を所定のタイミングでサンプル/ホールドして出力抵抗Rout及びキャパシタCxを介してX方向の加速度検出信号Xoutを出力する。サンプルホールド回路403は、増幅回路401で増幅されたY軸方向変位信号を所定のタイミングでサンプル/ホールドして出力抵抗Rout及びキャパシタCyを介してY方向の加速度検出信号Youtを出力する。サンプルホールド回路404は、増幅回路401で増幅されたZ軸方向変位信号を所定のタイミングでサンプル/ホールドして出力抵抗Rout及びキャパシタCzを介してZ方向の加速度検出信号Zoutを出力する。 The amplification circuit 401 amplifies each displacement signal (capacitance change) in the X-axis direction, the Y-axis direction, and the Z-axis direction output from the physical quantity sensor 302-1 according to the applied acceleration at a predetermined amplification factor. Output to the sample hold circuits 402 to 404 respectively. The sample hold circuit 402 samples / holds the X axis direction displacement signal amplified by the amplifier circuit 401 at a predetermined timing, and outputs an X direction acceleration detection signal Xout via the output resistor Rout and the capacitor Cx. The sample hold circuit 403 samples / holds the Y-axis direction displacement signal amplified by the amplifier circuit 401 at a predetermined timing, and outputs a Y-direction acceleration detection signal Yout through the output resistor Rout and the capacitor Cy. The sample hold circuit 404 samples / holds the Z-axis direction displacement signal amplified by the amplifier circuit 401 at a predetermined timing, and outputs an acceleration detection signal Zout in the Z direction via the output resistor Rout and the capacitor Cz.

この物理量センサ302−1と処理回路400等を実装した本発明の貫通電極基板100又は本発明の積層型貫通電極基板300は、センサモジュールとして携帯情報端末や携帯電話などに搭載される。図19は、物理量センサ302−1と処理回路400等を実装した本発明の貫通電極基板100又は本発明の積層型貫通電極基板300を実装した半導体装置の一例である携帯型情報端末500の一例を示す図である。図19において、携帯型情報端末500は、筐体501、ディスプレイ部502と、キーボード部503、から構成される。センサモジュールは、キーボード部502の内部に実装されている。携帯型情報端末500は、その内部に各種プログラムを記憶し、各種プログラムにより通信処理や情報処理等を実行する機能を有する。この携帯型情報端末500では、物理量センサ302−1と処理回路400等が実装されたセンサモジュールにより検出される加速度や角速度をアプリケーションプログラムで利用することにより、例えば、落下時の加速度を検出して電源をオフさせる等の機能を付加することが可能になる。 The through electrode substrate 100 of the present invention or the stacked through electrode substrate 300 of the present invention on which the physical quantity sensor 302-1 and the processing circuit 400 are mounted is mounted as a sensor module on a portable information terminal, a mobile phone, or the like. FIG. 19 shows an example of a portable information terminal 500 that is an example of a semiconductor device on which the through electrode substrate 100 of the present invention on which the physical quantity sensor 302-1 and the processing circuit 400 are mounted, or the stacked through electrode substrate 300 of the present invention is mounted. FIG. In FIG. 19, the portable information terminal 500 includes a housing 501, a display unit 502, and a keyboard unit 503. The sensor module is mounted inside the keyboard unit 502. The portable information terminal 500 has a function of storing various programs therein and executing communication processing, information processing, and the like by the various programs. In this portable information terminal 500, for example, the acceleration at the time of falling is detected by using the acceleration and the angular velocity detected by the sensor module in which the physical quantity sensor 302-1 and the processing circuit 400 are mounted in the application program. A function such as turning off the power can be added.

上記のように物理量センサ302−1と処理回路400等が実装されたセンサモジュールをモバイル端末機に実装することにより、新たな機能を実現することができ、モバイル端末機の利便性や信頼性を向上させることが可能になる。 By mounting the sensor module on which the physical quantity sensor 302-1 and the processing circuit 400 are mounted on the mobile terminal as described above, new functions can be realized, and the convenience and reliability of the mobile terminal can be improved. It becomes possible to improve.

