JP2010095566A - Gasoline composition - Google Patents

Gasoline composition Download PDF

Info

Publication number
JP2010095566A
JP2010095566A JP2008265270A JP2008265270A JP2010095566A JP 2010095566 A JP2010095566 A JP 2010095566A JP 2008265270 A JP2008265270 A JP 2008265270A JP 2008265270 A JP2008265270 A JP 2008265270A JP 2010095566 A JP2010095566 A JP 2010095566A
Authority
JP
Japan
Prior art keywords
octane number
base material
gasoline
volume
distillation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008265270A
Other languages
Japanese (ja)
Other versions
JP5350742B2 (en
Inventor
Eiji Tanaka
英治 田中
Hideki Miyazaki
英輝 宮崎
Yosuke Kinoshita
陽介 木下
Hidenobu Torii
秀信 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2008265270A priority Critical patent/JP5350742B2/en
Publication of JP2010095566A publication Critical patent/JP2010095566A/en
Application granted granted Critical
Publication of JP5350742B2 publication Critical patent/JP5350742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasoline composition having an enhanced octane number by stably enhancing an octane number of fluidized catalytically cracked gasoline mainly used as a base material of a gasoline composition even after the sulfur content thereof is decreased by a two-stage desulfurization method or the like. <P>SOLUTION: The gasoline composition comprises at least 90 vol% of a gasoline fraction obtained by mixing a base material 1 having a 90% distillation temperature of 80-120°C and a base material 2 having a 10% distillation temperature of 100-130°C and a 90% distillation temperature of 190°C or lower, and has a total sulfur content of at most 10 mass ppm, a research octane number of 90-96, a Reid vapor pressure of at most 55 kPa, an aromatics content of 10-30 vol% and an olefin content of at least 10 vol%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オクタン価の高いガソリン組成物に関し、特には、ガソリン基材として主に用いられる流動接触分解ガソリン基材のリサーチ法オクタン価を高めることによってオクタン価を向上させたことを特徴とするガソリン組成物に関するものである。   TECHNICAL FIELD The present invention relates to a gasoline composition having a high octane number, and in particular, a gasoline composition characterized in that the octane number is improved by increasing the research octane number of a fluid catalytic cracking gasoline base mainly used as a gasoline base. It is about.

燃料と空気の混合ガスを圧縮し、着火する方式の内燃機関エンジンにおいては、燃料として用いるガソリンのリサーチ法オクタン価(以降、オクタン価と称す)が高い場合、圧縮比を上げることにより、熱効率を向上させることが出来る。ここで、レギュラーガソリンのオクタン価を高めて熱効率を向上させるためには、主基材である流動接触分解ガソリンのオクタン価を高くすることが有効である。しかしながら、流動接触分解ガソリンのオクタン価を高めるために、例えば流動接触分解装置の反応条件を変更しても、そのオクタン価向上効果は、次の理由で小さくなることが分かっている。   In an internal combustion engine that compresses and ignites a mixed gas of fuel and air, when the gasoline research octane number (hereinafter referred to as octane number) is high, the thermal efficiency is improved by increasing the compression ratio. I can do it. Here, in order to improve the thermal efficiency by increasing the octane number of regular gasoline, it is effective to increase the octane number of fluid catalytic cracking gasoline as the main base material. However, in order to increase the octane number of fluid catalytic cracking gasoline, for example, even if the reaction conditions of the fluid catalytic cracking apparatus are changed, it has been found that the octane number improving effect is reduced for the following reason.

すなわち、流動接触分解ガソリンのオクタン価の低下を抑えつつ、当該ガソリンに含まれる硫黄分を除去するために二段脱硫法が用いられており、該二段脱硫法では、比較的硫黄分が少なくオクタン価の高い軽質分を蒸留分離し、硫黄分を多く含有する重質分のみを水素化脱硫した後に再度軽質分と混合するが、前記の流動接触分解装置の反応条件を変更してオクタン価を向上させた場合、該オクタン価の向上効果は主に流動接触分解ガソリンの重質分の成分変化、例えば脱水素による芳香族化の結果として得られるのに対し、流動接触分解後の二段脱硫法における前記重質分の水素化脱硫によって該重質成分に再度水素が付加し、芳香族成分がナフテン化すること等で前記オクタン価を高めた重質分のオクタン価が再び低下する。   That is, a two-stage desulfurization method is used to remove the sulfur content contained in the gasoline while suppressing a decrease in the octane number of fluid catalytic cracking gasoline. In the two-stage desulfurization method, the octane number is relatively low. The high-light fraction is distilled and separated, and only the heavy component containing a large amount of sulfur is hydrodesulfurized and then mixed with the light component again, but the reaction conditions of the fluid catalytic cracking unit are changed to improve the octane number. In this case, the effect of improving the octane number is mainly obtained as a result of a change in the heavy component of fluid catalytic cracking gasoline, for example, aromatization by dehydrogenation, whereas in the two-stage desulfurization method after fluid catalytic cracking, Hydrogen is again added to the heavy component by hydrodesulfurization of the heavy component, and the aromatic component is naphthenized, so that the octane number of the heavy component having the increased octane number decreases again.

