JP2010094661A - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
JP2010094661A
JP2010094661A JP2009039164A JP2009039164A JP2010094661A JP 2010094661 A JP2010094661 A JP 2010094661A JP 2009039164 A JP2009039164 A JP 2009039164A JP 2009039164 A JP2009039164 A JP 2009039164A JP 2010094661 A JP2010094661 A JP 2010094661A
Authority
JP
Japan
Prior art keywords
honeycomb
honeycomb unit
zeolite
ammonia
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009039164A
Other languages
English (en)
Other versions
JP5356063B2 (ja
Inventor
Kazushige Ono
一茂 大野
Takahiko Ido
貴彦 井戸
Takeshi Yoshimura
健 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2009039164A priority Critical patent/JP5356063B2/ja
Publication of JP2010094661A publication Critical patent/JP2010094661A/ja
Application granted granted Critical
Publication of JP5356063B2 publication Critical patent/JP5356063B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】アンモニアを用いた自動車排ガスのNOx浄化システムにおいて、反応に利用できないアンモニアの吸着を抑制することのできるハニカム構造体の提供。
【解決手段】無機粒子と、無機バインダとを含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルがセル壁によって区画された形状のハニカムユニット2を、前記セルの貫通孔が同一方向を向くように接着材により結合したハニカム構造体1であって、NH−TPD法で測定した前記ハニカムユニットの単位質量当たりのアンモニア脱離量は、前記接着材の単位質量当たりのアンモニア脱離量の5〜100倍であることを特徴とするハニカムユニット構造体。
【選択図】図1

Description

本発明は、ハニカム構造体に関する。
自動車排ガスの浄化に関しては、多くの技術が開発されているが、交通量の増大もあって、まだ十分な排ガス対策がとられているとは言い難い。日本国内においても、世界的にも自動車排ガス規制は、さらに強化されていく方向にある。その中でも、ディーゼル排ガス中のNOx規制については、非常に厳しくなってきている。従来は、エンジンの燃焼システムの制御によってNOx低減を図ってきたが、それだけでは対応しきれなくなってきた。このような課題に対応するディーゼルNOx浄化システムとして、アンモニアを還元剤として用いるNOx還元システム(SCRシステムと呼ばれている。)が提案されている。この尿素SCRシステムにおいては、尿素を熱分解してアンモニアを発生させ、このアンモニアで排ガス中のNOxを還元している。アンモニアは、触媒担体に吸蔵されることにより、触媒上に到達した排ガス中のNOxと触媒上で反応して排ガス中のNOxを還元している。
このようなシステムに用いられる触媒担体として、特許文献1に開示されているようなハニカム構造体が知られている。このハニカム構造体は、γアルミナ、セリア、ジルコニア、ゼオライトなどと、これらを強化する無機繊維とバインダとを混合して、ハニカム形状に成形して焼成したハニカムユニットを組み合わせ、車載用触媒担体として強度を向上させている。
国際公開第2005/063653号パンフレット
特許文献1に開示されているハニカム構造体においては、車載用触媒担体としての強度向上や、触媒成分の排ガスとの接触面積の増加による反応性の向上などにおいて優れた機能を発揮する。ところで、ハニカム構造体を作製する際に、複数のハニカムユニットを作製し、これらを組み合わせてひとつのハニカム構造体としている。このような複数のハニカムユニットを組み合わせたハニカム構造体においては、隣り合うハニカムユニットを無機材料からなる接着材で接着してハニカム構造体を作製している。しかし、通常、接着材には、排ガスが浸透しにくいのでNOx還元反応には関与しないこととなる。一方で、接着材は、その耐熱性や強度の点からハニカムユニットと類似の無機材料からなることが多く、多孔質でアンモニア吸着能力を持っている場合が多い。
そうすると、接着材は、アンモニアを吸着するが、NOx還元反応には関与しないため、単にアンモニアを消費し、場合によっては、不必要な状況でアンモニアを放出することもある。ハニカム構造体中にこのような材料が存在すると、接着材が反応に必要なアンモニアの一部を吸着してしまい、アンモニアの利用効率を低下させてしまうことがある。さらに、ハニカム構造体の環境条件の変化により、接着材に吸着していたアンモニアが放出されることがある。このアンモニアが排ガスとともに排出されると、新たな環境汚染を引き起こす可能性がある。この為、NOx還元触媒を通過した後の排ガスを、さらにアンモニア除去するシステムが必要になることもある。
