JP2010090439A - Vacuum treatment method for substrate made from piezoelectric material - Google Patents

Vacuum treatment method for substrate made from piezoelectric material Download PDF

Info

Publication number
JP2010090439A
JP2010090439A JP2008261876A JP2008261876A JP2010090439A JP 2010090439 A JP2010090439 A JP 2010090439A JP 2008261876 A JP2008261876 A JP 2008261876A JP 2008261876 A JP2008261876 A JP 2008261876A JP 2010090439 A JP2010090439 A JP 2010090439A
Authority
JP
Japan
Prior art keywords
substrate
vacuum
processing
voltage
insulating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261876A
Other languages
Japanese (ja)
Other versions
JP5114356B2 (en
Inventor
Ken Maehira
謙 前平
Ko Fuwa
耕 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008261876A priority Critical patent/JP5114356B2/en
Publication of JP2010090439A publication Critical patent/JP2010090439A/en
Application granted granted Critical
Publication of JP5114356B2 publication Critical patent/JP5114356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum treatment method for a substrate made from a piezoelectric material. <P>SOLUTION: This vacuum treatment method includes measuring the polarity and magnitude of electrostatic voltage of the surface of a treatment substrate 15 made from the piezoelectric material under plasma for treatment as a prior process, before an adsorption device 30 adsorbs the treatment substrate 15 in a vacuum treatment device 1 in plasma treatment which is a main process. In the main process, when the voltage of the surface of the treatment substrate 15 measured in the prior process is 1 kV or more, zero V is applied to electrodes 111 and 112, and when the voltage is less than 1 kV, a voltage having a reverse polarity to the polarity of the electrostatic voltage of the surface of the treatment substrate 15 measured in the prior process is applied to the electrodes 111 and 112. Thereby, the treatment substrate 15 is adsorbed. When the treatment substrate 15 is larger than the surface of the adsorption device 30, a metallic thin film is formed on the whole back surface to lower the temperature of the substrate by thermal conduction. The vacuum treatment method also includes arranging a guard ring 18 in the upper part of the outside of the treatment substrate 15 to prevent heat from flowing to the treatment substrate 15 from plasma and prevent a crack of the treatment substrate 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板を吸着しながら真空処理する技術に係り、特に、圧電体から成る基板をプラズマ下で真空処理する技術に関する。   The present invention relates to a technique for vacuum processing while adsorbing a substrate, and more particularly to a technique for vacuum processing a substrate made of a piezoelectric body under plasma.

図2の符号100は、基板をスパッタリングによって成膜処理する真空装置であり、真空槽110を有している。   Reference numeral 100 in FIG. 2 denotes a vacuum apparatus that performs film formation processing on the substrate by sputtering, and includes a vacuum chamber 110.

真空槽110の内部には吸着装置130が配置されている。吸着装置130は、双極式の吸着装置であり、正電極111と負電極112を有しており、正電極111と負電極112の上には、絶縁部113が配置されている。ここでは、絶縁部113の内部に正負電極111、112が配置されている。   An adsorption device 130 is disposed inside the vacuum chamber 110. The adsorption device 130 is a bipolar adsorption device, and includes a positive electrode 111 and a negative electrode 112, and an insulating portion 113 is disposed on the positive electrode 111 and the negative electrode 112. Here, positive and negative electrodes 111 and 112 are disposed inside the insulating portion 113.

真空槽110の外部には、正電圧電源121、負電圧電源122が配置されており、正電極111と負電極112は、正電圧電源121と負電圧電源122にそれぞれ接続され、正電極111には正電圧、負電極112には負電圧を印加できるように構成されている。   A positive voltage power supply 121 and a negative voltage power supply 122 are disposed outside the vacuum chamber 110, and the positive electrode 111 and the negative electrode 112 are connected to the positive voltage power supply 121 and the negative voltage power supply 122, respectively. Is configured to be able to apply a positive voltage and a negative voltage to the negative electrode 112.

真空槽110には真空排気系123とガス導入系125が接続されており、真空排気系123によって真空槽110の内部を真空排気し、基板114を搬入して絶縁部113の上に乗せ、正負電極111、112に正負電圧を印加すると、基板114が金属や半導体等の導電性物質の場合、正電極111、負電極112と基板114の間にコンデンサが形成され、静電気力によって基板114が正電極111と負電極112に引き付けられる。   An evacuation system 123 and a gas introduction system 125 are connected to the vacuum chamber 110. The inside of the vacuum chamber 110 is evacuated by the evacuation system 123, and the substrate 114 is loaded and placed on the insulating portion 113. When positive and negative voltages are applied to the electrodes 111 and 112, when the substrate 114 is a conductive material such as a metal or a semiconductor, a capacitor is formed between the positive electrode 111 and the negative electrode 112 and the substrate 114. It is attracted to the electrode 111 and the negative electrode 112.