従来、流動接触分解ガソリンのオクタン価を高める方法として、前記した流動接触分解装置の反応条件を変更する方法以外に、当該ガソリンの中間沸点領域にある比較的オクタン価の低い成分を蒸留分離し、沸点が低く比較的オクタン価の高い成分と、沸点が高く中間沸点領域に比較してオクタン価の高い成分とを混合するプロセスが知られている(特許文献1)。   Conventionally, as a method for increasing the octane number of fluid catalytic cracking gasoline, in addition to the method of changing the reaction conditions of the fluid catalytic cracking device described above, a component having a relatively low octane number in the middle boiling point region of the gasoline is distilled and separated. A process is known in which a component having a low and relatively high octane number is mixed with a component having a high boiling point and a high octane number compared to the intermediate boiling point region (Patent Document 1).

しかしながら、流動接触分解装置の原料や反応条件によって、流動接触分解ガソリンの所定沸点範囲のオクタン価は変化し、前記した二段脱硫により重質成分のオクタン価が低下すること等から、沸点が低く比較的オクタン価の高い成分と、沸点が高く中間沸点領域に比較してオクタン価の高い成分とを混合するプロセスによって必ずしもオクタン価は向上しない。
特開2006−182997号公報
However, the octane number in the predetermined boiling range of fluid catalytic cracking gasoline varies depending on the raw materials and reaction conditions of the fluid catalytic cracking device, and the boiling point is relatively low because the octane number of the heavy component is reduced by the above-mentioned two-stage desulfurization. The octane number is not necessarily improved by a process of mixing a component having a high octane number and a component having a high boiling point and a high octane number compared to the middle boiling point region.
JP 2006-182997 A

そこで、本発明の目的は、レギュラーガソリンのオクタン価を高めるために、当該ガソリンの主基材である流動接触分解ガソリンについて、二段脱硫法等により硫黄分を低減した後でも、安定的にオクタン価を向上させ、さらに、かかる基材を使用することによってオクタン価を向上させたガソリン組成物を提供することにある。   Therefore, an object of the present invention is to increase the octane number of the regular gasoline, even after the sulfur content is reduced by the two-stage desulfurization method, etc., for the fluid catalytic cracking gasoline that is the main base material of the gasoline. Another object of the present invention is to provide a gasoline composition having an improved octane number by using such a base material.

本発明者らは、上記目的を達成するために鋭意検討した結果、前記した二段脱硫法により、流動接触分解ガソリンの重質分のうち、重質成分の沸点が比較的高いより重質な留分(以後、後留分という)が水素化されてオクタン価が低下すること、また、前記二段脱硫法において軽質分と重質分を再混合する際、特定のオレフィン成分及び特定の芳香族成分の含有量の大小により、オクタン価向上効果が影響を受けることを見出した。さらに、本発明者らは、これらの知見を基に、流動接触分解装置の反応条件を最適化しつつ、流動接触分解ガソリンの前記後留分の調製条件を工夫することで、より具体的には、流動接触分解ガソリンを蒸留分離して得た90%留出温度が特定の範囲にある基材と、10%留出温度及び90%留出温度が特定の範囲にある他の基材とを組み合わせることで、安定的にオクタン価の高いガソリン組成物が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the heavy component of the fluid catalytic cracking gasoline is heavier than the heavy component of fluid catalytic cracking gasoline by the above-described two-stage desulfurization method. The fraction (hereinafter referred to as the post-fraction) is hydrogenated to lower the octane number, and when the light and heavy components are remixed in the two-stage desulfurization method, the specific olefin component and the specific aromatic It has been found that the octane number improving effect is affected by the size of the component. Furthermore, the present inventors based on these findings, more specifically, by devising the preparation conditions of the above-mentioned fraction of fluid catalytic cracking gasoline while optimizing the reaction conditions of the fluid catalytic cracking apparatus. A base material having a 90% distillation temperature in a specific range obtained by distillation separation of fluid catalytic cracking gasoline and another base material having a 10% distillation temperature and a 90% distillation temperature in a specific range By combining them, it was found that a gasoline composition having a high octane number was stably obtained, and the present invention was completed.

即ち、本発明によるガソリン組成物は、90%留出温度が80〜120℃の基材1と、10%留出温度が100〜130℃で且つ90%留出温度が190℃以下の基材2とを混合して得たガソリン留分を90容量%以上含有し、全硫黄分が10質量ppm以下、リサーチ法オクタン価が90〜96、リード蒸気圧が55kPa以下、全芳香族含有量が10〜30容量%、オレフィン含有量が10容量%以上であることを特徴とする。   That is, the gasoline composition according to the present invention includes a base material 1 having a 90% distillation temperature of 80 to 120 ° C, and a base material having a 10% distillation temperature of 100 to 130 ° C and a 90% distillation temperature of 190 ° C or less. The gasoline fraction obtained by mixing 2 with 90% by volume or more, the total sulfur content is 10 mass ppm or less, the research octane number is 90 to 96, the Reid vapor pressure is 55 kPa or less, and the total aromatic content is 10 -30% by volume and olefin content is 10% by volume or more.

