JP5367558B2 - How to improve residual stress in piping - Google Patents

How to improve residual stress in piping Download PDF

Info

Publication number
JP5367558B2
JP5367558B2 JP2009294016A JP2009294016A JP5367558B2 JP 5367558 B2 JP5367558 B2 JP 5367558B2 JP 2009294016 A JP2009294016 A JP 2009294016A JP 2009294016 A JP2009294016 A JP 2009294016A JP 5367558 B2 JP5367558 B2 JP 5367558B2
Authority
JP
Japan
Prior art keywords
pipe
stress
residual stress
axial
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294016A
Other languages
Japanese (ja)
Other versions
JP2011131252A (en
Inventor
史則 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009294016A priority Critical patent/JP5367558B2/en
Priority to US12/963,655 priority patent/US20110155289A1/en
Publication of JP2011131252A publication Critical patent/JP2011131252A/en
Application granted granted Critical
Publication of JP5367558B2 publication Critical patent/JP5367558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0807Tube treating or manipulating combined with, or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off
    • B21C37/0811Tube treating or manipulating combined with, or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off removing or treating the weld bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

It is an object to provide a residual stress improving method for a pipe by imparting larger compressive residual stress on the pipe to sufficiently reduce tensile residual stress in order to prevent the stress corrosion cracking. With respect to a stress improving region where the residual stress of a pipe is to be improved, a load in the axial direction of the pipe is made such stress making axial strain of the outer surface of the pipe 0% or above and being yield stress of the pipe or below, and internal pressure of the pipe is raised. The pipe is plastically deformed and is expanded in the radial direction by the internal pressure. After the internal pressure is raised to the degree the pipe is plastically deformed, the internal pressure and the axial load are removed, and thereby compressive residual stress is imparted to a welding section and a heat affected zone which are the stress improving region of the inner surface of the pipe.

Description

本発明は、配管の残留応力改善方法に係り、特に、配管の溶接部付近の残留応力を改善するのに好適な配管の残留応力改善方法に関する。   The present invention relates to a method for improving residual stress in piping, and more particularly to a method for improving residual stress in piping suitable for improving residual stress in the vicinity of a welded portion of piping.

発電プラントで使用される配管では、溶接が行われると溶接部近傍には残留応力が発生する。また、高温水配管には耐食性を考慮してステンレス鋼製配管またはニッケル合金鋼製配管を用いることが多い。ステンレス鋼およびニッケル合金鋼等を用いた配管では、配管の溶接部に引張残留応力が付与されたまま高温純水中に長時間曝されると、応力腐食割れを発生する恐れがある。したがって、溶接により発生した引張残留応力を低減し、または圧縮残留応力に変化させて残留応力を改善することが望ましい。   In piping used in a power plant, when welding is performed, residual stress is generated in the vicinity of the weld. Further, in consideration of corrosion resistance, stainless steel piping or nickel alloy steel piping is often used for the high temperature water piping. In piping using stainless steel, nickel alloy steel, or the like, stress corrosion cracking may occur when exposed to high temperature pure water for a long time while tensile residual stress is applied to the welded portion of the piping. Therefore, it is desirable to improve the residual stress by reducing the tensile residual stress generated by welding or changing to a compressive residual stress.

配管の溶接部の残留応力を改善する方法として、配管内に形成した氷栓(アイスプラグ)を利用する方法が、先行技術文献に提案されている。   As a method for improving the residual stress in the welded portion of the pipe, a method using an ice plug (ice plug) formed in the pipe has been proposed in the prior art documents.

特許文献1に記載された配管の残留応力改善方法は、配管の溶接部の上流側と下流側に氷栓形成用の冷媒容器をそれぞれ取り付け、各冷媒容器と溶接部の間に拡管用の冷媒容器をそれぞれ取り付ける。始めに氷栓形成用の各冷媒容器によって配管内で溶接部の上流及び下流の二箇所に氷栓を形成し、次に拡管用の各冷媒容器によって氷栓間に存在する水を凍らせて生成された氷の体積膨張を利用して配管の溶接部付近を外側に向って押し広げる。これによって、配管の溶接部付近が塑性変形され、溶接部付近の内面に圧縮残留応力が付与され、引張残留応力を低減ないし圧縮残留応力にする。   In the method for improving residual stress of piping described in Patent Document 1, refrigerant containers for forming ice plugs are respectively attached to the upstream side and the downstream side of the welded part of the pipe, and the refrigerant for expanding the pipe between each refrigerant container and the welded part. Install each container. First, ice plugs are formed at two locations upstream and downstream of the welded portion in the pipe by each refrigerant container for ice plug formation, and then water existing between the ice plugs is frozen by each refrigerant container for pipe expansion. Using the volume expansion of the generated ice, the vicinity of the welded portion of the pipe is pushed outward. As a result, the vicinity of the welded portion of the pipe is plastically deformed, and compressive residual stress is applied to the inner surface in the vicinity of the welded portion, thereby reducing the tensile residual stress or making the compressive residual stress.

特許文献2に記載された配管の残留応力改善方法は、溶接部の余盛もしくは配管外面を切削して、配管の溶接部近傍の肉厚をその他部分の肉厚より薄くする。配管の溶接部近傍の肉厚を薄くすると、配管の内圧による拡管時の溶接部近傍の変形量が溶接部近傍以外の変形量より大きくなる。配管を塑性変形するまで拡管することで、溶接部近傍の配管内面に働く引張残留応力を低減ないし圧縮残留応力にする。   The method for improving the residual stress of a pipe described in Patent Document 2 cuts a surplus of a welded part or an outer surface of the pipe, and makes the thickness near the welded part of the pipe thinner than the thickness of the other part. When the thickness in the vicinity of the welded portion of the pipe is reduced, the amount of deformation in the vicinity of the welded portion at the time of pipe expansion due to the internal pressure of the pipe becomes larger than the amount of deformation in the vicinity of the welded portion. By expanding the pipe until it is plastically deformed, the tensile residual stress acting on the inner surface of the pipe in the vicinity of the weld is reduced or made into compressive residual stress.

特許文献3に記載された小口径配管の残留応力改善方法は、配管の溶接部近傍に軸方向の引張荷重を付与した状態で、配管の内外面に温度差を付与して溶接部近傍の内圧を上昇させて拡管し、配管内面に圧縮残留応力を付与する。   The method for improving the residual stress of a small-diameter pipe described in Patent Document 3 is that in the state where an axial tensile load is applied to the vicinity of the welded portion of the pipe, a temperature difference is applied to the inner and outer surfaces of the pipe to increase the internal pressure near the welded portion. Is expanded to give compressive residual stress to the inner surface of the pipe.

