JP2010094741A - Method for deciding quality of through-hole - Google Patents
Method for deciding quality of through-hole Download PDFInfo
- Publication number
- JP2010094741A JP2010094741A JP2010008170A JP2010008170A JP2010094741A JP 2010094741 A JP2010094741 A JP 2010094741A JP 2010008170 A JP2010008170 A JP 2010008170A JP 2010008170 A JP2010008170 A JP 2010008170A JP 2010094741 A JP2010094741 A JP 2010094741A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- holes
- green sheet
- punching
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Processing (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、グリーンシートなどシート材に形成されたスルーホールの品質判定方法に関し、特にレーザ加工で形成されたスルーホールの品質判定方法に関する。 The present invention relates to a method for determining the quality of through holes formed in a sheet material such as a green sheet, and more particularly to a method for determining the quality of through holes formed by laser processing.
積層チップコンデンサー等の積層部品は、導体パターンが印刷されたセラミックスグリーンシートを積層し、焼成することにより製造される。グリーンシートに印刷される導体パターンは複数層間で電気的に接続される場合が多く、グリーンシートには導体パターンに連なるスルーホールが所定位置に形成される。電気的接続は、スルーホールに導体を埋め込むことによって行われるため、スルーホールの良否は積層部品の品質に大きく影響し、スルーホール形成具の保守点検は重要である。 A multilayer component such as a multilayer chip capacitor is manufactured by laminating and firing ceramic green sheets on which a conductor pattern is printed. In many cases, a conductor pattern printed on a green sheet is electrically connected between a plurality of layers, and a through hole connected to the conductor pattern is formed at a predetermined position in the green sheet. Since electrical connection is performed by embedding a conductor in the through hole, the quality of the through hole greatly affects the quality of the laminated part, and maintenance inspection of the through hole forming tool is important.
スルーホール(以下穴と略す)の形成には、従来から打ち抜きピンで打ち抜く機械的方法が用いられているが、打ち抜きピンは非常に小径で細長いため壊れやすく、かつグリーンシートのセラミックス粒子やグリーンシートを保持するキャリアフィルムにより切刃部が摩耗していく。打ち抜きピンが折損すると穴が全く形成されず完全な導通不良となってしまうし、切刃部が摩耗するとバリなどが発生して導体が埋め込まれ難くなり、導通の信頼性が悪くなる。 For the formation of through-holes (hereinafter abbreviated as holes), a conventional mechanical method using punching pins has been used. However, the punching pins are very small in diameter and easy to break, and green sheet ceramic particles and green sheets The cutting edge is worn by the carrier film that holds When the punching pin is broken, no hole is formed at all, resulting in complete conduction failure. When the cutting edge is worn, burrs or the like are generated, making it difficult to embed the conductor, resulting in poor conduction reliability.
上記問題を解決すべく種々の提案がなされている。例えば下記特許文献1には、各打ち抜きピンに打撃センサーを設ける方法が開示されている。すなわち、打撃センサーが検知した場合は、打ち抜きピンがグリーンシートを貫通し正常に穴あけが行われたと判定し、検知しなかった場合は、打ち抜きピンが折損していると判定するものである。また、例えば下記特許文献2には、工具の耐用使用回数をあらかじめ決めておき、実使用回数の積算値と比較することで工具寿命を管理する方法が開示されている。また、下記特許文献3には、発光部と受光部からなる透過センサーの間にグリーンシートを挟み、所定のエリア単位で、そこに含まれる複数穴を通過するトータル光の受光レベルを検出し、判定レベルと比較することで非貫通穴の有無を光学的に判定し、工具の折損を検出するという方法が開示されている。
Various proposals have been made to solve the above problems. For example,