基板114がガラス基板等の誘電体であり、正負電極111、112と基板114の間にコンデンサが形成されない場合は、基板114の分極率をαとすると、基板114を不均一な電場E中に置いたときに、下記(1)式に従って、基板114にグラディエント力Fの吸着力が印加される。   When the substrate 114 is a dielectric such as a glass substrate and no capacitor is formed between the positive and negative electrodes 111 and 112 and the substrate 114, the substrate 114 is placed in a non-uniform electric field E, assuming that the polarizability of the substrate 114 is α. When placed, the adsorption force of the gradient force F is applied to the substrate 114 according to the following equation (1).

F = 1/2・α・grad(E2) ……(1)
真空槽110の天井側にはターゲット126が配置され、真空槽110の外部にはスパッタ電源127が配置されており、基板114を正負電極111、112に吸着し、次いで、ガス導入系125からスパッタリングガスを導入し、スパッタ電源127によってターゲット126に電圧を印加し、ターゲット126の表面近傍にプラズマを発生させ、ターゲット126をスパッタリングすると、基板114の表面に薄膜が形成される。
F = 1/2 ・ α ・ grad (E 2 ) (1)
A target 126 is disposed on the ceiling side of the vacuum chamber 110, and a sputtering power source 127 is disposed outside the vacuum chamber 110. The substrate 114 is adsorbed to the positive and negative electrodes 111 and 112, and then sputtered from the gas introduction system 125. When a gas is introduced and a voltage is applied to the target 126 by the sputtering power source 127 to generate plasma near the surface of the target 126 and the target 126 is sputtered, a thin film is formed on the surface of the substrate 114.

この様に、基板114が導電体又は誘電体の場合は絶縁部113に密着され、プラズマから流入する熱を吸着装置130側に流出させたり、絶縁部113内に配置されたヒータによって基板114を加熱することができる。   As described above, when the substrate 114 is a conductor or dielectric, the substrate 114 is in close contact with the insulating portion 113, and heat flowing from the plasma flows out to the adsorption device 130 side, or the substrate 114 is moved by the heater disposed in the insulating portion 113. Can be heated.

しかし、基板114が圧電体である場合、基板114に印加される吸着力による自発分極やプラズマからのチャージアップによる自発分極が、正負電極111、112が形成する電界を乱し、基板114が吸着されずに温度上昇したり、基板114に加わる吸着力が不均一になって基板割れが生じるという問題がある。   However, when the substrate 114 is a piezoelectric body, the spontaneous polarization due to the adsorption force applied to the substrate 114 or the spontaneous polarization due to the charge-up from the plasma disturbs the electric field formed by the positive and negative electrodes 111 and 112, and the substrate 114 is adsorbed. However, there is a problem that the temperature rises without being performed, or the adsorption force applied to the substrate 114 becomes non-uniform, causing the substrate to crack.

下記は誘電体を吸着する技術が記載された文献である。
特開2001−035907号公報 特開2001−044262号公報 特開2003−133400号公報
The following is a document describing a technique for adsorbing a dielectric.
JP 2001-035907 A JP 2001-042662 A JP 2003-133400 A

真空処理工程中で、処理プラズマからのチャージアップにより基板114がマイナス極性に帯電し、絶縁部113表面の負電極112上に位置する部分の吸着力が弱くなる。   During the vacuum processing step, the substrate 114 is charged with a negative polarity due to charge-up from the processing plasma, and the adsorption force of the portion located on the negative electrode 112 on the surface of the insulating portion 113 is weakened.

基板114が圧電体である場合、プラズマからの熱流入により基板114の温度が上昇すると自発分極して、分極の度合いが変わり、また、吸着力により電圧が生じて自発分極して、分極の度合いが変わり、吸着力が弱くなる。吸着力が弱くなるのは、基板114内で電界変化の乱れが生じ、正常に吸着できる電界が基板114に及ばなくなるから、と考えられる。   In the case where the substrate 114 is a piezoelectric body, when the temperature of the substrate 114 rises due to heat inflow from plasma, the polarization is spontaneously changed, the degree of polarization changes, and a voltage is generated by the adsorption force to spontaneously polarize. Changes and the adsorption power becomes weaker. It is considered that the adsorption force becomes weak because the electric field change is disturbed in the substrate 114 and the electric field that can be normally adsorbed does not reach the substrate 114.