特開2006−334596号公報JP 2006-334596 A 特開2008−238190号公報JP 2008-238190 A 特開2009−50906号公報JP 2009-50906 A

特許文献1に記載された配管の残留応力改善方法では、配管の塑性変形時における内面と外面の応力差により残留応力を改善する。したがって、配管の直径および厚さによっては、配管の残留応力の改善が応力腐食割れを防止する程度まで十分に行われない可能性がある。特許文献2に記載された配管の残留応力改善方法では、応力腐食割れを防止するために溶接余盛もしくは配管外面を切削した時に、要求される配管の強度を下回る可能性がある。また、特許文献3に記載された小口径配管の残留応力改善方法では、軸方向の引張荷重により重畳される引張応力により内面に塑性ひずみを発生させ圧縮残留応力を付与している。この場合、負荷する引張荷重の大きさによっては、配管の残留応力の改善が応力腐食割れを防止するのに十分に行われない可能性がある。   In the method for improving the residual stress of a pipe described in Patent Document 1, the residual stress is improved by the difference in stress between the inner surface and the outer surface during plastic deformation of the pipe. Therefore, depending on the diameter and thickness of the pipe, there is a possibility that the improvement of the residual stress of the pipe may not be sufficiently performed to prevent stress corrosion cracking. In the method for improving the residual stress of piping described in Patent Document 2, there is a possibility that the required strength of the piping may be lowered when the weld surplus or the outer surface of the piping is cut to prevent stress corrosion cracking. Moreover, in the residual stress improvement method for small-diameter pipes described in Patent Document 3, a plastic strain is generated on the inner surface by a tensile stress superimposed by an axial tensile load to give a compressive residual stress. In this case, depending on the magnitude of the tensile load to be applied, the improvement of the residual stress of the pipe may not be sufficiently performed to prevent stress corrosion cracking.

本発明の目的は、配管の内圧により配管を拡管して残留応力を改善させる方法において、配管の内圧上昇前もしくは上昇と同時に、所定条件の下で軸方向荷重を加えることで、配管により大きな圧縮残留応力を付与する配管の残留応力改善方法を提供することにある。   The object of the present invention is to improve the residual stress by expanding the pipe by the internal pressure of the pipe, and by applying an axial load under a predetermined condition before or simultaneously with the increase of the internal pressure of the pipe, An object of the present invention is to provide a method for improving the residual stress of a pipe for applying a residual stress.

本発明は、流体を内部に充填した配管における引張残留応力を有する応力改善領域に対して、前記配管に軸方向荷重の負荷を加え、前記配管内部の圧力を上昇させて前記応力改善領域を塑性変形させる配管の残留応力改善方法において、前記配管軸方向の負荷の範囲を、前記配管外面の軸方向ひずみが0%以上となる応力でかつ前記配管の降伏応力以下の応力とすることを特徴とする。   According to the present invention, an axial load is applied to the pipe with respect to a stress improvement area having a tensile residual stress in a pipe filled with a fluid, and the pressure inside the pipe is increased to plasticize the stress improvement area. In the method for improving the residual stress of a pipe to be deformed, the load range in the pipe axial direction is a stress at which an axial strain of the pipe outer surface is 0% or more and a yield stress of the pipe or less. To do.

また、応力改善領域は前記配管の溶接部および該溶接部による熱影響部、或いは前記配管の拡管部を含むことを特徴とする。   The stress improvement region includes a welded part of the pipe and a heat affected part by the welded part, or a pipe expansion part of the pipe.

また、配管が塑性変形された後に、前記配管内の圧力および前記配管の軸方向の負荷を除荷することを特徴とする。また、配管内面が塑性変形を開始した後、配管外面が塑性変形を始めた時点で前記配管内部の圧力を除荷することを特徴とする。また、配管外面のひずみが約0.5%に達した時点で前記配管内部の圧力を除荷することを特徴とする。   Further, after the pipe is plastically deformed, the pressure in the pipe and the load in the axial direction of the pipe are unloaded. In addition, after the inner surface of the pipe starts plastic deformation, the pressure inside the pipe is unloaded when the outer surface of the pipe starts plastic deformation. Further, when the strain on the outer surface of the pipe reaches about 0.5%, the pressure inside the pipe is unloaded.

さらに、配管外面の軸方向ひずみに対する周方向ひずみの変化を計測して塑性変形を確認することを特徴とする。   Furthermore, the plastic deformation is confirmed by measuring a change in the circumferential strain with respect to the axial strain of the pipe outer surface.

さらに、配管外面における周方向ひずみの検出位置を前記溶接部近傍とし、軸方向ひずみの検出位置を前記溶接部近傍を除く領域とすることを特徴とする。   Furthermore, the detection position of the circumferential strain on the outer surface of the pipe is the vicinity of the welded portion, and the detection position of the axial strain is a region excluding the vicinity of the welded portion.

本発明によれば、配管の内圧を上昇させ、配管の残留応力を改善する応力改善領域に軸方向の荷重を負荷する際に、配管の塑性変形時に配管外面の軸方向のひずみが0%以上で、かつ配管の降伏応力以下の軸方向荷重を負荷することで、配管の応力改善領域の内面に大きな圧縮残留応力を付与し、残留応力状態を改善し、応力腐食割れを防止することができる。   According to the present invention, when an axial load is applied to the stress improvement region that increases the internal pressure of the pipe and improves the residual stress of the pipe, the axial strain on the outer surface of the pipe is 0% or more during plastic deformation of the pipe. By applying an axial load that is less than the yield stress of the pipe, it is possible to apply a large compressive residual stress to the inner surface of the stress improvement area of the pipe, improve the residual stress state, and prevent stress corrosion cracking. .

本発明による配管の残留応力改善方法を示す模式図The schematic diagram which shows the residual stress improvement method of piping by this invention 本発明による配管の残留応力改善方法を示す模式図The schematic diagram which shows the residual stress improvement method of piping by this invention 本発明による配管の残留応力改善方法を示す模式図The schematic diagram which shows the residual stress improvement method of piping by this invention 本発明の施工対象とする配管および溶接部近傍の構造の説明図Explanatory drawing of the structure in the vicinity of the pipes and welds to be constructed according to the present invention 本発明において配管への軸方向荷重の負荷装置を示す模式図The schematic diagram which shows the load apparatus of the axial load to piping in this invention 本発明による配管の残留応力改善方法における拡管方法を示す模式図The schematic diagram which shows the pipe expansion method in the residual stress improvement method of piping by this invention 本発明による残留応力改善に最適な軸方向ひずみ条件を示すグラフThe graph which shows the axial direction strain conditions optimal for the residual stress improvement by this invention 本発明による残留応力改善に最適な軸方向ひずみ条件を示すグラフThe graph which shows the axial direction strain conditions optimal for the residual stress improvement by this invention 本発明による残留応力改善に最適な軸方向ひずみ条件を示すグラフThe graph which shows the axial direction strain conditions optimal for the residual stress improvement by this invention 本発明による残留応力改善に最適な軸方向応力条件を示すグラフThe graph which shows the optimal axial direction stress condition for the residual stress improvement by this invention 本発明による配管の内圧上昇時の周方向ひずみおよび応力を示すグラフThe graph which shows the circumferential direction strain and stress at the time of the internal pressure rise of piping by this invention 本発明により配管の内圧上昇時の軸方向および周方向ひずみを示すグラフGraph showing axial and circumferential strain when the internal pressure of the pipe is increased according to the present invention 本発明の施工対象とする配管の内面の残留応力を評価した例を示す説明図Explanatory drawing which shows the example which evaluated the residual stress of the inner surface of piping made into the construction object of this invention 本発明による溶接残留応力が存在する配管の周方向残留応力を示すグラフThe graph which shows the circumferential direction residual stress of the piping in which the welding residual stress exists by this invention 本発明による溶接残留応力が存在する配管の軸方向残留応力を示すグラフThe graph which shows the axial direction residual stress of the piping in which the welding residual stress exists by this invention 本発明の施工対象とする配管の外面のひずみを評価した例を示す説明図Explanatory drawing which shows the example which evaluated the distortion | strain of the outer surface of piping made into the construction object of this invention

発明者らは、配管の溶接部及び溶接部付近においてこれらの内面により大きな圧縮残留応力を付与することができる方法を検討した。この結果、発明者らは、配管の残留応力を改善する応力改善領域に、軸方向の荷重の負荷と配管の内圧を上昇させて塑性変形させ、塑性変形時に配管外面の軸方向のひずみが0%以上で配管の降伏応力以下の軸方向荷重を負荷することで、配管の応力改善領域の内面に大きな圧縮残留応力を付与するのが望ましいことを新たに見出した。   The inventors examined a method that can apply a large compressive residual stress to the inner surface of the welded portion of the pipe and in the vicinity of the welded portion. As a result, the inventors increased the axial load and the internal pressure of the pipe to cause plastic deformation in the stress improvement region that improves the residual stress of the pipe, and the axial strain on the outer surface of the pipe is zero during the plastic deformation. It was newly found that it is desirable to apply a large compressive residual stress to the inner surface of the stress improvement region of the pipe by applying an axial load that is greater than or equal to% and less than the yield stress of the pipe.