特許文献1の方法は、打ち抜きピンが完全に折損してグリーンシートを押圧しない場合は検出可能であるが、打ち抜きピンやダイ穴が摩耗している場合や、打ち抜きピン軸心と型に設けられ打ち抜きピンが嵌合する打ち抜き用ダイ穴との軸心がずれていたりする場合は、打ち抜きピンはグリーンシートを貫通するため、正常な穴明けと判定してしまう。しかし、形成された穴は、開口部にバリが出っ張ったりした不完全穴であり、導通の信頼性が問題となる。このように、打ち抜き具の摩耗や調整不良等は検知できず、また、打ち抜きピンの数が増えると打撃センサーの取り付けが複雑になる、という問題がある。
特許文献2の方法は、穴明けする対象物の性状(例えば厚さや材質)に応じて工具の寿命を設定しなければならず、また、工具自体の寿命のバラツキや、工具の取付け状態の違いによっても工具寿命は変わり、適切な耐用使用回数を決めることが難しいという問題がある。また、突発的な破損に対しては対処できない。
The method of
In the method of
また、特許文献3の方法は、複数の穴を通過するトータル光に対して判定レベルと比較し、非貫通穴の有無を判定するものであり、個々の穴について評価するものではない。従って、検査エリア内の対象穴数が少ない場合には、非貫通穴がある場合とない場合の受光レベル差は大きいため判定は容易であるが、対象穴数が多い場合は、受光レベル差が小さくなるため判定レベルの設定が難しく、非貫通穴を見逃す恐れがある。また、前述したように、工具折損ではなく、摩耗などの原因でバリが発生する不完全穴に対しては、受光レベルが穴明け毎に変動するため、さらに判定レベルの設定は難しく、不完全穴有無の判定は難しい。このように、検査エリア内の対象穴数が一定であっても判定レベルの設定は難しいのに加え、穴数が変わると判定レベルも変化させなければならず、工場生産レベルで適切に使いこなすことは難しい。
また、最近では機械的な打ち抜きピン方式に代り、レーザを照射して穴明けを行う方法も用いられているが、前記公知例では対応することはできない。
Moreover, the method of
Recently, instead of the mechanical punching pin method, a method of making a hole by irradiating a laser is also used, but the above-mentioned known example cannot cope with it.
従って本発明の目的は、グリーンシートにレーザ加工で形成される穴個々に、不完全穴や非貫通穴の有無などの検査を行い、レーザ加工装置の保守点検のための情報提供ができる品質判定方法を提供することである。 Therefore, the object of the present invention is to perform quality inspection that can provide information for maintenance inspection of laser processing equipment by inspecting each hole formed by laser processing on the green sheet for the presence or absence of incomplete holes or non-through holes. Is to provide a method.
本発明は、レーザ加工でスルーホールが形成されているべき部位個々について開口部の穴特徴量を画像処理で求め、穴特徴量が同程度の穴の発生連続性に基づきレーザ加工装置の保守点検が必要であるかどうかを判定することを特徴としている。
本発明において、前記穴特徴量が開口部の面積又は平均径であり、穴特徴量が所定の閾値を下回ったスルーホールの発生連続性に基づきスルーホール形成具の保守点検が必要であるかどうかを判定することが好ましい。
According to the present invention, the hole feature amount of the opening is obtained by image processing for each part where a through hole should be formed by laser processing, and the maintenance inspection of the laser processing apparatus is performed based on the continuity of the generation of holes having the same hole feature amount. It is characterized by determining whether or not is necessary.
In the present invention, whether or not the hole feature is the area or average diameter of the opening, and maintenance of the through-hole forming tool is necessary based on the continuity of occurrence of the through-hole where the hole feature is below a predetermined threshold Is preferably determined.
以上説明したように、レーザ加工で形成される多数の穴の開口部を個々に定量的に評価し、適宜発生位置情報を加えてデータ処理を行うので、レーザ加工装置の不具合を種々の角度から判定することができ、保守点検時期を的確に指示することが可能となり、グリーンシートに形成される穴の品質を常に良い状態に維持することができる。また、製品不良となるような不良穴が発生した時、早い段階で情報を出すことができるので、生産性向上に有効である。 As described above, the openings of a large number of holes formed by laser processing are quantitatively evaluated individually, and the data processing is performed by appropriately adding the generated position information. This makes it possible to accurately determine the maintenance inspection time, and the quality of the holes formed in the green sheet can always be maintained in a good state. In addition, when a defective hole that causes a product defect occurs, information can be output at an early stage, which is effective in improving productivity.