一実施形態に係る本発明の貫通電極基板100の断面図である。It is sectional drawing of the penetration electrode substrate 100 of this invention which concerns on one Embodiment. 一実施形態に係る本発明の貫通電極基板100の製造工程を説明する図である。It is a figure explaining the manufacturing process of the penetration electrode substrate 100 of the present invention concerning one embodiment. 一実施形態に係る本発明の貫通電極基板100の製造工程を説明する図である。It is a figure explaining the manufacturing process of the penetration electrode substrate 100 of the present invention concerning one embodiment. 一実施形態に係る本発明の貫通電極基板100の貫通部106に金属材料を充填するための電解めっきに用いるパルス電圧を説明する図である。It is a figure explaining the pulse voltage used for the electroplating for filling the penetration part 106 of the penetration electrode substrate 100 of the present invention concerning one embodiment with a metal material. 一実施形態に係る本発明の貫通電極基板100の貫通部106に金属材料を充填するための電解めっきに用いるパルス電圧を説明する図である。It is a figure explaining the pulse voltage used for the electroplating for filling the penetration part 106 of the penetration electrode substrate 100 of the present invention concerning one embodiment with a metal material. 一実施形態に係る本発明の貫通電極基板100の貫通部106に金属材料を充填するための電解めっきに用いる直流電圧を説明する図である。It is a figure explaining the DC voltage used for the electroplating for filling the penetration part 106 of the penetration electrode substrate 100 of the present invention concerning one embodiment with a metal material. EBSD装置の構成を説明する図である。It is a figure explaining the structure of an EBSD apparatus. EBSDにより測定する試料測定の概念を説明する図である。It is a figure explaining the concept of the sample measurement measured by EBSD. 実施例1に係る本発明の貫通電極基板100の貫通部106の金属材料の面積重み付けした結晶粒径分布図である。FIG. 3 is an area weighted crystal grain size distribution diagram of the metal material of the through-hole portion 106 of the through-electrode substrate 100 of the present invention related to Example 1. 比較例1に係る貫通電極基板の貫通部の金属材料の面積重み付けした結晶粒径分布図である。6 is an area weighted crystal grain size distribution diagram of a metal material in a through portion of a through electrode substrate according to Comparative Example 1. FIG. 比較例2に係る貫通電極基板の貫通部の金属材料の面積重み付けした結晶粒径分布図である。6 is an area weighted crystal grain size distribution diagram of a metal material in a through portion of a through electrode substrate according to Comparative Example 2. FIG. EBSDにより測定した逆極点図の例である。It is an example of a reverse pole figure measured by EBSD. 実施例1に係る本発明の貫通電極基板100の導通部106のマッピング測定及び逆極点図による結晶方位マップである(ND方向)。It is a crystal orientation map (ND direction) by the mapping measurement of the conduction | electrical_connection part 106 of the penetration electrode substrate 100 of this invention which concerns on Example 1, and a reverse pole figure. 実施例1に係る本発明の貫通電極基板100の導通部106のマッピング測定及び逆極点図による結晶方位マップである(TD方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part 106 of the penetration electrode substrate 100 of this invention which concerns on Example 1 (TD direction). 実施例1に係る本発明の貫通電極基板100の導通部106のマッピング測定及び逆極点図による結晶方位マップである(RD方向)。It is a crystal orientation map (RD direction) by the mapping measurement of the conduction | electrical_connection part 106 of the penetration electrode substrate 100 of this invention which concerns on Example 1, and a reverse pole figure. EBSDパターンにおける、ND(Normal Direction)方向(Z軸方向)、TD(Transverse Direction)方向(Y軸方向)、RD(Reference Direction)方向(X軸方向)の結晶方位マップの説明図である。It is explanatory drawing of the crystal orientation map of ND (Normal Direction) direction (Z-axis direction), TD (Transverse Direction) direction (Y-axis direction), and RD (Reference Direction) direction (X-axis direction) in an EBSD pattern. 比較例1に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(ND方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode board | substrate which concerns on the comparative example 1 (ND direction). 比較例1に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(TD方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode substrate which concerns on the comparative example 1 (TD direction). 比較例1に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(RD方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode substrate which concerns on the comparative example 1 (RD direction). 比較例2に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(ND方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode substrate which concerns on the comparative example 2 (ND direction). 比較例2に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(TD方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode substrate which concerns on the comparative example 2 (TD direction). 比較例2に係る貫通電極基板の導通部のマッピング測定及び逆極点図による結晶方位マップである(RD方向)。It is a crystal orientation map by the mapping measurement and reverse pole figure of the conduction | electrical_connection part of the penetration electrode substrate which concerns on the comparative example 2 (RD direction). 本発明に係る貫通電極基板100上にLSIチップが積層された半導体装置及び本発明に係る貫通電極基板100を積層した積層型貫通電極基板300を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining a semiconductor device in which LSI chips are stacked on a through electrode substrate 100 according to the present invention and a stacked through electrode substrate 300 in which the through electrode substrate 100 according to the present invention is stacked. 物理量センサにより検出される加速度の変位信号を処理する加速度処理回路の一例を示す図である。It is a figure which shows an example of the acceleration process circuit which processes the displacement signal of the acceleration detected by a physical quantity sensor. センサモジュールを実装したモバイル端末機の一例を示す図である。It is a figure which shows an example of the mobile terminal which mounted the sensor module.