また、絶縁部113と密着する基板114の表面積が基板114と密着する絶縁部113の表面積より大きい場合、プラズマによる真空処理中に、処理プラズマから基板114への熱が流入すると基板114の中心部分は、絶縁部113へ熱伝導により降温するが、外周部分は熱が逃げず昇温し、中心部分と外周部分に温度差が生じる。その結果、基板114の中心部分と外周部分で熱応力の差が生じ、基板114の割れが発生する。   Further, when the surface area of the substrate 114 in close contact with the insulating portion 113 is larger than the surface area of the insulating portion 113 in close contact with the substrate 114, if heat from the processing plasma flows into the substrate 114 during vacuum processing by plasma, the central portion of the substrate 114 Decreases to the insulating portion 113 due to heat conduction, but heat is not released from the outer peripheral portion, and a temperature difference occurs between the central portion and the outer peripheral portion. As a result, a difference in thermal stress occurs between the central portion and the outer peripheral portion of the substrate 114, and the substrate 114 is cracked.

真空処理装置100を用い、下記条件でスパッタリングを行った。
基板114:直径4インチの圧電体(LiTaO3)から成る基板
正電極111への印加電圧:+2000V
負電極112への印加電極:−2000V
ターゲット126:Ni
スパッタ電力:1kW
基板114上に形成した薄膜:膜厚1μmのNi薄膜
Sputtering was performed using the vacuum processing apparatus 100 under the following conditions.
Substrate 114: substrate made of piezoelectric material (LiTaO 3 ) having a diameter of 4 inches Applied voltage to positive electrode 111: + 2000V
Applied electrode to the negative electrode 112: -2000V
Target 126: Ni
Sputtering power: 1kW
Thin film formed on substrate 114: Ni thin film with a thickness of 1 μm

真空処理装置100は、温度測定装置119と電圧測定装置128とを有しており、基板114の複数箇所の温度と帯電電圧の極性及び大きさを測定できるように構成されている。
上記条件でNi薄膜をスパッタ成膜処理中に、温度測定装置119により基板114の表面温度を測定したところ、面内温度分布が27℃以上となり、基板114の自発分極効果により、基板114の冷却効果が悪くなった。
また、正電極111の真上位置の部分の温度は43℃以下であり、負電極112の真上位置の部分の温度は87℃まで上昇した。
The vacuum processing apparatus 100 includes a temperature measurement device 119 and a voltage measurement device 128, and is configured to measure the temperature and the polarity and magnitude of the charging voltage at a plurality of locations on the substrate 114.
When the surface temperature of the substrate 114 was measured by the temperature measuring device 119 during the sputtering process of the Ni thin film under the above conditions, the in-plane temperature distribution was 27 ° C. or higher, and the substrate 114 was cooled by the spontaneous polarization effect of the substrate 114. The effect became worse.
Further, the temperature of the portion directly above the positive electrode 111 was 43 ° C. or lower, and the temperature of the portion directly above the negative electrode 112 increased to 87 ° C.

このように、正電極111側の温度が負電極112側の温度よりも低いのは、正電極111と基板114との間の吸着力が、負電極112と基板114との間の吸着力よりも強く、プラズマから基板114に流入した熱が絶縁部113に流出する熱量が、負電極側よりも正電極111側の方が多いからであると考えられる。   As described above, the temperature on the positive electrode 111 side is lower than the temperature on the negative electrode 112 side because the adsorption force between the positive electrode 111 and the substrate 114 is greater than the adsorption force between the negative electrode 112 and the substrate 114. It is considered that the amount of heat that flows from the plasma into the substrate 114 flows out to the insulating portion 113 is larger on the positive electrode 111 side than on the negative electrode side.

正電極111側の方の吸着力が強い原因は、プラズマからのチャージアップにより、基板114が負電位に帯電しているからであると考えられる。
成膜工程終了後に、この基板114の帯電電圧を電圧測定装置128で測定すると−500Vであり、負電位に帯電していた。
The reason why the adsorption force on the positive electrode 111 side is strong is considered to be that the substrate 114 is charged to a negative potential due to charge-up from the plasma.
When the charging voltage of the substrate 114 was measured by the voltage measuring device 128 after the film forming process was completed, it was -500 V, and it was charged to a negative potential.

従って、基板114と正電極111の電位差は2500V、基板114と負電極112の電位差は1500Vとなり、正電極111と基板114との間の電位差が大きくなり、その結果、吸着力が大きくなっている。
正負電極があった場合は、基板114面内の温度が不均一になる。
Therefore, the potential difference between the substrate 114 and the positive electrode 111 is 2500 V, and the potential difference between the substrate 114 and the negative electrode 112 is 1500 V. As a result, the potential difference between the positive electrode 111 and the substrate 114 increases, and as a result, the adsorption force increases. .
When there are positive and negative electrodes, the temperature in the surface of the substrate 114 becomes non-uniform.