本発明においては、上述の問題点に鑑み、アンモニアを用いた自動車排ガスのNOx浄化システムにおいて、反応に利用できないアンモニアの吸着を抑制することのできるハニカム構造体を提供することを目的としている。
本発明の課題を解決するための手段を以下に記す。
本発明は、無機粒子と、無機バインダとを含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルがセル壁によって区画された形状のハニカムユニットを、前記セルの貫通孔が同一方向を向くように接着材により結合したハニカム構造体であって、NH−TPD法で測定した前記ハニカムユニットの単位質量当たりのアンモニア脱離量が、前記接着材の単位質量当たりのアンモニア脱離量の5〜100倍であることを特徴とするハニカム構造体である。
好ましい本発明は、前記ハニカムユニットの単位質量当たりのアンモニア脱離量が、200〜700μmol/gであることを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記無機粒子は、ゼオライトを含むことを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記ゼオライトが、イオン交換されていることを特徴とする前記ハニカム構造体である
好ましい本発明は、前記ゼオライトが、Cu、Fe、Ni、Zn、Mn、Ag、Ti、V、又はCoでイオン交換されていることを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記ゼオライトが、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、又はゼオライトLであることを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記ゼオライトの含有量が、前記ハニカムユニットの見かけの体積1L当たり250〜700gであることを特徴とする前記ハニカムユニット構造体である。
好ましい本発明は、前記無機粒子が、さらにアルミナ、チタニア、シリカ、ジルコニア、又はこれらの前駆体を含むことを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記ハニカムユニットが、さらに無機繊維を含むことを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記無機繊維が、アルミナ繊維、シリカ繊維、炭化珪素繊維、シリカアルミナ繊維、ガラス繊維、チタン酸カリウム繊維、及びホウ酸アルミニウム繊維のうち少なくともいずれかひとつを含むことを特徴とする前記ハニカム構造体である。
好ましい本発明は、前記無機バインダが、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライトゾル、及びアタパルジャイトゾルのうち少なくともいずれかひとつを含むことを特徴とする前記ハニカム構造体である。
本発明によれば、アンモニアによる還元反応を利用した自動車排ガスのNOx浄化システムにおいて、反応に利用できないアンモニアの吸着を抑制することのできるハニカム構造体を提供することができる。
本発明のハニカム構造体の斜視図である。 図1のハニカム構造体を構成するハニカムユニットの斜視図である。 実施例及び比較例における、ハニカムユニットの単位質量当たりのアンモニア脱離量と接着材の単位質量当たりのアンモニア脱離量の比(ハニカムユニットの単位質量当たりのアンモニア脱離量/接着材の単位質量当たりのアンモニア脱離量)に対するハニカム構造体のNOx浄化性能を表す。(a)のグラフは反応温度200℃におけるNOx浄化性能、(b)のグラフは反応温度300℃におけるNOx浄化性能、(c)のグラフは反応温度400℃におけるNOx浄化性能である。
1:ハニカム構造体
2:ハニカムユニット
3:セル
4:セル壁
5:接着材
6:コーティング材層
アンモニアによる還元反応を利用した自動車用のNOx浄化触媒、又はその担体として使用されるハニカム構造体においては、一旦、ハニカム構造体中にアンモニアを吸着し、排ガス中のNOxが触媒上に到達したときに、アンモニアがNOxと反応してNOxの還元が行われる。NOxは、ハニカム構造体に担持されている触媒の周辺に吸着されていることが必要である。
一方で、ハニカム構造体は、比較的小型で製造し易いハニカムユニットを複数個組み合わせて製造される場合がある。このようなハニカム構造体においては、ハニカムユニットとハニカムユニットを結合するために、無機材料からなる接着材が使用されている。この接着材は、酸性点を持っていることが多く、アンモニアを吸着しやすい性質を有している。この為、NOx還元用に供給されたアンモニアの一部は、接着材に吸着されNOx還元反応に関与できなくなる。
本発明のハニカム構造体は、無機粒子と、無機バインダとを含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルがセル壁によって区画された形状のハニカムユニットを、前記セルの貫通孔が同一方向を向くように接着材により結合したハニカム構造体である。そして、本発明のハニカム構造体は、NH−TPD法で測定したハニカムユニットの単位質量当たりのアンモニア脱離量が、接着材の単位質量当たりのアンモニア脱離量の5〜100倍である。このようにして、上述のような排ガス中のNOx還元反応に関与できないアンモニアの吸着を抑制している。
