JP2010094715A - Method for improving residual stress of piping - Google Patents

Method for improving residual stress of piping Download PDF

Info

Publication number
JP2010094715A
JP2010094715A JP2008268567A JP2008268567A JP2010094715A JP 2010094715 A JP2010094715 A JP 2010094715A JP 2008268567 A JP2008268567 A JP 2008268567A JP 2008268567 A JP2008268567 A JP 2008268567A JP 2010094715 A JP2010094715 A JP 2010094715A
Authority
JP
Japan
Prior art keywords
pipe
piping
stress
residual stress
restraining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008268567A
Other languages
Japanese (ja)
Other versions
JP5237750B2 (en
Inventor
Fuminori Iwamatsu
史則 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008268567A priority Critical patent/JP5237750B2/en
Publication of JP2010094715A publication Critical patent/JP2010094715A/en
Application granted granted Critical
Publication of JP5237750B2 publication Critical patent/JP5237750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving residual stress of a piping which is capable of imparting larger compressive residual stress to the piping. <P>SOLUTION: A pair of constraint members 4, outer containers 15A, 15B and inner containers 16A, 16B are mounted on an outer surface of a piping 1 with water 17 being present therein at upstream and downstream sides of a weld part 2. Dry ice 22 is placed in the outer containers 15A, 15B to cool the water 17 in the piping 1. An ice plug 23 is formed in the piping 1 at the position of each outer container. Thereafter, dry ice 22 is placed in the inner containers 16A, 16B to cool the water 17 present between the ice plugs 23. The water 17 starts to freeze, and its volume is inflated, and the piping 1 is expanded in the radial direction between the ice plugs 23. Plastic deformation occurs at the position where the weld part 2 is brought into contact with a constraint member 4 of the piping 1. Compressive residual stress is imparted in each inner surface at the position where the weld part 2 is brought into contact with the constraint member 4 of the piping 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配管の残留応力改善方法に係り、特に、配管の溶接部付近の残留応力を改善するのに好適な配管の残留応力改善方法に関する。   The present invention relates to a method for improving residual stress in piping, and more particularly to a method for improving residual stress in piping suitable for improving residual stress in the vicinity of a welded portion of piping.

発電プラントで使用される配管では、溶接が行われると溶接部近傍には残留応力が発生する。また、高温水配管には耐食性を考慮してステンレス鋼製配管またはニッケル合金鋼製配管を用いることが多い。ステンレス鋼およびニッケル合金鋼等を用いた配管では、配管の溶接部に引張残留応力が付与されたまま高温純水中に長時間曝されると、応力腐食割れを発生する恐れがある。したがって、溶接により発生した残留応力は、改善することが望ましい。   In piping used in a power plant, when welding is performed, residual stress is generated in the vicinity of the weld. Further, in consideration of corrosion resistance, stainless steel piping or nickel alloy steel piping is often used for the high temperature water piping. In piping using stainless steel, nickel alloy steel, or the like, stress corrosion cracking may occur when exposed to high temperature pure water for a long time while tensile residual stress is applied to the welded portion of the piping. Therefore, it is desirable to improve the residual stress generated by welding.

配管の溶接部の残留応力を改善する方法として、配管内に形成した氷栓(アイスプラグ)を利用する方法が、特開2005−95948号公報および特開2006−334596号公報にて提案されている。   As a method for improving the residual stress of the welded portion of the pipe, a method using an ice plug (ice plug) formed in the pipe is proposed in Japanese Patent Laid-Open Nos. 2005-95948 and 2006-334596. Yes.

特開2005−95948号公報に記載された配管の残留応力改善方法は、配管の溶接部の上流側と下流側の二箇所に冷媒容器をそれぞれ取り付けて配管内に氷栓をそれぞれ形成し、これらの氷栓間の水を凍らせて凍った氷の体積膨張によって配管を塑性変形させる。この塑性変形によって配管の内面に圧縮残留応力が付与される。配管の塑性変形時において配管の最大塑性変形量を制限するために、配管の塑性変形させる箇所(例えば、溶接部)の外面に、拘束治具を取り付けている。   The method for improving the residual stress of piping described in Japanese Patent Application Laid-Open No. 2005-95948 is that the refrigerant containers are respectively attached to the upstream and downstream sides of the welded portion of the piping to form ice plugs in the piping. The pipe is plastically deformed by the volume expansion of the frozen ice by freezing the water between the ice plugs. By this plastic deformation, compressive residual stress is applied to the inner surface of the pipe. In order to limit the maximum amount of plastic deformation of the pipe at the time of plastic deformation of the pipe, a restraining jig is attached to the outer surface of a place (for example, a welded portion) where the pipe is plastically deformed.

特開2006−334596号公報に記載された配管の残留応力改善方法は、配管の溶接部の上流側と下流側の二箇所に氷栓形成用の冷媒容器をそれぞれ取り付け、これらの冷媒容器と溶接部の間の二箇所に拡管用の冷媒容器をそれぞれ取り付ける。氷栓形成用の各冷媒容器によって配管内で溶接部の上流および下流の二箇所に氷栓を形成し、拡管用の各冷媒容器によって氷栓間に存在する水を凍らせて生成された氷の体積膨張を利用して配管の溶接部付近を外側に向って押し広げる。これによって、配管の溶接部付近が塑性変形され、溶接部付近の内面に圧縮の残留応力が付与される。   In the method for improving residual stress of piping described in JP-A-2006-334596, refrigerant containers for forming ice plugs are respectively attached at two locations on the upstream side and downstream side of the welded portion of the pipe, and these refrigerant containers are welded to each other. A refrigerant container for pipe expansion is attached at two locations between the sections. Ice generated by forming ice plugs at two locations upstream and downstream of the welded portion in the pipe by each refrigerant container for forming ice plugs, and freezing water existing between the ice plugs by each refrigerant container for expanding pipes The vicinity of the welded part of the pipe is pushed outward using the volume expansion of the pipe. As a result, the vicinity of the welded portion of the pipe is plastically deformed, and compressive residual stress is applied to the inner surface near the welded portion.

特開平5−154683号公報も、配管の溶接部の応力を改善する方法を記載している。この応力改善方法では、溶接部の上流側および下流側で配管の周囲に拘束部材を取り付け、配管を加熱して熱膨張させている。配管の熱膨張時において拘束部材により配管に締め付け力を与え、円周方向応力のみならず軸方向応力に対して圧縮応力を与える。これにより、配管の残留応力を改善している。   Japanese Patent Application Laid-Open No. 5-154683 also describes a method for improving the stress of the welded portion of the pipe. In this stress improvement method, a restraint member is attached around the pipe on the upstream side and the downstream side of the welded portion, and the pipe is heated and thermally expanded. When the pipe is thermally expanded, a clamping force is applied to the pipe by the restraining member, and compressive stress is applied not only to the circumferential stress but also to the axial stress. Thereby, the residual stress of piping is improved.

特開2005−95948号公報JP-A-2005-95948 特開2006−334596号公報JP 2006-334596 A 特開平5−154683号公報Japanese Patent Laid-Open No. 5-154683

特開2005−95948号公報に記載された配管の残留応力改善方法では、溶接部の外面を含めて応力を改善する位置で配管を取り囲んで拘束治具を取り付けている。配管の溶接部近傍は、溶接金属が必要以上の寸法に盛り上がった余盛が形成される。拘束治具は、配管の最大塑性変形量を制限する機能を有しているが、余盛を考慮して作成する必要がある。しかしながら、余盛の形状は溶接部毎に異なっているため、溶接部毎に余盛を考慮して拘束冶具を作成しなければならないが、余盛の形状に合せて拘束治具を作成することは困難である。配管の溶接部の余盛が大きい場合には、配管内の氷の体積膨張によって配管が拡管されても余盛が拘束治具の内面に接触し、溶接部の拡管が拘束治具によって制限されて不十分になる可能性がある。このため、配管の溶接部において残留応力の改善が予定通り行われない可能性がある。   In the method for improving residual stress of piping described in Japanese Patent Application Laid-Open No. 2005-95948, a restraining jig is attached so as to surround the piping at a position where stress is improved including the outer surface of the welded portion. In the vicinity of the welded portion of the pipe, a surplus where the weld metal is raised to a size larger than necessary is formed. The restraining jig has a function of limiting the maximum amount of plastic deformation of the pipe, but it is necessary to create it in consideration of surplus. However, because the shape of the surplus differs for each welded part, it is necessary to create a restraining jig in consideration of the surplus for each welded part, but create a restraining jig according to the shape of the surplus. It is difficult. When the surplus of the welded part of the pipe is large, even if the pipe is expanded due to the volume expansion of ice in the pipe, the surplus will come into contact with the inner surface of the restraining jig, and the expansion of the welded part will be restricted by the restraining jig. May be insufficient. For this reason, there is a possibility that the residual stress is not improved as planned in the welded portion of the pipe.

特開平5−154683号公報に記載された拘束部材を用いる配管の応力改善方法では、加熱による配管の熱膨張もしくは肉盛溶接の収縮を利用して拘束部材により配管を締付ける。このため、配管の拘束部材に接触している部分では、特開平5−154683号公報の図3に記載されているように、大きな軸方向の引張応力を生じる。   In the method for improving the stress of a pipe using a restraining member described in JP-A-5-154683, the pipe is tightened by the restraining member using thermal expansion of the pipe due to heating or shrinkage of overlay welding. For this reason, as described in FIG. 3 of Japanese Patent Application Laid-Open No. 5-154683, a large axial tensile stress is generated in the portion of the pipe in contact with the restraining member.