これによって、配管の応力改善領域の内面により大きな圧縮残留応力を付与して、引張残留応力状態を低減しまたは圧縮残留応力状態に変化させ、配管において応力腐食割れが発生する確率をさらに低減することができる。以上の検討結果を反映した本発明の実施形態を、以下に説明する。
〔残留応力改善の基本構成〕
本発明の好適な一実施形態における配管の残留応力改善方法を、図1A〜1Cを用いて、発電プラントにおける配管の溶接部近傍の残留応力を改善する場合を例にとり説明する。
This gives a greater compressive residual stress to the inner surface of the stress improvement area of the pipe, reduces the tensile residual stress state or changes to the compressive residual stress state, and further reduces the probability of stress corrosion cracking occurring in the pipe. Can do. Embodiments of the present invention reflecting the above examination results will be described below.
[Basic structure for residual stress improvement]
A method for improving the residual stress of a pipe according to a preferred embodiment of the present invention will be described with reference to FIGS. 1A to 1C, taking as an example the case of improving the residual stress in the vicinity of a welded part of a pipe in a power plant.

図1Aにおいて、発電プラントのステンレス鋼(またはニッケル合金)からなる配管1は、その端部を突合せ溶接にて接合されている。この突合せ溶接により、配管1の溶接部2、およびこの溶接部2の両側に隣接して存在する溶接の熱により機械的性質に変化を生じた熱影響部3の内面には、応力腐食割れの原因となる引張残留応力が生じているため、応力を改善する必要がある。従って図1Bに示すように軸方向の引張荷重4を加える。ついで図1Cに示すように内圧5を加え、溶接部2と熱影響部3の残留応力を改善する。
ここで、溶接部については、JISでは溶接金属部(溶融母材+溶着金属)とその周囲の熱影響部を含むものとして定義している。一方、本発明での溶接部は、溶融母材と溶着金属からなる狭義の意味で用い、熱影響部は溶接部と別のものとして用いている。
〔ひずみ計による残留応力の測定〕
配管1に発生するひずみを測定する位置を決定する。図2に示すように、溶接部近傍は溶接施工時の内面合せのために配管内面11が開先加工され開先加工面13を形成している。配管内面11の熱影響部3かつ開先加工面13の引張残留応力が改善されたことを確認するために、配管1の周方向のひずみゲージG1の測定位置を溶接部2の近傍に設ける。
In FIG. 1A, a pipe 1 made of stainless steel (or nickel alloy) in a power plant is joined at its end by butt welding. Due to this butt welding, the inner surface of the welded portion 2 of the pipe 1 and the heat affected zone 3 in which the mechanical properties are changed by the heat of welding existing adjacent to both sides of the welded portion 2 are subjected to stress corrosion cracking. Since the residual tensile residual stress is generated, it is necessary to improve the stress. Therefore, an axial tensile load 4 is applied as shown in FIG. 1B. Next, as shown in FIG. 1C, an internal pressure 5 is applied to improve the residual stress in the welded portion 2 and the heat affected zone 3.
Here, the welded part is defined in the JIS as including a welded metal part (molten base metal + welded metal) and a surrounding heat-affected part. On the other hand, the welded portion in the present invention is used in a narrow sense consisting of a molten base material and a weld metal, and the heat affected zone is used separately from the welded portion.
[Measurement of residual stress by strain gauge]
The position for measuring the strain generated in the pipe 1 is determined. As shown in FIG. 2, in the vicinity of the welded portion, the inner surface 11 of the pipe is grooved to form a grooved surface 13 in order to align the inner surface during welding. In order to confirm that the tensile residual stress of the heat affected zone 3 and the grooved surface 13 of the pipe inner surface 11 has been improved, a measurement position of the strain gauge G1 in the circumferential direction of the pipe 1 is provided in the vicinity of the weld 2.

一方、軸方向ひずみについては、溶接部近傍は開先加工面13および溶接余盛14が存在するために測定位置により大きく変化する。そのため、配管1の軸方向のひずみゲージG2の測定位置は、溶接部2から十分に離れた位置に設けることが好ましい。   On the other hand, the axial strain varies greatly depending on the measurement position because the groove processed surface 13 and the weld surplus 14 exist in the vicinity of the weld. Therefore, the measurement position of the strain gauge G2 in the axial direction of the pipe 1 is preferably provided at a position sufficiently away from the welded portion 2.

周方向ひずみの測定のために、既設の発電プラント内配管1の外面12にひずみゲージG1をに貼り付ける時には、内圧5の大きさを測定することが困難である。周方向ひずみの変化だけでは、配管1が塑性変形したか明確に判断することができないので、この場合は同じ測定位置で周方向および軸方向のひずみを測定して、軸方向ひずみに対する周方向ひずみを計測することで、配管1が塑性変形しているかを確認できる。   When the strain gauge G1 is affixed to the outer surface 12 of the existing power plant internal pipe 1 for measuring the circumferential strain, it is difficult to measure the magnitude of the internal pressure 5. Since it is not possible to clearly determine whether the pipe 1 is plastically deformed only by a change in the circumferential strain, in this case, the circumferential strain and the axial strain are measured with respect to the axial strain by measuring the circumferential strain and the axial strain at the same measurement position. It is possible to confirm whether the pipe 1 is plastically deformed by measuring.

周方向ひずみの測定には、ひずみゲージを用いる代わりに配管1の外径を測定しても良い。配管1の外径を測定する場合、内圧5上昇に伴う配管1の塑性変形で測定位置が分からなくならないように、決定した外径の測定位置に対して配管1の外面12に油性ペン等でそれぞれマーキングを行う。これらのマーキングを用いて外径の測定位置を測定し、得られた測定値を外径の測定位置の初期値として記録する。これらを測定する際には、配管1の厚さのばらつきを考慮し、溶接部2の近傍において配管1の軸心に垂直なそれぞれの断面内で二箇所以上を測定する。〔軸方向荷重の負荷〕
配管1に軸方向荷重4を負荷する構成を図3に示す。軸方向荷重4を負荷する方法として、油圧チャック21および油圧シリンダ22を用いる。配管1の残留応力を改善すべき溶接部2および熱影響部3の上流側および下流側に油圧チャック21を取り付ける。油圧チャック21間に軸方向荷重4を負荷するために、油圧チャック21間に油圧シリンダ22を取り付ける。油圧シリンダ22により軸方向荷重4を負荷したときに配管1に曲げ変形が生じないように、油圧シリンダ22は配管1の周方向に等間隔に2箇所以上取り付ける。配管1の内圧5が上昇すると、配管1の軸方向にも内圧5による負荷が生じる。このため、内圧5が上昇すると初期に油圧シリンダ22で負荷した軸方向荷重4も増加する。油圧シリンダ22による軸方向荷重4は、配管1の内圧5が上昇した時に、配管1の軸方向応力が配管1の降伏応力を超えないようにする。
〔内圧の上昇方法〕
配管1に軸方向荷重4の負荷を加え、配管1の内圧5を上昇させる。図4に公知の内圧上昇方法を説明する。図4(a)に示すように、配管1の残留応力を改善すべき溶接部2および熱影響部3の上流側および下流側に、内側容器32および外側容器33が配管1の外面12に取り付けられる。配管1内には水31が満たされている。
For measuring the circumferential strain, the outer diameter of the pipe 1 may be measured instead of using a strain gauge. When measuring the outer diameter of the pipe 1, an oil pen or the like is used on the outer surface 12 of the pipe 1 with respect to the determined measurement position of the outer diameter so as not to obscure the measurement position due to plastic deformation of the pipe 1 due to the increase in the internal pressure 5. Mark each. The measurement position of the outer diameter is measured using these markings, and the obtained measurement value is recorded as the initial value of the measurement position of the outer diameter. When measuring these, taking into account variations in the thickness of the pipe 1, two or more locations are measured in the respective cross sections perpendicular to the axis of the pipe 1 in the vicinity of the weld 2. [Axial load]
A configuration in which an axial load 4 is applied to the pipe 1 is shown in FIG. As a method for applying the axial load 4, a hydraulic chuck 21 and a hydraulic cylinder 22 are used. Hydraulic chucks 21 are attached to the upstream side and the downstream side of the welded portion 2 and the heat affected zone 3 where the residual stress of the pipe 1 should be improved. In order to apply the axial load 4 between the hydraulic chucks 21, a hydraulic cylinder 22 is attached between the hydraulic chucks 21. Two or more hydraulic cylinders 22 are attached at equal intervals in the circumferential direction of the pipe 1 so that bending deformation does not occur in the pipe 1 when the axial load 4 is applied by the hydraulic cylinder 22. When the internal pressure 5 of the pipe 1 rises, a load due to the internal pressure 5 is also generated in the axial direction of the pipe 1. For this reason, when the internal pressure 5 rises, the axial load 4 initially loaded by the hydraulic cylinder 22 also increases. The axial load 4 by the hydraulic cylinder 22 prevents the axial stress of the pipe 1 from exceeding the yield stress of the pipe 1 when the internal pressure 5 of the pipe 1 increases.
[Internal pressure increase method]
An axial load 4 is applied to the pipe 1 to increase the internal pressure 5 of the pipe 1. FIG. 4 illustrates a known internal pressure increasing method. As shown in FIG. 4A, an inner container 32 and an outer container 33 are attached to the outer surface 12 of the pipe 1 on the upstream side and the downstream side of the welded part 2 and the heat-affected part 3 to improve the residual stress of the pipe 1. It is done. The pipe 1 is filled with water 31.

内側容器32および外側容器33は、それぞれ内部が空洞になっている。(b)に示すように内側容器32および外側容器33内に、配管1が浸る程度にエチルアルコール34を注入する。エチルアルコール34が充填された外側容器33内に、上端の開口からドライアイス35を投入する。投入されたドライアイス35によって、外側容器33で取り囲まれた位置で配管1内の水31が冷却される。このため、配管1内のそれぞれの位置で水31が凍って氷栓36が形成され、水31は一対の氷栓36によって密封される。   Each of the inner container 32 and the outer container 33 is hollow. As shown in (b), ethyl alcohol 34 is injected into the inner container 32 and the outer container 33 to such an extent that the pipe 1 is immersed. Dry ice 35 is put into the outer container 33 filled with ethyl alcohol 34 from the opening at the upper end. The water 31 in the pipe 1 is cooled at a position surrounded by the outer container 33 by the supplied dry ice 35. For this reason, the water 31 is frozen at each position in the pipe 1 to form the ice plug 36, and the water 31 is sealed by the pair of ice plugs 36.

より強固なシール機能を発揮する氷栓36を配管1内に形成するために、予め実験等により求められた氷栓36が形成される時間よりも長い時間に亘って、外側容器33内のドライアイスによる配管1の冷却を継続する。これにより、強固に配管1の内面に凍りついた一対の氷栓36が形成され、これらの氷栓36の間に水31が満たされた密封領域が形成される。   In order to form the ice plug 36 that exhibits a stronger sealing function in the pipe 1, the drying time in the outer container 33 is longer than the time required to form the ice plug 36 obtained in advance through experiments or the like. Continue cooling the pipe 1 with ice. As a result, a pair of ice plugs 36 that are firmly frozen on the inner surface of the pipe 1 are formed, and a sealed region filled with water 31 is formed between the ice plugs 36.

さらに、(c)に示すように、エチルアルコール34が充填された内側容器32内にドライアイス35を投入する。内側容器32内のドライアイス35によって、氷栓36間に存在する水31が冷却される。内側容器32を取り付けた各位置では配管1が氷点下に冷却され、氷栓36間に存在する水31が凍り始める。水31が氷37になると体積が膨張するため、氷栓36間に存在する水31の圧力が上昇し始める。氷栓36間で配管1内の圧力が上昇し、この圧力上昇によって配管1が内側容器32間で半径方向において外側に向って拡管部38を形成する。   Furthermore, as shown in (c), dry ice 35 is put into the inner container 32 filled with ethyl alcohol 34. The water 31 existing between the ice plugs 36 is cooled by the dry ice 35 in the inner container 32. At each position where the inner container 32 is attached, the pipe 1 is cooled below the freezing point, and the water 31 existing between the ice plugs 36 begins to freeze. When the water 31 becomes ice 37, the volume expands, so that the pressure of the water 31 existing between the ice plugs 36 begins to rise. The pressure in the pipe 1 rises between the ice plugs 36, and the pipe 1 forms a pipe expansion portion 38 radially outward between the inner containers 32 due to this pressure rise.

配管1の変形により配管1が塑性変形したと確認された、もしくは測定した周方向ひずみが設定値に達した後、内側容器32および外側容器33のドライアイス35を外部に排出する。配管1内の氷栓35および氷36が全て融解して水31になった後、もしくは配管1の内圧低下と同時に軸方向荷重4を除荷する。このとき(d)に示すように配管1は塑性変形しているため、内圧5および軸方向荷重4の除荷後も拡管した形状となる。
〔残留応力改善の最適条件〕
本発明の配管の残留応力改善方法を、図5A〜5Cを用いて説明する。発明者らは、本発明の配管の残留応力改善方法を対象に、配管1に生じる残留応力を有限要素法により解析し、応力改善の最適な条件を明らかにした。
After it is confirmed that the pipe 1 is plastically deformed by the deformation of the pipe 1 or the measured circumferential strain reaches a set value, the dry ice 35 of the inner container 32 and the outer container 33 is discharged to the outside. The axial load 4 is unloaded after all of the ice plugs 35 and ice 36 in the pipe 1 are melted to form water 31 or simultaneously with the decrease in the internal pressure of the pipe 1. At this time, since the pipe 1 is plastically deformed as shown in (d), the pipe 1 is expanded even after the internal pressure 5 and the axial load 4 are unloaded.
[Optimum conditions for residual stress improvement]
A method for improving the residual stress of piping according to the present invention will be described with reference to FIGS. The inventors analyzed the residual stress generated in the pipe 1 by the finite element method for the method for improving the residual stress of the pipe of the present invention, and clarified the optimum conditions for the stress improvement.

本実施例の対象とする配管の残留応力改善方法を適用する配管1は、ステンレス鋼製として、縦弾性係数は195000MPa、ポアソン比は0.3および降伏応力は270MPaとした。配管1の内径は20mmで、肉厚を2mm、6mmおよび10mmと3段階に変化させた。   The pipe 1 to which the residual stress improvement method of the pipe targeted in this example is applied is made of stainless steel, the longitudinal elastic modulus is 195000 MPa, the Poisson's ratio is 0.3, and the yield stress is 270 MPa. The inner diameter of the pipe 1 was 20 mm, and the wall thickness was changed in three stages: 2 mm, 6 mm, and 10 mm.

図5Aに示す肉厚2mmの配管1の内圧5は、0MPaの状態から87MPaまで上昇させた。また、配管1の内圧5と軸方向荷重4により配管1に生じる軸方向の負荷は、配管1の端部に軸方向の分布応力として負荷を加えた。肉厚2mmの配管1の軸方向の分布応力は、軸方向荷重4が無負荷の場合、配管1の内径と外径の比から129MPaとし、配管1の内圧5と同時に0MPaの状態から129MPaまで上昇させた。ここで、軸方向の分布応力とは、負荷時に配管に生じる軸方向の分布応力を意味する。   The internal pressure 5 of the pipe 1 having a thickness of 2 mm shown in FIG. 5A was increased from 0 MPa to 87 MPa. Further, the axial load generated in the pipe 1 due to the internal pressure 5 and the axial load 4 of the pipe 1 was applied to the end of the pipe 1 as a distributed stress in the axial direction. The axially distributed stress of the pipe 1 having a thickness of 2 mm is 129 MPa from the ratio of the inner diameter to the outer diameter of the pipe 1 when the axial load 4 is not applied, and from 0 MPa to 129 MPa simultaneously with the internal pressure 5 of the pipe 1. Raised. Here, the axial distribution stress means the axial distribution stress generated in the pipe at the time of loading.

次に、図5Bに示す肉厚6mmの配管1では、軸方向荷重4が無負荷の場合、内圧5を0MPaから147MPaに増加し、同時に軸方向の分布応力を0MPaから94MPaに上昇させた。   Next, in the pipe 1 having a thickness of 6 mm shown in FIG. 5B, when the axial load 4 was not applied, the internal pressure 5 was increased from 0 MPa to 147 MPa, and at the same time, the axial distributed stress was increased from 0 MPa to 94 MPa.

次に、図5Cに示す肉厚10mmの配管1では、軸方向荷重4が無負荷の場合、内圧5を0MPaから216MPaに増加し、同時に軸方向の分布応力を0MPaから72MPaに上昇させた。   Next, in the pipe 1 having a thickness of 10 mm shown in FIG. 5C, when the axial load 4 was not applied, the internal pressure 5 was increased from 0 MPa to 216 MPa, and at the same time, the axial distributed stress was increased from 0 MPa to 72 MPa.

各肉厚の配管1に対して、軸方向荷重4を負荷した時に配管1の断面積から計算される軸方向応力を軸方向の分布応力として負荷した。例えば、肉厚6mmの配管1に49kNの軸方向荷重4を負荷した場合は、配管1の断面積から100MPaの軸方向応力が生じると計算される。したがって、配管1の内圧5により生じる軸方向応力147MPaに100MPaを加えて、247MPaを軸方向の分布応力として負荷する。   The axial stress calculated from the cross-sectional area of the pipe 1 when the axial load 4 was applied to each thick pipe 1 was applied as the axial distributed stress. For example, when an axial load 4 of 49 kN is applied to the pipe 1 having a thickness of 6 mm, it is calculated that an axial stress of 100 MPa is generated from the cross-sectional area of the pipe 1. Therefore, 100 MPa is added to the axial stress 147 MPa generated by the internal pressure 5 of the pipe 1 to load 247 MPa as the axial distributed stress.

図5A〜5Cは、軸方向荷重を変化させた場合に、応力改善に最適な条件を有限要素法により評価した結果を示す。図5A〜5Cの横軸は、軸方向荷重4および配管1の内圧5が上述の最大値まで達する時に、配管1の外面12に生じる軸方向ひずみを示す。また縦軸は、配管1の内圧5および軸方向の分布応力を除荷した後の配管1の内面11に生じる残留応力を示し、マイナス領域ほど圧縮残留応力が高いことを示す。縦軸0は。無荷重無内圧の素管の状態を示す。   5A to 5C show the results of evaluating the optimum conditions for stress improvement by the finite element method when the axial load is changed. The horizontal axis in FIGS. 5A to 5C indicates the axial strain generated on the outer surface 12 of the pipe 1 when the axial load 4 and the internal pressure 5 of the pipe 1 reach the maximum value described above. The vertical axis indicates the residual stress generated on the inner surface 11 of the pipe 1 after unloading the internal pressure 5 and the axial distribution stress of the pipe 1, and indicates that the compressive residual stress is higher in the minus region. The vertical axis 0. The state of the unloaded and internal pressure bare tube is shown.

図5A〜5Cより、軸方向残留応力は軸方向ひずみが0%を超えると改善効果が高くなることが明らかである。したがって、配管1に内圧5および軸方向荷重4の負荷時における配管1の外面12の軸方向ひずみは、0%以上とすることが好ましい。また、周方向残留応力の改善効果は配管1の外面12の軸方向ひずみが0%程度の時に最も高くなる。   From FIGS. 5A to 5C, it is clear that the improvement effect of the axial residual stress increases when the axial strain exceeds 0%. Therefore, the axial strain of the outer surface 12 of the pipe 1 when the internal pressure 5 and the axial load 4 are applied to the pipe 1 is preferably 0% or more. The effect of improving the circumferential residual stress is highest when the axial strain of the outer surface 12 of the pipe 1 is about 0%.

図6は配管1の端部に負荷する軸方向の分布応力に対する、配管1の内面11の軸方向応力の改善効果の上限を示す。図6より、軸方向の分布応力が降伏応力の270MPaを超えると改善効果が落ち、もしくは軸方向荷重4が無い状態より改善効果が落ちる。これらの結果から、配管1の外面12の軸方向ひずみが0%以上で、かつ配管1の軸方向応力が降伏応力を超えない軸方向荷重4とすることが好ましい。
〔周方向の応力とひずみの関係〕
図7A、7Bは、軸方向荷重4のない肉厚6mmの配管1の内圧5を上昇させた時の変化を、有限要素法により評価した結果を示す。
FIG. 6 shows the upper limit of the effect of improving the axial stress of the inner surface 11 of the pipe 1 with respect to the axial distributed stress applied to the end of the pipe 1. From FIG. 6, when the axial distribution stress exceeds the yield stress of 270 MPa, the improvement effect is reduced, or the improvement effect is lower than the state without the axial load 4. From these results, it is preferable that the axial load 4 is such that the axial strain of the outer surface 12 of the pipe 1 is 0% or more and the axial stress of the pipe 1 does not exceed the yield stress.
[Relationship between circumferential stress and strain]
7A and 7B show the results of evaluating the change when the internal pressure 5 of the pipe 1 having a thickness of 6 mm without the axial load 4 is increased by the finite element method.

図7Aは、配管1の内圧5を上昇させた時の、外面12の周方向ひずみに対する内面11および外面12の周方向応力の変化を示す。内圧5が低く周方向ひずみが小さい時は、配管1は弾性変形するために、配管1の内面11および外面12に生じる周方向応力はほぼ同じである。   FIG. 7A shows changes in the circumferential stress of the inner surface 11 and the outer surface 12 with respect to the circumferential strain of the outer surface 12 when the internal pressure 5 of the pipe 1 is increased. When the internal pressure 5 is low and the circumferential strain is small, since the pipe 1 is elastically deformed, the circumferential stress generated on the inner surface 11 and the outer surface 12 of the pipe 1 is substantially the same.

内圧5が上昇し続けると配管1は塑性変形し始める。この時、配管1の半径方向には、内面11は内圧5が負荷されているのに対して、外面12は無負荷の状態である。このため、配管1の内面11と外面12で塑性変形し始める周方向応力が異なり、配管1の内面11と外面12に応力差が生じる。   As the internal pressure 5 continues to rise, the pipe 1 begins to be plastically deformed. At this time, in the radial direction of the pipe 1, the inner surface 11 is loaded with the internal pressure 5, whereas the outer surface 12 is in an unloaded state. For this reason, the circumferential stress that starts plastic deformation differs between the inner surface 11 and the outer surface 12 of the pipe 1, and a stress difference occurs between the inner surface 11 and the outer surface 12 of the pipe 1.

配管1の内圧5を除荷した時に、配管1は半径方向に弾性変形分だけ縮み周方向応力が低下する。配管1の内面11と外面12の周方向応力の低下量はほぼ同じため、配管1が塑性変形後に生じた内面11と外面12の応力差が大きいほど、残留応力の改善効果が高くなる。図7Aより、配管1の外面12が塑性変形し始めた時、すなわち、外面12の周方向ひずみが0.5%程度の時が最も改善効果が高くなる。ここで、配管1の外面12の同じ箇所において、軸方向ひずみに対する周方向のひずみの変化を測定することで、配管1の外面12が塑性変形したかを判断する。   When the internal pressure 5 of the pipe 1 is unloaded, the pipe 1 is contracted in the radial direction by the amount of elastic deformation, and the circumferential stress is reduced. Since the amount of decrease in the circumferential stress between the inner surface 11 and the outer surface 12 of the pipe 1 is substantially the same, the greater the difference in stress between the inner surface 11 and the outer surface 12 generated after the plastic deformation of the pipe 1, the higher the effect of improving the residual stress. From FIG. 7A, the improvement effect becomes the highest when the outer surface 12 of the pipe 1 begins to be plastically deformed, that is, when the circumferential strain of the outer surface 12 is about 0.5%. Here, at the same location of the outer surface 12 of the pipe 1, it is determined whether the outer surface 12 of the pipe 1 is plastically deformed by measuring a change in the circumferential strain relative to the axial strain.

図7Bは、配管1の内圧5を上昇させた時の、外面12の軸方向ひずみに対する周方向ひずみの変化を示す。残留応力の改善効果が最も高くなる周方向ひずみ0.5%程度で、軸方向ひずみに対する周方向ひずみの変化量が大きく変化している。配管1が溶接等により予め変形をしている場合は、配管1が塑性変形し始める周方向ひずみが本実施例と異なる。このため、配管1の外面12の軸方向ひずみに対する周方向ひずみの変化を測定することで、配管1が塑性変形していることを判断する。
〔残留応力の改善結果〕
本発明の配管の残留応力改善結果を図8を用いて説明する。発明者らは、配管1が溶接部2により軸方向に非一様な形状を持ちかつ溶接残留応力が存在する場合に、本実施形態における残留応力改善効果を有限要素法により評価した。
FIG. 7B shows a change in the circumferential strain with respect to the axial strain of the outer surface 12 when the internal pressure 5 of the pipe 1 is increased. The amount of change in the circumferential strain with respect to the axial strain is greatly changed at a circumferential strain of about 0.5% where the effect of improving the residual stress is the highest. When the pipe 1 is deformed in advance by welding or the like, the circumferential strain in which the pipe 1 starts plastic deformation is different from the present embodiment. For this reason, it is determined that the pipe 1 is plastically deformed by measuring a change in the circumferential strain with respect to the axial strain of the outer surface 12 of the pipe 1.
[Residual stress improvement results]
The results of improving the residual stress of the pipe of the present invention will be described with reference to FIG. The inventors evaluated the residual stress improvement effect in the present embodiment by the finite element method when the pipe 1 has a non-uniform shape in the axial direction by the welded portion 2 and there is a welding residual stress.

本実施形態の対象とする配管の残留応力改善方法を適用する配管1はステンレス鋼製として、縦弾性係数は195000MPa、ポアソン比は0.3、降伏応力は270MPaとした。配管1の溶接部2および開先加工面13以外の箇所における内径は25mmで、肉厚は4.5mmである。   The pipe 1 to which the residual stress improvement method for pipes of the present embodiment is applied is made of stainless steel, the longitudinal elastic modulus is 195000 MPa, the Poisson's ratio is 0.3, and the yield stress is 270 MPa. The inner diameter of the portion other than the welded portion 2 and the grooved surface 13 of the pipe 1 is 25 mm, and the wall thickness is 4.5 mm.

図8は有限要素法により評価した配管1の内面11における残留応力を示す。溶接部2および開先加工面13に100MPa〜300MPaの引張残留応力が生じていることが分かる。   FIG. 8 shows the residual stress on the inner surface 11 of the pipe 1 evaluated by the finite element method. It can be seen that a tensile residual stress of 100 MPa to 300 MPa is generated in the welded portion 2 and the groove processing surface 13.

図9A、9Bは、本実施形態で改善された配管1の内圧5および軸方向荷重4を除荷した後の内面11の残留応力分布を、有限要素法により評価した例を示す。軸方向荷重が無負荷の場合は、配管1の内圧5を0MPaから110MPa、軸方向の分布応力を0MPaから130MPaに同時に上昇させた。これに対し、軸方向の分布応力を100MPa、130MPa(軸方向荷重無負荷)、200MPaおよび300MPaと変化させた。配管1の内圧5が110MPaに達した時の、配管1の外面12の溶接中心から20mmの位置における軸方向ひずみは、軸方向の分布応力が100MPaの時は−0.04%、130MPaの時は0.02%、200MPaの時は0.18%および300MPaの時は1.23%であった。図9Aより、溶接部分における配管周方向の残留応力は何れも大きくマイナス領域に位置して圧縮残留応力を示し応力状態の改善を示している。なお、軸方向の分布応力が降伏応力を超える300MPaでは、開先加工面近傍で周方向の応力改善効果が低くなっている。   FIGS. 9A and 9B show an example in which the residual stress distribution on the inner surface 11 after unloading the internal pressure 5 and the axial load 4 of the pipe 1 improved in this embodiment is evaluated by a finite element method. When the axial load was no load, the internal pressure 5 of the pipe 1 was simultaneously increased from 0 MPa to 110 MPa, and the axial distributed stress was simultaneously increased from 0 MPa to 130 MPa. On the other hand, the axial distribution stress was changed to 100 MPa, 130 MPa (no load in the axial direction), 200 MPa, and 300 MPa. When the internal pressure 5 of the pipe 1 reaches 110 MPa, the axial strain at a position 20 mm from the weld center of the outer surface 12 of the pipe 1 is -0.04% when the axial distribution stress is 100 MPa, and 130 MPa. Was 0.02%, 0.18% at 200 MPa, and 1.23% at 300 MPa. From FIG. 9A, the residual stress in the pipe circumferential direction at the welded portion is largely located in the negative region, indicating a compressive residual stress, indicating an improvement in the stress state. Note that when the axial distribution stress exceeds the yield stress, 300 MPa, the circumferential stress improvement effect is low in the vicinity of the groove surface.

また、図9Bより、溶接部分における配管軸方向の残留応力は何れもマイナス領域に位置して圧縮残留応力を示し応力状態の改善を示している。なお、内圧5負荷時に軸方向ひずみが0%以下となった軸方向の分布応力100MPaでは、開先加工面近傍で軸方向応力が一部0MPa以上で引張圧縮応力状態となっている。   Further, from FIG. 9B, the residual stress in the pipe axis direction at the welded portion is located in the minus region and indicates the compressive residual stress, indicating an improvement in the stress state. In addition, at an axial distribution stress of 100 MPa in which the axial strain becomes 0% or less when the internal pressure is 5 loads, a portion of the axial stress is 0 MPa or more in the vicinity of the groove processing surface, and a tensile compressive stress state is obtained.

したがって、溶接により、予め変形および残留応力が存在する配管においても、配管1の外面12の軸方向ひずみが0%以上、かつ配管1の軸方向応力が降伏応力を超えない軸方向荷重4とすることが好ましい。   Therefore, even in a pipe in which deformation and residual stress exist in advance by welding, the axial load 4 is such that the axial strain of the outer surface 12 of the pipe 1 is 0% or more and the axial stress of the pipe 1 does not exceed the yield stress. It is preferable.

図10は、本実施形態で改善された配管1の内圧5および軸方向荷重4を負荷時における、配管1の外面12における周方向および軸方向ひずみの有限要素法による解析結果を示す。図10は、配管1の拡管時に溶接部2の形状によっては配管1の熱影響部3以外の変形量が熱影響部3の変形量より大きくなることを示す。したがって、配管内面11の熱影響部3かつ開先加工面13の引張残留応力が改善されたことを確認するために、配管1の周方向のひずみゲージG1の測定位置を溶接部2の近傍に設けることが好ましい。また、軸方向ひずみについては、溶接部近傍は開先加工面13および溶接余盛14の影響により大きく変化する。そのため、配管1の軸方向のひずみゲージG2の測定位置は、溶接部2から十分に離れた位置に設けることが好ましい。   FIG. 10 shows the analysis result by the finite element method of the circumferential and axial strains on the outer surface 12 of the pipe 1 when the internal pressure 5 and the axial load 4 of the pipe 1 improved in this embodiment are applied. FIG. 10 shows that the deformation amount of the pipe 1 other than the heat-affected zone 3 is larger than that of the heat-affected zone 3 depending on the shape of the welded portion 2 when the pipe 1 is expanded. Therefore, in order to confirm that the tensile residual stress of the heat affected zone 3 of the pipe inner surface 11 and the groove processing surface 13 has been improved, the measurement position of the strain gauge G1 in the circumferential direction of the pipe 1 is set near the welded portion 2. It is preferable to provide it. As for the axial strain, the vicinity of the welded portion greatly changes due to the influence of the groove processing surface 13 and the welding surplus 14. Therefore, the measurement position of the strain gauge G2 in the axial direction of the pipe 1 is preferably provided at a position sufficiently away from the welded portion 2.

1…配管、2…溶接部、3…熱影響部、4…軸方向荷重、5…内圧、11…配管内面、12…配管外面、13…開先加工面、14…溶接余盛、21…油圧チャック、22…油圧ジャッキ、31…水、32…内側容器、33…外側容器、34…エチルアルコール、35ドライアイス、36…氷栓、37…氷、38…拡管部、G1…周方向ひずみゲージ、G2…軸方向ひずみゲージ   DESCRIPTION OF SYMBOLS 1 ... Pipe, 2 ... Welded part, 3 ... Heat-affected zone, 4 ... Axial load, 5 ... Internal pressure, 11 ... Pipe inner surface, 12 ... Pipe outer surface, 13 ... Groove processing surface, 14 ... Weld surplus, 21 ... Hydraulic chuck, 22 ... hydraulic jack, 31 ... water, 32 ... inner container, 33 ... outer container, 34 ... ethyl alcohol, 35 dry ice, 36 ... ice plug, 37 ... ice, 38 ... expanded part, G1 ... circumferential strain Gauge, G2 ... Axial strain gauge

Claims (9)

流体を内部に充填した配管における引張残留応力を有する応力改善領域に対して、前記配管に軸方向荷重の負荷を加え、前記配管内部の圧力を上昇させて前記応力改善領域を塑性変形させる配管の残留応力改善方法において、
前記配管軸方向の負荷の範囲を、前記配管外面の軸方向ひずみが0%以上となる応力でかつ前記配管の降伏応力以下の応力とし、
前記配管が塑性変形された後に、前記配管内の圧力および前記配管の軸方向の負荷を除荷し、
前記配管外面のひずみが約0.5%に達した時点で前記配管内部の圧力を除荷することを特徴とする配管の残留応力改善方法。
For a stress improvement region having tensile residual stress in a pipe filled with fluid, an axial load is applied to the pipe, and the pressure inside the pipe is increased to plastically deform the stress improvement area. In the residual stress improvement method,
The range of the load in the pipe axial direction is a stress at which the axial strain of the pipe outer surface is 0% or more and a stress equal to or lower than the yield stress of the pipe,
After the pipe is plastically deformed, the pressure in the pipe and the axial load of the pipe are unloaded,
A method for improving the residual stress of a pipe, comprising unloading the pressure inside the pipe when the strain on the outer surface of the pipe reaches about 0.5%.
請求項1に記載された配管の残留応力改善方法において、前記応力改善領域は前記配管の溶接部および該溶接部による熱影響部を含むことを特徴とする配管の残留応力改善方法。   The residual stress improvement method for piping according to claim 1, wherein the stress improvement region includes a welded portion of the pipe and a heat affected zone by the welded portion. 請求項1に記載された配管の残留応力改善方法において、前記応力改善領域は前記配管の拡管部を含むことを特徴とする配管の残留応力改善方法。   2. The residual stress improvement method for piping according to claim 1, wherein the stress improvement region includes an expanded portion of the piping. 流体を内部に充填した配管における引張残留応力を有する応力改善領域に対して、前記配管に軸方向荷重の負荷を加え、前記配管内部の圧力を上昇させて前記応力改善領域を塑性変形させる配管の残留応力改善方法において、
前記配管軸方向の負荷の範囲を、前記配管外面の軸方向ひずみが0%以上となる応力でかつ前記配管の降伏応力以下の応力とし、
前記配管が塑性変形された後に、前記配管内の圧力および前記配管の軸方向の負荷を除荷し、
請前記配管内面が塑性変形を開始した後、配管外面が塑性変形を始めた時点で前記配管内部の圧力を除荷し、
前記配管外面の軸方向ひずみに対する周方向ひずみの変化を計測して塑性変形を確認することを特徴とする配管の残留応力改善方法。
For a stress improvement region having tensile residual stress in a pipe filled with fluid, an axial load is applied to the pipe, and the pressure inside the pipe is increased to plastically deform the stress improvement area. In the residual stress improvement method,
The range of the load in the pipe axial direction is a stress at which the axial strain of the pipe outer surface is 0% or more and a stress equal to or lower than the yield stress of the pipe,
After the pipe is plastically deformed, the pressure in the pipe and the axial load of the pipe are unloaded,
After the pipe inner surface starts plastic deformation, when the pipe outer surface starts plastic deformation, the pressure inside the pipe is unloaded,
A method for improving residual stress in a pipe, wherein a plastic deformation is confirmed by measuring a change in a circumferential strain relative to an axial strain of the pipe outer surface.
請求項4に記載された配管の残留応力改善方法において、前記応力改善領域は前記配管の溶接部および該溶接部による熱影響部を含むことを特徴とする配管の残留応力改善方法。   5. The residual stress improvement method for piping according to claim 4, wherein the stress improvement region includes a welded portion of the pipe and a heat affected zone by the welded portion. 請求項4に記載された配管の残留応力改善方法において、前記応力改善領域は前記配管の拡管部を含むことを特徴とする配管の残留応力改善方法。   The residual stress improvement method for piping according to claim 4, wherein the stress improvement region includes a pipe expansion portion of the piping. 請求項1乃至3のいずれかに記載の配管の残留応力改善方法において、前記配管外面の軸方向ひずみに対する周方向ひずみの変化を計測して塑性変形を確認することを特徴とする配管の残留応力改善方法。   The residual stress improvement method for piping according to any one of claims 1 to 3, wherein a plastic deformation is confirmed by measuring a change in circumferential strain with respect to an axial strain of the outer surface of the piping. How to improve. 請求項4乃至6のいずれかに記載の配管の残留応力改善方法において、前記配管外面における周方向ひずみの検出位置を前記溶接部による熱影響部且つ開先加工面の引張残留応力が生じる領域とし、軸方向ひずみの検出位置を開先加工面および溶接余盛の影響のない領域とすることを特徴とする配管の残留応力改善方法。 The residual stress improvement method for piping according to any one of claims 4 to 6, wherein a detection position of a circumferential strain on the outer surface of the piping is a region where a heat-affected zone by the welded portion and a tensile residual stress of a groove surface is generated. A method for improving the residual stress of a pipe, characterized in that a detection position of an axial strain is set to a region which is not affected by a grooved surface and welding surplus . 請求項7に記載の配管の残留応力改善方法において、前記配管外面における周方向ひずみの検出位置を前記溶接部による熱影響部且つ開先加工面の引張残留応力が生じる領域とし、軸方向ひずみの検出位置を開先加工面および溶接余盛の影響のない領域とすることを特徴とする配管の残留応力改善方法。 8. The method for improving residual stress in piping according to claim 7, wherein the detection position of the circumferential strain on the outer surface of the piping is a region where the heat affected zone by the welded portion and the tensile residual stress of the groove surface is generated , and the axial strain is reduced. A method for improving residual stress of piping, characterized in that a detection position is an area that is not affected by a grooved surface and welding surplus .
JP2009294016A 2009-12-25 2009-12-25 How to improve residual stress in piping Active JP5367558B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009294016A JP5367558B2 (en) 2009-12-25 2009-12-25 How to improve residual stress in piping
US12/963,655 US20110155289A1 (en) 2009-12-25 2010-12-09 Residual stress improving method for pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294016A JP5367558B2 (en) 2009-12-25 2009-12-25 How to improve residual stress in piping

Publications (2)

Publication Number Publication Date
JP2011131252A JP2011131252A (en) 2011-07-07
JP5367558B2 true JP5367558B2 (en) 2013-12-11

Family

ID=44186001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294016A Active JP5367558B2 (en) 2009-12-25 2009-12-25 How to improve residual stress in piping

Country Status (2)

Country Link
US (1) US20110155289A1 (en)
JP (1) JP5367558B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448791B2 (en) * 2005-05-31 2010-04-14 日立Geニュークリア・エナジー株式会社 Method and apparatus for improving residual stress in piping
JP2014069207A (en) 2012-09-28 2014-04-21 Mitsubishi Heavy Ind Ltd Apparatus and method for expanding pipe diameter
US10883894B2 (en) * 2016-09-16 2021-01-05 Onesubsea Ip Uk Limited Conduit fatigue management systems and methods
US11339900B2 (en) 2017-02-13 2022-05-24 Webco Industries, Inc. Work hardened welds and methods for same
JP6744500B2 (en) * 2017-02-13 2020-08-19 ウェブコ インダストリーズ インコーポレイテッド Work hardening welding and method therefor
CN109852786B (en) * 2019-02-28 2020-12-01 重庆科技学院 Post-weld treatment device for oil and gas pipeline welding
CN117265227A (en) * 2023-08-21 2023-12-22 中国航发哈尔滨东安发动机有限公司 Method and device for improving residual internal stress of helicopter tail transmission shaft pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775296A (en) * 1980-10-29 1982-05-11 Mitsubishi Heavy Ind Ltd Method for improving residual stress of welded joint part of pipe
JPS57175094A (en) * 1981-04-20 1982-10-27 Mitsubishi Heavy Ind Ltd Improving method for residual stress in welded joint part of pipes
JP4448791B2 (en) * 2005-05-31 2010-04-14 日立Geニュークリア・エナジー株式会社 Method and apparatus for improving residual stress in piping
JP4448873B2 (en) * 2007-08-29 2010-04-14 日立Geニュークリア・エナジー株式会社 Residual stress improvement method for small diameter piping

Also Published As

Publication number Publication date
US20110155289A1 (en) 2011-06-30
JP2011131252A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5367558B2 (en) How to improve residual stress in piping
CN101128273B (en) High-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal and manufacturing method thereof
JP6805253B2 (en) Methods for manufacturing sensors for high voltage lines and sensors for high voltage lines
KR102613899B1 (en) Manufacturing method for metal tube
Ogata et al. Damage characterization of a P91 steel weldment under uniaxial and multiaxial creep
US20090056839A1 (en) Method for Improving Residual Stress of Structure Member
Igi et al. Effect of internal pressure on tensile strain capacity of X80 pipeline
JP4903635B2 (en) UOE steel pipe with excellent deformability for line pipe
JP2003340519A (en) UOE steel pipe with excellent crushing strength
JP2003340518A (en) Method of manufacturing UOE steel pipe with excellent crushing strength
JP5237750B2 (en) How to improve residual stress in piping
KR102686612B1 (en) Steel pipe for pressure piping
JP2012024822A (en) Induction heating stress improvement method
Igi et al. Tensile strain capacity of X80 pipeline under tensile loading with internal pressure
JP6367681B2 (en) Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device
JP3898909B2 (en) Manufacturing method of high strength steel pipe excellent in formability and burst characteristics
Zhang et al. Measurement and modelling of residual stresses in offshore circumferential welds
JP2017170490A (en) Welding steel pipe and feed oil pipe
Igi et al. Strain Capacity of 48" OD X80 Pipeline in Pressurized Full-scale Bending Test
Liessem et al. Methods for collapse pressure prediction of UOE linepipe
Wang et al. Numerical Study on the Strain Capacity of Girth-Weld Pipes With Unequal Wall Thickness Transition Joints
Babu et al. Theoretical and finite element analysis of high pressure components
Igi et al. Strain capacity of X100 high-strain linepipe for strain-based design application
JP5263378B2 (en) Manufacturing method of welded steel pipe
JPWO2015107652A1 (en) A method for estimating the remaining life of piping with a bainite structure using a calibration curve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5367558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350