本発明は、上記のような実験結果から想到された発明であり、一乃至二個以上の電極と、前記電極上に配置された絶縁部とを有し、真空槽内に配置された吸着装置の前記絶縁部上に処理基板を配置し、前記電極と前記処理基板との間に電圧を印加し、真空雰囲気中で前記処理基板を前記絶縁部表面に吸着しながら前記真空槽内にプラズマを発生させ、複数の前記処理基板を真空処理する真空処理方法であって、前記処理基板が圧電体から成る場合には、前記真空処理をおこなう前に、前記絶縁部上に前記処理基板と同材料の測定基板を乗せ、真空雰囲気中でプラズマを発生させた後、前記測定基板の帯電電圧の極性と大きさを測定し、前記帯電電圧が1kV以上の場合は、前記処理基板を前記真空処理する際に、前記電極は接地電位に接続し、前記帯電電圧が1kV未満の場合は、前記電極には、前記帯電電圧とは逆極性の電圧を印加する真空処理方法である。
また、本発明は、前記絶縁部の表面よりも大きく、周囲が前記絶縁部表面からはみ出している前記処理基板を前記真空処理する場合に、前記真空処理を行う前に、前記処理基板の裏面に金属薄膜を形成しておく真空処理方法である。
また、本発明は、前記絶縁部の表面よりも大きく、周囲が前記絶縁部表面からはみ出している前記処理基板を前記真空処理する場合に、前記絶縁部からはみ出た部分上に保護リングを配置し、はみ出た部分と前記プラズマの間に、前記保護リングを位置させる真空処理方法である。
The present invention is an invention conceived from the experimental results as described above, and has one or more electrodes and an insulating portion disposed on the electrodes, and an adsorption device disposed in a vacuum chamber A processing substrate is disposed on the insulating portion, a voltage is applied between the electrode and the processing substrate, and plasma is generated in the vacuum chamber while adsorbing the processing substrate to the surface of the insulating portion in a vacuum atmosphere. A vacuum processing method for generating and vacuum processing a plurality of processing substrates, wherein when the processing substrate is made of a piezoelectric material, the same material as the processing substrate is formed on the insulating portion before the vacuum processing is performed. The measurement substrate is placed and plasma is generated in a vacuum atmosphere. Then, the polarity and magnitude of the charging voltage of the measurement substrate are measured. If the charging voltage is 1 kV or more, the processing substrate is subjected to the vacuum processing. The electrode is connected to ground potential. Wherein when the charging voltage is less than 1kV is the electrode from said charging voltage a vacuum processing method for applying a reverse polarity voltage.
Further, in the present invention, when the vacuum processing is performed on the processing substrate that is larger than the surface of the insulating portion and whose periphery protrudes from the surface of the insulating portion, before the vacuum processing is performed, This is a vacuum processing method for forming a metal thin film.
Further, in the present invention, when the vacuum processing is performed on the processing substrate that is larger than the surface of the insulating part and whose periphery protrudes from the surface of the insulating part, a protective ring is disposed on the part protruding from the insulating part. And a vacuum processing method in which the protective ring is positioned between the protruding portion and the plasma.

圧電体から成る基板を均一に吸着できる。また、基板の温度制御が可能となり、基板を割らずに真空処理することができる。   A substrate made of a piezoelectric material can be uniformly adsorbed. Further, the temperature of the substrate can be controlled, and vacuum processing can be performed without breaking the substrate.

図1の符号1は、本発明の真空処理方法を行うことができる真空処理装置の一例である。この真空処理装置1は、真空槽10を有している。真空槽10内部の底面上には、吸着装置30が配置されている。   Reference numeral 1 in FIG. 1 is an example of a vacuum processing apparatus capable of performing the vacuum processing method of the present invention. The vacuum processing apparatus 1 has a vacuum chamber 10. An adsorption device 30 is disposed on the bottom surface inside the vacuum chamber 10.

真空槽10の内部に天井側には、ターゲット26が配置されている。真空槽10の外部には、スパッタ電源27が配置されており、ターゲット26はスパッタ電源27に接続されている。
真空槽10には、真空排気系23とガス導入系25が接続されている。
A target 26 is disposed inside the vacuum chamber 10 on the ceiling side. A sputtering power source 27 is disposed outside the vacuum chamber 10, and the target 26 is connected to the sputtering power source 27.
A vacuum exhaust system 23 and a gas introduction system 25 are connected to the vacuum chamber 10.

真空排気系23によって真空槽10の内部を真空排気した後、真空槽10内に処理基板15を搬入し、吸着装置30上に圧電体から成る処理基板15を配置し、ガス導入系25によってスパッタガスを真空槽10の内部に導入し、スパッタ電源27を起動してターゲットに電圧を印加し、ターゲット26の表面近傍にプラズマを形成させると、ターゲット26がスパッタリングされ、処理基板15の表面に薄膜を形成する真空処理を行うことができる。   After the inside of the vacuum chamber 10 is evacuated by the evacuation system 23, the processing substrate 15 is carried into the vacuum chamber 10, the processing substrate 15 made of a piezoelectric material is disposed on the adsorption device 30, and sputtering is performed by the gas introduction system 25. When gas is introduced into the vacuum chamber 10, the sputtering power supply 27 is activated to apply a voltage to the target, and plasma is formed near the surface of the target 26, the target 26 is sputtered and a thin film is formed on the surface of the processing substrate 15. A vacuum treatment for forming can be performed.

吸着装置30は、一乃至二個以上(ここでは二個)の第一、第二の電極111、112と、第一、第二の電極111、112の上方に配置された絶縁部13を有している。ここでは絶縁部13は板状であり、第一、第二の電極111、112が絶縁部13の内部に配置され、処理基板15を吸着装置30上に配置すると、処理基板15は絶縁部13と接触するように構成されている。 The adsorption device 30 includes one or more (two in this case) first and second electrodes 11 1 and 11 2, and an insulation disposed above the first and second electrodes 11 1 and 11 2. Part 13 is provided. Here, the insulating part 13 is plate-shaped, and when the first and second electrodes 11 1 and 11 2 are arranged inside the insulating part 13 and the processing substrate 15 is arranged on the suction device 30, the processing substrate 15 is insulated. It is comprised so that the part 13 may be contacted.

真空槽10の外部には吸着電源21が配置されており、第一、第二の電極111、112は吸着電源21に接続され、第一、第二の電極111、112には、互いに同電位の電圧又は異なった電圧を印加できるように構成されている。 An adsorption power source 21 is disposed outside the vacuum chamber 10, and the first and second electrodes 11 1 and 11 2 are connected to the adsorption power source 21, and the first and second electrodes 11 1 and 11 2 include , The same potential voltage or different voltages can be applied.

<前プロセス>
上記真空処理を行う際、処理基板15を吸着装置30に吸着していれば処理基板15の熱処理を精密に行うことが可能となる。
<Previous process>
When the vacuum processing is performed, if the processing substrate 15 is adsorbed to the adsorption device 30, the processing substrate 15 can be precisely heat-treated.

処理基板15が圧電体の場合は、処理基板15の材質、プラズマからのチャージアップ、又は処理基板15の自発分極によって帯電電圧の極性や大きさが変わり、吸着状態が変化し、第一、第二の電極111、112に誘電体を吸着する場合と同じ電圧を印加していると温度制御が困難になる。 When the processing substrate 15 is a piezoelectric body, the polarity and magnitude of the charging voltage change due to the material of the processing substrate 15, charge-up from plasma, or spontaneous polarization of the processing substrate 15, and the adsorption state changes. If the same voltage is applied to the second electrodes 11 1 and 11 2 as the case where a dielectric is adsorbed, temperature control becomes difficult.

従って、複数の処理基板15を真空処理する際には、先ず、第一、第二の電極111、112に印加する電圧の極性、大きさを決定するために、処理基板15と同じ材質の測定基板14を、上記吸着装置30の絶縁部13上に配置しておき、処理基板15に対する真空処理と同じ条件で真空槽10内にプラズマを形成し、処理基板15に用いる真空処理と同じ条件の真空処理を行う。 Therefore, when vacuum processing a plurality of processing substrates 15, first, the same material as the processing substrate 15 is used to determine the polarity and magnitude of the voltage applied to the first and second electrodes 11 1 , 11 2. The measurement substrate 14 is placed on the insulating portion 13 of the adsorption device 30, plasma is formed in the vacuum chamber 10 under the same conditions as the vacuum processing for the processing substrate 15, and the same vacuum processing as that used for the processing substrate 15 is performed. Perform vacuum processing under conditions.

測定基板14に対して処理基板15と同条件で真空処理を行った後、プラズマを消滅させ、電圧測定装置28によって測定基板14の帯電電圧の極性と大きさを測定する。   After vacuum processing is performed on the measurement substrate 14 under the same conditions as the processing substrate 15, the plasma is extinguished, and the polarity and magnitude of the charging voltage of the measurement substrate 14 are measured by the voltage measurement device 28.