本発明のガソリン組成物の好適例においては、炭素数11以上の芳香族含有量が3.0容量%以下で、炭素数6以上のオレフィン含有量が22.0容量%以上である。   In a preferred example of the gasoline composition of the present invention, the aromatic content having 11 or more carbon atoms is 3.0% by volume or less, and the olefin content having 6 or more carbon atoms is 22.0% by volume or more.

また、本発明のガソリン組成物の他の好適例においては、前記基材1と前記基材2のリサーチ法オクタン価から混合容量割合で算出されたリサーチ法オクタン価よりも、前記基材1と前記基材2とを混合して得たガソリン留分を測定したリサーチ法オクタン価が0.1以上高い。   Further, in another preferred embodiment of the gasoline composition of the present invention, the base material 1 and the base group are more than the research method octane number calculated from the research method octane number of the base material 1 and the base material 2 by the mixing volume ratio. The research octane number measured for the gasoline fraction obtained by mixing the material 2 is higher than 0.1.

本発明のガソリン組成物は、オクタン価が高く、基材混合後のオクタン価向上効果が高く、揮発性が良好で、蒸気圧が低く、さらには、硫黄分が低いという効果を奏する。   The gasoline composition of the present invention has an effect that the octane number is high, the octane number improving effect after mixing the base material is high, the volatility is good, the vapor pressure is low, and the sulfur content is low.

以下に、本発明を詳細に説明する。本発明のガソリン組成物は、90%留出温度が80〜120℃の基材1と、10%留出温度が100〜130℃で且つ90%留出温度が190℃以下の基材2とを混合して得たガソリン留分を含有する。ここで、該ガソリン留分における基材1と基材2との容量比(基材1/基材2)は、特に限定されるものではないが、60/40〜40/60の範囲が好ましい。   The present invention is described in detail below. The gasoline composition of the present invention comprises a base material 1 having a 90% distillation temperature of 80 to 120 ° C, a base material 2 having a 10% distillation temperature of 100 to 130 ° C and a 90% distillation temperature of 190 ° C or less. The gasoline fraction obtained by mixing is contained. Here, the volume ratio (base material 1 / base material 2) between the base material 1 and the base material 2 in the gasoline fraction is not particularly limited, but a range of 60/40 to 40/60 is preferable. .

本発明のガソリン組成物は、自動車用触媒の劣化防止の観点から、全硫黄分が10質量ppm以下であり、好ましくは5質量ppm以下であり、さらに好ましくは3質量ppm以下である。   The gasoline composition of the present invention has a total sulfur content of 10 ppm by mass or less, preferably 5 ppm by mass or less, more preferably 3 ppm by mass or less, from the viewpoint of preventing deterioration of the automobile catalyst.

また、圧縮比向上により燃費向上を図る為にはレギュラーガソリンのオクタン価は高いほど良いため、本発明のガソリン組成物は、リサーチ法オクタン価が90.0以上、好ましくは90.5以上、さらに好ましくは91.0以上である。一方、一般にオクタン価を高めることにより、揮発性の低い芳香族化合物が多くなり、冷機時における車両の始動性が悪化するため、本発明のガソリン組成物は、オクタン価が96.0以下、好ましくは95.0以下、さらに好ましくは94.0以下である。   In order to improve fuel efficiency by improving the compression ratio, the higher the octane number of regular gasoline, the better. Therefore, the gasoline composition of the present invention has a research octane number of 90.0 or more, preferably 90.5 or more, more preferably It is 91.0 or more. On the other hand, in general, increasing the octane number increases the amount of aromatic compounds having low volatility and deteriorates the startability of the vehicle when cold, so the gasoline composition of the present invention has an octane number of 96.0 or less, preferably 95 0.0 or less, more preferably 94.0 or less.

また、オクタン価を高くするために、本発明のガソリン組成物は、芳香族含有量が10容量%以上、好ましくは11容量%以上、さらに好ましくは13容量%以上である。一方、芳香族含有量が多いと揮発性が悪化したり、排出ガス性状が悪化し易くなることから、本発明のガソリン組成物は、芳香族含有量が30容量%以下、好ましくは29容量%以下、さらに好ましくは28容量%以下である。   In order to increase the octane number, the gasoline composition of the present invention has an aromatic content of 10% by volume or more, preferably 11% by volume or more, and more preferably 13% by volume or more. On the other hand, if the aromatic content is large, the volatility deteriorates or the exhaust gas properties are easily deteriorated. Therefore, the gasoline composition of the present invention has an aromatic content of 30% by volume or less, preferably 29% by volume. Hereinafter, it is more preferably 28% by volume or less.

また、オクタン価を高くするために、本発明のガソリン組成物は、オレフィン含有量が10容量%以上、好ましくは15容量%以上、さらに好ましくは20容量%以上である。一方、オレフィンが多く含まれると酸化安定性が悪化したり、ガソリン蒸気の蒸発による大気環境への影響が大きくなることから、本発明のガソリン組成物は、オレフィン含有量が好ましくは40容量%以下、さらに好ましくは35容量%以下である。   In order to increase the octane number, the gasoline composition of the present invention has an olefin content of 10% by volume or more, preferably 15% by volume or more, and more preferably 20% by volume or more. On the other hand, if a large amount of olefin is contained, the oxidation stability deteriorates and the influence on the atmospheric environment due to evaporation of gasoline vapor increases, so the gasoline composition of the present invention preferably has an olefin content of 40% by volume or less. More preferably, it is 35% by volume or less.

基材1の90%留出温度が低すぎると、ガソリン蒸気の蒸発による大気環境への影響が大きくなることから、基材1の90%留出温度は、80℃以上、好ましくは85℃以上、さらに好ましくは90℃以上である。また、基材1の90%留出温度が高すぎると、硫黄分が高くなり排出ガス浄化触媒の被毒を起こし易くなる為、基材1の90%留出温度は120℃以下、好ましくは115℃以下、さらに好ましくは110℃以下である。   If the 90% distillation temperature of the base material 1 is too low, the influence on the atmospheric environment due to evaporation of gasoline vapor becomes large. Therefore, the 90% distillation temperature of the base material 1 is 80 ° C. or higher, preferably 85 ° C. or higher. More preferably, it is 90 ° C. or higher. Further, if the 90% distillation temperature of the substrate 1 is too high, the sulfur content becomes high and the exhaust gas purification catalyst is likely to be poisoned. Therefore, the 90% distillation temperature of the substrate 1 is 120 ° C. or less, preferably 115 ° C. or lower, more preferably 110 ° C. or lower.

また、基材2の10%留出温度が低すぎると、水素化脱硫によるオクタン価の低下が大きくなる為、基材2の10%留出温度は、100℃以上、好ましくは105℃以上、さらに好ましくは110℃以上である。また、基材2の10%留出温度が高すぎるとオクタン価が低くなる為、基材2の10%留出温度は、130℃以下、好ましくは125℃以下、さらに好ましくは123℃以下である。   Further, if the 10% distillation temperature of the base material 2 is too low, the decrease in octane number due to hydrodesulfurization increases, so the 10% distillation temperature of the base material 2 is 100 ° C. or higher, preferably 105 ° C. or higher. Preferably it is 110 degreeC or more. Further, since the octane number is lowered when the 10% distillation temperature of the substrate 2 is too high, the 10% distillation temperature of the substrate 2 is 130 ° C. or less, preferably 125 ° C. or less, more preferably 123 ° C. or less. .

また、基材2の90%留出温度が高すぎると、基材混合後のオクタン価向上効果が低下するため、基材2の90%留出温度は、190℃以下、好ましくは188℃以下、さらに好ましくは185℃以下である。また、基材2の90%留出温度が低すぎると、ガソリン蒸気の蒸発による大気環境への影響が大きくなることから、基材2の90%留出温度は、好ましくは125℃以上、さらに好ましくは130℃以上である。   Further, if the 90% distillation temperature of the base material 2 is too high, the effect of improving the octane number after the base material mixing is lowered, so the 90% distillation temperature of the base material 2 is 190 ° C. or lower, preferably 188 ° C. or lower, More preferably, it is 185 degrees C or less. In addition, if the 90% distillation temperature of the base material 2 is too low, the influence on the atmospheric environment due to evaporation of gasoline vapor becomes large. Therefore, the 90% distillation temperature of the base material 2 is preferably 125 ° C. or more, Preferably it is 130 degreeC or more.

本発明のガソリン組成物において、上記基材1と基材2を混合したガソリン留分の含有量は90容量%以上であり、蒸気圧調製の為にブタン、ブチレンを適宜混合しても良いが、リサーチ法オクタン価を高める為に基材1と基材2を混合したガソリン留分の含有量は好ましくは95容量%以上であり、さらに好ましくは100容量%である。   In the gasoline composition of the present invention, the content of the gasoline fraction obtained by mixing the base material 1 and the base material 2 is 90% by volume or more, and butane and butylene may be appropriately mixed for adjusting the vapor pressure. The content of the gasoline fraction in which the base material 1 and the base material 2 are mixed in order to increase the research octane number is preferably 95% by volume or more, and more preferably 100% by volume.

揮発性を良好に維持しつつ基材混合後のオクタン価向上効果を高めるために、本発明のガソリン組成物は、炭素数11以上の芳香族含有量が好ましくは3.0容量%以下、さらに好ましくは2.0容量%以下、特に好ましくは1.0容量%以下である。   In order to enhance the octane number improving effect after mixing the base material while maintaining good volatility, the gasoline composition of the present invention preferably has an aromatic content of 11 or more carbon atoms, preferably 3.0% by volume or less, more preferably Is not more than 2.0% by volume, particularly preferably not more than 1.0% by volume.

また、炭素数6以上のオレフィンは、基材混合後のオクタン価向上効果を高めるため、本発明のガソリン組成物は、炭素数6以上のオレフィン含有量が好ましくは22.0容量%以上、さらに好ましくは22.5容量%以上、特に好ましくは23.0容量%以上である。   In addition, since the olefin having 6 or more carbon atoms enhances the effect of improving the octane number after mixing the base material, the gasoline composition of the present invention preferably has an olefin content having 6 or more carbon atoms, more preferably 22.0% by volume or more. Is 22.5% by volume or more, particularly preferably 23.0% by volume or more.

その他、既販車両のガソリン蒸気の蒸発による大気環境への影響を抑制する観点から、ガソリンの蒸気圧(37.8℃)は低い方が好ましいが、一般に蒸気圧調製で用いられるブタンはレギュラーガソリンに比較してオクタン価が高いため、これを多くレギュラーガソリンに混合するためには、特に流動接触分解ガソリンの蒸気圧が低い方が好ましい。そのため、本発明のガソリン組成物は、リード蒸気圧が55kPa以下、好ましくは50kPa以下、さらに好ましくは40kPa以下、特には35kPa以下である。   In addition, from the viewpoint of suppressing the impact on the air environment due to the evaporation of gasoline vapor in vehicles sold on the market, it is preferable that the vapor pressure (37.8 ° C) of gasoline is low, but in general, butane used for vapor pressure adjustment is regular gasoline. Since the octane number is high as compared with the above, in order to mix a large amount of this with regular gasoline, it is particularly preferable that the vapor pressure of fluid catalytic cracking gasoline is low. Therefore, the gasoline composition of the present invention has a lead vapor pressure of 55 kPa or less, preferably 50 kPa or less, more preferably 40 kPa or less, particularly 35 kPa or less.

また、基材1と基材2のリサーチ法オクタン価から混合容量割合で算出されたリサーチ法オクタン価よりも、基材1と基材2とを混合して得たガソリン留分を測定したリサーチ法オクタン価が低いと、基材1及び基材2のオクタン価を高めることが必要となり、製造時に発生する二酸化炭素排出量が増加することから、このオクタン価差(オクタン価ボーナスと称する)は好ましくは0.1以上、さらに好ましくは0.2以上、特に好ましくは0.3以上である。   In addition, the research method octane number obtained by measuring the gasoline fraction obtained by mixing the base material 1 and the base material 2 rather than the research method octane number calculated from the research method octane number of the base material 1 and the base material 2 by the mixing volume ratio. If it is low, it is necessary to increase the octane number of the base material 1 and the base material 2, and the amount of carbon dioxide emitted during production increases, so this octane number difference (referred to as octane number bonus) is preferably 0.1 or more. More preferably, it is 0.2 or more, particularly preferably 0.3 or more.

なお、特に限定されるものではないが、本発明のガソリン組成物は、10%留出温度が好ましくは50〜80℃で、90%留出温度が好ましくは120〜175℃である。   Although not particularly limited, the gasoline composition of the present invention has a 10% distillation temperature of preferably 50 to 80 ° C and a 90% distillation temperature of preferably 120 to 175 ° C.

〔ガソリン基材〕
本発明のガソリン組成物に用いる基材1及び基材2は、例えば、流動接触分解ガソリンを蒸留分離して得られる。該流動接触分解ガソリンは、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを原料として用い、無定形シリカアルミナ、ゼオライトなどの触媒と接触分解して得られる高オクタン価のガソリン基材である。接触分解装置としては、公知の製造プロセスを任意に採用できる。例えば石油学会編「新石油精製プロセス」に記載のあるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などが挙げられる。この流動接触分解ガソリンは、硫黄含有量が比較的多い基材である。したがって、原料の硫黄含有量を予め調整してから流動接触分解したり、あるいは得られた流動接触分解ガソリンを、抽出、吸着、収着などの操作によって硫黄分を除去することが好ましい。また、流動接触分解ガソリンから硫黄分を収着除去するような場合、事前にジメチルホルムアミド(DMF)やアセトニトリルなどを用いた抽出蒸留法や水素化法によって予めジエンを除去しておくと効果的に硫黄分を低減することができる。
[Gasoline base material]
The base material 1 and the base material 2 used in the gasoline composition of the present invention are obtained, for example, by distilling and separating fluid catalytic cracking gasoline. The fluid catalytic cracking gasoline uses petroleum fractions from light oil to vacuum gas oil, degasified oil obtained from heavy oil indirect desulfurization equipment, direct desulfurized oil obtained from heavy oil direct desulfurization equipment, and normal pressure residual oil as raw materials. It is a high octane gasoline base material obtained by catalytic cracking with a catalyst such as amorphous silica alumina or zeolite. A known manufacturing process can be arbitrarily adopted as the catalytic cracking apparatus. For example, UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, fluid catalytic cracking method such as Texaco fluid catalytic cracking method, RCC method, HOC method, etc. Examples include fluid catalytic cracking. This fluid catalytic cracking gasoline is a substrate having a relatively high sulfur content. Accordingly, it is preferable to perform fluid catalytic cracking after adjusting the sulfur content of the raw material in advance, or to remove the sulfur content of the obtained fluid catalytic cracked gasoline by operations such as extraction, adsorption and sorption. In addition, when sorbing and removing sulfur from fluid catalytic cracking gasoline, it is effective to remove diene beforehand by extractive distillation or hydrogenation using dimethylformamide (DMF) or acetonitrile. Sulfur content can be reduced.

〔他の添加物〕
さらに、本発明のガソリン組成物には、上述の基材に対して、当該技術分野で公知の燃料油添加剤の1種又は2種以上を必要に応じて配合することができる。これらの配合量は適宜選べるが、通常は添加剤の合計配合量を0.1質量%以下に維持することが好ましい。本発明のガソリン組成物に使用可能な燃料油添加剤としては、シッフ型化合物、チオアミド型化合物などの金属不活性化剤、有機リン系化合物などの表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤、多価アルコール又はそのエーテルなどの氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコールの硫酸エステルなどの助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤、アゾ染料などの着色剤を挙げることができる。これらの添加剤を使用する場合は酸化安定性が悪化する場合があるので、添加剤の添加前後で酸化安定度が悪化しないことを確認することが好ましい。また、酸化防止剤としてジブチルヒドロキシトルエン等のフェノール系添加剤や、ジフェニルアミン等のアミン系添加剤を適宜添加することも有効である。
[Other additives]
Furthermore, in the gasoline composition of the present invention, one or more fuel oil additives known in the technical field can be blended with the above-described base material as necessary. Although these compounding quantities can be selected suitably, it is preferable to maintain the total compounding quantity of an additive to 0.1 mass% or less normally. Examples of fuel oil additives that can be used in the gasoline composition of the present invention include Schiff type compounds, metal deactivators such as thioamide type compounds, surface ignition preventives such as organophosphorus compounds, succinimides, and polyalkylamines. Detergents such as polyetheramines, anti-freezing agents such as polyhydric alcohols or ethers thereof, organic metal alkali metal salts or alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants And antistatic agents such as cationic surfactants and amphoteric surfactants, and colorants such as azo dyes. When these additives are used, the oxidation stability may deteriorate, so it is preferable to confirm that the oxidation stability does not deteriorate before and after the addition of the additive. Moreover, it is also effective to appropriately add a phenol-based additive such as dibutylhydroxytoluene or an amine-based additive such as diphenylamine as an antioxidant.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

実施例及び比較例のガソリン組成物を調製するに際して用いたガソリン基材は、次のものである。各基材の性状を表1に示す。   The gasoline base materials used in preparing the gasoline compositions of Examples and Comparative Examples are as follows. Table 1 shows the properties of each substrate.

流動接触分解装置の反応温度並びに触媒/燃料流量比(C/O)が基準となる反応条件で反応させた後に蒸留分離し、軽質分であるLCNを得、重質分を水素化脱硫してDH−CNを得た。また、前記の基準となる反応条件よりオクタン価が高くなる反応条件に設定して反応させた後に蒸留分離し、軽質分であるLCNxを得、重質分を水素化脱硫してDH−CNxを得た。   The reaction temperature and catalyst / fuel flow ratio (C / O) of the fluid catalytic cracker are reacted under the reaction conditions that are the basis, and then separated by distillation to obtain LCN which is a light component, and hydrodesulfurizing a heavy component. DH-CN was obtained. In addition, the reaction conditions are set so that the octane number is higher than the above-mentioned standard reaction conditions, and the reaction is followed by distillation separation to obtain LCNx which is a light component, and hydrodesulfurizing a heavy component to obtain DH-CNx. It was.

また、次の各基材は下記の通り調製した。
・DH−CNx 5%カット:DH−CNxの重質分を5容量%蒸留分離した95容量%軽質分である。
・DH−CNx 10%カット:DH−CNxの重質分を10容量%蒸留分離した90容量%軽質分である。
・DH−CNx 60%カット:DH−CNxの重質分を60容量%蒸留分離した40容量%軽質分である。
・DH−CNx 60%重質:上記の通り蒸留分離したDH−CNxの60容量%重質分である。
Moreover, the following each base material was prepared as follows.
DH-CNx 5% cut: 95% by volume light fraction obtained by distilling 5% by volume of DH-CNx heavy fraction.
DH-CNx 10% cut: 90% by volume light fraction obtained by distilling 10% by volume of DH-CNx heavy fraction.
DH-CNx 60% cut: 40% by volume light fraction obtained by distilling 60% by volume of DH-CNx heavy fraction.
DH-CNx 60% heavy: 60% by volume heavy of DH-CNx separated by distillation as described above.

実施例1〜3と比較例1〜3の各ガソリン組成物は、表1の基材を用い、表2に記載の各配合量で混合して得た。   The gasoline compositions of Examples 1 to 3 and Comparative Examples 1 to 3 were obtained by mixing at the blending amounts shown in Table 2 using the base material shown in Table 1.

なお、表1及び表2に示すガソリン基材の性状、及び実施例、比較例のガソリン組成物の性状は、次の方法により測定した。   In addition, the property of the gasoline base material shown in Table 1 and Table 2, and the property of the gasoline composition of an Example and a comparative example were measured with the following method.

(1)密度:JIS K 2249「原油及び石油製品−密度試験方法」 (1) Density: JIS K 2249 "Crude oil and petroleum products-Density test method"

(2)オクタン価(RON):JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」のリサーチ法オクタン価試験方法を用いた。 (2) Octane number (RON): The research method octane number test method of JIS K 2280 "Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method" was used.

(3)蒸気圧(RVP):JIS K 2258「原油及び燃料油−蒸気圧試験方法−リード法」 (3) Vapor pressure (RVP): JIS K 2258 "Crude oil and fuel oil-Vapor pressure test method-Reed method"

(4)蒸留性状:JIS K 2254「石油製品−蒸留試験法」 (4) Distillation properties: JIS K 2254 "Petroleum products-Distillation test method"

(5)全硫黄分:JIS K 2541「原油及び石油製品−硫黄分試験方法」の微量電量滴定式酸化法に準拠して、小数点以下2桁まで求めた。 (5) Total sulfur content: The total sulfur content was determined to 2 digits after the decimal point in accordance with the microcoulometric titration method of JIS K2541 “Crude oil and petroleum products—Sulfur content test method”.

(6)芳香族含有量、オレフィン含有量等の各種炭化水素化合物の成分組成:JIS K 2536のガスクロマトグラフ法による全成分試験方法により測定した。 (6) Component composition of various hydrocarbon compounds such as aromatic content, olefin content, etc .: Measured by the all component test method according to the gas chromatograph method of JIS K2536.

Figure 2010095566
Figure 2010095566

Figure 2010095566
Figure 2010095566

表2から、比較例1〜3と比較して、実施例1〜3のガソリン組成物は、オクタン価が高いことが分かる。   From Table 2, it can be seen that the gasoline compositions of Examples 1 to 3 have higher octane numbers than Comparative Examples 1 to 3.

また、炭素数6以上のオレフィンの含有量は、比較例1〜3と比べて実施例1〜3の方が高いことから、実施例1〜3は基材混合後のオクタン価向上効果が高いことが分かる。   Moreover, since the content of olefins having 6 or more carbon atoms is higher in Examples 1 to 3 than in Comparative Examples 1 to 3, Examples 1 to 3 have a high effect of improving the octane number after mixing the base materials. I understand.

さらには、実施例1〜3は比較例2〜3よりも、基材のオクタン価から計算して求めた算出値と実測して得たオクタン価の差(RONボーナス)が大きいことからも、基材混合後のオクタン価向上効果が高いことが分かる。   Furthermore, since Examples 1-3 have a larger difference (RON bonus) between the calculated value calculated from the octane number of the base material and the octane number obtained by actual measurement than Comparative Examples 2-3, the base material It can be seen that the effect of improving the octane number after mixing is high.

また、炭素数11以上の芳香族の含有量は、比較例1〜3と比べて実施例1〜3の方が低いことから、実施例1〜3は揮発性が良好であることが分かる。   Moreover, since the content of aromatics having 11 or more carbon atoms is lower in Examples 1 to 3 than in Comparative Examples 1 to 3, it can be seen that Examples 1 to 3 have good volatility.

さらに、実施例1〜3は比較例1〜3に比べて90%留出温度が低いことからも、実施例1〜3は揮発性が良好であることが分かる。   Furthermore, since Examples 1-3 have a 90% lower distillation temperature than Comparative Examples 1-3, it can be seen that Examples 1-3 have good volatility.

Claims (3)

90%留出温度が80〜120℃の基材1と、10%留出温度が100〜130℃で且つ90%留出温度が190℃以下の基材2とを混合して得たガソリン留分を90容量%以上含有し、全硫黄分が10質量ppm以下、リサーチ法オクタン価が90〜96、リード蒸気圧が55kPa以下、芳香族含有量が10〜30容量%、オレフィン含有量が10容量%以上であることを特徴とするガソリン組成物。   A gasoline fraction obtained by mixing a base material 1 having a 90% distillation temperature of 80 to 120 ° C and a base material 2 having a 10% distillation temperature of 100 to 130 ° C and a 90% distillation temperature of 190 ° C or less. The total sulfur content is 10 mass ppm or less, the research octane number is 90 to 96, the lead vapor pressure is 55 kPa or less, the aromatic content is 10 to 30% by volume, and the olefin content is 10 volumes. A gasoline composition characterized by being at least%. 炭素数11以上の芳香族含有量が3.0容量%以下で、炭素数6以上のオレフィン含有量が22.0容量%以上であることを特徴とする請求項1に記載のガソリン組成物。   The gasoline composition according to claim 1, wherein the aromatic content having 11 or more carbon atoms is 3.0% by volume or less, and the olefin content having 6 or more carbon atoms is 22.0% by volume or more. 前記基材1と前記基材2のリサーチ法オクタン価から混合容量割合で算出されたリサーチ法オクタン価よりも、前記基材1と前記基材2とを混合して得たガソリン留分を測定したリサーチ法オクタン価が0.1以上高いことを特徴とする請求項1または2に記載のガソリン組成物。   The research which measured the gasoline fraction obtained by mixing the said base material 1 and the said base material 2 rather than the research method octane number calculated by the mixing volume ratio from the research method octane number of the said base material 1 and the said base material 2 The gasoline composition according to claim 1 or 2, wherein the octane number is 0.1 or more higher.
JP2008265270A 2008-10-14 2008-10-14 Method for producing gasoline composition Active JP5350742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008265270A JP5350742B2 (en) 2008-10-14 2008-10-14 Method for producing gasoline composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008265270A JP5350742B2 (en) 2008-10-14 2008-10-14 Method for producing gasoline composition

Publications (2)

Publication Number Publication Date
JP2010095566A true JP2010095566A (en) 2010-04-30
JP5350742B2 JP5350742B2 (en) 2013-11-27

Family

ID=42257481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008265270A Active JP5350742B2 (en) 2008-10-14 2008-10-14 Method for producing gasoline composition

Country Status (1)

Country Link
JP (1) JP5350742B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338974A (en) * 2001-05-11 2002-11-27 Idemitsu Kosan Co Ltd Fuel oil composition for gasoline engine
JP2005226070A (en) * 2004-01-15 2005-08-25 Idemitsu Kosan Co Ltd Gasoline composition
JP2007045858A (en) * 2005-08-05 2007-02-22 Japan Energy Corp Etbe-containing gasoline composition and method for producing the same
JP2008138187A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Method for producing gasoline composition
JP2008174682A (en) * 2007-01-22 2008-07-31 Cosmo Oil Co Ltd Gasoline composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338974A (en) * 2001-05-11 2002-11-27 Idemitsu Kosan Co Ltd Fuel oil composition for gasoline engine
JP2005226070A (en) * 2004-01-15 2005-08-25 Idemitsu Kosan Co Ltd Gasoline composition
JP2007045858A (en) * 2005-08-05 2007-02-22 Japan Energy Corp Etbe-containing gasoline composition and method for producing the same
JP2008138187A (en) * 2006-11-07 2008-06-19 Japan Energy Corp Method for producing gasoline composition
JP2008174682A (en) * 2007-01-22 2008-07-31 Cosmo Oil Co Ltd Gasoline composition

Also Published As

Publication number Publication date
JP5350742B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5153147B2 (en) Gasoline composition
JP4913436B2 (en) Unleaded high octane gasoline
JP4429940B2 (en) Unleaded gasoline
JP4611049B2 (en) Unleaded gasoline
JP4856991B2 (en) Unleaded high octane gasoline
JP4855003B2 (en) Gasoline composition and method for producing the same
JP5350742B2 (en) Method for producing gasoline composition
EP2367907B1 (en) Fuel composition for use in gasoline engines
JP4913444B2 (en) Unleaded gasoline
JP5147914B2 (en) Production method of unleaded gasoline
JP5280624B2 (en) Unleaded gasoline composition
JP4913434B2 (en) Unleaded high octane gasoline
JP4659380B2 (en) Gasoline composition
JP4913441B2 (en) Unleaded gasoline
JP4913440B2 (en) Unleaded gasoline
JP5153146B2 (en) Gasoline composition
JP5280625B2 (en) Unleaded gasoline composition
JP5280623B2 (en) Unleaded gasoline composition
JP4913438B2 (en) Unleaded gasoline
JP4371925B2 (en) Unleaded gasoline composition and method for producing the same
JP4913430B2 (en) Unleaded high octane gasoline
JP4913439B2 (en) Unleaded gasoline
JP4913432B2 (en) Unleaded high octane gasoline
JP4913431B2 (en) Unleaded high octane gasoline
JP4913433B2 (en) Unleaded high octane gasoline

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250