以下、打ち抜きピンを用いた穴あけ加工装置により、多数の穴が形成されたキャリアフィルム付きグリーンシートを例に説明する。図1に、グリーンシートに形成された穴の品質判定フローの概要を示すが、本発明の特徴は、形成された穴個々について穴特徴量を計測し、これをもとに穴の品質を判定する点にある。 Hereinafter, a green sheet with a carrier film in which a large number of holes are formed by a punching apparatus using a punching pin will be described as an example. FIG. 1 shows an outline of the quality judgment flow of holes formed in a green sheet. The feature of the present invention is to measure the hole feature amount for each formed hole and judge the quality of the hole based on this. There is in point to do.
まず、図2をもとに穴あけ加工装置1について説明する。
N本の打ち抜きピンP(P1、P2、…、PN)が所定のピッチで上金型2に取り付けられており、下金型3には、上金型2に取り付けられた打ち抜きピンPに対応し、上金型2が下降したときに、打ち抜きピンPが嵌入するようなダイ穴D(D1、D2、…、DN)が設けられている。グリーンシート4は、X−Y移動手段6に保持されて下金型3上を移動でき、グリーンシート4が所定の位置に位置決めされるのに同期して上金型2が下降し、グリーンシート4に同時にN個の穴あけが行われる。打ち抜きピン1本が担当する穴明けエリアは、打ち抜きピン取り付けピッチで決めることができ、通常積層部品1個〜数個分の範囲とする。即ち、打ち抜きピン1本で1個〜数個分の積層部品に必要な個数の穴を明ける。図3は、打ち抜きピン1本で積層部品1個分の穴を明けた状態を示し、打ち抜きピンP1(P2、P3、…、PN)で、積層部品1個分のエリアS1(S2、S3、…、SN)にn個(図3では16個)の穴を明けたことを表している。穴位置や個数は、グリーンシート4をX−Y方向に移動することで制御することができる。
First, the
N punch pins P (P 1 , P 2 ,..., P N ) are attached to the
図4に正常な状態の打ち抜き部の示すが、図4(a)に示すように、下金型3上にキャリアフィルム5付きのグリーンシート4が位置決めされ、図4(b)に示すように打ち抜きピンPが下降することにより穴加工が行われる。穴加工は、キャリアフィルム5から剥離されたグリーンシート4に対して行う場合もあるが、50μm程度の薄いグリーンシートは、図4に示すようにキャリアフィルム5と共に穴明けを行うことが多い。打ち抜きピンPの先端やダイ穴Dの入口に摩耗がなく、また軸心にもずれがない場合、図4(c)に示すようなエッジのシャープな正常穴10が形成される。図4(c)は、上図が正常穴10の開口部エッジを上から見た模式図で、下図はその断面図である。
FIG. 4 shows a punched portion in a normal state. As shown in FIG. 4 (a), the
穴あけ加工回数が増加するに伴い、打ち抜きピンPやダイ穴Dなどの打ち抜き具の先端部は、グリーンシート4のセラミックス粒子や、グリーンシート4を保持するキャリアフィルム5との接触で摩耗していく。図5(a)に示すように、打ち抜き具先端が摩耗等で丸まってくると、切れ味が悪くなるとともに、せん断するのに良好な隙間が広がって行き、図5(b)に示すようにエッジの周囲にバリ12を有する不完全穴11が形成され易くなる。また、打ち抜き具に摩耗がない場合であっても、打ち抜き具の取付け関係位置が悪く、図6(a)に示すように、打ち抜きピンPとダイ穴Dの軸心にずれがあると、図6(b)に示すようにエッジの片側にバリ12が残った不完全穴11が形成されてしまう。バリ12を有する不完全穴11は、開口部にバリが出っ張り、開口面積が狭くなるため、穴への導体の埋め込みがスムースにできなくなり、導体パターン間の導通不良を起こし易くなる。このように、バリ12が発生する場合は、早期にバリ12の発生を検知し、打ち抜き具の保守点検などのメンテナンスを行うことが望ましい。
As the number of drilling operations increases, the tip of the punching tool such as the punching pin P and the die hole D is worn by contact with the ceramic particles of the
次に、図7をもとに、穴を定量評価する穴検査装置20について説明する。
穴明け加工されたグリーンシート4が位置決めセットされる載置部21と、載置部21の上方に配設されたビデオカメラあるいはラインセンサカメラ等の画像撮像手段22と、載置部21をX−Y方向に位置決め制御することができるXYステージ23と、XYステージ23を制御するステージ制御部24と、画像撮像手段22からの画像情報を処理する画像処理部25と、画像処理部25とステージ制御部24とが電気的に接続された結果判定部26とを備えている。
