JP2017205793A - Continuous casting mold flux and continuous casting method of steel using the same - Google Patents
Continuous casting mold flux and continuous casting method of steel using the same Download PDFInfo
- Publication number
- JP2017205793A JP2017205793A JP2016100309A JP2016100309A JP2017205793A JP 2017205793 A JP2017205793 A JP 2017205793A JP 2016100309 A JP2016100309 A JP 2016100309A JP 2016100309 A JP2016100309 A JP 2016100309A JP 2017205793 A JP2017205793 A JP 2017205793A
- Authority
- JP
- Japan
- Prior art keywords
- continuous casting
- mold flux
- flux
- mold
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、連続鋳造用モールドフラックス及びこれを用いた鋼の連続鋳造方法に関するものである。 The present invention relates to a mold flux for continuous casting and a steel continuous casting method using the same.
鋼の連続鋳造においては、連続鋳造用モールドフラックスをモールド表面に供給し、モールド内の潤滑や保温を行なっている。この連続鋳造用モールドフラックスの成分は、鋳造される鋼種に応じて様々に設定されている。 In continuous casting of steel, a mold flux for continuous casting is supplied to the mold surface to lubricate and keep the heat inside the mold. The component of the mold flux for continuous casting is variously set according to the steel type to be cast.
例えば低炭素鋼の連続鋳造においては、他の鋼種と比べて鋳造速度が高いため、モールド内の潤滑を第1として、モールドフラックスの塩基度(CaO/SiO2)を1.0付近に設定し、Al2O3、MgO、Na2O、F等を添加し、粘度及び凝固点を適正に調整している。また、低炭素鋼に含まれるブリキ用の鋼のためのモールドフラックスの場合には、モールド内で溶鋼に巻き込まれて介在物になることを防ぐために、塩基度を1.0よりも低く設定し、粘性を高めている。 For example, in continuous casting of low carbon steel, the casting speed is higher than other steel types. Therefore, lubrication in the mold is the first, and the basicity of the mold flux (CaO / SiO 2 ) is set to around 1.0. Al 2 O 3 , MgO, Na 2 O, F, etc. are added to adjust the viscosity and freezing point appropriately. In the case of mold flux for tin steel contained in low-carbon steel, the basicity is set lower than 1.0 in order to prevent inclusion in the molten steel in the mold. , Increase the viscosity.
一方、中炭素鋼の連続鋳造用モールドフラックスは、モールド内の潤滑に加えて不均一凝固の防止が重要であり、塩基度及びF濃度を高めて結晶化を促進し、不均一凝固を防止している。これらのフラックス成分中には、原料中の不純物に由来するP2O5が微量含有されている。しかしその含有率は意識的に制御されたものではない。 On the other hand, in the mold flux for continuous casting of medium carbon steel, in addition to lubrication in the mold, it is important to prevent non-uniform solidification. The basicity and F concentration are increased to promote crystallization and prevent non-uniform solidification. ing. These flux components contain a trace amount of P 2 O 5 derived from impurities in the raw material. However, the content is not consciously controlled.
これに対し、特許文献1には1.0〜8.0%という多量のP2O5を意識的に添加し、スケールの剥離性を高めた高Al鋼用のモールドフラックスが開示されている。このモールドフラックスは塩基度が1.0〜2.0であり、多量のP2O5を添加することにより鋳片とスケールとの間に形成されるファイアライト層の融点を低下させ、スケールの剥離性を高めたものである。しかしこの特許文献1の外には、モールドフラックス中のP2O5の添加量を意識した特許文献はほとんど見当たらない。 On the other hand, Patent Document 1 discloses a mold flux for high Al steel in which a large amount of P 2 O 5 of 1.0 to 8.0% is intentionally added to enhance the peelability of the scale. . This mold flux has a basicity of 1.0 to 2.0, and by adding a large amount of P 2 O 5 , the melting point of the firelite layer formed between the slab and the scale is lowered. It has improved peelability. However, outside this patent document 1, there is hardly any patent document in which the amount of P 2 O 5 added to the mold flux is conscious.
このように特許文献1を除く従来の連続鋳造用モールドフラックス中には、0.5〜1.0%程度のP2O5が含まれているのが一般的である。このような従来の連続鋳造用モールドフラックスのうち低炭素鋼用のものは、低炭素鋼〜極低炭素鋼の連続鋳造にも使用されている。 As described above, the conventional continuous casting mold flux excluding Patent Document 1 generally contains about 0.5 to 1.0% of P 2 O 5 . Among such conventional continuous casting mold fluxes, those for low carbon steel are also used for continuous casting of low carbon steel to very low carbon steel.
ところが、C含有量が0.005%以下の極低炭素鋼を連続鋳造し、得られたスラブを熱間圧延してコイルとすると、圧延方向に筋状模様が発生することがあった。この筋状模様は冷延後に施される溶融亜鉛めっきに斑を生じさせる原因となり、コイルの品質低下や歩留り低下の原因となるので好ましくない。従って本発明の目的は、熱延コイルに発生する筋状模様をなくすことができる技術を提供することである。 However, when an ultra-low carbon steel having a C content of 0.005% or less is continuously cast and the obtained slab is hot-rolled into a coil, a streak pattern may occur in the rolling direction. This streak pattern is not preferable because it causes spots in hot dip galvanizing applied after cold rolling, and causes deterioration in coil quality and yield. Accordingly, an object of the present invention is to provide a technique capable of eliminating a streak pattern generated in a hot-rolled coil.
上記の課題を解決するために、本発明者は極低炭素鋼の熱延コイルに発生した筋状模様について様々な角度から検討を加えた。そしてEPMA結果により分析した結果、筋状模様の部分では他の部分よりもPの濃度が高いことが確認された。また本発明者は、このPはモールドフラックスに由来するものと推定した。すなわち、鋳片表面に付着したモールドフラックス中のP2O5が鋳片表面に生成されたスケール層中を移動し、鋳片中のAlと接触すると還元され、鋳片表面においてPとして濃化するものと推定した。 In order to solve the above-mentioned problems, the present inventor has examined the streaky pattern generated in the hot-rolled coil of extremely low carbon steel from various angles. As a result of analysis based on the EPMA results, it was confirmed that the P concentration was higher in the streaky pattern portion than in the other portions. Further, the present inventor presumed that this P was derived from the mold flux. That is, P 2 O 5 in the mold flux adhering to the slab surface moves through the scale layer generated on the slab surface and is reduced when it comes into contact with Al in the slab, and is concentrated as P on the slab surface. Presumed to be.
本発明は上記した知見に基づいて完成されたものであり、本発明では、従来意識されていなかった連続鋳造用モールドフラックスのフラックス成分中のP2O5の含有率を、質量%で0.50%以下に制御する。 The present invention has been completed on the basis of the above-described knowledge. In the present invention, the content of P 2 O 5 in the flux component of the continuous casting mold flux, which has not been considered in the past, is set to 0. Control to 50% or less.
なお、この連続鋳造用モールドフラックスのフラックス成分は、質量%で、SiO2:20〜45%、CaO:30〜50%、F:2〜15%、Li2O、Na2O、K2O、MgO、SrO、BaO、B2O3、Al2O3、TiO2、ZrO2、FeO、MnOのうち1種以上の成分を合計で3〜25%、C:1〜10%、残部がP2O5及び不可避的不純物とすることが好ましい。 Note that flux component of the continuous casting mold flux, in mass%, SiO 2: 20~45%, CaO: 30~50%, F: 2~15%, Li 2 O, Na 2 O, K 2 O MgO, SrO, BaO, B 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , FeO, MnO in a total of 3 to 25%, C: 1 to 10%, the balance P 2 O 5 and inevitable impurities are preferable.
また本発明の鋼の連続鋳造方法は、請求項1または2に記載の連続鋳造用モールドフラックスを用いることを特徴とするものである。
The steel continuous casting method of the present invention is characterized by using the mold flux for continuous casting according to
本発明によれば、連続鋳造用モールドフラックスのフラックス成分中のP2O5の含有率を、質量%で0.50%以下に制御したので、鋳片表面にモールドフラックスが付着してもPの濃化を抑制することができる。この結果、従来のような筋状模様の発生を効果的に抑制することができる。従って熱延コイル表面や溶融亜鉛めっきコイル表面の品質向上と、生産効率の向上が可能となる。 According to the present invention, since the content of P 2 O 5 in the flux component of the mold flux for continuous casting is controlled to 0.50% or less by mass%, even if the mold flux adheres to the surface of the slab, P Concentration can be suppressed. As a result, it is possible to effectively suppress the occurrence of a streak pattern as in the prior art. Therefore, it is possible to improve the quality of the hot rolled coil surface and the hot dip galvanized coil surface and improve the production efficiency.
以下に本発明の実施形態を示す。
連続鋳造用モールドフラックスは、SiO2、CaOを主要成分とし、その他にF、Na2O、Al2O3等を含有し、さらにP2O5及び不可避的不純物を含有するものである。本発明ではP2O5の少ない原料を選定することにより、あるいは原料を精製することにより、フラックス成分中のP2O5の含有率を、質量%で0.50%以下に制御した。後記する実施例に示すように、P2O5の含有率が0.50%以下であれば、筋状模様の発生率をほぼゼロとすることができる。P2O5の含有率は低いほど好ましいが、完全にゼロとするには精製コストがかかるので、0.01〜0.5%とすればよい。以下にモールドフラックスのその他の成分について説明する。
Embodiments of the present invention will be described below.
The mold flux for continuous casting contains SiO 2 and CaO as main components, and additionally contains F, Na 2 O, Al 2 O 3 and the like, and further contains P 2 O 5 and inevitable impurities. In the present invention, the content of P 2 O 5 in the flux component was controlled to 0.50% or less by mass by selecting a raw material having a small amount of P 2 O 5 or purifying the raw material. As shown in the examples described later, when the content ratio of P 2 O 5 is 0.50% or less, the generation rate of the streak pattern can be made substantially zero. The lower the content of P 2 O 5, the better. However, since it takes a purification cost to make it completely zero, it may be set to 0.01 to 0.5%. Hereinafter, other components of the mold flux will be described.
SiO2とCaOはモールドフラックスの基本成分であり、好ましい実施形態では質量%で、SiO2:20〜45%、CaO:30〜50%である。塩基度は1.0〜1.6の範囲とすることが好ましい。塩基度がこの範囲を超えると凝固点が高くなるので好ましくない。 SiO 2 and CaO are basic components of the mold flux. In a preferred embodiment, they are mass%, and SiO 2 : 20 to 45% and CaO: 30 to 50%. The basicity is preferably in the range of 1.0 to 1.6. If the basicity exceeds this range, the freezing point increases, which is not preferable.
また、2〜15%のFを含有させることが好ましい。Fはモールドフラックスの凝固温度や粘性を低下させるために添加される成分であり、2%未満ではその効果がなく、15%を越えると浸漬ノズル耐火物の溶損が大きくなるため、2〜15%の範囲が好適である。 Moreover, it is preferable to contain 2 to 15% of F. F is a component added to reduce the solidification temperature and viscosity of the mold flux. If the content is less than 2%, the effect is not obtained. % Range is preferred.
さらに、Li2O、Na2O、K2O、MgO、SrO、BaO、B2O3、Al2O3、TiO2、ZrO2、FeO、MnOのうち1種以上の成分を合計で3〜25%含有させる。これらの成分もモールドフラックスの凝固温度や粘性を調整するための成分であり、上記した各成分を調整することによって、溶融時の粘度が0.3〜6.0poise(1300℃)、凝固点が1050〜1250℃の範囲とすることが好ましい。尚、粘度は、0.3poiseより低い場合には、鋳型内で溶鋼に巻き込まれやすくなり、6poiseよりも高くなると、例えば2.0m/min以上の鋳造速度で用いた場合の潤滑性が安定しなくなる。凝固点は、1050℃より低い場合には、溶融速度の調整がし難くなり、1250℃よりも高い場合には、鋳型内の潤滑性が安定しなくなる。 Furthermore, Li 2 O, Na 2 O, K 2 O, MgO, SrO, BaO, B 2 O 3 , Al 2 O 3 , TiO 2 , ZrO 2 , FeO, MnO are combined in a total of 3 components. -25% is contained. These components are also components for adjusting the solidification temperature and viscosity of the mold flux. By adjusting each of the above components, the viscosity at the time of melting is 0.3 to 6.0 poise (1300 ° C.), and the solidification point is 1050. It is preferable to set it as the range of -1250 degreeC. In addition, when the viscosity is lower than 0.3 poise, it becomes easy to be caught in molten steel in the mold, and when it is higher than 6 poise, the lubricity when used at a casting speed of 2.0 m / min or more is stabilized. Disappear. When the freezing point is lower than 1050 ° C., it is difficult to adjust the melting rate, and when it is higher than 1250 ° C., the lubricity in the mold becomes unstable.
Cは骨材であり、1〜10%を含有させる。その他はP2O5及び不可避的不純物であるが、前記したようにP2O5の含有率は0.50%以下とする。 C is an aggregate and contains 1 to 10%. Others are P 2 O 5 and unavoidable impurities, but as described above, the content of P 2 O 5 is 0.50% or less.
上記のモールドフラックスはC含有量が0.005%以下の極低炭素鋼の連続鋳造に適したものであり、従来と同様にモールド内に投入して使用される。本発明のモールドフラックスを用いることにより、次の実施例に示す通り、筋状模様をなくすことができる。 The mold flux described above is suitable for continuous casting of ultra-low carbon steel having a C content of 0.005% or less, and is used by being put into a mold as in the conventional case. By using the mold flux of the present invention, the streak pattern can be eliminated as shown in the following examples.
表1に示す組成の極低炭素鋼を、垂直曲げ型連続鋳造機(以下、連鋳機)により鋳造して、熱間圧延用素材のスラブを製造した。連鋳機は2つのストランドから構成され、各ストランドの鋳型を厚み250mm、幅1600mmとし、鋳造速度は1.5m/minとした。 A very low carbon steel having the composition shown in Table 1 was cast by a vertical bending type continuous casting machine (hereinafter referred to as a continuous casting machine) to produce a slab as a material for hot rolling. The continuous casting machine was composed of two strands. The mold of each strand was 250 mm in thickness, 1600 mm in width, and the casting speed was 1.5 m / min.
1回の鋳造あたりに取鍋1杯250tonの溶鋼を供して、長さ7000mmのスラブを各ストランドから5本、合計10本鋳造した。鋳造の際、2種類の異なるモールドフラックスを2つのストランドで使い分け、スラブの品質を比較した。合計4回の鋳造を実施し、合わせて8種類のモールドフラックスを比較した。 A single ladle of 250 ton of molten steel was used per casting, and five slabs of 7000 mm in length were cast from each strand, a total of ten. During casting, two different mold fluxes were used for the two strands, and the slab quality was compared. A total of four castings were performed, and a total of eight types of mold fluxes were compared.
モールドフラックスの仕様を表2に示す。SiO2およびCaOを合わせて71〜75質量%の範囲内とし、それらの濃度比である塩基度を1.1に一定させた。その他に、Al2O3、MgO、Na2O、B2O3、ZrO2およびFを添加して、溶融時の粘度が2.1〜2.3poise(1300℃)、凝固点が1080〜1110℃の範囲になる様、調整した。それ以外の不純物成分として、P2O5及びFeO、Sを微量含んだが、8種類のモールドフラックスの間で、P2O5の濃度が0.1〜3.0%の範囲で変化した。FeOまたはSの濃度は0.1%で一定した。 Table 2 shows the specifications of the mold flux. SiO 2 and CaO were combined in a range of 71 to 75% by mass, and the basicity as a concentration ratio thereof was made constant at 1.1. In addition, Al 2 O 3 , MgO, Na 2 O, B 2 O 3 , ZrO 2 and F are added, the viscosity at the time of melting is 2.1 to 2.3 poise (1300 ° C.), and the freezing point is 1080 to 1110. The temperature was adjusted so as to be in the range of ° C. As other impurity components, P 2 O 5 and FeO, S were contained in a small amount, but the concentration of P 2 O 5 varied in the range of 0.1 to 3.0% among the eight mold fluxes. The concentration of FeO or S was constant at 0.1%.