処理基板15は、タンタル酸リチウム(LiTaO3)、ニオブ酸リチウム(LiNbO3)、四ホウ酸リチウム(LBO)、水晶(SiO2)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT:Pb(Zr,Ti)O3)、リチウムテトラボレート(Li247)、ランガサイト(La3Ga5SiO14)、窒化アルミニウム(AlN)、電気石(トルマリン)、ポリフッ化ビニリデン(PVDF)等の圧電体であり、測定基板14は、処理基板15と同じ材質のものが用いられている。 The treatment substrate 15 is composed of lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), lithium tetraborate (LBO), crystal (SiO 2 ), zinc oxide (ZnO), lead zirconate titanate (PZT: Pb). (Zr, Ti) O 3 ), lithium tetraborate (Li 2 B 4 O 7 ), langasite (La 3 Ga 5 SiO 14 ), aluminum nitride (AlN), tourmaline (tourmaline), polyvinylidene fluoride (PVDF) The measurement substrate 14 is made of the same material as the processing substrate 15.

測定した帯電電圧が1kV以上の場合は、第一、第二の電極111、112と処理基板15の間の電位差が帯電電圧でも処理基板15を吸着装置30に吸着できるので、複数の処理基板15を真空処理する際の、第一、第二の電極111、112の接続を、接地電位に接続し、ゼロVの電圧が印加されるように設定する。 When the measured charging voltage is 1 kV or more, the processing substrate 15 can be adsorbed to the adsorption device 30 even if the potential difference between the first and second electrodes 11 1 , 11 2 and the processing substrate 15 is the charging voltage. When the substrate 15 is vacuum processed, the connection of the first and second electrodes 11 1 and 11 2 is connected to the ground potential, and is set so that a voltage of zero V is applied.

測定基板14の帯電電圧の大きさが1kV未満の場合、処理基板15と第一、第二の電極111、112との間の電位差を大きくするために、吸着装置30内に設けられた複数の電極(本例では第一、第二の電極111、112)には、帯電電圧とは逆極性の電圧を印加する。 When the magnitude of the charging voltage of the measurement substrate 14 is less than 1 kV, it is provided in the adsorption device 30 in order to increase the potential difference between the processing substrate 15 and the first and second electrodes 11 1 and 11 2 . A voltage having a polarity opposite to the charging voltage is applied to the plurality of electrodes (first and second electrodes 11 1 and 11 2 in this example).

また、吸着装置30内の各電極(本例では第一、第二の電極111、112)には、同じ大きさの電圧を印加するように設定し、処理基板15が面内均一の吸着力で絶縁部13上に吸着されるようにする。 Further, each electrode in the adsorption device 30 (first and second electrodes 11 1 and 11 2 in this example) is set to be applied with the same voltage so that the processing substrate 15 is uniform in the surface. It is made to adsorb | suck on the insulation part 13 with an attractive force.

<本プロセス>
以上のように吸着装置30内の各電極(本例では第一、第二の電極111、112)に吸着電源21から印加する電圧を設定しておき、複数の処理基板15を真空処理する場合、真空槽10内に搬入された処理基板15を吸着するために、第一、第二の電極111、112に設定された電圧を印加し、処理基板15を均一に吸着し、真空処理を行うと、均一に強く吸着され、処理基板15は割れにくくなる。
<This process>
As described above, the voltage applied from the suction power source 21 is set to each electrode (first and second electrodes 11 1 and 11 2 in this example) in the suction device 30, and the plurality of processing substrates 15 are vacuum processed. In order to adsorb the processing substrate 15 carried into the vacuum chamber 10, a voltage set to the first and second electrodes 11 1 and 11 2 is applied to adsorb the processing substrate 15 uniformly, When the vacuum processing is performed, the processing substrate 15 is not easily broken because it is uniformly strongly adsorbed.

直径4インチのLiTaO3から成る処理基板15を吸着装置30の上に乗せ、第一、第二の電極111、112両方に2000Vの電圧を印加し吸着させ、温度測定装置19により処理基板15の表面温度を測定したところ、面内温度分布は5℃以下であった。また、処理基板15の割れは発生しなかった。 A processing substrate 15 made of LiTaO 3 having a diameter of 4 inches is placed on the adsorption device 30, and a voltage of 2000 V is applied to both the first and second electrodes 11 1 and 11 2 for adsorption. When the surface temperature of 15 was measured, the in-plane temperature distribution was 5 ° C. or less. Moreover, the crack of the processing board | substrate 15 did not generate | occur | produce.

処理基板15の表面積が、絶縁部13の表面積よりも大きく、絶縁部13上に処理基板15を配置すると処理基板15の周辺部分が絶縁部13よりも外側にはみ出る場合、プラズマからの熱の流入によって、はみ出た部分の温度が絶縁部13上の部分の温度よりも上昇してしまうから、処理基板15内部に発生する自発分極のため吸着力が不均一となり、割れが発生する虞がある。   If the surface area of the processing substrate 15 is larger than the surface area of the insulating portion 13 and the processing substrate 15 is arranged on the insulating portion 13, the peripheral portion of the processing substrate 15 protrudes outside the insulating portion 13. As a result, the temperature of the protruding portion is higher than the temperature of the portion on the insulating portion 13, so that the adsorption force becomes non-uniform due to the spontaneous polarization generated inside the processing substrate 15, and cracking may occur.

この場合、処理基板15の裏面に金属等の熱伝導性薄膜を予め成膜した後、上記真空処理を行うことで、処理基板15の面内熱分布が均一となり、割れが発生しなくなる。   In this case, a thermal conductive thin film made of metal or the like is formed in advance on the back surface of the processing substrate 15 and then the above vacuum processing is performed, whereby the in-plane heat distribution of the processing substrate 15 becomes uniform and cracks do not occur.

また、プラズマからの熱の流入を防ぐため、処理基板15の絶縁部13からはみ出た部分の表面を覆うように保護リング18を設け、処理基板15の周辺部分がプラズマに接触せず、プラズマからの熱の流入を防止するようにし、処理基板15の面内熱分布が均一になるようにしてもよい。   Further, in order to prevent heat from flowing in from the plasma, a protective ring 18 is provided so as to cover the surface of the portion of the processing substrate 15 that protrudes from the insulating portion 13, so that the peripheral portion of the processing substrate 15 does not come into contact with the plasma. The inflow of heat in the surface of the processing substrate 15 may be made uniform.

なお、上記実施例では、本発明の真空処理がスパッタリングによる成膜処理であったが、本発明の真空処理はそれに限定されるものではなく、エッチング、アニール、表面処理等のプラズマを形成する真空処理を含む。   In the above embodiment, the vacuum treatment of the present invention is a film formation process by sputtering. However, the vacuum treatment of the present invention is not limited thereto, and a vacuum for forming plasma such as etching, annealing, and surface treatment. Includes processing.

本発明の吸着装置を使用した真空処理装置の一例を説明する断面図Sectional drawing explaining an example of the vacuum processing apparatus using the adsorption | suction apparatus of this invention 従来の吸着装置を使用した真空処理装置の一例を説明する断面図Sectional drawing explaining an example of the vacuum processing apparatus using the conventional adsorption | suction apparatus

符号の説明Explanation of symbols

1……真空処理装置
10……真空槽
111、112……電極
13……絶縁部
15……処理基板
18……保護リング
28……電圧測定装置
30……吸着装置
1 ...... vacuum processing apparatus 10 ...... vacuum chamber 11 1, 11 2 ...... electrodes 13 ...... insulating portion 15 ...... substrate 18 ...... protective ring 28 ...... voltage measuring device 30 ...... adsorber

Claims (3)

一乃至二個以上の電極と、前記電極上に配置された絶縁部とを有し、真空槽内に配置された吸着装置の前記絶縁部上に処理基板を配置し、
前記電極と前記処理基板との間に電圧を印加し、真空雰囲気中で前記処理基板を前記絶縁部表面に吸着しながら前記真空槽内にプラズマを発生させ、複数の前記処理基板を真空処理する真空処理方法であって、
前記処理基板が圧電体から成る場合には、
前記真空処理をおこなう前に、前記絶縁部上に前記処理基板と同材料の測定基板を乗せ、真空雰囲気中でプラズマを発生させた後、前記測定基板の帯電電圧の極性と大きさを測定し、
前記帯電電圧が1kV以上の場合は、前記処理基板を前記真空処理する際に、前記電極は接地電位に接続し、
前記帯電電圧が1kV未満の場合は、前記電極には、前記帯電電圧とは逆極性の電圧を印加する真空処理方法。
Having one or more electrodes and an insulating portion disposed on the electrode, and disposing a processing substrate on the insulating portion of the adsorption device disposed in the vacuum chamber;
A voltage is applied between the electrode and the processing substrate, and plasma is generated in the vacuum chamber while the processing substrate is adsorbed on the surface of the insulating portion in a vacuum atmosphere to vacuum-process the plurality of processing substrates. A vacuum processing method comprising:
When the processing substrate is made of a piezoelectric material,
Before performing the vacuum processing, a measurement substrate made of the same material as the processing substrate is placed on the insulating portion, and after generating plasma in a vacuum atmosphere, the polarity and magnitude of the charging voltage of the measurement substrate are measured. ,
When the charging voltage is 1 kV or more, the electrode is connected to a ground potential when the processing substrate is vacuum processed,
A vacuum processing method in which, when the charging voltage is less than 1 kV, a voltage having a polarity opposite to the charging voltage is applied to the electrode.
前記絶縁部の表面よりも大きく、周囲が前記絶縁部表面からはみ出している前記処理基板を前記真空処理する場合に、前記真空処理を行う前に、前記処理基板の裏面に金属薄膜を形成しておく請求項1記載の真空処理方法。   When performing the vacuum processing on the processing substrate that is larger than the surface of the insulating portion and whose periphery protrudes from the surface of the insulating portion, a metal thin film is formed on the back surface of the processing substrate before performing the vacuum processing. The vacuum processing method according to claim 1. 前記絶縁部の表面よりも大きく、周囲が前記絶縁部表面からはみ出している前記処理基板を前記真空処理する場合に、前記絶縁部からはみ出た部分上に保護リングを配置し、はみ出た部分と前記プラズマの間に、前記保護リングを位置させる請求項1記載の真空処理方法。   When the vacuum processing is performed on the processing substrate that is larger than the surface of the insulating portion and whose periphery protrudes from the surface of the insulating portion, a protective ring is disposed on the portion protruding from the insulating portion, and the protruding portion and the The vacuum processing method according to claim 1, wherein the protective ring is positioned between plasmas.
JP2008261876A 2008-10-08 2008-10-08 Vacuum processing method for substrate made of piezoelectric material Active JP5114356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261876A JP5114356B2 (en) 2008-10-08 2008-10-08 Vacuum processing method for substrate made of piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261876A JP5114356B2 (en) 2008-10-08 2008-10-08 Vacuum processing method for substrate made of piezoelectric material