符号の説明Explanation of symbols

100:貫通電極基板
102:基板
104:貫通孔
106:導通部
108:絶縁膜
110:シード層
302:バンプ
304、306:LSI基板
306−1、306−2:チップ
308−1、308−2:電極パッド
100: Through electrode substrate 102: Substrate 104: Through hole 106: Conductive portion 108: Insulating film 110: Seed layer 302: Bump 304, 306: LSI substrates 306-1 and 306-2: Chips 308-1 and 308-2: Electrode pad

Claims (10)

表裏を貫通する貫通孔を有する基板と、
前記貫通孔内に充填され、金属材料を含む導通部と、
を備え、
前記導通部の前記金属材料は、結晶粒径が29μm以上の結晶粒を含むことを特徴とする貫通電極基板。
A substrate having a through-hole penetrating the front and back;
A conductive portion filled in the through-hole and containing a metal material;
With
The through electrode substrate, wherein the metal material of the conductive portion includes crystal grains having a crystal grain size of 29 μm or more.
前記導通部の前記金属材料は、面積重み付けした平均結晶粒径が13μm以上であることを特徴とする請求項1に記載の貫通電極基板。 2. The through electrode substrate according to claim 1, wherein the metal material of the conductive portion has an area-weighted average crystal grain size of 13 μm or more. 前記導通部の前記金属材料の断面は、後方散乱電子回折法で検出される{101}面の以下の式(A)で示される配向率が21%以上であり、且つ、後方散乱電子回折法で検出される{221}面の以下の式(B)で示される配向率が11%以上であることを特徴とする請求項1又は2に記載の貫通電極基板。
配向率(%)={101}面と前記導通部の断面の表面とがなす角が8°以内の測定点の和/測定点の全数 ・・・(A)
配向率(%)={221}面と前記導通部の断面の表面とがなす角が8°以内の測定点の和/測定点の全数 ・・・(B)
The cross section of the metal material of the conducting portion has an orientation rate of 21% or more expressed by the following formula (A) of the {101} plane detected by backscattered electron diffraction, and backscattered electron diffraction 3. The through electrode substrate according to claim 1, wherein an orientation rate represented by the following formula (B) of the {221} plane detected by: is 11% or more.
Orientation ratio (%) = the sum of measurement points where the angle formed by the {101} plane and the cross-sectional surface of the conducting portion is within 8 ° / total number of measurement points (A)
Orientation ratio (%) = the sum of measurement points where the angle formed by the {221} plane and the cross-sectional surface of the conducting portion is within 8 ° / total number of measurement points (B)
前記基板はシリコンからなり、
前記導通部は、少なくとも前記基板側に設けた絶縁層上に形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の貫通電極基板。
The substrate is made of silicon;
4. The through electrode substrate according to claim 1, wherein the conducting portion is formed on at least an insulating layer provided on the substrate side. 5.
前記貫通孔の開口径は10μm〜100μmであり、かつ前記基板の厚みは20〜100μmであることを特徴とする請求項1乃至4のいずれか一項に記載の貫通電極基板。   5. The through electrode substrate according to claim 1, wherein the through hole has an opening diameter of 10 μm to 100 μm and a thickness of the substrate of 20 to 100 μm. 前記貫通孔の開口径は10μm〜100μmであり、かつ前記基板の厚みは300〜800μmであることを特徴とする請求項1乃至4のいずれか一項に記載の貫通電極基板。   5. The through electrode substrate according to claim 1, wherein an opening diameter of the through hole is 10 μm to 100 μm, and a thickness of the substrate is 300 to 800 μm. 請求項1乃至6の何れか一に記載の貫通電極基板を複数有し、前記複数の貫通電極基板が積層されていることを特徴とする半導体装置。   7. A semiconductor device comprising a plurality of through electrode substrates according to claim 1, wherein the plurality of through electrode substrates are stacked. 接続端子部を備えた半導体チップを少なくとも1つ含み、
前記接続端子部と請求項1乃至7のいずれか一項に記載の貫通電極基板の導通部とを接続して構成された半導体装置。
Including at least one semiconductor chip having a connection terminal portion;
The semiconductor device comprised by connecting the said connection terminal part and the conduction | electrical_connection part of the penetration electrode substrate as described in any one of Claims 1 thru | or 7.
基板に表裏を貫通する貫通孔を形成し、
前記基板及び前記貫通孔の表面に絶縁膜を形成し、
前記基板の少なくとも一方及び/又は前記貫通孔に金属からなるシード膜を形成し、
前記シード膜にパルス電流を供給する電解めっき法により、前記貫通孔内に金属材料を充填することを特徴とする貫通電極基板の製造方法。
Form a through-hole that penetrates the front and back of the substrate,
Forming an insulating film on the surface of the substrate and the through hole;
Forming a metal seed film on at least one of the substrates and / or the through hole;
A method of manufacturing a through electrode substrate, wherein the through hole is filled with a metal material by an electrolytic plating method for supplying a pulse current to the seed film.
前記電解めっき法は、前記シード膜にプラス電圧とマイナス電圧を周期的に印加することによって行うことを特徴とする請求項9に記載の貫通電極基板の製造方法。 The method of manufacturing a through electrode substrate according to claim 9, wherein the electrolytic plating method is performed by periodically applying a positive voltage and a negative voltage to the seed film.
JP2008267865A 2008-10-16 2008-10-16 Through electrode substrate and semiconductor device using the through electrode substrate Active JP5428280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267865A JP5428280B2 (en) 2008-10-16 2008-10-16 Through electrode substrate and semiconductor device using the through electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267865A JP5428280B2 (en) 2008-10-16 2008-10-16 Through electrode substrate and semiconductor device using the through electrode substrate

Publications (2)

Publication Number Publication Date
JP2010098140A true JP2010098140A (en) 2010-04-30
JP5428280B2 JP5428280B2 (en) 2014-02-26

Family

ID=42259617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267865A Active JP5428280B2 (en) 2008-10-16 2008-10-16 Through electrode substrate and semiconductor device using the through electrode substrate

Country Status (1)

Country Link
JP (1) JP5428280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288772B2 (en) 2008-10-16 2012-10-16 Dai Nippon Printing Co., Ltd. Through hole electrode substrate with different area weighted average crystal grain diameter of metal in the conductive part and semiconductor device using the through hole electrode substrate
US9930779B2 (en) 2016-04-28 2018-03-27 Tdk Corporation Through wiring substrate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205092A (en) * 1996-01-25 1997-08-05 Hitachi Ltd Method and system for producing semiconductor
JP2000235965A (en) * 1999-02-15 2000-08-29 Nec Corp Polishing method
JP2000306996A (en) * 1999-04-21 2000-11-02 Nec Corp Fabrication of semiconductor device
JP2002359469A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wiring board, manufacturing method therefor, and electronic device
JP2003060349A (en) * 2001-08-08 2003-02-28 Toyota Industries Corp Copper plating method of via hole
WO2003033775A1 (en) * 2001-10-16 2003-04-24 Shinko Electric Industries Co., Ltd. Method of copper-plating small-diameter holes
JP2004096052A (en) * 2002-03-13 2004-03-25 Nec Electronics Corp Semiconductor device and its manufacturing method, and metal wiring
JP2004179297A (en) * 2002-11-26 2004-06-24 Renesas Technology Corp Semiconductor integrated circuit device
JP2006049641A (en) * 2004-08-05 2006-02-16 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2006147970A (en) * 2004-11-24 2006-06-08 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method
WO2006070652A1 (en) * 2004-12-27 2006-07-06 Nec Corporation Semiconductor device and method for manufacturing same, wiring board and method for manufacturing same, semiconductor package, and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205092A (en) * 1996-01-25 1997-08-05 Hitachi Ltd Method and system for producing semiconductor
JP2000235965A (en) * 1999-02-15 2000-08-29 Nec Corp Polishing method
JP2000306996A (en) * 1999-04-21 2000-11-02 Nec Corp Fabrication of semiconductor device
JP2002359469A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wiring board, manufacturing method therefor, and electronic device
JP2003060349A (en) * 2001-08-08 2003-02-28 Toyota Industries Corp Copper plating method of via hole
WO2003033775A1 (en) * 2001-10-16 2003-04-24 Shinko Electric Industries Co., Ltd. Method of copper-plating small-diameter holes
JP2004096052A (en) * 2002-03-13 2004-03-25 Nec Electronics Corp Semiconductor device and its manufacturing method, and metal wiring
JP2004179297A (en) * 2002-11-26 2004-06-24 Renesas Technology Corp Semiconductor integrated circuit device
JP2006049641A (en) * 2004-08-05 2006-02-16 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2006147970A (en) * 2004-11-24 2006-06-08 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method
WO2006070652A1 (en) * 2004-12-27 2006-07-06 Nec Corporation Semiconductor device and method for manufacturing same, wiring board and method for manufacturing same, semiconductor package, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288772B2 (en) 2008-10-16 2012-10-16 Dai Nippon Printing Co., Ltd. Through hole electrode substrate with different area weighted average crystal grain diameter of metal in the conductive part and semiconductor device using the through hole electrode substrate
US8637397B2 (en) 2008-10-16 2014-01-28 Dai Nippon Printing Co., Ltd Method for manufacturing a through hole electrode substrate
US9930779B2 (en) 2016-04-28 2018-03-27 Tdk Corporation Through wiring substrate

Also Published As

Publication number Publication date
JP5428280B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5246103B2 (en) Method for manufacturing through electrode substrate
JP5664641B2 (en) Method for manufacturing through electrode substrate
US20190273038A1 (en) Through-hole electrode substrate, semiconductor device using the through-hole electrode substrate and manufacturing method of the through-hole electrode substrate
TW201351596A (en) Foldable substrate
US8459112B2 (en) Systems and methods for three dimensional sensors
JP5428280B2 (en) Through electrode substrate and semiconductor device using the through electrode substrate
JP6561635B2 (en) Through electrode substrate and manufacturing method thereof
JP2017098402A (en) Through electrode substrate and method of manufacturing the same
US20230335465A1 (en) Through electrode substrate and semiconductor device
JP6446934B2 (en) Conductive material through-hole substrate and manufacturing method thereof
JP2018195661A (en) Through electrode substrate, method of manufacturing the same, and semiconductor device using through electrode substrate
JP6369653B1 (en) Through electrode substrate and semiconductor device
JP6809511B2 (en) Through Silicon Via Substrates and Semiconductor Devices
JP2019109108A (en) Sensor intermediate component, sensor, and manufacturing method of sensor
CN211265463U (en) Semiconductor device
JP6216522B2 (en) A method for manufacturing an interposer substrate.
JP2017041558A (en) Through electrode substrate and manufacturing method therefor
Tao et al. Test structure for electrical characterization of copper nanowire anisotropic conductive film (NW-ACF) for 3D stacking applications
JP2021052193A (en) Through-electrode substrate and semiconductor device
JP2016167491A (en) Method of manufacturing through wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150