鋳造したスラブには、溶削などの手入れを施さず、そのまま加熱炉内へ搬入し、1200℃で2時間加熱した。加熱後のスラブを、粗圧延、続いて仕上げ圧延により、板厚3mmまで圧延して、コイル状に巻き取った。そのコイルを酸洗した後、検査ラインに通して、目視により筋状模様の個数を数えた。その後、冷延および亜鉛めっきの各工程を通じて、亜鉛めっき鋼板のコイルに仕上げた。亜鉛めっき鋼板のコイルにおいて、出荷の可否について評価した。 The cast slab was not subjected to maintenance such as cutting, but was carried directly into a heating furnace and heated at 1200 ° C. for 2 hours. The heated slab was rolled to a plate thickness of 3 mm by rough rolling followed by finish rolling, and wound into a coil. The coil was pickled, passed through an inspection line, and the number of streak patterns was counted visually. Then, the coil of a galvanized steel plate was finished through each process of cold rolling and galvanization. In the coil of the galvanized steel sheet, whether or not shipment was possible was evaluated.
コイル1巻あたりの筋状模様の個数を表3に示す。本発明例ではいずれも、目視検査にて筋状模様の発生が無く、良好な品質の鋼板として出荷することが可能という評価であった。一方、比較例では、モールドフラックス中P2O5濃度の上昇とともに筋状模様の発生個数が増大し、模様部を切り取る手入れを施したり、品質低下のために格下げして出荷したりする必要が生じた。更に、比較例5については、筋状模様が余りに多いため、一時保留の扱いとなり、出荷困難という評価であった。 Table 3 shows the number of streak patterns per coil. In all of the examples of the present invention, no streak pattern was generated by visual inspection, and it was evaluated that it was possible to ship as a steel plate of good quality. On the other hand, in the comparative example, the number of streak patterns increases as the concentration of P 2 O 5 in the mold flux increases, and it is necessary to take care to cut out the pattern portion or to downgrade and ship for quality degradation. occured. Further, Comparative Example 5 was evaluated as being temporarily suspended and difficult to ship because there were too many streaky patterns.
これらの結果を図1に示す。図示のように、モールドフラックス中のP2O5の濃度を5%以下に制御することにより、筋状模様の発生を防止できることが確認された。 These results are shown in FIG. As shown in the figure, it was confirmed that the generation of streak patterns can be prevented by controlling the concentration of P 2 O 5 in the mold flux to 5% or less.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016100309A JP6699345B2 (en) | 2016-05-19 | 2016-05-19 | Mold flux for continuous casting and steel continuous casting method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016100309A JP6699345B2 (en) | 2016-05-19 | 2016-05-19 | Mold flux for continuous casting and steel continuous casting method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017205793A true JP2017205793A (en) | 2017-11-24 |
JP6699345B2 JP6699345B2 (en) | 2020-05-27 |
Family
ID=60415220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016100309A Active JP6699345B2 (en) | 2016-05-19 | 2016-05-19 | Mold flux for continuous casting and steel continuous casting method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6699345B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204864A (en) * | 1978-04-19 | 1980-05-27 | Scm Corporation | Particulate slagging composition for the continuous casting of steel |
JP2007105763A (en) * | 2005-10-13 | 2007-04-26 | Sumitomo Metal Ind Ltd | Mold flux for continuously casting steel and method for producing slab |
JP2010069527A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Metal Ind Ltd | Mold flux for continuous casting of high aluminum steel and method of manufacturing cast slab |
JP2010095753A (en) * | 2008-10-15 | 2010-04-30 | Sumitomo Metal Ind Ltd | Hot-rolled steel plate and method for manufacturing the same |
JP2010227972A (en) * | 2009-03-27 | 2010-10-14 | Shinagawa Refractories Co Ltd | Mold powder for continuously casting steel |
JP2011147998A (en) * | 2009-12-24 | 2011-08-04 | Jfe Steel Corp | Mold powder for continuous casting of steel and continuous casting method |