Publications (2)

Publication Number Publication Date
JP2010090439A true JP2010090439A (en) 2010-04-22
JP5114356B2 JP5114356B2 (en) 2013-01-09

Family

ID=42253427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261876A Active JP5114356B2 (en) 2008-10-08 2008-10-08 Vacuum processing method for substrate made of piezoelectric material

Country Status (1)

Country Link
JP (1) JP5114356B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225633A (en) * 1982-06-23 1983-12-27 Fujitsu Ltd Preparation of thin film
JPH08124913A (en) * 1994-10-27 1996-05-17 Nec Corp Etching system
JPH0951032A (en) * 1995-05-26 1997-02-18 Nissin Electric Co Ltd Vacuum processing apparatus and method for obtaining target processing object
JP2001284324A (en) * 2000-03-30 2001-10-12 Sumitomo Osaka Cement Co Ltd Substrate holder for plasma processing and plasma processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225633A (en) * 1982-06-23 1983-12-27 Fujitsu Ltd Preparation of thin film
JPH08124913A (en) * 1994-10-27 1996-05-17 Nec Corp Etching system
JPH0951032A (en) * 1995-05-26 1997-02-18 Nissin Electric Co Ltd Vacuum processing apparatus and method for obtaining target processing object
JP2001284324A (en) * 2000-03-30 2001-10-12 Sumitomo Osaka Cement Co Ltd Substrate holder for plasma processing and plasma processing method

Also Published As

Publication number Publication date
JP5114356B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
TWI538029B (en) Apparatus for forming dielectric thin film and method for forming thin film
KR101429593B1 (en) Alternating current drive electrostatic chuck
TW200837874A (en) Mounting device, plasma processing apparatus and plasma processing method
JP2003309168A (en) Electrostatic attraction holder and substrate treatment device
JP5203663B2 (en) Substrate structure and method for manufacturing substrate structure
JP5685408B2 (en) Thin film formation method, etching method
JP6773274B2 (en) Use of an electric field to separate the piezoelectric layer from the donor substrate
EP3039711A1 (en) Method of controlled crack propagation for material cleavage using electromagnetic forces
JP5114356B2 (en) Vacuum processing method for substrate made of piezoelectric material
WO2013027584A1 (en) Vacuum processing device and vacuum processing method
JP4993694B2 (en) Plasma CVD apparatus and thin film forming method
JP2001152335A (en) Method and apparatus for vacuum treatment
JP2001284328A (en) Ceramic part
JP4879771B2 (en) Electrostatic chuck
JP5103049B2 (en) Wafer mounting electrode
JP6142305B2 (en) Electrostatic adsorption method and electrostatic adsorption device
JPH11145264A (en) Electrostatic chucking stage and substrate treating apparatus provided therewith
JP2004349665A (en) Electrostatic chuck
JP4404280B2 (en) How to remove the insulating substrate
JP5207365B2 (en) Method for etching a ferroelectric substrate
JP2010092976A (en) Adsorption power recovering method, and method for preventing dropping of adsorption power
JPH0745801A (en) Method of joining boards
TW202407802A (en) Wafer handling methods
TW202218202A (en) Method for polarizing piezoelectric film
WO2008029854A1 (en) Apparatus and method for dry etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5114356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250