本発明の目的は、配管に、より大きな圧縮残留応力を付与することができる配管の残留応力改善方法を提供することにある。   An object of the present invention is to provide a method for improving the residual stress of a pipe, which can give a larger compressive residual stress to the pipe.

上記した目的を達成する本発明の特徴は、配管の残留応力を改善する応力改善領域から離れた位置で配管の外面を取り囲んで、配管の半径方向に広がる変形を抑制する拘束部材を配置し、その後、応力改善領域の外面を拘束部材が取り囲んでいない状態で配管内の圧力を上昇させて、応力改善領域、および配管の拘束部材に接触している箇所を塑性変形させることにある。   A feature of the present invention that achieves the above-described object is to dispose a restraining member that surrounds the outer surface of the pipe at a position away from a stress improvement region that improves the residual stress of the pipe and suppresses deformation that extends in the radial direction of the pipe, Thereafter, the pressure in the pipe is increased in a state where the outer surface of the stress improvement region is not surrounded by the restraining member, and the stress contact region and the portion in contact with the restraining member of the pipe are plastically deformed.

配管の応力改善領域から離れた位置で配管の外面を取り囲んで拘束部材を配置し、配管内の圧力を上昇させて配管の拘束部材に接触している箇所を塑性変形させるので、配管の応力改善領域の内面に大きな圧縮残留応力を付与することができる。   Place the restraint member around the outer surface of the pipe at a position away from the stress improvement area of the pipe, and raise the pressure in the pipe to plastically deform the part that is in contact with the pipe restraint member. A large compressive residual stress can be applied to the inner surface of the region.

本発明によれば、配管の応力改善領域(例えば、溶接部)に、より大きな圧縮残留応力を付与することができる。   According to the present invention, a larger compressive residual stress can be applied to a stress improvement region (for example, a welded portion) of piping.

発明者らは、配管の溶接部および溶接部付近においてこれらの内面により大きな圧縮残留応力を付与することができる方法を検討した。この結果、発明者らは、溶接部付近に拘束部材を取り付けた配管内の圧力を高めて、配管の応力改善領域(溶接部等)、および配管の拘束部材と接触する箇所を塑性変形させることが望ましいことを新たに見出した。この塑性変形によって、配管の応力改善領域の内面により大きな圧縮残留応力を付与することができる。このため、配管において応力腐食割れが発生する確率をさらに低減することができる。配管に拘束部材を取り付けた状態で配管内の圧力を高める方法として、配管内の水を凍らせることによる氷の体積膨張を利用する方法、および配管内の水を加圧してこの水の圧力を高める方法がある。   The inventors examined a method that can apply a large compressive residual stress to the inner surface of the welded portion of the pipe and in the vicinity of the welded portion. As a result, the inventors increase the pressure in the pipe in which the restraint member is attached in the vicinity of the weld, and plastically deform the stress improvement region of the pipe (weld, etc.) and the place in contact with the pipe restraint member. Newly found that is desirable. By this plastic deformation, a large compressive residual stress can be applied to the inner surface of the stress improvement region of the pipe. For this reason, the probability that stress corrosion cracking occurs in the piping can be further reduced. As a method of increasing the pressure in the pipe with the restraint member attached to the pipe, a method of utilizing the volume expansion of ice by freezing the water in the pipe, and pressurizing the water in the pipe to reduce the pressure of this water There is a way to increase it.

以上の検討結果を反映した本発明の実施例を、以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

本発明の好適な一実施例である実施例1の配管の残留応力改善方法を、図1を用いて説明する。本実施例を、発電プラントにおける配管の溶接部近傍の残留応力を改善する場合を例にとり説明する。   A method for improving the residual stress of a pipe according to the first embodiment which is a preferred embodiment of the present invention will be described with reference to FIG. This embodiment will be described by taking as an example the case of improving the residual stress in the vicinity of a welded portion of a pipe in a power plant.

発電プラントの、ステンレス鋼製(またはニッケル合金製)の配管1は、その端部を突合せ溶接にて接合されている。この突合せ溶接により、配管1の溶接部2、およびこの溶接部2の両側で溶接部2に隣り合って存在する、溶接の熱により機械的性質に変化を生じた熱影響部3の内面には、応力腐食割れの原因となる引張残留応力が生じている。配管1の溶接部2および熱影響部3は、突合せ溶接により引張残留応力が生じているため、応力を改善する必要がある範囲である。   The end 1 of the stainless steel (or nickel alloy) pipe 1 of the power plant is joined by butt welding. Due to this butt welding, the inner surface of the welded portion 2 of the pipe 1 and the heat-affected portion 3 that is adjacent to the welded portion 2 on both sides of the welded portion 2 and whose mechanical properties are changed by the heat of welding are applied. Tensile residual stress that causes stress corrosion cracking has occurred. The welded part 2 and the heat-affected part 3 of the pipe 1 are in a range where the stress needs to be improved because tensile residual stress is generated by butt welding.

溶接部2および熱影響部3の残留応力を改善すべき配管1には、図1(A)に示すように、ポンプ5および開閉弁8が設けられている。配管7がポンプ5の上流および下流で配管1に接続され、圧力調節弁6が配管7に設けられている。   As shown in FIG. 1 (A), a pump 5 and an on-off valve 8 are provided in the pipe 1 that should improve the residual stress in the welded part 2 and the heat affected zone 3. A pipe 7 is connected to the pipe 1 upstream and downstream of the pump 5, and a pressure control valve 6 is provided in the pipe 7.

配管1の外径を測定する位置を決定する。外径の測定位置は、溶接部2の近傍および拘束部材4を取り付けた位置の近傍にすることが好ましい。内圧上昇に伴う配管1の塑性変形でそれらの位置が分からなくならいように、決定した外径の測定位置に対して配管1の外面に油性ペン等でそれぞれマーキングを行う。これらのマーキングを用いて外径の測定位置を測定し、得られた測定値を外径の測定位置の初期値として記録する。これらを測定する際には、配管1の厚さのばらつきを考慮し、溶接部2の近傍および取り付けられた拘束部材4の近傍において配管1の軸心に垂直なそれぞれの断面内で二箇所以上を測定する。マーキングを用いて外径を測定する替りに、溶接部2の近傍および取り付けられた拘束部材4の近傍で配管1の外面にそれぞれストレインゲージを貼り付け、これらのストレインゲージを用いて配管1の周方向のひずみを測定して配管1の変形量を測定してもよい。このように配管1の外径を測定する位置を決めて、配管の外径の変化量を測定することで、配管1が膨張した時に配管1全体が塑性変形をしているか確認できる。   The position for measuring the outer diameter of the pipe 1 is determined. The measurement position of the outer diameter is preferably in the vicinity of the weld 2 and the position where the restraint member 4 is attached. The outer surface of the pipe 1 is marked on the outer surface of the pipe 1 with an oil-based pen or the like at the determined outer diameter measurement position so that the positions of the pipe 1 are not known due to plastic deformation of the pipe 1 accompanying the increase in internal pressure. The measurement position of the outer diameter is measured using these markings, and the obtained measurement value is recorded as the initial value of the measurement position of the outer diameter. When measuring these, taking into account variations in the thickness of the pipe 1, two or more locations in each cross section perpendicular to the axis of the pipe 1 in the vicinity of the weld 2 and in the vicinity of the attached restraining member 4. Measure. Instead of measuring the outer diameter using the marking, a strain gauge is attached to the outer surface of the pipe 1 in the vicinity of the weld 2 and in the vicinity of the attached restraining member 4, and the circumference of the pipe 1 is measured using these strain gauges. You may measure the deformation | transformation of the piping 1 by measuring the distortion | strain of a direction. Thus, by determining the position where the outer diameter of the pipe 1 is measured and measuring the amount of change in the outer diameter of the pipe, it can be confirmed whether the entire pipe 1 is plastically deformed when the pipe 1 expands.

溶接部2の上流および下流、具体的には熱影響部3の上流および下流で、ステンレス鋼製の円環状の拘束部材4を配管1にそれぞれ取り付ける(図1(B)参照)。拘束部材4は2つの半円部材を含んでおり、拘束部材4を配管1に取り付けるときにはそれらの半円部材を配管1の周囲に配置して互いにボルト等を用いて結合する。拘束部材4の内面は配管1の外面に接触している。一対の拘束部材4間の配管1の外面はいかなる拘束部材でも拘束されていない。溶接部2および熱影響部3の各外面も拘束部材で拘束されていない。   An annular restraining member 4 made of stainless steel is attached to the pipe 1 upstream and downstream of the welded portion 2, specifically upstream and downstream of the heat affected zone 3, respectively (see FIG. 1B). The constraining member 4 includes two semicircular members. When the constraining member 4 is attached to the pipe 1, the semicircular members are arranged around the pipe 1 and coupled to each other using bolts or the like. The inner surface of the restraining member 4 is in contact with the outer surface of the pipe 1. The outer surface of the pipe 1 between the pair of restraining members 4 is not restrained by any restraining member. The outer surfaces of the welded portion 2 and the heat affected zone 3 are not restrained by the restraining members.

開閉弁8を全閉状態にし、圧力調節弁6を全開状態にする。その後、ポンプ5を駆動する。ポンプ5で昇圧された配管1内の水が、配管7を通って循環する。圧力調節弁6を徐々に閉めていき、ポンプ5より下流における配管1内の圧力を上昇させる。前述した配管1の外径測定位置で配管1の外径の変化量を測定して、設定された変形量が得られるまで、圧力調節弁6の開度を減少させる。設定された変形量は、拘束部材4と接触した配管1の位置で配管1に塑性変形が生じる変形量である。前述のように配管1内の圧力を上昇させることによって、配管1が半径方向に広がるように変形する。配管1の、拘束部材4と接触した二箇所での半径方向における変形量は、拘束部材4で拘束されている関係上、これらの位置以外での配管1のその変形量よりも小さくなる。これにより、溶接部2を中心に配管1に半径方向で外側に向かって凸となる変形が生じる(図1(C)参照)。   The on-off valve 8 is fully closed, and the pressure control valve 6 is fully opened. Thereafter, the pump 5 is driven. The water in the pipe 1 pressurized by the pump 5 circulates through the pipe 7. The pressure control valve 6 is gradually closed to increase the pressure in the pipe 1 downstream from the pump 5. The amount of change in the outer diameter of the pipe 1 is measured at the outer diameter measurement position of the pipe 1 described above, and the opening degree of the pressure control valve 6 is decreased until the set deformation amount is obtained. The set deformation amount is a deformation amount that causes plastic deformation in the pipe 1 at the position of the pipe 1 in contact with the restraining member 4. By increasing the pressure in the pipe 1 as described above, the pipe 1 is deformed so as to spread in the radial direction. The amount of deformation in the radial direction at two locations where the pipe 1 is in contact with the restraining member 4 is smaller than the amount of deformation of the pipe 1 other than these positions because of the restraint by the restraining member 4. Thereby, the deformation | transformation which becomes convex toward the outer side in the radial direction arises in the piping 1 centering on the welding part 2 (refer FIG.1 (C)).

これにより、溶接部2および熱影響部3はもとより、拘束部材4と接触した配管1の位置でも、塑性変形が生じる。これは、拘束部材4も配管1内の圧力上昇によって外側に向っていくらか拡がるからである。前述のマーキングを付した位置(溶接部2の近傍および取り付けられた拘束部材4の近傍)で、それぞれ配管1の外径を測定する。配管1の内圧上昇によって溶接部2および拘束部材4が接触している配管1の位置で塑性変形が生じ、それらの位置での外径の測定値が設定値に到達したとき、圧力調節弁6の開度を増大させ、溶接部2および熱影響部3等での配管1内の圧力を低減する。応力改善領域である溶接部2および熱影響部3における半径方向で外側に向かう変形量は、拘束部材4と接触した位置での配管1のその変形量よりも大きくなる。ポンプ5の駆動が停止され、拘束部材4が配管1から取り外される。圧力調節弁6の開度の増大は、前述したストレインゲージで測定されたひずみが設定値に到達したときに行っても良い。   As a result, plastic deformation occurs at the position of the pipe 1 in contact with the restraining member 4 as well as the welded portion 2 and the heat affected zone 3. This is because the restraining member 4 also expands somewhat outward due to the pressure increase in the pipe 1. The outer diameters of the pipes 1 are measured at the positions with the above-described markings (in the vicinity of the welded portion 2 and in the vicinity of the attached restraining member 4). When the internal pressure of the pipe 1 increases, plastic deformation occurs at the positions of the pipe 1 where the welded portion 2 and the restraining member 4 are in contact, and when the measured value of the outer diameter at those positions reaches the set value, the pressure control valve 6 And the pressure in the pipe 1 at the weld 2 and the heat affected zone 3 is reduced. The amount of deformation toward the outside in the radial direction in the welded portion 2 and the heat-affected zone 3 that is the stress improvement region is larger than the amount of deformation of the pipe 1 at the position in contact with the restraining member 4. The driving of the pump 5 is stopped and the restraining member 4 is removed from the pipe 1. The opening degree of the pressure control valve 6 may be increased when the strain measured with the strain gauge described above reaches a set value.

図2は配管1を塑性変形させて拘束部材4を取り外した後における配管1の形状を示している。配管1内の水の加圧による塑性変形により、溶接部2および熱影響部3の内面に、圧縮残留応力が付与される。配管1は2つの拘束部材4を取り付けられて塑性変形されたので、拘束部材4を取り外した配管1は、溶接部2では半径方向において外側に向かって突出し、拘束部材4を取り付けた位置では内側に向かって窪んでいる形状を有する。このように、配管1の、拘束部材4が接触している位置で塑性変形が生じるので、本実施例では、溶接部2および熱影響部3の内面における圧縮残留応力は、拘束部材4を取り付けないで配管1の内圧上昇で付与された圧縮残留応力よりも大きくなる。   FIG. 2 shows the shape of the pipe 1 after the pipe 1 is plastically deformed and the restraining member 4 is removed. Compressive residual stress is applied to the inner surfaces of the welded portion 2 and the heat affected zone 3 by plastic deformation due to the pressurization of water in the pipe 1. Since the pipe 1 is plastically deformed with the two restraining members 4 attached, the pipe 1 from which the restraining member 4 has been removed protrudes outward in the radial direction at the welded portion 2 and is inward at the position where the restraining member 4 is attached. It has a shape that is recessed toward the surface. As described above, since plastic deformation occurs at a position of the pipe 1 where the restraining member 4 is in contact, in this embodiment, the compressive residual stress on the inner surfaces of the welded portion 2 and the heat affected zone 3 is attached to the restraining member 4. However, it becomes larger than the compressive residual stress applied by the increase in the internal pressure of the pipe 1.

配管1の拘束部材4に接触していた箇所および溶接部2においてそれぞれ生じる軸方向の残留応力について説明する。配管1の拘束部材4に接触していた箇所では、配管1の半径方向の中央部に引張残留応力が生じ、配管1の内面10側および外面11側には圧縮残留応力12が生じる。配管1の拘束部材4に接触していた箇所では、配管1の内側に向かって窪んでいるが、配管1の全体が内圧によって半径方向において外側に広がって塑性変形するときに内面10側に前述したように圧縮残留応力12が生じる。配管1の拘束部材4に接触していた箇所が、圧縮残留応力が生じる程度に塑性変形されるため、溶接部2における配管1の半径方向における残留応力の分布は、図4に示すようになる。すなわち、配管1の内面10側に大きな残留圧縮応力12が生じる。溶接部2の配管1の外面11側には、引張残留応力13が生じている。   A description will be given of the axial residual stress generated in the welded portion 2 and the portion in contact with the restraining member 4 of the pipe 1. At a location where the pipe 1 is in contact with the restraining member 4, a tensile residual stress is generated in the central portion in the radial direction of the pipe 1, and a compressive residual stress 12 is generated on the inner surface 10 side and the outer surface 11 side of the pipe 1. The portion of the pipe 1 that is in contact with the restraining member 4 is recessed toward the inside of the pipe 1. However, when the entire pipe 1 spreads outward in the radial direction due to internal pressure and is plastically deformed, the inner surface 10 side is described above. As described above, the compressive residual stress 12 is generated. Since the portion of the pipe 1 that has been in contact with the restraining member 4 is plastically deformed to the extent that compressive residual stress is generated, the distribution of the residual stress in the radial direction of the pipe 1 in the welded portion 2 is as shown in FIG. . That is, a large residual compressive stress 12 is generated on the inner surface 10 side of the pipe 1. A tensile residual stress 13 is generated on the outer surface 11 side of the pipe 1 of the weld 2.

本実施例は、配管1の残留応力を改善する領域(例えば、溶接部1および熱影響部3)の上流および下流で配管1に、配管1を取り囲む拘束部材4をそれぞれ接触させて設置し、ポンプ5による水圧の増加によって配管1内の圧力を増加させて溶接部2および熱影響部3だけでなく拘束部材4の接触部でも配管1を塑性変形させている。このため、本実施例で配管1の、拘束部材4で外面が拘束されていない溶接部2および熱影響部3の内面に、特開2006−334596号公報に記載された、拘束部材4を設けていないそれぞれの残留応力改善方法よりも大きな圧縮残留応力を付与することができる。本実施例は、拘束部材を取り付けていない溶接部2および熱影響部3、および配管1の、拘束部材4を取り付けた位置のそれぞれを配管1内の圧力上昇により変形させるために、特開2005−95948号公報に記載された、溶接部および熱影響部等に拘束部材を配置した配管の残留応力改善方法よりも、拘束部材4が接触している位置における配管1の内面の引張残留応力を低減させることができる。   In the present embodiment, the restraint member 4 surrounding the pipe 1 is placed in contact with the pipe 1 upstream and downstream of the region (for example, the welded portion 1 and the heat-affected zone 3) where the residual stress of the pipe 1 is improved, By increasing the water pressure by the pump 5, the pressure in the pipe 1 is increased, and the pipe 1 is plastically deformed not only at the welded part 2 and the heat affected part 3 but also at the contact part of the restraining member 4. For this reason, the restraint member 4 described in Japanese Patent Application Laid-Open No. 2006-334596 is provided on the inner surface of the welded portion 2 and the heat-affected zone 3 of the pipe 1 in which the outer surface is not restrained by the restraint member 4. It is possible to apply a compressive residual stress larger than the respective residual stress improving methods. In this embodiment, in order to deform the welded part 2 and the heat-affected part 3 to which the restraint member is not attached and the position of the pipe 1 where the restraint member 4 is attached due to the pressure increase in the pipe 1, -Tensile residual stress on the inner surface of the pipe 1 at the position where the restraint member 4 is in contact with the pipe, as compared with the method for improving the residual stress of the pipe in which the restraint member is arranged at the welded portion and the heat affected zone, as described in Japanese Patent No. Can be reduced.

このような本実施例は、特開2005−95948号公報および特開2006−334596号公報にそれぞれ記載された残留応力改善方法において内面に圧縮残留応力を付与することができない可能性がある外径が大きな配管1(例えば、外径が60mm以上の配管)に対しても、溶接部2および熱影響部3の内面に圧縮残留応力を付与することができる。したがって、本実施例は、外径が大きな配管1での応力腐食割れを防止することができる。本実施例は、外径が60mm未満の外径が小さい配管1においても、当然のことながら、溶接部2および熱影響部3の内面に圧縮残留応力を付与することができる。   Such an embodiment has an outer diameter in which compression residual stress may not be applied to the inner surface in the residual stress improvement methods described in JP-A-2005-95948 and JP-A-2006-334596, respectively. Even for a large pipe 1 (for example, a pipe having an outer diameter of 60 mm or more), compressive residual stress can be applied to the inner surfaces of the welded portion 2 and the heat affected zone 3. Therefore, this embodiment can prevent stress corrosion cracking in the pipe 1 having a large outer diameter. In the present embodiment, even in the pipe 1 having an outer diameter of less than 60 mm and a small outer diameter, it is possible to apply compressive residual stress to the inner surfaces of the welded portion 2 and the heat affected zone 3 as a matter of course.

本実施例では、配管1内の圧力を上昇させるときに開閉弁8を全閉状態にしているので、配管1の内圧がこの開閉弁8にも作用する。このため、その圧力は、実施例2で詳細に説明するように、配管1の軸方向への引き伸しにも作用する。配管1の半径方向で外側に向う変形によって生じる圧縮残留応力に、配管1の軸方向への引き伸ばしによって生じる圧縮残留応力が付加される。したがって、本実施例は、配管1の残留応力をさらに改善することができる。   In this embodiment, since the on-off valve 8 is fully closed when the pressure in the pipe 1 is increased, the internal pressure of the pipe 1 also acts on the on-off valve 8. For this reason, as will be described in detail in the second embodiment, the pressure also acts on the stretching of the pipe 1 in the axial direction. The compressive residual stress generated by stretching the pipe 1 in the axial direction is added to the compressive residual stress generated by the outward deformation in the radial direction of the pipe 1. Therefore, the present embodiment can further improve the residual stress of the pipe 1.

拘束部材4を1個だけ熱影響部3の上流(または下流)で配管1の外面に接触させて取り付けて、前述のように配管1内の圧力を高めてもよい。この場合は、配管1の内圧の増大によって、溶接部2、溶接部2の上流側及び下流側の両方の熱影響部3、および配管1の、拘束部材4と接触している位置で塑性変形を生じる。このため、溶接部2および両方の熱影響部3の内面に圧縮残留応力が付与される。拘束部材4と接触している位置で塑性変形による残留応力の改善効果は、溶接部2、および拘束部材4に近い熱影響部3で大きくなり、溶接部2を基点にして拘束部材4の反対側に位置する熱影響部3では小さくなる。   Only one restraining member 4 may be attached in contact with the outer surface of the pipe 1 upstream (or downstream) of the heat affected zone 3 to increase the pressure in the pipe 1 as described above. In this case, due to an increase in the internal pressure of the pipe 1, plastic deformation occurs at a position where the welded part 2, both the upstream and downstream heat affected parts 3 of the welded part 2, and the pipe 1 are in contact with the restraining member 4. Produce. For this reason, compressive residual stress is given to the inner surface of the welded part 2 and both heat affected parts 3. The effect of improving the residual stress due to plastic deformation at the position in contact with the restraint member 4 is increased at the welded portion 2 and the heat affected zone 3 close to the restraint member 4. It becomes small in the heat affected zone 3 located on the side.

本実施例において、配管1に取り付ける拘束部材4の厚さを、図3に示す配管1の半径方向の残留応力分布を得る際に用いた拘束部材4のそれよりも厚くしても良い。厚さの厚い一対の拘束部材4を図1(B)と同じ位置に取り付けて前述したように配管1内の圧力を高めることによって、溶接部2および熱影響部3、および配管1の、拘束部材4を取り付けた位置のそれぞれを半径方向の外側に広げて塑性変形させる。この場合、配管1の拘束部材4と接触する部分での半径方向における残留応力の分布は図5に示すようになり、特開平5−154683号公報において配管の拘束部材と接触する箇所で生じる引っ張り残留応力よりも小さくなった引っ張り残留応力13が配管1の内面10側に形成される。このような場合でも、拘束部材4間における配管1の塑性変形が、特開2005−95948号公報および特開2006−334596号公報にそれぞれ記載された残留応力改善方法よりも大きくなり、溶接部2および熱影響部3の内面に生じる残留圧縮応力も大きくなる。外径が小さい配管はもとより、例えば、外径が60mm以上の外径の大きな配管に対しても、溶接部2および熱影響部3の内面に圧縮残留応力を付与することができる。拘束部材4の厚さが厚くなりすぎると、配管1の、拘束部材4を取り付けた位置で塑性変形が生じなくなる。このため、拘束部材4の厚みは配管1の、拘束部材4を取り付けた位置で塑性変形が生じるように設定する。   In this embodiment, the thickness of the restraining member 4 attached to the pipe 1 may be thicker than that of the restraining member 4 used when obtaining the radial residual stress distribution of the pipe 1 shown in FIG. By attaching a pair of thick restraining members 4 at the same position as in FIG. 1B and increasing the pressure in the pipe 1 as described above, the restraint of the welded portion 2, the heat affected zone 3, and the pipe 1 is restrained. Each of the positions where the members 4 are attached is spread outward in the radial direction and plastically deformed. In this case, the distribution of the residual stress in the radial direction at the portion of the pipe 1 in contact with the restraining member 4 is as shown in FIG. A tensile residual stress 13 that is smaller than the residual stress is formed on the inner surface 10 side of the pipe 1. Even in such a case, the plastic deformation of the pipe 1 between the restraining members 4 becomes larger than the residual stress improvement methods described in JP-A-2005-95948 and JP-A-2006-334596, respectively. And the residual compressive stress which arises in the inner surface of the heat affected zone 3 also becomes large. Compressive residual stress can be applied to the inner surfaces of the welded part 2 and the heat-affected part 3, for example, not only for pipes with a small outer diameter but also for pipes with a large outer diameter of 60 mm or more. If the thickness of the restraint member 4 becomes too thick, plastic deformation will not occur at the position of the pipe 1 where the restraint member 4 is attached. For this reason, the thickness of the restraining member 4 is set so that plastic deformation occurs at the position of the pipe 1 where the restraining member 4 is attached.

本発明の他の実施例である実施例2の配管の残留応力改善方法を、図6を用いて説明する。本実施例の配管の残留応力改善方法を適用する配管1は、発電プラントに設けられた配管であり、ステンレス鋼製で外径が60mmで厚さが5mmである。   A method for improving the residual stress of a pipe according to embodiment 2 which is another embodiment of the present invention will be described with reference to FIG. A pipe 1 to which the method for improving residual stress of a pipe according to this embodiment is applied is a pipe provided in a power plant, which is made of stainless steel and has an outer diameter of 60 mm and a thickness of 5 mm.

応力改善領域である溶接部2および熱影響部の残留応力を改善すべき配管1には、実施例1と同様に、一対の拘束部材4が溶接部2の上流および下流で、具体的には、熱影響部の上流および下流で配管1を取り囲んで配管1に取り付けられる。さらに、外側容器15A,15Bおよび内側容器16A,16Bが配管1の外面に取り付けられる(図6(A)参照)。配管1内には水17が満たされている。   As in the first embodiment, a pair of restraining members 4 are provided upstream and downstream of the welded portion 2 in the pipe 1 that should improve the residual stress in the welded portion 2 and the heat-affected zone, which are stress improvement regions. The pipe 1 is surrounded and attached to the pipe 1 upstream and downstream of the heat affected zone. Further, the outer containers 15A and 15B and the inner containers 16A and 16B are attached to the outer surface of the pipe 1 (see FIG. 6A). The pipe 1 is filled with water 17.

拘束部材4の配管1への取り付けは実施例1と同様に行われる。拘束部材4は、ステンレス鋼製であり、幅が10mmであって厚さが1.5mmである。一対の拘束部材4間の距離19は50mmである。溶接部2は、一対の拘束部材4間の真ん中に位置している。拘束部材4を配管1に取り付けた状態では、拘束部材4の内径が配管1の外径と同じであり、拘束部材4の内面が配管1の外面に接触している。   Attachment of the restraining member 4 to the pipe 1 is performed in the same manner as in the first embodiment. The restraining member 4 is made of stainless steel, has a width of 10 mm, and a thickness of 1.5 mm. A distance 19 between the pair of restraining members 4 is 50 mm. The welded part 2 is located in the middle between the pair of restraining members 4. When the restraining member 4 is attached to the pipe 1, the inner diameter of the restraining member 4 is the same as the outer diameter of the pipe 1, and the inner surface of the restraining member 4 is in contact with the outer surface of the pipe 1.

溶接部2から拘束部材4に向う方向において、拘束部材4から離れた位置に内側容器16A,16Bが、それぞれ配置され、配管1に取り付けられる。一対の拘束部材4は内側容器16Aと内側容器16Bの間に配置され、内側容器16Aと内側容器16Bの間の距離は300mmである。上端が開放された内側容器16A,16Bは、配管1に設置される前では上下方向にそれぞれ二分割されており、上下方向で配管1を挟んで取り付けた後に二分割された構造を互いにボルトにて結合される。内側容器16A,16Bの配管1の軸方向におけるそれぞれの長さは200mmである。   Inner containers 16 </ b> A and 16 </ b> B are arranged at positions away from the restraining member 4 in the direction from the welded part 2 to the restraining member 4, and attached to the pipe 1. The pair of restraining members 4 are disposed between the inner container 16A and the inner container 16B, and the distance between the inner container 16A and the inner container 16B is 300 mm. The inner containers 16A and 16B whose upper ends are opened are divided into two parts in the vertical direction before being installed in the pipe 1, and the structure divided into two after being attached with the pipe 1 in the vertical direction is bolted to each other. Are combined. Each length of the inner containers 16A and 16B in the axial direction of the pipe 1 is 200 mm.

溶接部2を基点にてして内側容器16A,16Bから離れた位置に、外側容器15A,15Bが配置される。内側容器16A,16Bが外側容器15Aと外側容器15Aの間に配置される。外側容器15Aと内側容器16Aの間に形成された間隙21、および外側容器15Bと内側容器16Bの間に形成された間隙21のそれぞれの幅は、100mmである。上端が開放された外側容器15A,15Bは、配管1に設置される前では上下方向にそれぞれ二分割されており、上下方向で配管1を挟んで取り付けた後に二分割された構造を互いにボルトにて結合される。外側容器15A,15Bの配管1の軸方向における長さも200mmである。   Outer containers 15A and 15B are arranged at positions away from inner containers 16A and 16B with welding portion 2 as a base point. The inner containers 16A and 16B are disposed between the outer container 15A and the outer container 15A. The width of each of the gap 21 formed between the outer container 15A and the inner container 16A and the gap 21 formed between the outer container 15B and the inner container 16B is 100 mm. The outer containers 15A and 15B whose upper ends are opened are divided into two parts in the vertical direction before being installed in the pipe 1, and the structure divided into two after being attached with the pipe 1 in the vertical direction is bolted to each other. Are combined. The length of the outer containers 15A, 15B in the axial direction of the pipe 1 is also 200 mm.

実施例1と同様に、溶接部2の近傍および取り付けられた拘束部材4の近傍に設定した配管1の外径を測定する位置にそれぞれマーキングをする。   As in the first embodiment, marking is performed at positions where the outer diameter of the pipe 1 set in the vicinity of the welded portion 2 and in the vicinity of the attached restraining member 4 is measured.

内側容器16A,16Bおよび外側容器15A,15Bは、それぞれ内部が空洞になっている。内側容器16A,16Bおよび外側容器15A,15B内に、配管1が浸る程度にエチルアルコール18を注入する。エチルアルコール18が充填された外側容器15A,15B内に、上端の開口からドライアイス22を投入する。投入されたドライアイス22によって、外側容器15Aで取り囲まれた位置で配管1内の水17および外側容器15Bで取り囲まれた位置で配管1内の水17が冷却される。このため、配管1内のそれぞれの位置で水17が凍って氷栓23が形成される(図6(B)参照)。氷栓23間の水17は、氷栓23によって密封される。より強固なシール機能を発揮する氷栓23を配管1内に形成するために、予め実験等により求められた氷栓23が形成される時間よりも長い時間に亘って、外側容器15A,15B内のドライアイスによる配管1の冷却を継続する。これにより、強固に配管1の内面に凍りついた一対の氷栓23が形成され、これらの氷栓23の間に水17が満たされた密封領域が形成される。   The inner containers 16A and 16B and the outer containers 15A and 15B are hollow inside. Ethyl alcohol 18 is poured into the inner containers 16A and 16B and the outer containers 15A and 15B to such an extent that the pipe 1 is immersed. Dry ice 22 is put into the outer containers 15A and 15B filled with the ethyl alcohol 18 from the opening at the upper end. The supplied dry ice 22 cools the water 17 in the pipe 1 at a position surrounded by the outer container 15A and the water 17 in the pipe 1 at a position surrounded by the outer container 15B. For this reason, the water 17 freezes in each position in the piping 1, and the ice plug 23 is formed (refer FIG. 6 (B)). The water 17 between the ice plugs 23 is sealed by the ice plug 23. In order to form the ice plug 23 that exhibits a stronger sealing function in the pipe 1, the inside of the outer containers 15A and 15B is longer than the time required to form the ice plug 23 obtained in advance through experiments or the like. Continue cooling the pipe 1 with dry ice. As a result, a pair of ice plugs 23 that are firmly frozen on the inner surface of the pipe 1 are formed, and a sealed region filled with water 17 is formed between these ice plugs 23.

図6(C)に示すように、エチルアルコール18が充填された内側容器16A,16B内にドライアイス22を投入する。内側容器16A,16B内のドライアイス22によって、氷栓23間に存在する水17が冷却される。内側容器16A,16Bを取り付けた各位置では配管1が氷点下に冷却され、氷栓23間に存在する水17が凍り始める。水17が氷になると体積が膨張するため、氷栓23間に存在する水17の圧力が上昇し始める。氷栓23間で配管1内の圧力が上昇し、この圧力上昇によって配管1が内側容器16Aと内側容器16Bの間で半径方向において外側に向って押し広げられる。マーキングした各測定位置(溶接部2の近傍および取り付けられた拘束部材4の近傍)で配管1の外径をそれぞれ測定する。各外径の測定値が設定値に到達したかを確認する。外径の測定値が設定値に達していないときには、内側容器16A,16B内のドライアイス22による配管1の冷却を継続する。外径の測定値が設定値に達したとき、外側容器15A,15Bおよび内側容器16A,16B内のドライアイス22を外部に排出し、ドライアイス22による配管1の冷却を停止する。配管1の外径の増大量としては、外径の1%とする。配管1の外径が60mmであれば、溶接部2および配管1の、拘束部材4と接触している位置で約0.6mm程度の増大が確認された後に、冷却を停止する。   As shown in FIG. 6C, dry ice 22 is put into the inner containers 16A and 16B filled with ethyl alcohol 18. The water 17 existing between the ice plugs 23 is cooled by the dry ice 22 in the inner containers 16A and 16B. At each position where the inner containers 16A and 16B are attached, the pipe 1 is cooled below the freezing point, and the water 17 existing between the ice plugs 23 begins to freeze. Since the volume expands when the water 17 becomes ice, the pressure of the water 17 existing between the ice plugs 23 starts to rise. The pressure in the pipe 1 rises between the ice plugs 23, and the pipe 1 is expanded outwardly in the radial direction between the inner container 16A and the inner container 16B by this pressure increase. The outer diameter of the pipe 1 is measured at each marked measurement position (in the vicinity of the weld 2 and in the vicinity of the attached restraining member 4). Check if the measured value of each outer diameter has reached the set value. When the measured value of the outer diameter does not reach the set value, the cooling of the pipe 1 by the dry ice 22 in the inner containers 16A and 16B is continued. When the measured value of the outer diameter reaches the set value, the dry ice 22 in the outer containers 15A and 15B and the inner containers 16A and 16B is discharged to the outside, and the cooling of the pipe 1 by the dry ice 22 is stopped. The amount of increase in the outer diameter of the pipe 1 is 1% of the outer diameter. If the outer diameter of the pipe 1 is 60 mm, the cooling is stopped after an increase of about 0.6 mm is confirmed at the position where the weld 2 and the pipe 1 are in contact with the restraining member 4.

配管1の変形により配管1の上記した各位置での外径が設定値に達したとき、配管1の拘束部材4と接触している位置、および応力改善領域で、配管1は塑性変形している。応力改善領域(溶接部2および熱影響部)の塑性変形は、配管1の拘束部材4と接触している位置での塑性変形よりも大きくなっている。   When the outer diameter of each position of the pipe 1 reaches the set value due to the deformation of the pipe 1, the pipe 1 is plastically deformed at the position where the pipe 1 is in contact with the restraining member 4 and the stress improvement region. Yes. The plastic deformation in the stress improvement region (the welded portion 2 and the heat affected zone) is larger than the plastic deformation at the position in contact with the restraining member 4 of the pipe 1.

外側容器15A,15Bおよび内側容器16A,16B内のドライアイス22を外部に排出して配管1内の氷が全て融解して水17になった後、拘束部材4、外側容器15A,15Bおよび内側容器16A,16Bを配管1から取り外す。外側容器15A,15Bおよび内側容器16A,16Bは、冷却停止後であるならば、配管1内の氷が全て融解する前に撤去することもできる。これらが取り外された状態では、図6(D)に示すように、配管1に取り付けられていた内側容器16Aと内側容器16Bの間で、配管1が、溶接部2では半径方向において外側に向かって突出し、拘束部材4を取り付けた位置では半径方向において内側に向かって窪んでいる形状を有する。この形状は、図2に示す配管1の形状と同じである。   After the dry ice 22 in the outer containers 15A, 15B and the inner containers 16A, 16B is discharged to the outside and all the ice in the pipe 1 has melted to become water 17, the restraining member 4, the outer containers 15A, 15B and the inner The containers 16A and 16B are removed from the pipe 1. The outer containers 15A and 15B and the inner containers 16A and 16B can be removed before the ice in the pipe 1 is completely melted if the cooling is stopped. In a state in which these are removed, as shown in FIG. 6D, between the inner container 16A and the inner container 16B attached to the pipe 1, the pipe 1 faces outward in the radial direction in the welded portion 2. And has a shape that is recessed inward in the radial direction at the position where the restraining member 4 is attached. This shape is the same as the shape of the pipe 1 shown in FIG.

本実施例は、実施例1で生じる各効果を得ることができる。氷栓23間に存在する水17を冷却する本実施例では、配管1内の圧力が上昇した際に、この圧力は、配管1を半径方向において外側に向って押し広げるだけでなく、配管1の軸方向において配管1の内面に付着している各氷栓23に作用して配管1を軸方向に引き伸ばす。このため、配管1の軸方向の残留応力に対しては軸方向の応力が加わるので、配管1の半径方向で外側に向う変形によって生じる圧縮残留応力に、配管1の軸方向への引き伸ばしによって生じる圧縮残留応力が付加される。本実施例も、残留応力をさらに改善することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. In the present embodiment in which the water 17 existing between the ice plugs 23 is cooled, when the pressure in the pipe 1 rises, this pressure not only pushes the pipe 1 outward in the radial direction, but also the pipe 1 In the axial direction, the pipe 1 is stretched in the axial direction by acting on each ice plug 23 adhering to the inner surface of the pipe 1. For this reason, since the axial stress is applied to the axial residual stress of the pipe 1, the compressive residual stress generated by the outward deformation in the radial direction of the pipe 1 is generated by stretching the pipe 1 in the axial direction. Compressive residual stress is added. Also in this embodiment, the residual stress can be further improved.

発明者らは、実施例1および2の配管の残留応力改善方法を対象に、配管1に生じる残留応力を、有限要素法を用いて解析し、これらの実施例における応力改善の機構を明らかにした。図7(A)は、上記の解析に用いた、実施例1および2に対応したモデルを示している。このモデルは、ステンレス鋼製で外径が60mm、肉厚が5mmの配管1を対象としたもので、ステンレス鋼製の一対の拘束部材4を配管1の外面を取り囲むように各拘束部材4の内面を配管1の外面に接触させて配置している。そのモデルにおいて、拘束部材4の幅は10mm、拘束部材4の厚みは1.5mmであり、一対の拘束部材4間の距離Dは10mm、50mmおよび100mmと変化させた。配管1の内面に加える圧力は、0MPaの状態から71.33MPaまで上昇させ、この圧力が71.33MPaまで上昇した後に0MPaまで低下させた。配管1の内面に加わる圧力が0MPaまで低下した後に、拘束部材4を配管1から除去した。   The inventors analyzed the residual stress generated in the pipe 1 using the finite element method for the residual stress improvement methods for the pipes of Examples 1 and 2, and clarified the mechanism of stress improvement in these Examples. did. FIG. 7A shows a model corresponding to Examples 1 and 2 used in the above analysis. This model is for a pipe 1 made of stainless steel and having an outer diameter of 60 mm and a wall thickness of 5 mm. A pair of restraining members 4 made of stainless steel surround each outer surface of the pipe 1 so that each of the restraining members 4 The inner surface is disposed in contact with the outer surface of the pipe 1. In the model, the width of the restraint member 4 was 10 mm, the thickness of the restraint member 4 was 1.5 mm, and the distance D between the pair of restraint members 4 was changed to 10 mm, 50 mm, and 100 mm. The pressure applied to the inner surface of the pipe 1 was increased from 0 MPa to 71.33 MPa, and after the pressure increased to 71.33 MPa, the pressure was decreased to 0 MPa. After the pressure applied to the inner surface of the pipe 1 decreased to 0 MPa, the restraining member 4 was removed from the pipe 1.

配管1の内圧を上昇させたときおよびその内圧を低下させたときに、配管1に生じる応力およびひずみの変化について、まず、説明する。配管1の内圧の上昇時および低下時における配管1の、拘束部材4から十分に離れた位置での応力とひずみは、図8に示すように変化する。図8(A)は、配管1の内圧の上昇時および低下時での配管1の内面および外面における軸方向の応力とひずみの変化を示している。軸方向の応力の変化は、図8(B)に示す配管1の内圧の上昇時および低下時における配管1の内面および外面の周方向の応力とひずみの変化、および図8(C)に示す配管1の内圧の上昇時および低下時における配管1の内面および外面の半径方向の応力とひずみの変化に基づいて説明することができる。図8(B)および図8(C)によれば、配管1の周方向のひずみは半径方向のひずみより絶対値が大きいために、配管1の軸方向には周方向と逆符号のひずみが生じる。   First, changes in stress and strain generated in the pipe 1 when the internal pressure of the pipe 1 is raised and when the internal pressure is lowered will be described. The stress and strain at a position sufficiently away from the restraining member 4 of the pipe 1 when the internal pressure of the pipe 1 rises and falls vary as shown in FIG. FIG. 8A shows changes in axial stress and strain on the inner and outer surfaces of the pipe 1 when the internal pressure of the pipe 1 increases and decreases. Changes in the axial stress are shown in FIG. 8 (B), the changes in the stress and strain in the circumferential direction of the inner and outer surfaces of the pipe 1 when the internal pressure of the pipe 1 increases and decreases, and in FIG. 8 (C). This can be explained based on changes in stress and strain in the radial direction of the inner surface and outer surface of the pipe 1 when the internal pressure of the pipe 1 rises and falls. According to FIG. 8 (B) and FIG. 8 (C), since the strain in the circumferential direction of the pipe 1 has a larger absolute value than the strain in the radial direction, a strain having an opposite sign to the circumferential direction is present in the axial direction of the pipe 1. Arise.

内圧が上昇するとき、配管1の周方向および半径方向では、それぞれ内面と外面においてひずみに差が生じる。ここで、配管1の周方向のひずみが約0.2%を超えたとき、配管1が塑性変形を開始する。塑性変形が開始された場合には配管1の周方向のひずみの差より半径方向のひずみの差が大きくなるので、配管1の内面の軸方向応力は圧縮応力となる。配管1は塑性変形しているために、内面に圧縮応力が残留する。図8(B)に示す配管1の周方向の応力の変化に注目する。配管1の内面には圧力が作用しているので、配管1の内面は配管1の外面より低い応力で塑性変形を開始する。これにより、配管1の内面と外面に応力差が生じて、配管1の内部の圧力が低下したとき、この応力差により、配管1の内面を圧縮応力にすることができる。このような理由により、配管1の内圧を上昇させて配管1が塑性変形するまで配管1を半径方向において外側に向かって変形させることによって、配管1の内面の軸方向および周方向のそれぞれの残留応力を圧縮応力にすることができる。   When the internal pressure increases, there is a difference in strain between the inner surface and the outer surface in the circumferential direction and the radial direction of the pipe 1. Here, when the strain in the circumferential direction of the pipe 1 exceeds about 0.2%, the pipe 1 starts plastic deformation. When plastic deformation is started, the difference in the radial strain is larger than the difference in the circumferential strain of the pipe 1, so that the axial stress on the inner surface of the pipe 1 becomes a compressive stress. Since the pipe 1 is plastically deformed, compressive stress remains on the inner surface. Note the change in the stress in the circumferential direction of the pipe 1 shown in FIG. Since pressure acts on the inner surface of the pipe 1, the inner surface of the pipe 1 starts plastic deformation with a lower stress than the outer surface of the pipe 1. Thereby, when a stress difference is generated between the inner surface and the outer surface of the pipe 1 and the pressure inside the pipe 1 is reduced, the inner surface of the pipe 1 can be made compressive stress by the stress difference. For these reasons, the internal pressure of the pipe 1 is increased and the pipe 1 is deformed outward in the radial direction until the pipe 1 is plastically deformed. The stress can be a compressive stress.

図7(A)に示すモデルを用いた有限要素法による、配管1に生じる残留応力の解析結果を図7(B)に示す。この残留応力は、配管1の内面での軸方向の応力である。図7(B)の横軸は、配管1に取り付けられた一対の拘束部材4間の真中、すなわち、一方の拘束部材4からの距離25と他方の拘束部材4からの距離26が等しくなる、配管1の内面における位置を基点27とし、基点27からの配管1の軸方向における距離28を示している。縦軸は軸方向応力を示している。基点27から拘束部材4に向う10mmまでの領域を、残留応力を改善すべき応力改善領域29として、有限要素法により、配管1に生じる残留応力の解析を行った。拘束部材4の間の距離Dが2√RTより小さい10mmの場合は、一対の拘束部材4が近づき過ぎるために、応力改善領域29内で軸方向応力が引張残留応力になっている。この場合の周方向応力は圧縮残留応力である。Rは配管1の内半径であり、Tは配管1の厚さである。距離Dが2√RTより大きく5√RTより小さい50mmの場合は、拘束部材4を取り付けない場合と比較して、応力改善領域29内の軸方向応力が大きな圧縮残留応力になっている。距離Dが50mmの場合には、応力改善領域29内の周向応力も大きな圧縮残留応力になっている。距離Dが5√RTより大きい100mmの場合は一対の拘束部材4が互いに離れ過ぎるために、応力改善領域29内では拘束部材4を取り付けたことによる応力改善効果が得られない。以上の検討結果に基づけば、一対の拘束部材4は、2√RT<D<5√RTを満たすように、配管1に取り付けることが望ましい。   FIG. 7B shows the analysis result of the residual stress generated in the pipe 1 by the finite element method using the model shown in FIG. This residual stress is an axial stress on the inner surface of the pipe 1. The horizontal axis of FIG. 7B is the middle between the pair of restraining members 4 attached to the pipe 1, that is, the distance 25 from one restraining member 4 and the distance 26 from the other restraining member 4 are equal. A position on the inner surface of the pipe 1 is a base point 27, and a distance 28 in the axial direction of the pipe 1 from the base point 27 is shown. The vertical axis represents the axial stress. The region from the base point 27 to 10 mm toward the restraining member 4 was used as the stress improvement region 29 where the residual stress should be improved, and the residual stress generated in the pipe 1 was analyzed by the finite element method. When the distance D between the restraint members 4 is 10 mm, which is smaller than 2√RT, the pair of restraint members 4 are too close to each other, so that the axial stress is the tensile residual stress in the stress improvement region 29. The circumferential stress in this case is compressive residual stress. R is the inner radius of the pipe 1 and T is the thickness of the pipe 1. When the distance D is 50 mm larger than 2√RT and smaller than 5√RT, the axial stress in the stress improvement region 29 is a compressive residual stress as compared with the case where the restraint member 4 is not attached. When the distance D is 50 mm, the circumferential stress in the stress improvement region 29 is also a large compressive residual stress. When the distance D is 100 mm, which is larger than 5√RT, the pair of restraining members 4 are too far away from each other, so that the stress improving effect due to the mounting of the restraining members 4 cannot be obtained in the stress improving region 29. Based on the above examination results, the pair of restraining members 4 are preferably attached to the pipe 1 so as to satisfy 2√RT <D <5√RT.

次に、有限要素法により2√RT<D<5√RTを満たす距離Dが30mm、40mmおよび50mmについて配管1に生じる軸方向残留応力の解析を行った結果を図9に示す。距離Dが30mmでは基点27から9.5mm以内、距離Dが40mmでは12.8mm以内、距離Dが50mmでは15.5mm以内に応力改善領域29が位置するように拘束部材4を取り付けることで、残留応力改善効果を高めることができる。以上の検討結果に基づけば、応力改善領域29が基点27から0.3D以内に位置するように拘束部材4を取り付けることが望ましい。   Next, FIG. 9 shows the result of analyzing the axial residual stress generated in the pipe 1 when the distance D satisfying 2√RT <D <5√RT is 30 mm, 40 mm and 50 mm by the finite element method. By attaching the restraining member 4 so that the stress improvement region 29 is located within 9.5 mm from the base point 27 when the distance D is 30 mm, within 12.8 mm when the distance D is 40 mm, and within 15.5 mm when the distance D is 50 mm, The residual stress improvement effect can be enhanced. Based on the above examination results, it is desirable to attach the restraining member 4 so that the stress improvement region 29 is located within 0.3 D from the base point 27.

実施例1および2におけるそれぞれの配管の残留応力改善方法では、前述したように、配管1の内圧上昇は、前述したように、配管1を半径方向において外側に向って変形させるだけでなく、配管1を軸方向に引っ張る力も発生させる。この引張り力によって、配管1の軸方向に引張応力が生じる。配管1の軸方向に生じる引張応力に相当する荷重を配管1の端部に負荷した場合の、有限要素法を用いた解析による残留応力の分布を、図10に示す。配管1の内圧が上昇した際に、軸方向応力が生じることで、配管1の軸方向応力および周方向応力共に、軸方向応力に相当する荷重を負荷しない場合に比べて高い残留応力改善効果が得られる。   In the methods for improving the residual stress of each pipe in the first and second embodiments, as described above, the increase in the internal pressure of the pipe 1 not only deforms the pipe 1 outward in the radial direction, but also the pipe. A force for pulling 1 in the axial direction is also generated. This tensile force causes a tensile stress in the axial direction of the pipe 1. FIG. 10 shows the distribution of residual stress by analysis using the finite element method when a load corresponding to the tensile stress generated in the axial direction of the pipe 1 is applied to the end of the pipe 1. When the internal pressure of the pipe 1 rises, axial stress is generated, so that both the axial stress and the circumferential stress of the pipe 1 have a higher residual stress improvement effect than when no load corresponding to the axial stress is applied. can get.

本発明の好適な一実施例である実施例1の配管の残留応力改善方法の工程を示す説明図であり、(A)は実施例1の残留応力改善方法を適用する配管系の構成図、(B)は配管に一対の拘束部材を取り付けた状態を示す説明図、および(C)は配管内の圧力を上昇させて実施例1の残留応力改善方法を実施した後の配管の変形状態を示す説明図である。It is explanatory drawing which shows the process of the residual stress improvement method of piping of Example 1 which is one suitable Example of this invention, (A) is a block diagram of the piping system which applies the residual stress improvement method of Example 1, (B) is explanatory drawing which shows the state which attached a pair of restraint member to piping, and (C) raises the pressure in piping and shows the deformation | transformation state of piping after implementing the residual stress improvement method of Example 1. FIG. It is explanatory drawing shown. 図1(C)の状態から一対の拘束部材を取り外した状態を示す説明図である。It is explanatory drawing which shows the state which removed a pair of restraining member from the state of FIG.1 (C). 図2のIII部の拡大図である。FIG. 3 is an enlarged view of a part III in FIG. 2. 図2のIV部の拡大図である。It is an enlarged view of the IV section of FIG. 配管の内圧が異なる場合における図2のIII部の拡大図である。FIG. 3 is an enlarged view of a part III in FIG. 2 when the internal pressures of the pipes are different. 本発明の他の実施例である実施例2の配管の残留応力改善方法の工程を示す説明図であり、(A)実施例2の残留応力改善方法を適用する配管に拘束部材等を取り付けた状態を示す説明図、(B)は一対の外側容器内のドライアイスを用いて配管内に一対の氷栓を形成した状態を示す説明図、(C)は配管内の氷栓間の圧力を上昇させて配管を外側に向って変形させた状態を示す説明図および(D)は実施例2の残留応力改善方法を実施した後における配管の変形状態を示す説明図である。It is explanatory drawing which shows the process of the residual stress improvement method of piping of Example 2 which is another Example of this invention, and attached the restraint member etc. to the pipe which applies the residual stress improvement method of Example 2 (A). Explanatory drawing which shows a state, (B) is explanatory drawing which shows the state which formed the pair of ice plugs in piping using the dry ice in a pair of outer container, (C) is the pressure between the ice plugs in piping. Explanatory drawing which shows the state which raised and deform | transformed piping toward the outer side, (D) is explanatory drawing which shows the deformation | transformation state of piping after implementing the residual stress improvement method of Example 2. FIG. 実施例1および2における配管の残留応力改善方法によって配管の内面に生じた残留応力の解析結果を示す説明図であり、(A)はその解析に用いたモデルの説明図、(B)は一対の拘束部材間の距離を変えた場合における配管の軸方向応力および周方向応力を示す特性図である。It is explanatory drawing which shows the analysis result of the residual stress which arose in the inner surface of piping by the residual stress improvement method of piping in Example 1 and 2, (A) is explanatory drawing of the model used for the analysis, (B) is a pair. It is a characteristic view which shows the axial direction stress and circumferential direction stress of piping at the time of changing the distance between these restraint members. 配管の内圧を変化させた場合における応力とひずみの関係を示す特性図であり、(A)は配管の軸方向応力および軸方向ひずみの変化を示す特性図、(B)は配管の周方向応力および周方向ひずみの変化を示す特性図、および(C)は配管の半径方向応力および半径方向ひずみの変化を示す特性図である。It is a characteristic view showing the relation between stress and strain when the internal pressure of piping is changed, (A) is a characteristic view showing changes in axial stress and axial strain of piping, and (B) is circumferential stress in piping. And (C) is a characteristic diagram showing changes in the radial stress and radial strain of the pipe. 一対の拘束部材間の距離を変えた場合における配管の溶接部の軸方向応力を示す特性図である。It is a characteristic view which shows the axial direction stress of the welding part of piping at the time of changing the distance between a pair of restraining members. 実施例1および2の残留応力改善方法を適用した後における配管の軸方向応力および周方向応力を示す特性図である。It is a characteristic view which shows the axial direction stress and the circumferential direction stress of piping after applying the residual stress improvement method of Example 1 and 2.

符号の説明Explanation of symbols

1…配管、2…溶接部、3…熱影響部、4…拘束部材、5…ポンプ、8…開閉弁、10…配管内面、11…配管外面、15A,15B…外側容器、16A,16B…内側容器、17…水、18…エチルアルコール、22…ドライアイス、23…氷栓。   DESCRIPTION OF SYMBOLS 1 ... Pipe, 2 ... Welded part, 3 ... Heat-affected part, 4 ... Restraint member, 5 ... Pump, 8 ... Open / close valve, 10 ... Pipe inner surface, 11 ... Pipe outer surface, 15A, 15B ... Outer container, 16A, 16B ... Inner container, 17 ... water, 18 ... ethyl alcohol, 22 ... dry ice, 23 ... ice plug.

Claims (8)

配管の残留応力を改善する応力改善領域から離れた位置で前記配管の外面を取り囲んで、前記配管の半径方向に広がる変形を抑制する拘束部材を配置し、その後、前記応力改善領域の外面を前記拘束部材によって取り囲んでいない状態で前記配管内の圧力を上昇させて、前記応力改善領域、および前記配管の前記拘束部材に接触している箇所を塑性変形させることを特徴とする配管の残留応力改善方法。   A restraining member that surrounds the outer surface of the pipe at a position away from the stress improvement region that improves the residual stress of the pipe and suppresses deformation spreading in the radial direction of the pipe is disposed, and then the outer surface of the stress improvement region is Residual stress improvement of piping characterized in that the pressure in the piping is raised without being surrounded by the restraining member, and the stress improving region and the portion of the piping that is in contact with the restraining member are plastically deformed. Method. 前記応力改善領域が前記配管の溶接部を含んでおり、前記拘束部材の配置は前記溶接部の上流および下流においてそれぞれ行われる請求項1に記載の配管の残留応力改善方法。   The method for improving residual stress of piping according to claim 1, wherein the stress improvement region includes a welded portion of the pipe, and the arrangement of the restraining member is performed upstream and downstream of the welded portion. 前記拘束部材が配置されるとき、前記拘束部材が前記配管の外面に接触される請求項1または2に記載の配管の残留応力改善方法。   The method for improving residual stress of a pipe according to claim 1 or 2, wherein when the restraining member is disposed, the restraining member is brought into contact with an outer surface of the pipe. 前記配管が前記塑性変形された後、前記配管内の圧力を低下させる請求項1に記載の配管の残留応力改善方法。   The method for improving residual stress of a pipe according to claim 1, wherein the pressure in the pipe is lowered after the pipe is plastically deformed. 前記配管内の圧力の上昇は、前記応力改善領域から離れた位置で前記配管に設けられた弁を全閉状態にし、その後、前記弁から前記応力改善領域に向う方向で前記応力改善領域から離れた位置で前記配管に設けられたポンプによって前記配管内の液体を昇圧することによって行われる請求項1ないし3のいずれか1項に記載の配管の残留応力改善方法。   The increase in pressure in the pipe causes the valve provided in the pipe to be fully closed at a position away from the stress improvement area, and then leaves the stress improvement area in a direction from the valve toward the stress improvement area. The method for improving residual stress in piping according to any one of claims 1 to 3, wherein the method is carried out by increasing the pressure of the liquid in the piping by a pump provided in the piping at a certain position. 前記配管内の圧力の上昇は、水が存在する前記配管内で前記応力改善領域の上流および下流の二箇所に氷栓を形成し、前記拘束部材の配置位置が間に存在する前記氷栓間で前記配管内に存在する水を凍らせることによって行われる請求項1ないし3のいずれか1項に記載の配管の残留応力改善方法。   The rise in pressure in the pipe forms ice plugs at two locations upstream and downstream of the stress improvement region in the pipe where water is present, and between the ice plugs where the arrangement position of the restraint member exists. The method for improving residual stress in piping according to any one of claims 1 to 3, which is performed by freezing water existing in the piping. 前記配管の厚さをT、前記配管の内半径をR、前記上流に配置された前記拘束部材と前記下流に配置された前記拘束部材の間の距離をDとしたとき、距離Dが
2√RT<D<5√RT
となるように、それぞれの前記拘束部材を配置する請求項2に記載の配管の残留応力改善方法。
When the thickness of the pipe is T, the inner radius of the pipe is R, and the distance between the restraining member disposed upstream and the restraining member disposed downstream is D, the distance D is
2√RT <D <5√RT
The method for improving residual stress in piping according to claim 2, wherein each of the restraining members is arranged so that
前記応力改善領域が、前記上流に配置された前記拘束部材と前記下流に配置された前記拘束部材の間の真中の位置を基点にして、上流側および下流側にそれぞれ0.3D以内の範囲に位置されている請求項2または7に記載の配管の残留応力改善方法。   The stress improvement region is within a range of 0.3D on the upstream side and the downstream side, respectively, based on the middle position between the restraining member disposed upstream and the restraining member disposed downstream. The method for improving a residual stress of a pipe according to claim 2, wherein the method is located.
JP2008268567A 2008-10-17 2008-10-17 How to improve residual stress in piping Active JP5237750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268567A JP5237750B2 (en) 2008-10-17 2008-10-17 How to improve residual stress in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268567A JP5237750B2 (en) 2008-10-17 2008-10-17 How to improve residual stress in piping

Publications (2)

Publication Number Publication Date
JP2010094715A true JP2010094715A (en) 2010-04-30
JP5237750B2 JP5237750B2 (en) 2013-07-17

Family

ID=42256777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268567A Active JP5237750B2 (en) 2008-10-17 2008-10-17 How to improve residual stress in piping

Country Status (1)

Country Link
JP (1) JP5237750B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129154A1 (en) 2010-04-16 2011-10-20 スガツネ工業株式会社 Door opening/closing apparatus
US11167335B2 (en) * 2016-07-12 2021-11-09 Mitsubishi Heavy Industries, Ltd. Method for producing pipe material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542504A (en) * 2019-09-24 2019-12-06 中国工程物理研究院化工材料研究所 Explosive part residual stress testing system and method based on hydraulic fracturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328055A (en) * 1976-08-27 1978-03-15 Babcock Hitachi Kk Means for reducing residual stree of welded tube
JPS58120722A (en) * 1982-01-11 1983-07-18 Mitsubishi Heavy Ind Ltd Improving method for residual stress of pipe or pipe-like vessel
JPS63112089A (en) * 1986-10-28 1988-05-17 Ishikawajima Harima Heavy Ind Co Ltd Improving method for residual stress of double metal pipe and the like
JPH05169255A (en) * 1991-12-25 1993-07-09 Hitachi Ltd Method for welding tube with tube
JP2005095948A (en) * 2003-09-26 2005-04-14 Hitachi Ltd Method for improving residual stress of piping
JP2006334596A (en) * 2005-05-31 2006-12-14 Hitachi Ltd Method and device for improving residual stress in pipe
JP2008238190A (en) * 2007-03-26 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Method for improving residual stress of piping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328055A (en) * 1976-08-27 1978-03-15 Babcock Hitachi Kk Means for reducing residual stree of welded tube
JPS58120722A (en) * 1982-01-11 1983-07-18 Mitsubishi Heavy Ind Ltd Improving method for residual stress of pipe or pipe-like vessel
JPS63112089A (en) * 1986-10-28 1988-05-17 Ishikawajima Harima Heavy Ind Co Ltd Improving method for residual stress of double metal pipe and the like
JPH05169255A (en) * 1991-12-25 1993-07-09 Hitachi Ltd Method for welding tube with tube
JP2005095948A (en) * 2003-09-26 2005-04-14 Hitachi Ltd Method for improving residual stress of piping
JP2006334596A (en) * 2005-05-31 2006-12-14 Hitachi Ltd Method and device for improving residual stress in pipe
JP2008238190A (en) * 2007-03-26 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Method for improving residual stress of piping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129154A1 (en) 2010-04-16 2011-10-20 スガツネ工業株式会社 Door opening/closing apparatus
US11167335B2 (en) * 2016-07-12 2021-11-09 Mitsubishi Heavy Industries, Ltd. Method for producing pipe material

Also Published As

Publication number Publication date
JP5237750B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CA2706360C (en) Method and apparatus for relieving residual stress in welded pipe joints
US9880087B2 (en) Remaining service life evaluation method for metal pipe suffering from creep damage
JP5237750B2 (en) How to improve residual stress in piping
US20090056839A1 (en) Method for Improving Residual Stress of Structure Member
JP4599250B2 (en) High-frequency induction heating outer surface temperature control method and control device
JP5367558B2 (en) How to improve residual stress in piping
JP2010096350A (en) Plug for sealed closing of pipe
Tang et al. Experimental investigation into the electropulsing assisted pulsating gas forming of CP-Ti tubes
US8978433B2 (en) Pipe diameter expansion apparatus and pipe diameter expansion method
US20100281670A1 (en) Tube repair insert
JP6367681B2 (en) Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device
JP4300085B2 (en) How to improve residual stress in piping
JP2008238190A (en) Method for improving residual stress of piping
JP4972595B2 (en) Method for inhibiting crack growth in piping
JP4857375B2 (en) Equipment for improving residual stress in piping
Akyurt et al. Harnessing the energy accompanying freezing
Aue-u-lan Hydroforming of tubular materials at various temperatures
JPH0129631B2 (en)
KR101103496B1 (en) Heat transfer tube for defect repair method of heat exchanger
JP2010042452A (en) Method for improving residual stress of small diameter piping
JP2018511040A (en) Internal mechanical stress improvement method to reduce stress corrosion cracking in welded areas of nuclear power plant piping
Ku et al. Effectiveness of Excavate and Weld Repair on a Large Diameter Piping Dissimilar Metal Weld by Finite Element Analysis
JP2012071355A (en) Method of improving residual stress
JP2016140895A (en) Titanium tube and manufacturing method thereof
RU80522U1 (en) DEVICE FOR REMOVING DEFORMATIONS OF TYPE OF DENTS OF HOLLOW SHAFT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3