JP2012125826A (en) * | 2010-12-17 | 2012-07-05 | Jfe Steel Corp | Mold powder for continuous casting and continuous casting method |
-
2016
- 2016-05-19 JP JP2016100309A patent/JP6699345B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4204864A (en) * | 1978-04-19 | 1980-05-27 | Scm Corporation | Particulate slagging composition for the continuous casting of steel |
JP2007105763A (en) * | 2005-10-13 | 2007-04-26 | Sumitomo Metal Ind Ltd | Mold flux for continuously casting steel and method for producing slab |
JP2010069527A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Metal Ind Ltd | Mold flux for continuous casting of high aluminum steel and method of manufacturing cast slab |
JP2010095753A (en) * | 2008-10-15 | 2010-04-30 | Sumitomo Metal Ind Ltd | Hot-rolled steel plate and method for manufacturing the same |
JP2010227972A (en) * | 2009-03-27 | 2010-10-14 | Shinagawa Refractories Co Ltd | Mold powder for continuously casting steel |
JP2011147998A (en) * | 2009-12-24 | 2011-08-04 | Jfe Steel Corp | Mold powder for continuous casting of steel and continuous casting method |
JP2012125826A (en) * | 2010-12-17 | 2012-07-05 | Jfe Steel Corp | Mold powder for continuous casting and continuous casting method |
Also Published As
Publication number | Publication date |
---|---|
JP6699345B2 (en) | 2020-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102073318B1 (en) | Mold flux for continuous casting and continuous casting method | |
KR101860481B1 (en) | High-carbon steel wire rod and preparation method therefor | |
JP5370929B2 (en) | Mold flux for continuous casting of steel | |
He et al. | Review of Mold Fluxes for Continuous Casting of High‐Alloy (Al, Mn, Ti) Steels | |
JP5063024B2 (en) | Method of casting alloy steel containing Cr and Ni | |
JP5703919B2 (en) | Mold flux for continuous casting of steel and continuous casting method | |
CN106868401B (en) | A kind of Low Defectivity bottle cap tinplate base-material and minimizing production technology | |
JP2017170494A (en) | Continuous casting mold powder of steel and continuous casting method | |
JP6354411B2 (en) | Mold flux for continuous casting | |
CN107530769B (en) | Continuous casting method using mold flux, and slab manufactured using the same | |
JP6699345B2 (en) | Mold flux for continuous casting and steel continuous casting method using the same | |
JP5835153B2 (en) | Mold flux for continuous casting of steel and continuous casting method | |
JP2023070304A (en) | Mold powder for continuous casting, and continuous casting method for steel | |
CN113265574B (en) | Preparation method of ultrahigh carbon alloy steel | |
JP5617704B2 (en) | Steel continuous casting method | |
JP3416858B2 (en) | Stainless steel manufacturing method | |
JP6769344B2 (en) | Continuous casting method of mold powder and steel for continuous casting | |
KR101377224B1 (en) | Refining method of molten steel for steel pipe | |
JP7200594B2 (en) | Mold powder for continuous casting of ultra-low carbon steel and continuous casting method | |
JP7027979B2 (en) | Mold flux for continuous casting and continuous casting method of steel | |
JP2019048316A (en) | Continuous casting method for Al-containing steel | |
KR20190097901A (en) | Mold flux and casting method | |
JP7508010B2 (en) | Method for producing Cu-Sn-containing steel | |
JP2009057592A (en) | Method for manufacturing base material of steel sheet by using p-containing steel | |
JP7009228B2 (en) | Mold flux for continuous casting and continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200413 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6699345 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |