JP2010095753A - Hot-rolled steel plate and method for manufacturing the same - Google Patents

Hot-rolled steel plate and method for manufacturing the same Download PDF

Info

Publication number
JP2010095753A
JP2010095753A JP2008266905A JP2008266905A JP2010095753A JP 2010095753 A JP2010095753 A JP 2010095753A JP 2008266905 A JP2008266905 A JP 2008266905A JP 2008266905 A JP2008266905 A JP 2008266905A JP 2010095753 A JP2010095753 A JP 2010095753A
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
rolled steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008266905A
Other languages
Japanese (ja)
Other versions
JP5126846B2 (en
Inventor
Sukehisa Kikuchi
祐久 菊地
Hideo Mizukami
英夫 水上
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008266905A priority Critical patent/JP5126846B2/en
Publication of JP2010095753A publication Critical patent/JP2010095753A/en
Application granted granted Critical
Publication of JP5126846B2 publication Critical patent/JP5126846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel plate which has high-strength and excellent pitting-corrosion resistance, can be manufactured inexpensively, and accordingly is most suitable for being used particularly as a raw material of such a structural member of automobiles as to be represented by a chassis, a bumper and an undercarriage component. <P>SOLUTION: The hot-rolled steel plate which has a steel composition comprising, 0.01-0.35% C, 0.01-2.0% Si, 0.1-3.0% Mn, 0.3% or less P, 0.01% or less S, 0.005-2.0% Al, 0.01% or less N, 0.01-0.25% Ti and the balance Fe with impurities; and contains 50 pieces/mm<SP>2</SP>or less by number density in total of inclusions, crystallized products and precipitates having particle sizes of 5 μm or larger, in a cross section in a sheet thickness direction of a surface layer part of the steel plate between the surface of the steel plate and a position of 50 μm deep in a sheet thickness direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱延鋼板およびその製造方法に関する。特に、本発明は、自動車や各種の産業機械に用いられる構造部材の素材、なかでも自動車の足廻り部材やシャーシ、バンパーの補強部材等に代表される構造部材の素材として好適な、耐孔あき腐食性に優れる390MPa以上の引張強度を有する熱延鋼板およびその製造方法に関する。   The present invention relates to a hot-rolled steel sheet and a manufacturing method thereof. In particular, the present invention is suitable for use as a material for structural members used in automobiles and various industrial machines, and particularly as a material for structural members typified by automobile suspension members, chassis, and bumper reinforcement members. The present invention relates to a hot-rolled steel sheet having a tensile strength of 390 MPa or more, which is excellent in corrosiveness, and a method for producing the same.

近年、自動車には、腐食による孔あきがないことを10年間保証することが必要視されている。このため、自動車に使用される鋼板には優れた耐食性が求められており、特に厳しい腐食環境に曝される足廻り部材に使用される鋼板に対して耐食性改善への要求が強い。例えば、北米等の寒冷地帯においては、路面の凍結防止や融雪用に散布される塩類による腐食が著しく促進されるため、足廻り部材を中心に一層の耐食性改善が強く望まれている。   In recent years, automobiles have been required to guarantee for 10 years that there are no holes due to corrosion. For this reason, excellent corrosion resistance is required for steel plates used in automobiles, and there is a strong demand for improving corrosion resistance for steel plates used for suspension members exposed to particularly severe corrosive environments. For example, in cold regions such as North America, corrosion due to salt sprayed for preventing freezing of the road surface and melting snow is remarkably promoted, and therefore further improvement in corrosion resistance is strongly desired mainly for suspension members.

従来、このような耐食性改善の方法の一つとして、裸の鋼板を使用していた部材について、溶融亜鉛めっきを中心としためっき鋼板を使用するように切り替えることが一般に行われていた。このような背景から耐食性に優れためっき鋼板が数多く開発され、例えば特許文献1には、熱延鋼板を原板として冷間圧延することなしに溶融亜鉛めっきを施すことにより、加工性に優れる溶融亜鉛めっき鋼板を製造する方法が開示されている。   Conventionally, as one method for improving the corrosion resistance, a member that uses a bare steel plate is generally switched to use a plated steel plate centered on hot dip galvanizing. From such a background, a number of plated steel sheets having excellent corrosion resistance have been developed. For example, Patent Document 1 discloses hot galvanized steel having excellent workability by performing hot dip galvanizing without cold rolling using a hot rolled steel sheet as a base plate. A method for producing a plated steel sheet is disclosed.

しかし、自動車の足廻り部材や補強部材には、個々の部品をアーク溶接して製造されるものが多いため、めっき鋼板を素材として用いると、溶接時にブローホール等の欠陥が発生してしまい、健全な溶接部が得られないという問題があった。   However, because there are many parts that are manufactured by arc welding of individual parts in automobile undercarriage members and reinforcing members, defects such as blow holes occur during welding when using plated steel sheets as materials. There was a problem that a sound weld could not be obtained.

一方、自動車には、地球環境保全等の観点から燃費の向上も望まれており、使用する鋼板を高強度化して薄肉化することによる軽量化が推進されている。この軽量化に伴う鋼板の板厚の低減は、耐孔あき腐食性の観点からは、不利に働く。   On the other hand, automobiles are also desired to improve fuel efficiency from the viewpoint of global environmental protection and the like, and weight reduction is promoted by increasing the strength and thickness of the steel sheet used. The reduction in the thickness of the steel sheet accompanying this weight reduction works disadvantageously from the viewpoint of perforated corrosion resistance.

このようなことから、例えば特許文献2には、めっき原板自体の耐食性を向上させることにより、薄目付けでも優れた耐食性を示すとされる合金化亜鉛めっき鋼板を製造する方法が開示されている。しかし、この方法により製造される自動車足回り用鋼板は、薄目付けとはいえめっき層が存在するため、アーク溶接時に欠陥が発生することは免れ得ない。また、この提案のめっき原板は裸で使用できるほどの十分な耐食性を有しているとはいえない。   For this reason, for example, Patent Document 2 discloses a method for producing an alloyed galvanized steel sheet that is said to exhibit excellent corrosion resistance even with thinning by improving the corrosion resistance of the plating original plate itself. However, the steel plate for automobile undercarriage manufactured by this method has a plating layer, although it is thin, it is inevitable that defects occur during arc welding. Further, it cannot be said that the proposed plating original plate has sufficient corrosion resistance to be used bare.

ところで、鋼板の高強度化に関しては、例えば特許文献3および特許文献4に開示されるように、安価でありながら添加量に対する強度上昇量が大きいTiを多量に添加することが一般的に行われている。   By the way, with regard to increasing the strength of a steel sheet, as disclosed in, for example, Patent Document 3 and Patent Document 4, it is generally performed to add a large amount of Ti that is inexpensive but has a large strength increase with respect to the added amount. ing.

しかしながら、Tiを多量に添加すると、スラブの凝固偏析に伴い、鋼板に粗大なTi系の晶出物や析出物が生成する。また、Tiの偏析によるTi濃度の不均一化が生じる。このような粗大な晶出物や析出物の生成やTi濃度の不均一化は、孔あき腐食の起点となったり、その進行を促進させたりする要因となる。このため、Ti添加鋼板の耐孔あき腐食性を著しく劣化させる。   However, when a large amount of Ti is added, coarse Ti-based crystallized substances and precipitates are generated on the steel sheet as the slab solidifies and segregates. Further, nonuniform Ti concentration occurs due to segregation of Ti. The generation of such coarse crystallized products and precipitates and the nonuniformity of the Ti concentration become the starting point of perforated corrosion and the factors that promote the progress thereof. For this reason, the perforated corrosion resistance of the Ti-added steel sheet is significantly deteriorated.

特許文献5には、Ti含有量を厳密に制御した、優れた耐孔あき腐食性を有する高張力鋼板が開示されている。しかし、特許文献5により開示された発明では、Ti添加に伴う上記影響を考慮していないため、十分な耐孔あき腐食性を有する高張力鋼板が開示されているとはいえない。
特開平2−310354号公報 特開平2−22416号公報 特開平9−143570号公報 特開平10−8138号公報 特開平5−195144号公報
Patent Document 5 discloses a high-tensile steel plate having excellent perforated corrosion resistance, in which the Ti content is strictly controlled. However, the invention disclosed in Patent Document 5 does not take into account the above-described influence due to the addition of Ti, so it cannot be said that a high-strength steel sheet having sufficient perforated corrosion resistance is disclosed.
Japanese Patent Laid-Open No. 2-310354 JP-A-2-22416 JP-A-9-143570 Japanese Patent Laid-Open No. 10-8138 JP-A-5-195144

本発明は、上記従来の技術が有する課題に鑑みてなされたものであり、例えば自動車の足廻り部材や補強部材の素材として好適な、裸での使用にも耐え得る耐孔あき腐食性に優れた耐孔あき腐食性に優れる390MPa以上の引張強度を有する熱延鋼板およびその製造方法を提供することを課題とする。   The present invention has been made in view of the above-described problems of the conventional technology. For example, it is suitable as a material for an automobile undercarriage member or a reinforcing member, and has excellent perforated corrosion resistance that can withstand use under bare conditions. Another object of the present invention is to provide a hot-rolled steel sheet having a tensile strength of 390 MPa or more that is excellent in perforated corrosion resistance and a method for producing the same.

本発明者らは、上記課題を解決するために以下のように鋭意検討を行った。
熱延鋼板の高強度化にはTiを添加することがコスト面から有利である。しかしながら、Tiを多量に添加すると、スラブの凝固偏析に伴い、鋼中に粗大なTi系の晶出物や析出物が生成したり、Tiの偏析によるTi濃度の不均一化が生じたりする。これらは、孔あき腐食の起点となったり、孔あき腐食の進行を促進させたりするので、鋼板の耐孔あき腐食性を著しく劣化させる。
In order to solve the above-mentioned problems, the present inventors have intensively studied as follows.
From the viewpoint of cost, it is advantageous to add Ti to increase the strength of the hot-rolled steel sheet. However, when a large amount of Ti is added, coarse Ti-based crystallized substances and precipitates are generated in the steel as the slab solidifies and segregates, and Ti concentration becomes uneven due to Ti segregation. These serve as a starting point for perforated corrosion and promote the progress of perforated corrosion, so that the perforated corrosion resistance of the steel sheet is remarkably deteriorated.

このため、耐孔あき腐食性を向上させるには、これらの粗大なTi系の晶出物や析出物の生成やTi濃度の不均一化を防げばよい。しかし、Tiを多量に添加する以上、これらを完全に防ぐことは困難である。   For this reason, in order to improve the perforated corrosion resistance, it is only necessary to prevent the generation of these coarse Ti-based crystallized substances and precipitates and the unevenness of the Ti concentration. However, as much Ti is added, it is difficult to completely prevent them.

本発明者らは、孔あき腐食の律速となるのが、腐食の起点の発生や腐食初期段階における腐食の進行であることに着目した。そして、鋼板表層部において粗大なTi系の晶出物や析出物の生成やTi濃度の不均一化を抑制することによって鋼板の耐孔あき腐食性を向上させることを着想した。ここで、鋼板表層部における粗大な介在物も粗大なTi系の晶出物や析出物と同様に孔あき腐食を促進する作用を有するので、これらをあわせて低減することを着想した。   The present inventors have focused on the fact that the rate of perforated corrosion becomes the rate of occurrence of the starting point of corrosion and the progress of corrosion at the initial stage of corrosion. The idea was to improve the perforated corrosion resistance of the steel sheet by suppressing the formation of coarse Ti-based crystals and precipitates and the non-uniform Ti concentration in the steel sheet surface layer. Here, the coarse inclusions in the surface layer portion of the steel sheet have the effect of promoting perforated corrosion like the coarse Ti-based crystallized substances and precipitates.

その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度を50個/mm以下と抑制することにより鋼板の耐孔あき腐食性が著しく向上することを知見した。 As a result, the perforated corrosion resistance of the steel sheet is remarkably improved by suppressing the total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in the surface layer portion of the steel sheet to 50 pieces / mm 2 or less. I found out.

また、このように、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度を50個/mm以下とするには、連続鋳造工程において、単位時間当たりの溶鋼鋳込み量を1トン/分以上6トン/分以下、スラブ表層部における平均凝固速度を5℃/秒以上とし、熱間圧延工程において、スラブを加熱炉に装入して1100℃以上の温度で30分間以上保持し、加熱炉抽出から10分間以内に750℃以上の温度域で圧延を完了し、その後5℃/秒以上の平均冷却速度で冷却して巻き取ることが有効であることを知見した。 Further, in this way, in order to make the total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer part to be 50 pieces / mm 2 or less, in the continuous casting process, per unit time The molten steel casting amount is 1 to 6 tons / minute, the average solidification rate in the slab surface layer is 5 ° C./second or more, and in the hot rolling process, the slab is charged into a heating furnace at a temperature of 1100 ° C. or more. It is effective to hold for 30 minutes or more, complete rolling in a temperature range of 750 ° C. or more within 10 minutes after extraction from the heating furnace, and then cool and wind at an average cooling rate of 5 ° C./second or more. I found out.

さらに、鋼板表層部におけるTi濃度の不均一化の指標である、Tiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)について下記式(1)を満足させること、さらに好ましくは下記式(2)を満足させることにより、鋼板の耐孔あき腐食性が一層向上することを知見した。 Further, the ratio (Ti max / Ti min ) between the maximum value (Ti max ) and the minimum value (Ti min ) of the mass concentration of Ti, which is an index of non-uniformity of the Ti concentration in the steel sheet surface layer, is expressed by the following formula (1 ), More preferably by satisfying the following formula (2), it has been found that the perforated corrosion resistance of the steel sheet is further improved.

1.0≦(Timax/Timin)≦6.0 ・・・・・・・(1)
1.0≦(Timax/Timix)≦4.0 ・・・・・・・(2)
そして、上記式(1)を満足させるには、連続鋳造工程において、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施すことが有効であること、上記式(2)を満足させるには、さらに鋼組成としてBiを含有させることが有効であることを知見した。
1.0 ≦ (Ti max / Ti min ) ≦ 6.0 (1)
1.0 ≦ (Ti max / Ti mix ) ≦ 4.0 (2)
In order to satisfy the above formula (1), in the continuous casting process, it is effective to stir the molten steel in the mold of the continuous casting machine with a moving magnetic field, and to satisfy the above formula (2). Furthermore, it has been found that it is effective to contain Bi as a steel composition.

さらに、腐食の起点の発生や腐食初期段階における腐食の進行を抑制するという観点から検討した結果、鋼板の表面粗さを小さくして腐食を均一に進行させることにより耐孔あき腐食性を向上させることを着想し、鋼板の表面粗さRzを15μm以下とすることにより、耐孔あき腐食性がさらに向上することを知見した。   Furthermore, as a result of examining from the viewpoint of suppressing the occurrence of corrosion starting point and the progress of corrosion in the early stage of corrosion, the perforated corrosion resistance is improved by reducing the surface roughness of the steel sheet and allowing the corrosion to proceed uniformly. With this in mind, it was found that the perforated corrosion resistance is further improved by setting the surface roughness Rz of the steel sheet to 15 μm or less.

そして、鋼板の表面粗さRzを15μm以下とするには、連続鋳造工程において、PおよびBの1種または2種を含有する連続鋳造用モールドフラックスを用いれば、熱間圧延工程におけるデスケーリング性が向上し、スケールに起因する鋼板表面の凹凸が減少させることができるので極めて有効であることを知見した。 The surface roughness Rz of the steel plate to 15μm or less, in a continuous casting process, the use of the continuous casting mold flux containing one or two P 2 O 5 and B 2 O 3, hot It was found that the descalability in the rolling process is improved and the unevenness of the steel sheet surface due to the scale can be reduced, which is extremely effective.

本発明は、これらの知見に基づいてなされたものである。
本発明は、C:0.01%以上0.35%以下(以下、特に断りがない限り組成に関する「%」は「質量%」を意味するものとする)、Si:0.01%以上2.0%以下、Mn:0.1%以上3.0%以下、P:0.3%以下、S:0.01%以下、Al:0.005%以上2.0%以下、N:0.01%以下およびTi:0.01%以上0.25%以下を含有し、残部Fe及び不純物からなる鋼組成を有するとともに、鋼板表面から板厚方向50μm深さ位置までの鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm以下であることを特徴とする熱延鋼板である。
The present invention has been made based on these findings.
In the present invention, C: 0.01% or more and 0.35% or less (hereinafter, “%” relating to the composition means “mass%” unless otherwise specified), Si: 0.01% or more 2 0.0% or less, Mn: 0.1% or more and 3.0% or less, P: 0.3% or less, S: 0.01% or less, Al: 0.005% or more and 2.0% or less, N: 0 .01% or less and Ti: 0.01% or more and 0.25% or less, the steel composition having the balance Fe and impurities, and the steel plate surface layer plate from the steel plate surface to the depth direction of 50 μm in the plate thickness direction A hot-rolled steel sheet having a total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in a cross section in the thickness direction of 50 pieces / mm 2 or less.

この本発明に係る熱延鋼板では、鋼組成が、Feの一部に代えて、V:0.5%以下、Nb:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上を含有することが好ましい。   In the hot-rolled steel sheet according to the present invention, the steel composition is V: 0.5% or less, Nb: 0.1% or less, Cr: 1.0% or less, Mo: 1. It is preferable to contain one or more selected from the group consisting of 0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less.

これらの本発明に係る熱延鋼板では、鋼組成が、Feの一部に代えて、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下からなる群から選ばれた1種または2種以上を含有することが好ましい。   In these hot-rolled steel sheets according to the present invention, the steel composition is replaced with a part of Fe, from the group consisting of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less. It is preferable to contain the 1 type (s) or 2 or more types selected.

これらの本発明に係る熱延鋼板では、鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)が下記式(1)を満足することが好ましい。 In these hot-rolled steel sheets according to the present invention, the ratio (Ti max / Ti min ) between the maximum value (Ti max ) and the minimum value (Ti min ) of the mass concentration of Ti in the sheet thickness direction cross section of the steel sheet surface layer portion is as follows. It is preferable to satisfy Formula (1).

1.0≦(Timax/Timin)≦6.0 ・・・・・・・(1)
これらの本発明に係る熱延鋼板では、鋼組成が、Feの一部に代えて、Biを0.1%以下含有するとともに、比(Timax/Timin)が下記式(2)を満足することが好ましい。
1.0 ≦ (Ti max / Ti min ) ≦ 6.0 (1)
In these hot-rolled steel sheets according to the present invention, the steel composition contains 0.1% or less of Bi instead of a part of Fe, and the ratio (Ti max / Ti min ) satisfies the following formula (2). It is preferable to do.

1.0≦(Timax/Timix)≦4.0 ・・・・・・・(2)
これらの本発明に係る熱延鋼板では、表面粗さRzが15μm以下であることが好ましい。
1.0 ≦ (Ti max / Ti mix ) ≦ 4.0 (2)
In these hot-rolled steel sheets according to the present invention, the surface roughness Rz is preferably 15 μm or less.

別の観点からは、本発明は、下記工程(A)〜(C)を備えることを特徴とする熱延鋼板の製造方法である。
(A)上述した本発明に係る熱延鋼板の鋼組成を有する溶鋼を、単位時間当たりの溶鋼鋳込み量を1トン/分以上6トン/分以下とし、さらに、スラブ表面からスラブ厚方向の0.05mm×(スラブ厚(mm)/製品厚(mm))深さ位置のスラブ表層部における平均凝固速度を5℃/秒以上とする連続鋳造法によりスラブとする連続鋳造工程;
(B)スラブを加熱炉に装入して1100℃以上の温度で30分間以上保持し、加熱炉から抽出したスラブに、加熱炉抽出から10分間以内に750℃以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板とする熱間圧延工程;および
(C)熱延鋼板を、熱間圧延の完了後5℃/秒以上の平均冷却速度で冷却して700℃以下の温度域で巻き取る冷却および巻取工程。
From another viewpoint, the present invention is a method for producing a hot-rolled steel sheet, comprising the following steps (A) to (C).
(A) The molten steel having the steel composition of the hot-rolled steel sheet according to the present invention described above has a molten steel casting amount per unit time of 1 to 6 tons / minute, and further, 0 in the slab thickness direction from the slab surface. .05 mm × (slab thickness (mm) / product thickness (mm)) Continuous casting process for forming a slab by a continuous casting method in which the average solidification rate in the slab surface layer at a depth position is 5 ° C./second or more;
(B) The slab is charged into a heating furnace and held at a temperature of 1100 ° C. or higher for 30 minutes or more. The slab extracted from the heating furnace is rolled in a temperature range of 750 ° C. or higher within 10 minutes from the extraction of the heating furnace. A hot rolling step in which hot rolling is performed to obtain a hot rolled steel sheet; and (C) a hot rolled steel sheet is cooled at an average cooling rate of 5 ° C./second or more after completion of hot rolling and a temperature of 700 ° C. or lower. Cooling and winding process that winds up in the area.

この本発明に係る熱延鋼板の製造方法では、連続鋳造工程において、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施すことが好ましい。
さらに、これらの本発明に係る熱延鋼板の製造方法では、連続鋳造工程において、PおよびBの1種または2種を含有する連続鋳造用モールドフラックスを用いることが好ましい。
In the method for producing a hot-rolled steel sheet according to the present invention, it is preferable to stir the molten steel in the mold of the continuous casting machine with a moving magnetic field in the continuous casting process.
Furthermore, in the method for producing a hot-rolled steel sheet according to the present invention, it is preferable to use a mold flux for continuous casting containing one or two of P 2 O 5 and B 2 O 3 in the continuous casting step.

本発明に係る熱延鋼板は、高強度で優れた耐孔あき腐食性を有し、安価に製造できる。そのため、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のシャーシ、バンパーや足廻り部品に代表される構造部材の素材として、最適である。   The hot-rolled steel sheet according to the present invention has high strength and excellent perforated corrosion resistance, and can be manufactured at low cost. Therefore, it is optimal as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members represented by automobile chassis, bumpers and undercarriage parts.

以下、本発明に係る熱延鋼板およびその製造方法を実施するための最良の形態を、具体的に説明する。
はじめに、本発明に係る熱延鋼板の鋼組成を限定する理由を説明する。
(A)鋼組成
[C:0.01%以上0.35%以下]
Cは、高強度化に有効な元素である。C含有量が0.01%未満ではその効果が小さい。したがって、C含有量は0.01%以上とする。好ましくは0.02%以上である。一方、C含有量が0.35%超では、溶接性の劣化が著しくなる。さらに、例えばパーライト、ベイナイト、マルテンサイト、残留オーステナイト等の第2相の増加により加工性の低下が著しくなる。したがって、C含有量は0.35%以下とする。好ましくは0.25%以下である。
The best mode for carrying out the hot-rolled steel sheet and the method for producing the same according to the present invention will be specifically described below.
First, the reason for limiting the steel composition of the hot rolled steel sheet according to the present invention will be described.
(A) Steel composition [C: 0.01% or more and 0.35% or less]
C is an element effective for increasing the strength. If the C content is less than 0.01%, the effect is small. Therefore, the C content is 0.01% or more. Preferably it is 0.02% or more. On the other hand, when the C content exceeds 0.35%, the weldability is significantly deteriorated. Furthermore, the workability deteriorates significantly due to an increase in the second phase such as pearlite, bainite, martensite, and retained austenite. Therefore, the C content is 0.35% or less. Preferably it is 0.25% or less.

[Si:0.01%以上2.0%以下]
Siは、高強度化に有効な元素である。Si含有量が0.01%未満ではその効果が小さい。したがって、Si含有量は0.01%以上とする。好ましくは0.02%以上である。一方、Si含有量が2.0%超では、化成処理性の低下を招いたり、島状スケール疵と呼ばれる表面不良が著しくなったりする。したがって、Si含有量は2.0%以下とする。好ましくは1.5%以下である。
[Si: 0.01% to 2.0%]
Si is an element effective for increasing the strength. If the Si content is less than 0.01%, the effect is small. Therefore, the Si content is 0.01% or more. Preferably it is 0.02% or more. On the other hand, if the Si content exceeds 2.0%, the chemical conversion processability is lowered, or surface defects called island-shaped scale wrinkles become remarkable. Therefore, the Si content is 2.0% or less. Preferably it is 1.5% or less.

[Mn:0.1%以上3.0%以下]
Mnは、高強度化に有効な元素である。Mn含有量が0.1%未満ではその効果が小さい。したがって、Mn含有量は0.1%以上とする。好ましくは0.5%以上である。一方、Mn含有量が3.0%超では、溶接性の劣化が著しくなる。したがって、Mn含有量は3.0%以下とする。好ましくは2.5%未満である。
[Mn: 0.1% to 3.0%]
Mn is an element effective for increasing the strength. If the Mn content is less than 0.1%, the effect is small. Therefore, the Mn content is 0.1% or more. Preferably it is 0.5% or more. On the other hand, if the Mn content exceeds 3.0%, the weldability is significantly deteriorated. Therefore, the Mn content is 3.0% or less. Preferably it is less than 2.5%.

[P:0.3%以下]
Pは、靱性を劣化させる好ましくない元素である。したがって、P含有量は0.3%以下とする。好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。
[P: 0.3% or less]
P is an undesirable element that degrades toughness. Therefore, the P content is 0.3% or less. Preferably it is 0.1% or less, More preferably, it is 0.05% or less.

[S:0.01%以下]
Sは、靭性を低下させる好ましくない元素である。したがって、S含有量は0.01%以下とする。好ましくは0.008%以下であり、さらに好ましくは0.004%以下である。
[S: 0.01% or less]
S is an undesirable element that reduces toughness. Therefore, the S content is 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.004% or less.

[Al:0.005%以上2.0%以下]
Alは、フェライトの生成を促し、加工性を向上させるのに有効な元素である。Al含有量が0.005%未満ではその効果が小さい。したがって、Al含有量は0.005%以上とする。好ましくは0.01%以上である。一方、Al含有量が2.0%超では溶接性の劣化が著しくなる。したがって、Al含有量は2.0%以下とする。好ましくは1.0%以下である。
[Al: 0.005% to 2.0%]
Al is an element effective for promoting the formation of ferrite and improving workability. If the Al content is less than 0.005%, the effect is small. Therefore, the Al content is 0.005% or more. Preferably it is 0.01% or more. On the other hand, if the Al content exceeds 2.0%, the weldability deteriorates remarkably. Therefore, the Al content is 2.0% or less. Preferably it is 1.0% or less.

[N:0.01%以下]
Nは、Tiと結合して窒化物を形成する。N含有量が0.01%超では粗大なTiNが析出して靭性の劣化が著しくなる。したがって、N含有量は0.01%以下とする。好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。
[N: 0.01% or less]
N combines with Ti to form a nitride. If the N content exceeds 0.01%, coarse TiN precipitates and the toughness deteriorates significantly. Therefore, the N content is 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.005% or less.

[Ti:0.01%以上0.25%以下]
Tiは、本発明において重要な元素である。比較的安価な元素でありながら、析出強化により効果的に鋼板を高強度化できる。Ti含有量が0.01%未満ではその効果が小さい。したがって、Ti含有量は0.01%以上とする。好ましくは0.02%以上である。一方、Ti含有量が0.25%超では、粗大なTi系晶出物とTi系炭窒化物などを多量に生成してしまい、耐孔あき腐食性および靭性が著しく劣化する。したがって、Ti含有量は0.25%以下とする。好ましくは0.20%以下である。
[Ti: 0.01% or more and 0.25% or less]
Ti is an important element in the present invention. Although it is a relatively inexpensive element, the steel sheet can be effectively strengthened by precipitation strengthening. The effect is small when the Ti content is less than 0.01%. Therefore, the Ti content is 0.01% or more. Preferably it is 0.02% or more. On the other hand, if the Ti content exceeds 0.25%, a large amount of coarse Ti-based crystallized substances and Ti-based carbonitrides are generated, and the perforated corrosion resistance and toughness are significantly deteriorated. Therefore, the Ti content is 0.25% or less. Preferably it is 0.20% or less.

次に、任意元素について説明する。
[V:0.5%以下、Nb:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選択される1種または2種以上]
V、Nb、Cr、Mo、Cu、NiおよびBは、いずれも焼入性を向上させることによって高強度化に寄与する任意元素である。したがって、これらの任意元素を含有させることにより鋼板の強度を一層高めることができる。これらの任意元素は、2種以上の元素を複合して含有させてもそれぞれの作用が失われることはない。しかしながら、Vについては0.5%を、Nbについては0.1%、Cr、Mo、CuおよびNiについては1.0%を、Bについては0.01%を、それぞれ超えて含有させても上記効果は飽和してしまい、いたずらにコストが嵩むばかりである。したがって、これらの元素を含有させる場合には、V:0.5%以下、Nb:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下として、1種または2種以上を含有させるとよい。
Next, arbitrary elements will be described.
[V: 0.5% or less, Nb: 0.1% or less, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B : One or more selected from the group consisting of 0.01% or less]
V, Nb, Cr, Mo, Cu, Ni and B are all optional elements that contribute to high strength by improving hardenability. Therefore, the intensity | strength of a steel plate can be raised further by containing these arbitrary elements. These optional elements do not lose their functions even if they contain two or more elements in combination. However, 0.5% for V, 0.1% for Nb, 1.0% for Cr, Mo, Cu and Ni, and 0.01% for B may be included. The above effect is saturated and the cost is unnecessarily high. Therefore, when these elements are contained, V: 0.5% or less, Nb: 0.1% or less, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% Hereafter, it is good to contain 1 type or 2 types or more as Ni: 1.0% or less and B: 0.01% or less.

この場合に、V、Nb、Cr、Mo、CuおよびNiについてはそれぞれ0.001%以上含有させることにより、Bについては0.0001%以上含有させることにより、上記効果をより確実に得ることができるので、これらを下限とすることが好ましい。   In this case, the above effect can be obtained more reliably by containing 0.001% or more of V, Nb, Cr, Mo, Cu and Ni, and 0.0001% or more of B. Therefore, it is preferable to set these as the lower limit.

[REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下からなる群から選択される1種または2種以上]
REM、MgおよびCaは、いずれも、硫化物、酸化物等の介在物を球状化し、これらの介在物による延性の低下を抑制する作用を有する元素である。したがって、これらの元素を含有させることにより、鋼板の延性を一層向上させることができ、2種以上の元素を含有させても、それぞれの作用が失われることはない。
[One or more selected from the group consisting of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less]
REM, Mg, and Ca are all elements that have the effect of spheroidizing inclusions such as sulfides and oxides and suppressing the reduction in ductility due to these inclusions. Therefore, the inclusion of these elements can further improve the ductility of the steel sheet, and even when two or more elements are contained, the respective actions are not lost.

しかしながら、REMについては0.1%を、MgおよびCaについては0.01%を、それぞれ超えて含有させても上記効果は飽和してしまい、いたずらにコストが嵩むばかりである。したがって、これらの元素を含有させる場合には、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下として、1種または2種以上を含有させるとよい。この場合には、REMについては0.0001%以上含有させることにより、MgおよびCaについては0.0001%以上含有させることにより、上記効果をより確実に得ることができるので、これらを下限とすることが好ましい。   However, even if the content of REM exceeds 0.1% and that of Mg and Ca exceeds 0.01%, the above effects are saturated, and the cost is unnecessarily high. Therefore, when these elements are contained, REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less are preferably contained. In this case, the above effect can be obtained more reliably by containing 0.0001% or more of REM and 0.0001% or more of Mg and Ca. It is preferable.

ここで、REMとは、Sc、Yおよびランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。なお、本発明では、REMの含有量はこれらの元素の合計含有量を指す。   Here, REM refers to a total of 17 elements of Sc, Y and lanthanoid. In the case of lanthanoid, it is added industrially in the form of misch metal. In the present invention, the content of REM refers to the total content of these elements.

[Bi:0.1%以下]
Biは、溶鋼の凝固過程において凝固の核となり、デンドライトアーム間隔を小さくする効果がある。その結果、デンドライト樹間での成分濃化、言い換えれば、偏析を抑制する効果がある。Tiのように偏析しやすい元素を含有する場合には、偏析を抑制するうえで特に効果的である。したがって、本発明においてTiの偏析を抑制する場合にBiは重要な成分となる。しかしながら、Bi含有量を0.1%超とすると、介在物を形成して加工性を劣化させる場合がある。したがって、Biを含有させる場合にはその含有量は0.1%以下とする。上記効果をより確実に得るには、Bi含有量を0.0001%以上とすることが好ましい。
[Bi: 0.1% or less]
Bi becomes a solidification nucleus in the solidification process of the molten steel, and has an effect of reducing the dendrite arm interval. As a result, there is an effect of suppressing the concentration of components between dendrite trees, in other words, segregation. In the case of containing an element that easily segregates, such as Ti, it is particularly effective in suppressing segregation. Therefore, Bi is an important component when suppressing the segregation of Ti in the present invention. However, if the Bi content exceeds 0.1%, inclusions may be formed to deteriorate workability. Therefore, when Bi is contained, its content is 0.1% or less. In order to obtain the above effect more reliably, the Bi content is preferably 0.0001% or more.

上記以外の組成は、Feおよび不純物である。
(B)介在物、晶出物および析出物
Ti添加型熱延鋼板において、良好な耐孔あき腐食性を確保するために、鋼板表面から板厚方向50μm深さ位置までの鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度を50個/mm以下とする。
Compositions other than the above are Fe and impurities.
(B) Inclusion, crystallized substance and precipitate In the Ti-added hot-rolled steel sheet, in order to ensure good perforated corrosion resistance, the steel sheet surface layer plate from the steel sheet surface to the depth direction of 50 μm depth The total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the cross section in the thickness direction is 50 pieces / mm 2 or less.

ここで、鋼板表面から板厚方向50μm深さ位置までの鋼板表層部における介在物、晶出物および析出物を規定したのは、孔あき腐食の抑制には腐食起点の発生および腐食初期段階における腐食進行を抑制することが重要であり、鋼板表層部における介在物、晶出物および析出物は、孔あき腐食の腐食起点の発生および腐食初期段階における腐食進行に大きな影響を及ぼすからである。   Here, the inclusions, crystallizations and precipitates in the steel sheet surface layer part from the steel sheet surface to the 50 μm depth position in the plate thickness direction are defined in order to suppress the perforated corrosion in the generation of corrosion origin and in the initial stage of corrosion. This is because it is important to suppress the progress of corrosion, and inclusions, crystallized substances, and precipitates in the surface layer portion of the steel sheet have a great influence on the occurrence of the corrosion starting point of perforated corrosion and the corrosion progress in the initial stage of corrosion.

すなわち、粗大な介在物、晶出物および析出物が存在すると、それらとFeとの界面において腐食の発生および進行が生じ易くなるので、鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mmを超えると、孔あき腐食の腐食起点が多くなるばかりか、腐食初期段階における腐食進行が助長される。 That is, if there are coarse inclusions, crystallized substances, and precipitates, corrosion is likely to occur and proceed at the interface between them and Fe, and therefore, inclusions having a grain size of 5 μm or more in the cross section in the thickness direction of the steel sheet surface layer portion. When the total number density of the product, the crystallized product and the precipitate exceeds 50 / mm 2 , not only the corrosion starting point of the perforated corrosion increases, but also the corrosion progress in the initial stage of corrosion is promoted.

したがって、鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度を50個/mm以下とする。
上記数密度が低いほど耐孔あき腐食性が向上するので、耐孔あき腐食性の観点からは上記数密度の下限を規定する必要はない。しかし、鋼板表層部における介在物、晶出物および析出物の低減には操業効率の低下やコストの上昇を伴うため、このような観点から上記数密度を0.01個/mm以上とすることが好ましい。
Therefore, the total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in the cross section in the plate thickness direction of the steel sheet surface layer portion is set to 50 pieces / mm 2 or less.
Since the perforation corrosion resistance is improved as the number density is lower, it is not necessary to define the lower limit of the number density from the viewpoint of perforation corrosion resistance. However, since the reduction of inclusions, crystallized substances, and precipitates in the surface layer of the steel sheet is accompanied by a decrease in operation efficiency and an increase in cost, the number density is set to 0.01 pieces / mm 2 or more from this viewpoint. It is preferable.

上記介在物は、主に連続鋳造工程においてスラブに捕捉されるアルミナ系介在物、CaO系介在物、SiO系介在物であり、上記晶出物や析出物は、TiNやTi系の炭窒化物であるTi(N、C)などである。
(C)Tiの濃度分布
鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)が下記式(1)を満足することが好ましい。
The inclusions are mainly alumina inclusions, CaO inclusions, and SiO 2 inclusions captured by the slab in the continuous casting process. The crystallized substances and precipitates are TiN or Ti carbonitriding. For example, Ti (N, C) is a material.
(C) Ti concentration distribution The ratio (Ti max / Ti min ) of the maximum value (Ti max ) and the minimum value (Ti min ) of the mass concentration of Ti in the cross section in the plate thickness direction of the steel sheet surface layer is expressed by the following formula (1) Is preferably satisfied.

1.0≦(Timax/Timin)≦6.0 ・・・・・・・(1)
Ti濃度分布が不均一であると、鋼板の腐食が均一に進行せず、Ti濃度の低い部分において選択的に腐食が進行してしまう。このため、鋼板表層部におけるTi濃度分布が不均一であると、孔あき腐食の初期段階における腐食進行が助長されてしまい、耐孔あき腐食性が劣化する。
1.0 ≦ (Ti max / Ti min ) ≦ 6.0 (1)
If the Ti concentration distribution is not uniform, the corrosion of the steel sheet does not proceed uniformly, and the corrosion proceeds selectively in the portion where the Ti concentration is low. For this reason, if the Ti concentration distribution in the steel plate surface layer portion is not uniform, the progress of corrosion in the initial stage of perforated corrosion is promoted, and the perforated corrosion resistance is deteriorated.

この比(Timax/Timin)を6.0以下とすることにより、Ti濃度分布の不均一性に起因する耐孔あき腐食性の劣化を抑制することができる。したがって、上記比(Timax/Timin)について上記式(1)を満足させることが好ましい。上記比(Timax/Timin)について下記式(2)を満足させることがさらに好ましい。 By setting the ratio (Ti max / Ti min ) to 6.0 or less, it is possible to suppress the deterioration of the perforated corrosion resistance due to the nonuniformity of the Ti concentration distribution. Therefore, it is preferable that the above formula (1) is satisfied with respect to the ratio (Ti max / Ti min ). More preferably, the ratio (Ti max / Ti min ) satisfies the following formula (2).

1.0≦(Timax/Timin)≦4.0 ・・・・・・・(2)
(D)鋼板表面粗さ
鋼板の表面粗さRzは15μm以下とすることが好ましい。鋼板の表面粗さが粗い場合、特にRzで15μmを超えると、孔あき腐食の腐食初期段階における腐食進行が著しくなる。これは、鋼板表面の凹凸が大きくなると、その凹部に腐食液体が溜まりやすくなり、耐孔あき腐食の進行が促進されるためである。鋼板の表面粗さが小さいほど耐孔あき腐食性が向上するので、耐孔あき腐食性の観点からは鋼板の表面粗さRzの下限を規定する必要はない。しかし、鋼板の表面粗さRzが4μm未満になると耐孔あき腐食性に及ぼす鋼板の表面粗さの影響がほとんどなくなるので、鋼板の表面粗さRzを4μm以上とすることが操業効率およびコストの観点から好ましい。
(E)金属組織
本発明は、Tiを添加することに伴う耐孔あき腐食性を向上させることを目的とするものであるから、金属組織は特に規定しない。所望の特性に合わせて好適な金属組織を適宜選択すればよい。
1.0 ≦ (Ti max / Ti min ) ≦ 4.0 (2)
(D) Steel plate surface roughness It is preferable that the surface roughness Rz of a steel plate shall be 15 micrometers or less. When the surface roughness of the steel sheet is rough, particularly when Rz exceeds 15 μm, the progress of corrosion in the initial stage of perforation corrosion becomes significant. This is because when the unevenness on the surface of the steel sheet becomes large, the corrosive liquid tends to accumulate in the concave portion, and the progress of perforated corrosion resistance is promoted. Since the perforated corrosion resistance is improved as the surface roughness of the steel sheet is smaller, it is not necessary to define the lower limit of the surface roughness Rz of the steel sheet from the viewpoint of perforated corrosion resistance. However, when the surface roughness Rz of the steel sheet is less than 4 μm, the influence of the surface roughness of the steel sheet on the perforated corrosion resistance is almost eliminated, so that the surface roughness Rz of the steel sheet should be 4 μm or more in terms of operational efficiency and cost. It is preferable from the viewpoint.
(E) Metal structure Since this invention aims at improving the perforated corrosion resistance accompanying the addition of Ti, the metal structure is not particularly defined. What is necessary is just to select a suitable metal structure suitably according to a desired characteristic.

例えば、伸び加工性を重視する場合には、フェライト主体の組織にするのが好ましく、所望の強度を得るために、パーライト、ベイナイト、オーステナイト、マルテンサイトなどを第2相として適宜選択すればよい。   For example, when emphasizing stretch workability, it is preferable to use a structure mainly composed of ferrite, and pearlite, bainite, austenite, martensite, etc. may be appropriately selected as the second phase in order to obtain a desired strength.

また、穴広げ加工性、伸びフランジ加工性、曲げ加工性を重視する場合には、フェライトまたはベイナイトの単相組織、あるいは、フェライトと硬度差の少ない組織、たとえばベイナイトなどを選択するのが好ましい。
(F)製造条件
鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度を50個/mm以下とするには、
連続鋳造工程において、上記鋼組成を有する溶鋼を、単位時間当たりの溶鋼鋳込み量を1トン/分以上6トン/分以下とし、さらに、スラブ表面からスラブ厚方向の0.05mm×(スラブ厚(mm)/製品厚(mm))深さ位置のスラブ表層部における平均凝固速度を5℃/秒以上とする連続鋳造法によりスラブとし、
次に、熱間圧延工程において、得られたスラブを加熱炉に装入して1100℃以上の温度で30分間以上保持し、加熱炉から抽出したスラブに、加熱炉抽出から10分間以内に750℃以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板とし、
さらに、冷却および巻取工程において、得られた熱延鋼板を、熱間圧延の完了後5℃/秒以上の平均冷却速度で冷却して700℃以下の温度域で巻き取ること
が有効である。
Further, when emphasizing hole-expanding workability, stretch-flange workability, and bending workability, it is preferable to select a single phase structure of ferrite or bainite or a structure having a small hardness difference from ferrite, such as bainite.
(F) Manufacturing conditions To make the total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in the cross section in the plate thickness direction of the steel sheet surface layer part 50 pieces / mm 2 or less,
In the continuous casting step, the molten steel having the above steel composition has a molten steel casting amount per unit time of 1 to 6 tons / minute, and further, 0.05 mm × (slab thickness (in the slab thickness ( mm) / product thickness (mm)) The slab is formed by a continuous casting method in which the average solidification rate in the slab surface layer at the depth position is 5 ° C./second or more,
Next, in the hot rolling process, the obtained slab is charged into a heating furnace and held at a temperature of 1100 ° C. or higher for 30 minutes or more, and the slab extracted from the heating furnace is 750 within 10 minutes from the heating furnace extraction. Hot-rolled steel sheet is obtained by hot rolling to complete rolling in a temperature range of ℃ or higher,
Furthermore, in the cooling and winding process, it is effective to cool the obtained hot-rolled steel sheet at an average cooling rate of 5 ° C./second or more after completion of hot rolling and wind it in a temperature range of 700 ° C. or less. .

連続鋳造工程における単位時間当たりの溶鋼鋳込み量が6トン/分超では、溶鋼の流動が過大となるため、介在物がスラブ表層近傍に捕捉され易くなり、鋼板表層部における大型介在物が増加してしまう。一方、単位時間当たりの溶鋼鋳込み量が1トン/分未満では、連続鋳造過程における温度降下が大きくなるため、凝固殻の先端部の爪が伸びたり介在物が浮上し難くなったりして、介在物がスラブ表層近傍に捕捉され易くなり、鋼板表層部における大型介在物が増加してしまう。したがって、連続鋳造工程における単位時間当たりの溶鋼鋳込み量は、1トン/分以上6トン/分以下とすることが好ましい。   If the molten steel casting amount per unit time in the continuous casting process exceeds 6 tons / minute, the flow of molten steel becomes excessive, so that inclusions are easily trapped near the slab surface layer, and large inclusions in the steel sheet surface layer portion increase. End up. On the other hand, when the molten steel casting amount per unit time is less than 1 ton / min, the temperature drop in the continuous casting process becomes large, so that the claw at the tip of the solidified shell extends or the inclusions are difficult to float, and the intervening A thing becomes easy to be caught near the slab surface layer, and a large-sized inclusion in a steel plate surface layer part will increase. Therefore, the molten steel casting amount per unit time in the continuous casting process is preferably 1 ton / min to 6 ton / min.

また、スラブ表面からスラブ厚方向の0.05mm×(スラブ厚(mm)/製品厚(mm))深さ位置のスラブ表層部における平均凝固速度が5℃/秒未満では、液相線温度〜固相線温度間で晶出するTiNが粗大となり、鋼板表層部における大型晶出物が増加してしまう。したがって、上記平均凝固速度は5℃/秒以上とすることが好ましい。上記平均凝固速度が大きいほど鋼板表層部における大型晶出物の生成を抑制できるので、上記平均凝固速度の上限を規定する必要はない。しかし、上記平均凝固速度が過大であるとスラブの表面割れを誘発する可能性が高まるので、このような観点からは上記平均凝固速度を100℃/秒以下とすることが好ましい。   In addition, when the average solidification rate in the slab surface layer portion at a depth of 0.05 mm × (slab thickness (mm) / product thickness (mm)) in the slab thickness direction from the slab surface is less than 5 ° C./second, the liquidus temperature to TiN that crystallizes between the solidus temperatures becomes coarse, and large crystallized substances in the surface layer of the steel sheet increase. Therefore, the average solidification rate is preferably 5 ° C./second or more. The larger the average solidification rate is, the more the generation of large crystallization products in the steel sheet surface layer portion can be suppressed, so there is no need to define the upper limit of the average solidification rate. However, if the average solidification rate is excessively high, the possibility of inducing surface cracking of the slab increases. From this viewpoint, the average solidification rate is preferably 100 ° C./second or less.

ここで、「スラブ表層部における平均凝固速度」とは、スラブ表面からスラブ厚方向の0.05mm×(スラブ厚(mm)/製品厚(mm))深さ位置まで、スラブ厚方向に1mmピッチで測定した凝固速度を平均したものである。また、「凝固速度」とは、溶鋼が凝固する際の液相線温度〜固相線温度間での冷却速度であり、各測定位置におけるデンドライト2次アーム間隔から求めることできる。   Here, the “average solidification rate in the slab surface layer portion” means a pitch of 1 mm in the slab thickness direction from the slab surface to 0.05 mm × (slab thickness (mm) / product thickness (mm)) depth position in the slab thickness direction. It is the average of the coagulation rate measured in (1). The “solidification rate” is a cooling rate between the liquidus temperature and the solidus temperature when the molten steel solidifies, and can be obtained from the dendrite secondary arm interval at each measurement position.

熱間圧延工程において、スラブを加熱炉に装入して保持する温度が1100℃未満であったり、保持する時間が30分間未満であったりすると、連続鋳造後の凝固後のスラブ段階で析出した粗大なTi(N、C)の再固溶が十分に進行せず、鋼板表層部における大型析出物が増加してしまう。したがって、熱間圧延工程において、スラブを加熱炉に装入して1100℃以上の温度で30分間以上保持することが好ましい。   In the hot rolling process, when the temperature at which the slab is charged and held in the heating furnace is less than 1100 ° C. or when the holding time is less than 30 minutes, it precipitates in the slab stage after solidification after continuous casting. The re-dissolution of coarse Ti (N, C) does not proceed sufficiently, and large precipitates in the surface layer portion of the steel sheet increase. Therefore, in the hot rolling process, it is preferable to insert the slab into a heating furnace and hold it at a temperature of 1100 ° C. or higher for 30 minutes or more.

上記保持温度が高いほど、また、上記保持時間が長いほど、鋼板表層部における大型析出物の再固溶を促進できるので、上記保持温度や上記保持時間の上限を規定する必要はない。しかし、上記保持温度が高すぎると操業コストが嵩み、上記保持時間が長すぎると操業効率が低下する。したがって、このような観点からは、上記保持温度を1320℃以下、上記保持時間を10時間以下とすることが好ましい。   As the holding temperature is higher and the holding time is longer, the re-solution of large precipitates in the steel sheet surface layer portion can be promoted, so there is no need to define the upper limit of the holding temperature or the holding time. However, if the holding temperature is too high, the operating cost increases, and if the holding time is too long, the operating efficiency is lowered. Therefore, from such a viewpoint, it is preferable that the holding temperature is 1320 ° C. or less and the holding time is 10 hours or less.

熱間圧延工程における、加熱炉抽出から熱間圧延完了までの時間が10分間超であったり、熱間圧延完了温度が750℃未満であったり、あるいは、冷却および巻取工程における、熱間圧延完了から巻取までの平均冷却速度が5℃/秒未満であったり、巻取温度が700℃超であったりすると、スラブを加熱炉に装入して再固溶させたTi(N、C)が再析出して粗大化してしまい、鋼板表層部における粗大な析出物が増加する。   In the hot rolling process, the time from extraction of the heating furnace to the completion of hot rolling is over 10 minutes, the hot rolling completion temperature is less than 750 ° C., or the hot rolling in the cooling and winding process When the average cooling rate from completion to winding is less than 5 ° C./second or the winding temperature is over 700 ° C., Ti (N, C) in which the slab is charged into the heating furnace and re-dissolved. ) Reprecipitates and becomes coarse, and coarse precipitates in the surface layer portion of the steel sheet increase.

したがって、加熱炉から抽出したスラブには、加熱炉抽出から10分間以内に750℃以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板とし、得られた熱延鋼板に、熱間圧延の完了後5℃/秒以上の平均冷却速度で冷却して700℃以下の温度域で巻き取ることが好ましい。   Therefore, the slab extracted from the heating furnace is subjected to hot rolling that completes rolling in a temperature range of 750 ° C. or more within 10 minutes after extraction from the heating furnace to obtain a hot-rolled steel sheet. It is preferable to cool at an average cooling rate of 5 ° C./second or more after completion of the hot rolling and wind up in a temperature range of 700 ° C. or less.

ここで、加熱炉抽出から熱間圧延完了までの時間が短いほどTi(N、C)の再析出を抑制することができるので、上記時間の下限を規定する必要はない。しかし、上記時間を著しく短縮するには圧延機の圧下力を増強する必要が生じてしまい、設備コストの増加を招く。したがって、このような観点から上記時間は30秒間以上とすることが好ましい。   Here, since the reprecipitation of Ti (N, C) can be suppressed as the time from the heating furnace extraction to the completion of hot rolling is shorter, it is not necessary to define the lower limit of the above time. However, in order to shorten the time significantly, it is necessary to increase the rolling force of the rolling mill, resulting in an increase in equipment cost. Therefore, from such a viewpoint, the time is preferably set to 30 seconds or more.

また、熱間圧延完了温度が高いほどTi(N、C)の再析出を抑制することができるので、熱間圧延完了温度の上限を規定する必要はない。しかし、熱間圧延完了温度の高温化はスケール疵を誘発する可能性を高める。したがって、このような観点から熱間圧延完了温度を1050℃以下とすることが好ましい。   Moreover, since the reprecipitation of Ti (N, C) can be suppressed as the hot rolling completion temperature is higher, it is not necessary to define the upper limit of the hot rolling completion temperature. However, increasing the hot rolling completion temperature increases the possibility of inducing scale flaws. Therefore, it is preferable that the hot rolling completion temperature is 1050 ° C. or lower from such a viewpoint.

また、熱間圧延完了から巻取までの平均冷却速度が大きいほどTi(N、C)の再析出を抑制することができるので、上記平均冷却速度の上限を規定する必要はないが、工業的製造プロセスにおいては通常2000℃/秒以下である。   Moreover, since the reprecipitation of Ti (N, C) can be suppressed as the average cooling rate from the completion of hot rolling to the winding is larger, it is not necessary to define the upper limit of the average cooling rate. In the manufacturing process, it is usually 2000 ° C./second or less.

なお、巻取温度は、所望の特性に合わせた好適な第2相組織に応じて、適宜選択すればよい。例えば、第2相としてパーライト組織を得るには580℃以上750℃以下、ベイナイト組織を得るには350℃以上580℃未満、マルテンサイト組織を得るには室温以上350℃未満とすればよい。   The winding temperature may be appropriately selected according to a suitable second phase structure that matches the desired characteristics. For example, in order to obtain a pearlite structure as the second phase, 580 ° C. or more and 750 ° C. or less, in order to obtain a bainite structure, 350 ° C. or more and less than 580 ° C., and in order to obtain a martensite structure, room temperature or more and less than 350 ° C. may be used.

また、熱間圧延完了から巻取までの冷却は、5℃/秒以上の平均冷却速度で700℃以下の温度域まで冷却するものであればよく、途中で冷却を停止し、放冷し、その後冷却するものであっても構わない。   In addition, the cooling from the completion of hot rolling to the winding may be performed as long as it is cooled to a temperature range of 700 ° C. or less at an average cooling rate of 5 ° C./second or more. Then, it may be cooled.

鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)が下記式(1)を満足するようにするには、連続鋳造工程において、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施すことが有効である。 The ratio (Ti max / Ti min ) between the maximum value (Ti max ) and the minimum value (Ti min ) of the mass concentration of Ti in the cross section in the plate thickness direction of the steel sheet surface layer portion satisfies the following formula (1). In the continuous casting process, it is effective to stir the molten steel in the mold of the continuous casting machine with a moving magnetic field.

1.0≦(Timax/Timin)≦6.0 ・・・・・・・(1)
さらに、上記比(Timax/Timin)が下記式(2)を満足するようにするには、上記移動磁場による攪拌に加えて、鋼組成としてさらにBiを0.1%以下含有させることが有効である。
1.0 ≦ (Ti max / Ti min ) ≦ 6.0 (1)
Furthermore, in order for the ratio (Ti max / Ti min ) to satisfy the following formula (2), in addition to the stirring by the moving magnetic field, 0.1% or less of Bi is further included as a steel composition. It is valid.

1.0≦(Timax/Timix)≦4.0 ・・・・・・・(2)
連続鋳造工程において、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施すことにより、スラブ表層部におけるTiの成分偏析が抑制される。これにより、上記比(Timax/Timin)を低下させることができる。
1.0 ≦ (Ti max / Ti mix ) ≦ 4.0 (2)
In the continuous casting process, the component segregation of Ti in the surface portion of the slab is suppressed by stirring the molten steel in the mold of the continuous casting machine with a moving magnetic field. Thereby, the said ratio ( Timax / Timin ) can be reduced.

ここで、移動磁場による溶鋼の攪拌は、鋳型から20mm位置における流速が5cm/秒以上100cm/秒以下となるように行うことが好ましい。上記流速が5cm/未満ではTiの成分偏析抑制作用が十分でない場合があり、100cm/秒超ではパウダーの巻き込みにより介在物が増加する場合があるからである。上記流速は、10cm/秒以上60cm/秒以下となるように行うことがさらに好ましい。上記流速は、例えばカルマン渦式流量計を用いて測定することができる。   Here, the stirring of the molten steel by the moving magnetic field is preferably performed so that the flow rate at a position 20 mm from the mold is 5 cm / sec or more and 100 cm / sec or less. This is because if the flow rate is less than 5 cm /, the Ti component segregation suppressing action may not be sufficient, and if it exceeds 100 cm / second, inclusions may increase due to the entrainment of powder. More preferably, the flow rate is 10 cm / second or more and 60 cm / second or less. The flow velocity can be measured using, for example, a Karman vortex flow meter.

上記移動磁場による攪拌に加えて、鋼組成としてBiを0.1%以下含有させると、スラブ表層部におけるTiの成分偏析がより一層抑制される。これにより、上記比(Timax/Timin)をさらに低下させることができる。 In addition to the stirring by the moving magnetic field, when Ti is contained in an amount of 0.1% or less as a steel composition, Ti component segregation in the slab surface layer portion is further suppressed. Thereby, the ratio (Ti max / Ti min ) can be further reduced.

表面粗さRzを15μm以下とするには、連続鋳造工程において、PおよびBの1種または2種を含有する連続鋳造用モールドフラックスを用いることが有効である。 In order to set the surface roughness Rz to 15 μm or less, it is effective to use a mold flux for continuous casting containing one or two of P 2 O 5 and B 2 O 3 in the continuous casting process.

モールドフラックスにPおよびBの1種または2種を含有させると、高温域で鋼材の表面に形成されるスケール中のファイアライト層にこれら酸化物が濃化し、ファイアライトの融点を降下させる。これにより、熱間圧延工程におけるデスケーリング性が向上し、スケールに起因する鋼板表面の凹凸を低減させることができる。 When one or two of P 2 O 5 and B 2 O 3 are contained in the mold flux, these oxides are concentrated in the firelite layer in the scale formed on the surface of the steel material at a high temperature range, Decrease melting point. Thereby, the descaling property in a hot rolling process improves, and the unevenness | corrugation of the steel plate surface resulting from a scale can be reduced.

モールドフラックスにおけるP濃度は0.5%以上4.0%以下、B濃度は1.0%以上8.0%以下とすることが好ましい。これらの含有量がそれぞれの規定範囲よりも少ない場合には、ファイアライトの融点を下げる作用が十分に得られない場合があり、これらの含有量がそれぞれの規定範囲よりも多い場合には、モールドフラックスの物性に与える影響が顕著となり、モールドフラックスの物性調整が困難となるからである。 It is preferable that the P 2 O 5 concentration in the mold flux is 0.5% or more and 4.0% or less, and the B 2 O 3 concentration is 1.0% or more and 8.0% or less. If these contents are less than the respective specified ranges, the effect of lowering the melting point of the firelite may not be sufficiently obtained, and if these contents are more than the respective specified ranges, the mold This is because the influence on the physical properties of the flux becomes remarkable, and it becomes difficult to adjust the physical properties of the mold flux.

なお、スラブ割れ防止、鋳型とスラブ凝固シェルとの潤滑の観点からは、モールドフラックスのCaO/SiO濃度比を0.6以上2.0以下、凝固温度を1050℃以上1280℃以下とすることが好ましい。 From the viewpoint of preventing slab cracking and lubrication between the mold and the slab solidified shell, the CaO / SiO 2 concentration ratio of the mold flux is 0.6 to 2.0 and the solidification temperature is 1050 ° C. to 1280 ° C. Is preferred.

このように、本実施の形態により、390MPa以上の高い強度と優れた耐孔あき腐食性とを有する熱延鋼板を安価に製造できるため、自動車や各種の産業機械に用いられる構造部材の素材、なかでも自動車のシャーシ、バンパーや足廻り部品に代表される構造部材の素材として好適な熱延鋼板が提供される。   Thus, according to the present embodiment, a hot-rolled steel sheet having a high strength of 390 MPa or more and excellent perforated corrosion resistance can be produced at low cost, so that a material for a structural member used in automobiles and various industrial machines, In particular, a hot-rolled steel sheet suitable as a material for structural members typified by automobile chassis, bumpers and undercarriage parts is provided.

次に、実施例を参照しながら、本発明をさらに具体的に説明する。
表1に示す鋼組成を有する溶鋼を、試験転炉を用いて溶製し、試験連続鋳造機によりスラブとした。
Next, the present invention will be described more specifically with reference to examples.
Molten steel having the steel composition shown in Table 1 was melted using a test converter, and a slab was formed using a test continuous casting machine.

Figure 2010095753
Figure 2010095753

連続鋳造工程におけるスラブ表層部の凝固速度の変更は、鋳型内の冷却水量を調整することにより行った。スラブ表層部における平均冷却速度は、スラブ表面からスラブ厚方向に1mmピッチでデンドライト2次アーム間隔を測定し、各位置における凝固速度を算出し、これらを平均することにより求めた。   The solidification rate of the slab surface layer in the continuous casting process was changed by adjusting the amount of cooling water in the mold. The average cooling rate at the slab surface layer was determined by measuring the dendrite secondary arm spacing at a pitch of 1 mm from the slab surface in the slab thickness direction, calculating the solidification rate at each position, and averaging these.

連続鋳造用モールドフラックスは、凝固温度1200℃、CaO/SiO濃度比1.2のものを使用した。また、P:2.0%および/またB:4.0%を含有させたものと、PおよびBを添加しないものを使用した。 As the mold flux for continuous casting, one having a solidification temperature of 1200 ° C. and a CaO / SiO 2 concentration ratio of 1.2 was used. Further, P 2 O 5: 2.0% and / or B 2 O 3: as a 4.0% was contained, was used without addition of P 2 O 5 and B 2 O 3.

一部の供試材については、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施した。移動磁場による溶鋼の攪拌は、鋳型から20mm位置における流速が25cm/秒となる条件で行った。   For some of the test materials, the molten steel in the mold of the continuous casting machine was stirred by a moving magnetic field. The molten steel was stirred by the moving magnetic field under the condition that the flow velocity at a position 20 mm from the mold was 25 cm / sec.

このようにして得られたスラブに、試験熱間仕上圧延機を用いて熱間圧延を施し、板厚2.6mmの熱延鋼板を製造した。
次いで、得られた熱延鋼板について、試験用の酸洗設備にてスケール除去を行った。
これらの製造条件を表2に示す。
The slab thus obtained was hot-rolled using a test hot finish rolling mill to produce a hot-rolled steel sheet having a thickness of 2.6 mm.
Subsequently, about the obtained hot-rolled steel sheet, scale removal was performed with the pickling equipment for a test.
These production conditions are shown in Table 2.

Figure 2010095753
Figure 2010095753

このようにして得られた熱延鋼板から圧延直角方向にJIS5号引張試験片を採取して引張試験を行った。   A JIS No. 5 tensile test piece was taken from the hot-rolled steel sheet thus obtained in the direction perpendicular to the rolling direction and subjected to a tensile test.

また、圧延方向に平行な板厚方向断面を観察し、鋼板表層部に存在する粒径5μm以上の介在物、晶出物および析出物の個数をカウントした。
上記観察は、走査型電子顕微鏡を用いて、倍率2000倍で100視野を実施した。そして、それらの合計個数を算術計算し数密度(個/mm)を求めた。
Further, the cross section in the plate thickness direction parallel to the rolling direction was observed, and the number of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more present in the surface layer portion of the steel sheet was counted.
The observation was performed using a scanning electron microscope with 100 fields of view at a magnification of 2000 times. Then, the total number of them was arithmetically calculated to obtain the number density (pieces / mm 2 ).

ここで、介在物、晶出物および析出物の粒径は、介在物、晶出物および析出物を画像解析することでそれらの実面積を求め、この面積を円に置き換え、その円の直径を算出することにより得られた値を粒径とした。   Here, the particle sizes of inclusions, crystallized substances, and precipitates are obtained by image analysis of the inclusions, crystallized substances, and precipitates, and these areas are replaced with circles, and the diameters of the circles are calculated. The value obtained by calculating was defined as the particle size.

さらに、鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)は、GDS(グロー放電分光分析)にて測定した。各試料について異なる5箇所の位置について測定を行い、得られたTiの質量濃度の最大値(Timax)と最小値(Timin)から比(Timax/Timin)を算出した。 Furthermore, the maximum value (Ti max ) and the minimum value (Ti min ) of the Ti mass concentration in the cross section in the plate thickness direction of the steel sheet surface layer portion were measured by GDS (glow discharge spectroscopic analysis). Measurement was performed at five different positions for each sample, and the ratio (Ti max / Ti min ) was calculated from the maximum value (Ti max ) and the minimum value (Ti min ) of the obtained Ti mass concentration.

さらに、鋼板表面の粗さを、JIS B 0601に準じてRzを測定した。
さらに、得られた各熱延鋼板を酸腐食試験に供した。
腐食試験は、70×150mmの試験片を切り出し、端面および裏面をシールし、複合腐食試験(CCT)を実施した。試験条件は、JIS Z 2371に準じた35℃の塩水噴霧試験を3時間、常温の乾燥試験を2時間、50℃で湿度95%以上の湿潤試験を6時間の合計12時間を1サイクルとして60サイクル行った。
Furthermore, Rz was measured for the roughness of the steel sheet surface in accordance with JIS B 0601.
Furthermore, each obtained hot-rolled steel sheet was subjected to an acid corrosion test.
In the corrosion test, a 70 × 150 mm test piece was cut out, the end face and the back face were sealed, and a composite corrosion test (CCT) was performed. The test conditions were as follows: a salt spray test at 35 ° C. according to JIS Z 2371 for 3 hours, a drying test at room temperature for 2 hours, and a wet test at 95% humidity at 50 ° C. for 6 hours for a total of 12 hours as 60 cycles. Cycled.

腐食生成物を除去したうえ、最大侵食深さ(mm)および腐食減量(g)を測定し、耐孔あき腐食性の評価とした。
各測定結果を表3に示す。
After removing the corrosion products, the maximum erosion depth (mm) and the corrosion weight loss (g) were measured to evaluate the perforated corrosion resistance.
Table 3 shows the measurement results.

Figure 2010095753
Figure 2010095753

本発明鋼である供試材No.1〜15は、鋼板表層部において粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm以下であるため、CCT後の最大侵食深さが0.10〜0.38mm、CCT後の腐食減量(g)が2.0〜7.2gとなり、耐孔あき腐食性が良好であった。 Specimen No. which is steel of the present invention. Nos. 1 to 15 have a maximum number of erosion depth after CCT of 0.10 because the total number density of inclusions, crystallized substances and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer is 50 pieces / mm 2 or less. The corrosion weight loss (g) after CCT was 2.0 to 7.2 g and the perforated corrosion resistance was good.

その中で、鋳型内における移動磁場による溶鋼の攪拌を実施した供試材No.1、3、5、7、9および12〜15は、鋼板表層部における比(Timax/Timin)が2.0〜5.4となり、Tiの偏析が抑制されたため、CCT後の最大侵食深さが0.10〜0.27mm、腐食減量(g)が2.0〜4.8gと耐孔あき腐食性がさらに良好であった。 Among them, the test material No. 1 in which the molten steel was stirred by the moving magnetic field in the mold. 1, 3, 5, 7, 9, and 12 to 15 have a ratio (Ti max / Ti min ) in the steel sheet surface layer portion of 2.0 to 5.4, and since segregation of Ti was suppressed, maximum erosion after CCT The depth was 0.10 to 0.27 mm, the corrosion weight loss (g) was 2.0 to 4.8 g, and the perforated corrosion resistance was even better.

さらに、その中で、Biを含有させ、鋳型内における移動磁場による溶鋼の攪拌を実施した供試材No.12〜15は、鋼板表層部における比(Timax/Timin)が2.0〜3.2となり、Tiの偏析がさらに抑制されたため、CCT後の最大侵食深さが0.10〜0.17mm、腐食減量(g)が2.0〜2.9gと耐孔あき腐食性が著しく良好であった。 Further, among them, specimen No. No. 1 containing Bi and stirring the molten steel by the moving magnetic field in the mold was used. In Nos. 12 to 15, the ratio (Ti max / Ti min ) in the steel sheet surface layer portion was 2.0 to 3.2, and the segregation of Ti was further suppressed, so that the maximum erosion depth after CCT was 0.10 to 0. The perforated corrosion resistance was remarkably good at 17 mm and a weight loss (g) of 2.0 to 2.9 g.

さらにその中で、PおよびBの1種または2種を含有する連続鋳造用モールドフラックスを用いて鋳造したNo.13および15は、鋼板表面粗さRzが7μmと小さく、CCT後の最大侵食深さが0.10mm、腐食減量(g)が2.0gと最も耐孔あき腐食性が良好であった。 Further, among them, No. 1 was cast using a continuous casting mold flux containing one or two of P 2 O 5 and B 2 O 3 . In Nos. 13 and 15, the steel plate surface roughness Rz was as small as 7 μm, the maximum erosion depth after CCT was 0.10 mm, and the corrosion weight loss (g) was 2.0 g.

これに対し、供試材No.16〜31は比較例である。
供試材No.16および23は、連続鋳造をする際、単位時間当たりの溶鋼鋳込み量が6トン/分超であった。その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.50mmと0.54mm、腐食減量(g)が10.0gと11.7gとなり、耐孔あき腐食性に劣っていた。
On the other hand, the test material No. 16 to 31 are comparative examples.
Specimen No. In Nos. 16 and 23, the molten steel casting amount per unit time exceeded 6 tons / min during continuous casting. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.50 mm and 0.54 mm, and the corrosion weight loss (g) was 10.0 g and 11.7 g, which was poor in perforated corrosion resistance.

供試材No.17および24は、連続鋳造をする際、スラブ表層部における平均凝固速度が5℃/秒未満であった。その結果、鋼板表層部において粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.52mmと0.53mm、腐食減量(g)が11.2gと10.8gとなり、耐孔あき腐食性に劣っていた。 Specimen No. In Nos. 17 and 24, the average solidification rate in the slab surface layer portion was less than 5 ° C./second during continuous casting. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.52 mm and 0.53 mm, and the corrosion weight loss (g) was 11.2 g and 10.8 g, which was poor in perforated corrosion resistance.

供試材No.18および25は、加熱炉でのスラブ加熱温度が1100℃未満であった。その結果、鋼板表層部において粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.55mmと0.51mm、腐食減量(g)が13.1gと12.5gとなり、耐孔あき腐食性に劣っていた。 Specimen No. 18 and 25 had a slab heating temperature in the heating furnace of less than 1100 ° C. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.55 mm and 0.51 mm, and the corrosion weight loss (g) was 13.1 g and 12.5 g, which was poor in perforated corrosion resistance.

供試材No.19および26は、加熱炉でのスラブ加熱時間が30分間未満であった。その結果、鋼板表層部において粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.56mmと0.54mm、腐食減量(g)が15.6gと12.1gとなり、耐孔あき腐食性に劣っていた。 Specimen No. 19 and 26 had a slab heating time in the heating furnace of less than 30 minutes. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.56 mm and 0.54 mm, and the corrosion weight loss (g) was 15.6 g and 12.1 g, which was poor in perforated corrosion resistance.

供試材No.20および27は、加熱炉抽出から熱間圧延を完了までの時間が10分間を超えていた。その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.52mmと0.54mm、腐食減量(g)が11.4gと12.3gとなり、耐孔あき腐食性に劣っていた。 Specimen No. In Nos. 20 and 27, the time from extraction in the heating furnace to completion of hot rolling exceeded 10 minutes. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.52 mm and 0.54 mm, and the corrosion weight loss (g) was 11.4 g and 12.3 g, which was poor in perforated corrosion resistance.

供試材No.21および28は、熱間圧延の完了温度が750℃未満であった。その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.54mmと0.60mm、腐食減量(g)が12.0gと14.1gとなり、耐孔あき腐食性に劣っていた。 Specimen No. Nos. 21 and 28 had a hot rolling completion temperature of less than 750 ° C. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.54 mm and 0.60 mm, and the corrosion weight loss (g) was 12.0 g and 14.1 g, which was poor in perforated corrosion resistance.

供試材No.22および29は、熱間圧延完了から巻き取りまでの平均冷却速度が5℃/秒未満であった。 その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.52mmと0.58mm、腐食減量(g)が10.6gと12.5gとなり耐孔あき腐食性が劣化した。 Specimen No. In Nos. 22 and 29, the average cooling rate from completion of hot rolling to winding was less than 5 ° C./second. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.52 mm and 0.58 mm, and the corrosion weight loss (g) was 10.6 g and 12.5 g.

供試材No.23および30は、巻取温度が700℃超であった。その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.54mmと0.54mm、腐食減量(g)が11.7gと11.9gとなり、耐孔あき腐食性に劣っていた。 Specimen No. 23 and 30 had a coiling temperature of more than 700 ° C. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.54 mm and 0.54 mm, and the corrosion weight loss (g) was 11.7 g and 11.9 g, which were poor in perforated corrosion resistance.

さらに、供試材No.31は、Tiの含有量が0.3%と本発明の範囲外であった。その結果、鋼板表層部における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm超となった。このため、CCT後の最大侵食深さが0.55mm、腐食減量(g)が12.0gとなり、耐孔あき腐食性に劣っていた。 Furthermore, the test material No. No. 31 had a Ti content of 0.3%, which was outside the scope of the present invention. As a result, the total number density of inclusions, crystallized substances, and precipitates having a particle diameter of 5 μm or more in the steel sheet surface layer portion exceeded 50 pieces / mm 2 . For this reason, the maximum erosion depth after CCT was 0.55 mm, and the corrosion weight loss (g) was 12.0 g, which was poor in perforated corrosion resistance.

本発明の鋼板は、高強度で耐孔あき腐食性に優れている。そのため、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のシャーシ、バンパーや足廻り部品に代表される構造部材の素材として最適である。また安価に製造できるので産業上格段の効果を奏する。   The steel sheet of the present invention has high strength and excellent perforated corrosion resistance. Therefore, it is most suitable as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members represented by automobile chassis, bumpers and undercarriage parts. Moreover, since it can be manufactured at a low cost, it has a remarkable industrial effect.

Claims (9)

質量%で、C:0.01%以上0.35%以下、Si:0.01%以上2.0%以下、Mn:0.1%以上3.0%以下、P:0.3%以下、S:0.01%以下、Al:0.005%以上2.0%以下、N:0.01%以下およびTi:0.01%以上0.25%以下を含有し、残部Fe及び不純物からなる鋼組成を有するとともに、鋼板表面から板厚方向50μm深さ位置までの鋼板表層部の板厚方向断面における粒径5μm以上の介在物、晶出物および析出物の合計の数密度が50個/mm以下であることを特徴とする熱延鋼板。 In mass%, C: 0.01% to 0.35%, Si: 0.01% to 2.0%, Mn: 0.1% to 3.0%, P: 0.3% or less , S: 0.01% or less, Al: 0.005% or more and 2.0% or less, N: 0.01% or less, and Ti: 0.01% or more and 0.25% or less, and the balance Fe and impurities The total number density of inclusions, crystallized substances, and precipitates having a particle size of 5 μm or more in the cross section in the thickness direction of the steel sheet surface layer portion from the steel sheet surface to the depth position of 50 μm in the thickness direction is 50 A hot-rolled steel sheet having a number of pieces / mm 2 or less. 前記鋼組成が、Feの一部に代えて、質量%で、V:0.5%以下、Nb:0.1%以下、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の熱延鋼板。   The steel composition is mass% in place of a part of Fe, V: 0.5% or less, Nb: 0.1% or less, Cr: 1.0% or less, Mo: 1.0% or less, Cu The heat according to claim 1, comprising one or more selected from the group consisting of: 1.0% or less, Ni: 1.0% or less, and B: 0.01% or less. Rolled steel sheet. 前記鋼組成が、Feの一部に代えて、質量%で、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の熱延鋼板。   The steel composition may be one selected from the group consisting of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less in mass%, instead of a part of Fe. The hot-rolled steel sheet according to claim 1 or 2, comprising two or more kinds. 前記鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)が下記式(1)を満足することを特徴とする請求項1から請求項3までのいずれか1項に記載の熱延鋼板。
1.0≦(Timax/Timin)≦6.0 ・・・・・・・(1)
The ratio (Ti max / Ti min ) between the maximum value (Ti max ) and the minimum value (Ti min ) of the mass concentration of Ti in the cross section in the plate thickness direction of the steel sheet surface layer portion satisfies the following formula (1): The hot-rolled steel sheet according to any one of claims 1 to 3.
1.0 ≦ (Ti max / Ti min ) ≦ 6.0 (1)
前記鋼組成が、Feの一部に代えて、質量%で、Biを0.1%以下含有するとともに、前記鋼板表層部の板厚方向断面におけるTiの質量濃度の最大値(Timax)と最小値(Timin)との比(Timax/Timin)が下記式(2)を満足することを特徴とする請求項1から請求項3までのいずれか1項に記載の熱延鋼板。
1.0≦(Timax/Timix)≦4.0 ・・・・・・・(2)
The steel composition contains, in place of a part of Fe, mass% and Bi of 0.1% or less, and the maximum value (Ti max ) of the mass concentration of Ti in the cross section in the thickness direction of the steel sheet surface layer portion. the minimum value (Ti min) and the ratio (Ti max / Ti min) is hot rolled steel sheet according to any one of claims 1, characterized by satisfying the following formula (2) to claim 3.
1.0 ≦ (Ti max / Ti mix ) ≦ 4.0 (2)
表面粗さRzが15μm以下であることを特徴とする請求項1から請求項5までのいずれか1項に記載の熱延鋼板。   The hot rolled steel sheet according to any one of claims 1 to 5, wherein the surface roughness Rz is 15 µm or less. 下記工程(A)〜(C)を備えることを特徴とする熱延鋼板の製造方法:
(A)請求項1から請求項5までのいずれか1項に記載の鋼組成を有する溶鋼を、単位時間当たりの溶鋼鋳込み量を1トン/分以上6トン/分以下とし、さらに、スラブ表面からスラブ厚方向の0.05mm×(スラブ厚(mm)/製品厚(mm))深さ位置のスラブ表層部における平均凝固速度を5℃/秒以上とする連続鋳造法によりスラブとする連続鋳造工程;
(B)前記スラブを加熱炉に装入して1100℃以上の温度で30分間以上保持し、前記加熱炉から抽出したスラブに、加熱炉抽出から10分間以内に750℃以上の温度域で圧延を完了する熱間圧延を施して熱延鋼板とする熱間圧延工程;および
(C)前記熱延鋼板を、前記熱間圧延の完了後5℃/秒以上の平均冷却速度で冷却して700℃以下の温度域で巻き取る冷却および巻取工程。
A method for producing a hot-rolled steel sheet comprising the following steps (A) to (C):
(A) The molten steel having the steel composition according to any one of claims 1 to 5, wherein the molten steel casting amount per unit time is 1 to 6 tons / minute, and the slab surface To slab thickness by 0.05mm × (slab thickness (mm) / product thickness (mm)) depth position of continuous slab by continuous casting method with average solidification rate at 5 ° C / second or more Process;
(B) The slab is charged into a heating furnace, held at a temperature of 1100 ° C. or higher for 30 minutes or more, and rolled to a slab extracted from the heating furnace in a temperature range of 750 ° C. or higher within 10 minutes from the extraction of the heating furnace. (C) The hot-rolled steel sheet is cooled at an average cooling rate of 5 ° C./second or more after the hot-rolling is completed, and 700 is obtained. Cooling and winding process for winding in a temperature range below ℃.
前記連続鋳造工程において、連続鋳造機の鋳型内の溶鋼に移動磁場による攪拌を施すことを特徴とする請求項7に記載の熱延鋼板の製造方法。   The method for producing a hot-rolled steel sheet according to claim 7, wherein in the continuous casting step, the molten steel in the mold of the continuous casting machine is stirred by a moving magnetic field. 前記連続鋳造工程において、PおよびBの1種または2種を含有する連続鋳造用モールドフラックスを用いることを特徴とする請求項7または請求項8に記載の熱延鋼板の製造方法。 9. The hot-rolled steel sheet according to claim 7, wherein a mold flux for continuous casting containing one or two of P 2 O 5 and B 2 O 3 is used in the continuous casting step. Production method.
JP2008266905A 2008-10-15 2008-10-15 Hot-rolled steel sheet and manufacturing method thereof Active JP5126846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266905A JP5126846B2 (en) 2008-10-15 2008-10-15 Hot-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266905A JP5126846B2 (en) 2008-10-15 2008-10-15 Hot-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010095753A true JP2010095753A (en) 2010-04-30
JP5126846B2 JP5126846B2 (en) 2013-01-23

Family

ID=42257638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266905A Active JP5126846B2 (en) 2008-10-15 2008-10-15 Hot-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5126846B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241414A (en) * 2010-05-14 2011-12-01 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
JP2014009372A (en) * 2012-06-29 2014-01-20 Jfe Steel Corp High strength hot rolled steel sheet with excellent bendability and method for producing the same
KR101382754B1 (en) * 2011-12-13 2014-04-08 주식회사 포스코 Hot rolled high-phosphorus steel having superior impact property and method for manufacturing the same
KR101382816B1 (en) * 2011-12-13 2014-04-08 주식회사 포스코 Hot rolled high-phosphorus steel having superior impact property and method for manufacturing the same
KR101439657B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439666B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439689B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439659B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439695B1 (en) * 2012-12-27 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439673B1 (en) * 2012-12-21 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439655B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439656B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439688B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439690B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439654B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439662B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439661B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439660B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439664B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439667B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439658B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439672B1 (en) * 2012-12-21 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439691B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439696B1 (en) * 2012-12-27 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439665B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439663B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
WO2014171057A1 (en) * 2013-04-15 2014-10-23 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing same
JP2014224317A (en) * 2013-04-23 2014-12-04 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
KR101490568B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101490569B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 A high strength steel containing phosphorous
JP2015054974A (en) * 2013-09-10 2015-03-23 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in toughness and production method thereof
KR101560917B1 (en) 2013-12-18 2015-10-15 주식회사 포스코 Lightweight steel having excellent hot-rolling property and method for manufactuing the same
KR101630977B1 (en) * 2014-12-09 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
KR20170011808A (en) * 2015-07-24 2017-02-02 주식회사 포스코 Method for casting
JP2017043825A (en) * 2015-08-28 2017-03-02 新日鐵住金株式会社 Steel sheet for hot stamp and production method therefor, and hot stamp steel sheet member
JP2017205793A (en) * 2016-05-19 2017-11-24 新日鐵住金株式会社 Continuous casting mold flux and continuous casting method of steel using the same
KR20190077842A (en) * 2017-12-26 2019-07-04 주식회사 포스코 High phosphorus wire rod and formed material having excelent impact property and corrosion resistance, and method for manufacturing the same
JP6687174B1 (en) * 2018-10-17 2020-04-22 Jfeスチール株式会社 Hot rolled steel sheet and method of manufacturing the same
CN112410678A (en) * 2020-11-30 2021-02-26 日照钢铁控股集团有限公司 Special steel STDB1570 for side door bumper bar of passenger car and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499842A (en) * 1990-08-14 1992-03-31 Kobe Steel Ltd Thick hot-rolled steel plate for working small in plastic anisotropy
JPH05195144A (en) * 1992-01-21 1993-08-03 Nisshin Steel Co Ltd High tension steel sheet excellent in pitting corrosion resistance and pit expansion resistance
JPH06336641A (en) * 1993-05-28 1994-12-06 Nisshin Steel Co Ltd High tensile strength steel plate excellent in pitting corrosion resistance and its production
JPH07150237A (en) * 1993-12-01 1995-06-13 Kobe Steel Ltd Production of high strength hot rolled steel plate excellent in pitting corrosion resistance
JP2007314817A (en) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed, hot-pressed steel sheet member, and method for manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499842A (en) * 1990-08-14 1992-03-31 Kobe Steel Ltd Thick hot-rolled steel plate for working small in plastic anisotropy
JPH05195144A (en) * 1992-01-21 1993-08-03 Nisshin Steel Co Ltd High tension steel sheet excellent in pitting corrosion resistance and pit expansion resistance
JPH06336641A (en) * 1993-05-28 1994-12-06 Nisshin Steel Co Ltd High tensile strength steel plate excellent in pitting corrosion resistance and its production
JPH07150237A (en) * 1993-12-01 1995-06-13 Kobe Steel Ltd Production of high strength hot rolled steel plate excellent in pitting corrosion resistance
JP2007314817A (en) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed, hot-pressed steel sheet member, and method for manufacturing them

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241414A (en) * 2010-05-14 2011-12-01 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
KR101382754B1 (en) * 2011-12-13 2014-04-08 주식회사 포스코 Hot rolled high-phosphorus steel having superior impact property and method for manufacturing the same
KR101382816B1 (en) * 2011-12-13 2014-04-08 주식회사 포스코 Hot rolled high-phosphorus steel having superior impact property and method for manufacturing the same
JP2014009372A (en) * 2012-06-29 2014-01-20 Jfe Steel Corp High strength hot rolled steel sheet with excellent bendability and method for producing the same
KR101439659B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439656B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439663B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439664B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439665B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439657B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439655B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439666B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439658B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439667B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439654B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101439662B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439661B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439660B1 (en) * 2012-12-20 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439672B1 (en) * 2012-12-21 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439673B1 (en) * 2012-12-21 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439690B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439688B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439691B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101439689B1 (en) * 2012-12-26 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439696B1 (en) * 2012-12-27 2014-09-12 주식회사 포스코 A high strength steel containing phosphorous
KR101439695B1 (en) * 2012-12-27 2014-09-12 주식회사 포스코 A steel containing phosphorous with excellent impact toughness
KR101490568B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 A steel containing phosphorous with excellent impact toughness and high strength
KR101490569B1 (en) * 2012-12-27 2015-02-05 주식회사 포스코 A high strength steel containing phosphorous
WO2014171057A1 (en) * 2013-04-15 2014-10-23 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing same
JP5672421B1 (en) * 2013-04-15 2015-02-18 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP2014224317A (en) * 2013-04-23 2014-12-04 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP2015054974A (en) * 2013-09-10 2015-03-23 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in toughness and production method thereof
KR101560917B1 (en) 2013-12-18 2015-10-15 주식회사 포스코 Lightweight steel having excellent hot-rolling property and method for manufactuing the same
KR101630977B1 (en) * 2014-12-09 2016-06-16 주식회사 포스코 High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
KR20170011808A (en) * 2015-07-24 2017-02-02 주식회사 포스코 Method for casting
KR101719515B1 (en) * 2015-07-24 2017-03-24 주식회사 포스코 Method for casting
JP2017043825A (en) * 2015-08-28 2017-03-02 新日鐵住金株式会社 Steel sheet for hot stamp and production method therefor, and hot stamp steel sheet member
JP2017205793A (en) * 2016-05-19 2017-11-24 新日鐵住金株式会社 Continuous casting mold flux and continuous casting method of steel using the same
KR20190077842A (en) * 2017-12-26 2019-07-04 주식회사 포스코 High phosphorus wire rod and formed material having excelent impact property and corrosion resistance, and method for manufacturing the same
KR102031456B1 (en) * 2017-12-26 2019-10-11 주식회사 포스코 High phosphorus wire rod and formed material having excelent impact property and corrosion resistance, and method for manufacturing the same
JP6687174B1 (en) * 2018-10-17 2020-04-22 Jfeスチール株式会社 Hot rolled steel sheet and method of manufacturing the same
WO2020079956A1 (en) * 2018-10-17 2020-04-23 Jfeスチール株式会社 Hot-rolled steel sheet and method for producing same
CN112410678A (en) * 2020-11-30 2021-02-26 日照钢铁控股集团有限公司 Special steel STDB1570 for side door bumper bar of passenger car and manufacturing method thereof

Also Published As

Publication number Publication date
JP5126846B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126846B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5131844B2 (en) Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-pressed steel sheet member
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP5041083B2 (en) High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5068688B2 (en) Hot-rolled steel sheet with excellent hole expansion
JP5510057B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5041084B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5609786B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5699764B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP2007016319A (en) High tensile hot-dip galvanized steel sheet, and method for producing the same
JP4109703B2 (en) High strength cold-rolled steel sheet with excellent chemical conversion
JP5158272B2 (en) High-strength steel sheet with excellent stretch flangeability and bending workability and method for producing the molten steel
KR101996119B1 (en) Hot-rolled steel sheet and method for producing same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5747803B2 (en) High-strength hot-rolled steel sheet excellent in low-temperature toughness and hole expansibility and method for producing the same
JP2012102359A (en) Heat-treatable hot-dip galvanized steel sheet, and method of manufacturing the same
JP2006063360A (en) High tensile hot-dip galvanized steel sheet and its manufacturing method
US20070079910A1 (en) Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same
JP4644077B2 (en) Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
JP6264176B2 (en) Cold rolled steel sheet and method for producing the same
JP2009280899A (en) METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP5035162B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5971281B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent workability and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350