Next, a
A
図8に載置部21を示す。載置部21は、グリーンシート4が載る拡散板21aの下方に発光部21bを設けたものである。発光部21bは、多数の発光ダイオードや光ファイバを用いて構成することができるが、グリーンシート4の下方から照明できれば特に限定するものではない。載置部21から出た光はグリーンシート4に形成された貫通穴を透過するので、画像撮像手段22は透過光を受光し開口部を明瞭に撮像することができ、画像処理部25は開口部の面積や平均径などを穴特徴量として計測することができる。ステージ制御部24にはグリーンシート4の穴が形成されるべき全ての部位或いは設定した部位の位置情報が収納されている。従って、計測された穴特徴量とその位置情報は結果判定部26で穴情報として記憶される。
FIG. 8 shows the
次に、穴品質判定について説明する。
XYステージ23を移動し、グリーンシート4上の所定の穴部を画像撮像手段22で撮像し、穴特徴量を計測する。所定位置に穴が形成されていなかったり、穴がほとんど塞がっていると、開口部面積又は平均径は零かほぼ零と計算され、内側に向いたバリがあれば、その投影面積の大きさに応じて開口部面積又は平均径は小さく計算されるので、穴特徴量は定量的に算出できる。計測すべき全穴部の穴特徴量算出が終了すると、予め結果判定部26に収納しておいた論理に基づいて、穴情報から所定の穴特徴量を有する穴の個数やその発生位置などを処理し、打ち抜き具全体の摩耗程度の判定や、打ち抜きピン個々の摩耗や突発的損傷の判定を行ったり、また製品不良となるような不良穴の抽出などを行う。
Next, the hole quality determination will be described.
The
以下、穴品質判定のための主な論理の例を、図9及び図1を参照しながら説明する。なお、穴特徴量は平均穴径を用いている。図9は、直径200μmの打ち抜きピンを用いて穴明けをした時の、1枚のグリーンシートに形成された全穴部について計測した平均穴径の発生個数分布を示した一例であり、図9(a)は打ち抜き具を交換した直後のもので、図9(b)は180万回打ち抜き後のものである。 Hereinafter, an example of main logic for determining the hole quality will be described with reference to FIGS. The hole feature amount uses an average hole diameter. FIG. 9 is an example showing the distribution of the number of generated average hole diameters measured for all the holes formed in one green sheet when drilling using a punching pin having a diameter of 200 μm. (A) is immediately after exchanging the punching tool, and FIG. 9 (b) is after 1.8 million punches.
(1)打ち抜き具全体の摩耗判定
1)対象とするグリーンシートについて、計測対象全穴の穴特徴量を求め、図9に示すような平均穴径の発生個数分布を求める。
2)平均穴径が摩耗判定用に設定した閾値1(例えば100μm)より小さい穴を不完全穴としてその個数を求め、全計測穴数に対する比率を求め、不完全穴発生率として算出する。
3)不完全穴発生率が判定値α(例えば1%)より小さい場合は、まだ継続使用可能と判定する。なお、不完全穴の穴情報は、製品品質管理や穴形成具保守点検用の履歴データが必要となったような場合利用できるため、記録として残しておくとよい。
4)不完全穴発生率が判定値α以上の場合は、打ち抜きピン或いはダイ穴が摩耗限界に達したと判定し、不完全穴の穴情報を記録するとともに、打ち抜き具の保守点検指令を出す。
なお、打ち抜きピン側とダイ穴側のどちらを主にチェックすべきかは、例えば不完全穴発生率が判定値α以上となる発生回数で区分けすることができる。即ち発生回数が所定回数M(例えば3回)より小さければ、打ち抜きピン側の摩耗であるとし、所定回数M以上となった時は、ダイ穴側も摩耗しているとする。また、打ち抜き具の交換・再組み立てを行った時、軸心のずれなど組立不良がある場合は、稼動再開後早い段階で不完全穴発生率が大きくなる状況が継続するので、直ぐに見出すことができる。
(1) Wear determination of the entire punching tool 1) For the target green sheet, the hole feature amount of all holes to be measured is obtained, and the generated number distribution of average hole diameters as shown in FIG. 9 is obtained.
2) The number of holes whose average hole diameter is smaller than the threshold value 1 (for example, 100 μm) set for wear determination is determined as an incomplete hole, the number thereof is determined, and the ratio to the total number of measured holes is determined and calculated as the incomplete hole occurrence rate.
3) When the incomplete hole occurrence rate is smaller than the determination value α (for example, 1%), it is determined that the continuous use is still possible. It should be noted that the incomplete hole information may be used as a record because it can be used when product quality control or history data for hole forming tool maintenance inspection is required.
4) If the incomplete hole occurrence rate is greater than or equal to the determination value α, it is determined that the punching pin or die hole has reached the wear limit, the hole information of the incomplete hole is recorded, and a maintenance inspection command for the punching tool is issued. .
It should be noted that whether the punch pin side or the die hole side should be mainly checked can be classified by the number of occurrences at which the incomplete hole occurrence rate is equal to or higher than the determination value α. That is, if the number of occurrences is smaller than a predetermined number M (for example, 3 times), it is assumed that the punching pin side is worn, and if the number of occurrences exceeds the predetermined number M, the die hole side is also worn. Also, when the punching tool is replaced or reassembled, if there is an assembly failure such as a misalignment of the shaft center, the incomplete hole occurrence rate will continue to increase at an early stage after resuming operation. it can.
(2)打ち抜きピン毎の摩耗や突発的損傷の判定
打ち抜きピンが、1個又は複数個まとめて交換できるような分割式取り付け構造の場合に適用することができる。
1)対象とするグリーンシートについて、計測対象全穴の穴特徴量を求め、図9に示すような平均穴径の発生個数分布を求める。
2)平均穴径が、摩耗判定用に設定した前記閾値1又は別途設定した閾値1'より小さい穴である不完全穴について、穴情報を記録として残すとともに、分割式取り付け構造から予め決まってくる穴明けエリア毎に形成された不完全穴個数を求め、所定数以上であるかどうか比較する。
3)不完全穴個数が所定数以上ある穴明けエリアについては、該当する打ち抜きピンが摩耗又は破損していると判定し、保守点検指令を出す。
(2) Judgment of wear and sudden damage for each punching pin The present invention can be applied to a case of a split mounting structure in which one or a plurality of punching pins can be replaced together.
1) For the target green sheet, the hole feature amount of all holes to be measured is obtained, and the generated number distribution of average hole diameters as shown in FIG. 9 is obtained.
2) For incomplete holes whose average hole diameter is smaller than the
3) For a drilled area where the number of incomplete holes is a predetermined number or more, it is determined that the corresponding punching pin is worn or damaged, and a maintenance inspection command is issued.
(3)不良穴の抽出
1)対象とするグリーンシートについて、計測対象全穴の穴特徴量を求め、図9に示すような平均穴径の発生個数分布を求める。
2)平均穴径が、不良穴判定用閾値2(例えば40μm)より小さい穴を不良穴とし、その個数と発生位置を求めて製品不良数を算出し、該穴情報を記録として残すとともに、該グリーンシートに不良穴があることを判定する。
3)該判定信号と該穴情報を外部に出力する。不良穴が存するエリアの積層部品はほぼ不良品となるので、後工程で容易に不良発生箇所がわかるマッピング形態で出力するとよい。
なお、不良穴の発生は、ほとんどが打ち抜きピンの折損によるものであるが、正常穴が打ち抜かれた場合であっても、打ち抜かれた部材が打ち抜きピン先端に付着したり、静電気による吸着などの原因で貫通穴に入り込んで開口部を塞いでしまい発生することがある。しかし、前者は決まった箇所で継続的に発生するのに対し、後者は規則性が弱いので、該穴情報をもとに区別することができ、この点を付加した保守点検指令を出すこともできる。
(3) Extraction of defective holes 1) For the target green sheet, the hole feature amount of all the measurement target holes is obtained, and the generated number distribution of average hole diameters as shown in FIG. 9 is obtained.
2) A hole having an average hole diameter smaller than the defective hole determination threshold 2 (for example, 40 μm) is defined as a defective hole, the number and occurrence position thereof are calculated, the number of product defects is calculated, and the hole information is recorded as a record. Determine that there is a defective hole in the green sheet.
3) The determination signal and the hole information are output to the outside. Since the laminated parts in the area where the defective holes exist are almost defective products, it is preferable to output in a mapping form in which the location where the defects are generated can be easily identified in a later process.
The occurrence of defective holes is mostly due to breakage of the punching pin, but even when normal holes are punched, the punched member adheres to the tip of the punching pin or is attracted by static electricity. It may occur by entering the through hole and blocking the opening. However, while the former occurs continuously at a fixed point, the latter is weak in regularity, so it can be distinguished based on the hole information, and a maintenance inspection command with this point added can be issued. it can.
なお、前記各論理に基づく保守点検指令の内、打ち抜き具の全体的摩耗判定からの保守点検指令に対しては、直ぐに打ち抜きピン又は下金型をチェックし、調整や交換などを行うことが望ましいが、他からの保守点検指令は、対象製品などに合せて適宜判定条件を付加したものとするとよい。即ち、小型の積層電子部品のように、1枚のグリーンシートに多数の製品が形成される場合は、穴不良による製品歩留りの低下と、穴明け加工機など生産設備を停止させることによる稼働率低下との損得勘定を比較検討して、装置のメンテナンスをする方が合理的であるからである。 Of the maintenance inspection commands based on the above logics, it is desirable to immediately check the punching pin or lower die for adjustment and replacement for the maintenance inspection command from the overall wear determination of the punching tool. However, the maintenance / inspection command from another may be appropriately added with a determination condition according to the target product. In other words, when a large number of products are formed on a single green sheet, such as a small multilayer electronic component, the product yield decreases due to defective holes, and the operating rate by stopping production equipment such as drilling machines. This is because it is more reasonable to perform maintenance of the device by comparing the profit and loss account with the decline.
以上、3種類の穴品質判定方法を説明したが、これらを組合わせて用いることができるし、他の論理をもとに判定することもできる。即ち、上記は打ち抜きピンを用いた穴形成で説明したが、穴がレーザなど他の手段で形成される場合でも適用することができる。この時、穴情報を求め結果判定部に記憶することは同じであるが、穴形成手段が異なれば不具合発生原因や発生状況は異なるので、該穴形成手段の特徴を考慮した論理を用いる。例えば、レーザの場合は、1箇所から照射するレーザビームで全穴を順次形成するという大きな特徴があるため、不完全穴発生率を求める代わりに、穴特徴量が同程度の穴の発生連続性をチェックするような品質判定論理とし、レーザ発振器が不具合であるかどうかを判定するようにするとよい。 Although three types of hole quality determination methods have been described above, these can be used in combination, or can be determined based on other logic. In other words, the above description has been made with respect to hole formation using a punching pin, but the present invention can be applied even when the hole is formed by other means such as a laser. At this time, it is the same that the hole information is obtained and stored in the result determination unit. However, if the hole forming means is different, the cause and the state of occurrence of the failure are different. Therefore, the logic considering the characteristics of the hole forming means is used. For example, in the case of a laser, there is a great feature that all holes are sequentially formed with a laser beam irradiated from one place. Therefore, instead of obtaining the incomplete hole occurrence rate, the occurrence continuity of holes with the same hole feature amount is obtained. It is preferable to use quality judgment logic that checks whether or not the laser oscillator is defective.
1 穴加工装置
2 上金型
3 下金型
6 X−Y移動テーブル
4 グリーンシート
5 キャリアフィルム
10 正常スルーホール
11 不完全スルーホール
12 バリ
20 穴検査装置
21 載置台
22 撮像装置
25 画像処理部
24 ステージ制御部
26 結果判定部
D ダイ穴
P 打ち抜きピン
S 製品エリア
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010008170A JP2010094741A (en) | 2010-01-18 | 2010-01-18 | Method for deciding quality of through-hole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010008170A JP2010094741A (en) | 2010-01-18 | 2010-01-18 | Method for deciding quality of through-hole |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000330820A Division JP2002134371A (en) | 2000-10-30 | 2000-10-30 | Determination method for through-hole quality |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010094741A true JP2010094741A (en) | 2010-04-30 |
Family
ID=42256796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010008170A Pending JP2010094741A (en) | 2010-01-18 | 2010-01-18 | Method for deciding quality of through-hole |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010094741A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119836A1 (en) * | 2021-12-22 | 2023-06-29 | 村田機械株式会社 | Laser processing machine and workpiece processing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300200A (en) * | 1991-03-27 | 1992-10-23 | Hitachi Ltd | Damage detecting method for small-diameter hole forming tool |
JPH11317576A (en) * | 1998-05-06 | 1999-11-16 | Hitachi Ltd | Manufacture of board |
-
2010
- 2010-01-18 JP JP2010008170A patent/JP2010094741A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300200A (en) * | 1991-03-27 | 1992-10-23 | Hitachi Ltd | Damage detecting method for small-diameter hole forming tool |
JPH11317576A (en) * | 1998-05-06 | 1999-11-16 | Hitachi Ltd | Manufacture of board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119836A1 (en) * | 2021-12-22 | 2023-06-29 | 村田機械株式会社 | Laser processing machine and workpiece processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6264072B2 (en) | Quality control device and control method thereof | |
TWI467403B (en) | Area classifying device, substrate detecting device and method for classifying area | |
CN106961796B (en) | A kind of production method convenient for detecting the PCB of back drill hole precision | |
CN105764241A (en) | Method for testing alignment of printed board product | |
JP5649770B2 (en) | Mechanical sheet making equipment | |
CN106793474A (en) | A kind of printed circuit board (PCB) and its processing method | |
US7407822B2 (en) | Method for inspecting insulating film for film carrier tape for mounting electronic components thereon, inspection apparatus for inspecting the insulating film, punching apparatus for punching the insulating film, and method for controlling the punching apparatus | |
CN107295749B (en) | A kind of inclined management-control method in pcb board hole | |
US8694148B2 (en) | Tracking and marking specimens having defects formed during laser via drilling | |
JP2010094741A (en) | Method for deciding quality of through-hole | |
JP4403777B2 (en) | Wiring pattern inspection apparatus and method | |
KR101572089B1 (en) | Method of defect inspection for printed circuit board | |
JP2010078574A (en) | Automatic tester of sheet metal surface | |
JP2002134371A (en) | Determination method for through-hole quality | |
CN109982511B (en) | Manufacturing method of PCB (printed Circuit Board) convenient for detecting whether copper-free hole is drilled in missing mode or not | |
CN112304975A (en) | Printed circuit board maintenance method and system | |
CN111256578A (en) | Method for detecting depth of back drilling plate | |
JP2013161580A (en) | Electrode substrate checking method | |
JP6508768B2 (en) | Parts inspection device | |
JP2009008596A (en) | Automatic inspection device for plate-like metal surface | |
KR20050055991A (en) | Printed circuit board where the test coupon of the micro-via is had and the manufacturing method | |
JP3714828B2 (en) | Defective method for printed circuit board and mark used for this determination | |
CN101256067A (en) | Method for automated optical inspection | |
JP2007115945A (en) | Method of manufacturing semiconductor device | |
CN113811082B (en) | Method for improving alignment offset hole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110922 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120127 |