ハニカムユニットの単位質量当たりのアンモニア脱離量が、接着材の単位質量当たりのアンモニア脱離量の5倍未満であると、接着材のアンモニア吸着の影響が大きくなり、NOx還元反応におけるアンモニアの利用効率が下がったり、排ガス中にアンモニアが漏れたりする。ハニカムユニットの単位質量当たりのアンモニア脱離量が、接着材の単位質量当たりのアンモニア脱離量の100倍を超えるハニカム構造体は、製造が難しく現実的ではない。
ハニカムユニットの単位質量当たりのアンモニア脱離量の絶対値としては、200〜700μmol/gであることが好ましい。ハニカムユニットの単位質量当たりのアンモニア脱離量の絶対値が、200μmol/g未満であると、十分なNOx浄化性能を得るためにハニカム構造体を大きくする必要がある。ハニカムユニットの単位質量当たりのアンモニア脱離量の絶対値が、700μmol/gを超えると、セル壁の気孔率が減少して、排ガスがセル壁内部に浸透しにくくなり、浄化性能が悪くなることがある。
なお、NH−TPD法によるとは、昇温脱離スペクトル装置(TPD装置)により、所定条件下で試料にアンモニアを吸着させた後、試料を加熱してアンモニアを脱離させて脱離アンモニア量を測定するものである。具体的な測定条件については後述する。
本発明のハニカム構造体の一例を図1の斜視図に示す。図1に示したハニカム構造体1は、複数のハニカムユニット2が接着材5により結合されて配置されている。それぞれのハニカムユニット2は、セル3が平行に配列されるように形成されている。なお、ハニカム構造体1の側面(セルが開口していない面)は、強度を保つためコーティング材層6で覆われていることが好ましい。ハニカム構造体1を構成するハニカムユニット2は、図2の斜視図に例示すように、長手方向に伸びるセル3を有し、セル3同士を区画するセル壁4がハニカムユニット2を構成している。
(ハニカムユニット原料)
本発明におけるハニカムユニットは、無機粒子と、無機バインダとを含んでいることが好ましく、さらに無機繊維を含んでいてもよい。また、無機粒子としては、ゼオライトを含んでいることが好ましい。
以下、ハニカムユニットを構成する各組成物及びその原料について説明する。
(無機粒子)
本発明のハニカム構造体において、無機粒子は、ハニカムユニットの主成分であり、触媒担体としての強度保持機能や、アンモニア吸着機能を有している。本発明のハニカム構造体において、ハニカムユニットに含まれる無機粒子としては、ゼオライト及びゼオライト以外の無機粒子が含有されていてもよく、ゼオライト以外の無機粒子としては、特に限定されるものではないが、例えば、アルミナ、シリカ、ジルコニア、チタニア、セリア、ムライト、及びこれらの前駆体を挙げることができ、アルミナ又はジルコニアが望ましく、γアルミナやベーマイトも好適に用いられる。なお、これらの無機粒子は、1種又は2種以上を含んでもよい。
本発明のハニカム構造体における無機粒子は、焼成前の原料無機粒子の段階では水酸基が存在しており、工業的に利用できる大多数の無機化合物粒子がそうであるように、本発明のハニカム構造体における焼成前の原料無機粒子にも、原料ゼオライト粒子にも水酸基が存在している。これらの水酸基は、ハニカムユニットとして焼成する際に脱水縮合反応を起こして、粒子間の結合を強化する作用を持っている。特に、アルミナ粒子をはじめとする原料無機粒子は、焼成時の脱水縮合反応により強固に結合する。
本発明のハニカム構造体において、原料として使用するゼオライト以外の無機粒子の二次粒子の平均粒子径は、ゼオライトの二次粒子の平均粒子径以下であることが好ましい。特に、ゼオライト以外の無機粒子の平均粒子径は、ゼオライトの平均粒子径の1/10〜1/1であることが好ましい。このようにすると、平均粒径が小さな無機粒子の結合力によってハニカムユニットの強度が向上する。
ハニカムユニットに含まれるゼオライト以外の無機粒子の含有量は、3〜30質量%が好ましく、5〜20質量%がより好ましい。ゼオライト以外の無機粒子の含有量が3質量%未満では、強度向上の寄与が小さい。ゼオライト以外の無機粒子の含有量が30質量%を超えると、逆にNOx浄化に寄与するゼオライトの含有量が相対的に少なくなるため、NOx浄化性能が悪くなる。
(ゼオライト)
ゼオライトは、無機バインダにより結合されている。ゼオライトは、NOx還元触媒として、またアンモニアガスの吸着作用を有するので、排ガス中のNOx還元触媒として本発明におけるハニカム構造体において好適な物質である。ハニカムユニット中のゼオライトは、所望の触媒作用またアンモニアガスの吸着作用を有するものであれば、どのようなゼオライトでも使用できる。ゼオライトとしては、例えば、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、及びゼオライトL等が挙げられる。また、イオン交換されたゼオライトを使用し、又はハニカムユニットとした後からイオン交換してもよく、例えば、Cu、Fe、Ni、Zn、Mn、Ag、Ti、V、及びCoのうち少なくとも1つの金属種でイオン交換されたゼオライトが好ましく用いられる。これらのゼオライトは、1種類でも複数種類でもよい。
ゼオライトとしては、シリカとアルミナのモル比(シリカ/アルミナ比)が1〜100であることが好ましい。ゼオライトのシリカ/アルミナ比は、ゼオライトの酸度、すなわち反応分子の吸着や反応性に影響する要素であり、用途により好ましい範囲が有る。
ハニカムユニットの見かけの体積当たりのゼオライトの含有量が、250〜700g/Lであることが好ましい。別の面から見れば、ハニカムユニット中におけるゼオライトの含有率が、50〜80質量%であることが好ましい。ゼオライトは、触媒作用や吸着作用を有するので、ハニカム構造体中の含有量が多い方が、触媒作用や吸着作用を大きく発揮できるので好ましい。しかし、ゼオライト含有量のみを増加させると、他の構成物質、例えば無機酸化物、無機繊維や無機バインダの含有量を減らさねばならず、焼成体としてのハニカムユニットの強度が低下する。
ゼオライトは、二次粒子を含み、ゼオライトの二次粒子の平均粒子径は、0.5〜10μmであることが好ましい。なお、二次粒子の平均粒子径は、ハニカムユニットとして焼成する前の、二次粒子を形成している粒子状の原料であるゼオライトを用いて測定すればよい。
(無機バインダ)
無機バインダとしては、例えば無機ゾルや粘土系バインダなどが挙げられる。このうち、無機ゾルとしては、例えばアルミナゾル、シリカゾル、チタニアゾル、セピオライトゾル、アタパルジャイトゾル及び水ガラスなどが挙げられる。粘土系バインダとしては、例えば白土、カオリン、モンモリロナイト、複鎖構造型粘土(セピオライト、アタパルジャイト)などが挙げられる。これらの無機ゾルや粘土系バインダは、1種又は2種以上を混合して用いてもよい。ハニカムユニットに含まれる無機バインダの量は、ハニカムユニットに含まれる固形分として、5〜30質量%が好ましく、10〜20質量%がより好ましい。無機バインダの含有量が5〜30質量%を外れるとハニカムユニットの成型性が悪くなることがある。
(無機繊維)
本発明のハニカム構造体において、ハニカムユニット中に無機繊維を含んでいてもよい。ハニカムユニットに含まれる無機繊維としては、特に限定されるものではないが、アルミナ繊維、シリカ繊維、炭化珪素繊維、シリカアルミナ繊維、ガラス繊維、チタン酸カリウム繊維及びホウ酸アルミニウム繊維から選ばれる1種又は2種以上の無機繊維が挙げられる。これらの無機繊維は、原料段階でゼオライトや無機バインダと混合して、ハニカムユニットを成形、焼成すればよい。無機繊維は、無機バインダやゼオライトなどとともに繊維強化焼成物を形成し、ハニカムユニットの強度を向上させる。
無機繊維は、大きなアスペクト比(繊維長/繊維径)をもつ無機材料であり、曲げ強度向上に特に有効である。無機繊維のアスペクト比は、2〜1000であることが好ましく、5〜800であることがより好ましく、10〜500であることがさらに好ましい。無機繊維のアスペクト比が2未満では、ハニカムユニットの強度向上の寄与が小さく、1000を超えるとハニカムユニットの成型時に成型用金型に目詰まりなどを起こしやすくなり成型性が悪くなることがある。また、押出成形などの成型時に無機繊維が折れ、長さにばらつきが生じハニカムユニットの強度が低下してしまうことがある。ここで、無機繊維のアスペクト比に分布があるときには、その平均値としてもよい。なお、無機繊維には、ウィスカも含まれる。
ハニカムユニットに含まれる無機繊維の含有量は、3〜50質量%が好ましく、3〜30質量%がより好ましく、5〜20質量%が更に好ましい。無機繊維の含有量が3重量%未満ではハニカムユニットの強度が低下し、50重量%を超えると浄化性能に寄与するゼオライトの量が相対的に少なくなるため、浄化性能が悪くなる。
(触媒成分)
本発明のハニカム構造体のハニカムユニットのセル壁には、触媒成分をさらに担持してもよい。触媒成分としては、特に限定されるものではないが、貴金属、アルカリ金属化合物、アルカリ土類金属化合物などを含むものが挙げられる。貴金属としては、例えば、白金、パラジウム、ロジウムから選ばれる1種又は2種以上が挙げられ、アルカリ金属化合物としては、例えば、カリウム、ナトリウムなどから選ばれる1種又は2種以上の化合物が挙げられ、アルカリ土類金属化合物としては、例えば、バリウムなどの化合物が挙げられる。
(ハニカムユニット)
本発明のハニカム構造体において、ハニカムユニットのセルの長手方向に対して直交する面(単に断面という。以下同じ。)が正方形や長方形や六角形や扇型のものであってもよい。
ハニカムユニットの例を図2に示す。ハニカムユニット2は、左手前側から右奥側に向かって貫通孔であるセル3を多数有し、セル3を区画するセル壁4の厚さは、特に限定されるものではないが、0.10〜0.50mmの範囲が好ましく、0.15〜0.35mmがより好ましい。セル壁4の厚さが0.10mm未満ではハニカムユニットの強度が低下し、0.50mmを超えると、排ガスがセル壁内へ浸透し難くなるため、浄化性能が低下してしまう。また、ハニカムユニットのセルに垂直な断面におけるセルの面積比率である開口率は、40〜80%とすることが好ましい。圧力損失を大きくしないことと、触媒成分の担体となるセル壁の量の確保の兼ね合いから、開口率は40〜80%とすることが好ましい。
単位断面積あたりのセルの数は、15.5〜93個/cm(100〜600cpsi)が好ましく、31〜77.5個/cm(200〜500cpsi)がより好ましい。
ハニカムユニットに形成されるセル3の断面形状は、特に限定されるものではない。図2には、正方形のセル3の断面を有する例を示したが、セル3の断面を略三角形や略六角形、円形としてもよい。
(ハニカムユニットの製造)
本発明のハニカム構造体におけるハニカムユニットの製造方法の一例について説明する。まず、上述したゼオライト及び無機バインダを主成分として含む原料ペーストを作製して、これを押出成形等によりハニカムユニット成形体とする。原料ペーストには、これらのほかに、上述の無機繊維、ゼオライト以外の無機粒子、有機バインダ、分散媒及び成形助剤などを適宜加えてもよい。有機バインダとしては、特に限定されるものではないが、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、及びエポキシ樹脂などから選ばれる1種又は2種以上の有機バインダが挙げられる。有機バインダの配合量は、原料全体の固形分の合計100質量部に対して、1〜10質量部が好ましい。分散媒としては、特に限定されるものではないが、例えば、水、有機溶媒(トルエンなど)及びアルコール(メタノールなど)などを挙げることができる。成形助剤としては、特に限定されるものではないが、例えば、エチレングリコール、デキストリン、脂肪酸石鹸及びポリアルコールなどを挙げることができる。
原料ペーストは、特に限定されるものではないが、混合・混練することが好ましく、例えば、ミキサーやアトライタなどを用いて混合してもよく、ニーダーなどで十分に混練してもよい。原料ペーストを成形する方法は、特に限定されるものではないが、例えば、押出成形などによってセルを有する形状に成形することが好ましい。
次に、得られたハニカムユニット成形体を乾燥する。乾燥に用いる乾燥機は、特に限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機及び凍結乾燥機などが挙げられる。乾燥した成形体は、脱脂することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の種類や量によって適宜選択するが、400℃で2時間程度脱脂することが好ましい。更に、乾燥、脱脂されたハニカムユニット成形体は焼成される。焼成条件としては、特に限定されるものではないが、600〜1200℃が好ましく、600〜1000℃がより好ましい。焼成温度が600℃未満ではゼオライトなどの焼結が進行せず、ハニカムユニットとしての強度が上がらない。焼成温度が1200℃を超えると、ゼオライト結晶が崩壊したり、無機粒子などの焼結が進行しすぎて多孔質なハニカムユニットが作製できなくなったりする。
(ハニカム構造体)
ハニカム構造体は、図1に示すように、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルがセル壁によって区画された形状のハニカムユニットを、セルが同一方向を向くように接着材により結合した構造である。ハニカムユニットについてはすでに説明したとおりである。
本発明のハニカム構造体は、NH−TPD法で測定したハニカムユニットの単位質量当たりのアンモニア脱離量が、接着材の単位質量当たりのアンモニア脱離量の5〜100倍である。
(アンモニア脱離量の測定方法)
NH−TPD法によるアンモニア脱離量の測定方法を説明する。少量の測定試料(粉体にしたもの)を真空中で300℃に加熱(昇温速度10℃/分)して60分間放置する。その後100℃まで冷却して定常状態としてから、100℃に保ったままアンモニアガスを30分間導入して試料にアンモニアを吸着させる。試料の温度を100℃に保ったままアンモニアガスを排気して、30分間真空に保つ。その後、ヘリウムガスを50ml/分で導入しながら昇温速度10℃/分で600℃まで昇温する。その間にヘリウムガス中に脱離してくるアンモニアを測定して、脱離したアンモニアの累積量をアンモニア脱離量とする。単位質量当たりのアンモニア脱離量は、試料の質量から換算して求める。
なお、後述の実施例においては、日本ベル株式会社製の全自動昇温脱離スペクトル装置TPD−1−ATwを使用した。また、測定試料量はおよそ0.05gであり、アンモニアの検出は四重極MS(m/z=16、NH2+)で行った。
(接着材)
接着材としては、特に限定されるものではないが、例えば、無機バインダに無機粒子を混ぜたものや、無機バインダに無機繊維を混ぜたものや、無機バインダに無機粒子及び無機繊維を混ぜたものなどを用いることができる。また、これらの接着材に有機バインダを加えたものとしてもよい。有機バインダとしては、特に限定されるものではないが、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース及びカルボキシメチルセルロースなどから選ばれる1種又は2種以上の有機バインダが挙げられる。
(ハニカム構造体の製造)
複数のハニカムユニットからなるハニカム構造体の製造方法について説明する。上記のようにして得られたハニカムユニットの側面に、接着材を塗布して順次結合する。結合したハニカムユニットの接合体を乾燥固化して、所定の大きさのハニカムユニット接合体を作製する。ハニカムユニット接合体の側面を切削加工して所望の形とする。接着材としては、特に限定されるものではないが、上記の接着材が好適である。
複数のハニカムユニットを接合する接着材層の厚さは、0.5〜2mmが好ましい。接合させるハニカムユニットの数は、ハニカム構造体の大きさに合わせて適宜決めればよい。また、ハニカムユニットを接着材によって接合したハニカム接合体はハニカム構造体の形状にあわせて、適宜切削・研磨などしてもよい。
そして、ハニカム構造体のセルが開口していない外周面にコーティング材を塗布して乾燥し、固化して、コーティング材層を形成する。こうすれば、ハニカム構造体の外周面を保護して強度を高めることができる。コーティング材は、特に限定されないが、接着材と同じ材料からなるものであっても、異なる材料からなるものであってもよい。また、コーティング材は、接着材と同じ配合比としてもよく、異なる配合比としてもよい。コーティング材層の厚みは、特に限定されるものではないが、0.1〜3mmであることが好ましい。コーティング材層は形成されていてもよく、形成されていなくてもよい。
複数のハニカムユニットを接着材によって接合した後に、加熱処理することが好ましい。コーティング材層を設けた場合は、接着材層及びコーティング材層を形成した後に、加熱処理することが好ましい。加熱処理により、接着材やコーティング材に有機バインダが含まれている場合などには、有機バインダを脱脂除去することができる。加熱処理する条件は、含まれる有機物の種類や量によって適宜決めてもよいが、おおよそ700℃で2hr程度が好ましい。
ハニカム構造体の一例として、断面が正方形で直方体のハニカムユニット2を複数接合させ外形を円柱状としたハニカム構造体1の概念図を図1に示す。このハニカム構造体1は、接着材5によりハニカムユニット2を結合し、外周部を円柱状に切削したのちにコーティング材層6を形成した。なお、例えば、断面が扇形の形状や断面が正方形の形状にハニカムユニット2を作製し、これらを接合して所定のハニカム構造体の形状になるようにして、切削・研磨工程を省略してもよい。
[実施例]
以下には、種々の条件で作製したハニカム構造体の実施例について説明するが、本発明はこれら実施例に何ら限定されることはない。
(実施例1)
(ハニカムユニットの作製)
ゼオライト粒子(Feイオン交換β型ゼオライト、平均粒径2μm)2250質量部、アルミナ繊維(平均繊維径6μm、平均繊維長100μm)680質量部、アルミナゾル(固体濃度20質量%)2600質量部、有機バインダとしてメチルセルロース320質量部を添加し混合した。さらに、可塑剤、界面活性剤及び潤滑剤を少量添加し、水を加えて粘度を調整しながら混合・混練して成形用混合組成物を得た。次に、この混合組成物を押出成形機により押出成形を行い、生のハニカム成形体を得た。なお、Feイオン交換型ゼオライトは、ゼオライト粒子を硝酸鉄アンモニウム溶液に含浸させFeイオン交換を行ったものを用いた。イオン交換量は、ICPS−8100(島津製作所製)を用いてIPC発光分析により求めた。
得られた生のハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機を用いて十分乾燥させ、400℃で2hr脱脂した。その後、700℃で2hr保持して焼成を行い、角柱状(断面35mm×35mm×長さ150mm)、セル密度が93個/cm、壁厚が0.2mm、セル形状が四角形(正方形)のハニカムユニットを作製した。表1、3に使用した原料の種類と配合量、表2にゼオライトのアンモニア脱離量を示した。
また、表1には、ハニカムユニットの単位質量当たりのアンモニア脱離量、接着材の単位質量当たりのアンモニア脱離量、及びハニカムユニットの単位質量当たりのアンモニア脱離量と接着材の単位質量当たりのアンモニア脱離量の比(ハニカムユニットの単位質量当たりのアンモニア脱離量/接着材の単位質量当たりのアンモニア脱離量)を示した。
Figure 2010094661
Figure 2010094661
Figure 2010094661
(ハニカム構造体の作製)
作製したハニカムユニットの側面に、接着材原料をペーストとして接着材層の厚さが1mmとなるように塗布して、120℃で乾燥固化してハニカムユニットを4段、4列に接合したほぼ直方体のハニカム接合体を作製した。接着材ペーストは、主原料としてγアルミナ粒子(平均粒径2μm)14.34質量部、その他にホウ酸アルミニウムウィスカ(平均繊維長15μm)16.37質量部、アルミナゾル(固体濃度20重量%)17.35質量部34質量%、カルボキシメチルセルロース0.05質量部、水1.9質量部、及びポリビニルアール0.98質量部を混合して作製した。
作製したハニカム接合体の側壁を、円柱状になるようにダイヤモンドカッターを用いて切削し、円柱状になった側壁部分の外表面に上述の接着材ペーストを0.5mm厚となるようにコーティング材ペーストとして塗布し、図1に示すハニカム構造体と同じ形状の円柱状ハニカム接合体を作製した。この円柱状ハニカム接合体を、120℃で乾燥固化した後、700℃で2hr保持して接着材層及び外壁用コーティング材の脱脂を行い、円柱状(直径約144mm×高さ150mm)のハニカム構造体を得た。表1、4に接着材ペーストの配合量を、表2に接着材ペースト主原料であるγアルミナ、シリカ、及びゼオライトのアンモニア脱離量を示した。
Figure 2010094661
(ハニカム構造体の性能評価)
作製したハニカムユニットを、半径15mm、長さ50mmの円柱状に切削加工し円柱状のハニカムユニットとし、さらに、この円柱状のハニカムユニットを長さ方向に沿って2等分して切断し、2つの半円柱状のハニカムユニットを作製した。この2つの半円柱状のハニカムユニットの切断面をそれぞれ0.5mmずつ切削除去した状態として、切削面に上述の接着材を塗布して貼り合わせた略円柱状のハニカムユニットとした。塗布した接着剤の厚さは、後述の乾燥固化工程後に1mmとなるようにした。略円柱状のハニカムユニットを120℃で乾燥固化し、中央部に接着剤層がある直径略30mm、長さ50mmの略円柱状のハニカム構造体を作製し、評価用サンプルとした。
作製した評価用サンプルを700℃で5時間加熱して模擬的にエージングをした後、200℃に維持して、表5に示す組成の自動車排ガスの200℃の模擬ガスを導入して、評価用サンプル前後の模擬ガス中のNO成分の減少率(%)を浄化性能として評価した。同様にして、維持する温度及び模擬ガスの温度を300℃、400℃で評価用サンプルの浄化性能の測定を行った。評価結果を表1に示す。なお、表1には、ハニカム構造体の体積当たりの重さ(担体量)を合わせて示した。
また、表1には、ハニカムユニットの単位質量当たりのアンモニア脱離量、接着材の単位質量当たりのアンモニア脱離量、及びハニカムユニットの単位質量当たりのアンモニア脱離量と接着材の単位質量当たりのアンモニア脱離量の比(ハニカムユニットの単位質量当たりのアンモニア脱離量/接着材の単位質量当たりのアンモニア脱離量)を示した。
Figure 2010094661
(実施例2〜6、比較例1,2)
表1に示すように、実施例1において、ゼオライト種、接着剤主原料の種類を変更した以外は、実施例1と同様にして、実施例2〜6、比較例1,2のハニカム構造体、及び評価用サンプルを作製した。その結果を実施例1と同様に表1に示した。なお、ゼオライト種、接着剤主原料の種類毎のアンモニア脱離量については、表2に示した。評価用サンプルの浄化性能を実施例1と同様にして測定し、結果を表1に示した。
また、表1には、ハニカムユニットの単位質量当たりのアンモニア脱離量、接着材の単位質量当たりのアンモニア脱離量、及びハニカムユニットの単位質量当たりのアンモニア脱離量と接着材の単位質量当たりのアンモニア脱離量の比(ハニカムユニットの単位質量当たりのアンモニア脱離量/接着材の単位質量当たりのアンモニア脱離量)を示した。
図3のグラフには、ハニカムユニットの単位質量当たりのアンモニア脱離量と接着材の単位質量当たりのアンモニア脱離量の比(ハニカムユニットの単位質量当たりのアンモニア脱離量/接着材の単位質量当たりのアンモニア脱離量)に対するNOx浄化性能を示す。(a)のグラフは、反応温度200℃におけるNOx浄化性能、(b)のグラフは、反応温度300℃におけるNOx浄化性能、(c)のグラフは、反応温度400℃におけるNOx浄化性能である。なお、図3において、○は実施例を、●は比較例を表し、○、●の数字はそれぞれ実施例、比較例の番号を表す。
(評価結果)
表1及び図3に示す結果から判るように、実施例1〜6に示すハニカム構造体(評価用サンプル)は、浄化性能が200℃のとき74〜98%、300℃のとき83〜96%、400℃のとき78〜88%であり、比較例1、2に示すハニカム構造体(評価用サンプル)の浄化性能が、200℃のとき55〜65%、300℃のとき72〜76%、400℃のとき70〜73%であることに較べ、明らかに優れている。このように、実施例1〜6に示すハニカム構造体は、自動車排ガス浄化用に適していることが判る。
本発明のハニカム構造体は、NOxガスの浄化性能が高いので自動車排ガス浄化用として使用することができる。特に、ゼオライト触媒が必要とされる尿素SCRシステム(尿素を利用したディーゼル排ガス浄化システム)用のNOx還元触媒として好適である。

Claims (11)

  1. 無機粒子と、無機バインダとを含み、長手方向に沿って、一方の端面から他方の端面に延伸する複数のセルがセル壁によって区画された形状のハニカムユニットを、前記セルの貫通孔が同一方向を向くように接着材により結合したハニカム構造体であって、
    NH−TPD法で測定した前記ハニカムユニットの単位質量当たりのアンモニア脱離量は、前記接着材の単位質量当たりのアンモニア脱離量の5〜100倍であることを特徴とするハニカムユニット構造体。
  2. 前記ハニカムユニットの単位質量当たりのアンモニア脱離量は、200〜700μmol/gであることを特徴とする請求項1に記載のハニカムユニット構造体。
  3. 前記無機粒子は、ゼオライトであることを特徴とする請求項1又は2に記載のハニカムユニット構造体。
  4. 前記ゼオライトは、イオン交換されていることを特徴とする請求項3に記載のハニカムユニット構造体。
  5. 前記ゼオライトは、Cu、Fe、Ni、Zn、Mn、Ag、Ti、V、又はCoでイオン交換されていることを特徴とする請求項4に記載のハニカムユニット構造体。
  6. 前記ゼオライトは、β型ゼオライト、Y型ゼオライト、フェリエライト、ZSM−5型ゼオライト、モルデナイト、フォージサイト、ゼオライトA、又はゼオライトLであることを特徴とする請求項3〜5のいずれか一項に記載のハニカムユニット構造体。
  7. 前記ゼオライトの含有量は、前記ハニカムユニットの見かけの体積1L当たり250〜700gであることを特徴とする請求項3〜6のいずれか一項に記載のハニカムユニット構造体。
  8. 前記無機粒子は、さらにアルミナ粒子、チタニア粒子、シリカ粒子、ジルコニア粒子、又はこれらの前駆体を含むことを特徴とする請求項3〜7のいずれか一項に記載のハニカムユニット構造体。
  9. 前記ハニカムユニットは、さらに無機繊維を含むことを特徴とする請求項1〜8のいずれか一項に記載のハニカムユニット構造体。
  10. 前記無機繊維は、アルミナ繊維、シリカ繊維、炭化珪素繊維、シリカアルミナ繊維、ガラス繊維、チタン酸カリウム繊維、及びホウ酸アルミニウム繊維のうち少なくともいずれかひとつを含むことを特徴とする請求項9に記載のハニカムユニット構造体。
  11. 前記無機バインダは、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライトゾル、及びアタパルジャイトゾルのうち少なくともいずれかひとつを含むことを特徴とする請求項1〜10のいずれか一項に記載のハニカムユニット構造体。
JP2009039164A 2008-05-20 2009-02-23 ハニカム構造体 Expired - Fee Related JP5356063B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039164A JP5356063B2 (ja) 2008-05-20 2009-02-23 ハニカム構造体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009531664 2008-05-20
JP2009531664 2008-05-20
JP2009039164A JP5356063B2 (ja) 2008-05-20 2009-02-23 ハニカム構造体

Publications (2)

Publication Number Publication Date
JP2010094661A true JP2010094661A (ja) 2010-04-30
JP5356063B2 JP5356063B2 (ja) 2013-12-04

Family

ID=42256727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039164A Expired - Fee Related JP5356063B2 (ja) 2008-05-20 2009-02-23 ハニカム構造体

Country Status (1)

Country Link
JP (1) JP5356063B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196116A (ja) * 2014-03-31 2015-11-09 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム
JP2015196115A (ja) * 2014-03-31 2015-11-09 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100132B2 (ja) * 1988-12-14 1995-11-01 デグツサ・アクチエンゲゼルシヤフト 酸素含有排ガス中に存在する窒素酸化物の還元方法
WO2006070539A1 (ja) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. ハニカム構造体及びシール材層
WO2006137149A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP2007296521A (ja) * 2006-05-02 2007-11-15 Argillon Gmbh 押出し成形された固体触媒及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100132B2 (ja) * 1988-12-14 1995-11-01 デグツサ・アクチエンゲゼルシヤフト 酸素含有排ガス中に存在する窒素酸化物の還元方法
WO2006070539A1 (ja) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. ハニカム構造体及びシール材層
WO2006137149A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP2007296521A (ja) * 2006-05-02 2007-11-15 Argillon Gmbh 押出し成形された固体触媒及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196116A (ja) * 2014-03-31 2015-11-09 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム
JP2015196115A (ja) * 2014-03-31 2015-11-09 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム

Also Published As

Publication number Publication date
JP5356063B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2009141873A1 (ja) ハニカム構造体
WO2009141874A1 (ja) ハニカム構造体
WO2009141878A1 (ja) ハニカム構造体
WO2009141880A1 (ja) ハニカム構造体
KR101117470B1 (ko) 허니컴 구조체
WO2009141888A1 (ja) ハニカム構造体
WO2009118868A1 (ja) ハニカム構造体
WO2009141881A1 (ja) ハニカム構造体
WO2009141872A1 (ja) ハニカム構造体
WO2009141877A1 (ja) ハニカム構造体
JP5379678B2 (ja) ハニカム構造体
JP5261228B2 (ja) ハニカム構造体
JP2010215414A (ja) ハニカム構造体
WO2009141875A1 (ja) ハニカム構造体
JP5356063B2 (ja) ハニカム構造体
WO2009141876A1 (ja) ハニカム構造体
JP5356064B2 (ja) ハニカム構造体
JP2010096176A (ja) ハニカム構造体
JP2011056327A (ja) ハニカム構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees