JP4993694B2 - Plasma CVD apparatus and thin film forming method - Google Patents

Plasma CVD apparatus and thin film forming method Download PDF

Info

Publication number
JP4993694B2
JP4993694B2 JP2007001558A JP2007001558A JP4993694B2 JP 4993694 B2 JP4993694 B2 JP 4993694B2 JP 2007001558 A JP2007001558 A JP 2007001558A JP 2007001558 A JP2007001558 A JP 2007001558A JP 4993694 B2 JP4993694 B2 JP 4993694B2
Authority
JP
Japan
Prior art keywords
voltage
vacuum chamber
electrode
adsorption
conductive mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007001558A
Other languages
Japanese (ja)
Other versions
JP2008171888A (en
Inventor
美穂 清水
斎藤  一也
太郎 森村
喜信 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007001558A priority Critical patent/JP4993694B2/en
Publication of JP2008171888A publication Critical patent/JP2008171888A/en
Application granted granted Critical
Publication of JP4993694B2 publication Critical patent/JP4993694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明はプラズマCVDの技術に係り、特に、絶縁基板表面に薄膜を形成するCVD装置と薄膜形成方法に関する。   The present invention relates to a plasma CVD technique, and more particularly to a CVD apparatus and a thin film forming method for forming a thin film on the surface of an insulating substrate.

従来より、プラズマCVD装置は薄膜形成に広く用いられており、成膜対象物を反応槽内に搬入し、反応室内に薄膜の原料ガスを導入し、原料ガスプラズマを形成し、プラズマ内で生成された原料ガスの反応種を成膜対象物の表面に到達させ、薄膜を成長させている。   Conventionally, a plasma CVD apparatus has been widely used for thin film formation. An object to be formed is carried into a reaction vessel, a raw material gas for the thin film is introduced into the reaction chamber, a raw material gas plasma is formed, and generated in the plasma. The reactive species of the source gas thus made reach the surface of the film formation target to grow a thin film.

薄膜を成長させる際には、成膜対象物を一定温度に加熱する必要があることから、プラズマCVD装置の内部には、静電吸着装置が配置され、静電吸着装置上に成膜対象物を静電吸着し、静電吸着装置内のヒータに通電し、成膜対象物を昇温させている。   When growing a thin film, it is necessary to heat the film formation target to a certain temperature. Therefore, an electrostatic adsorption device is arranged inside the plasma CVD apparatus, and the film formation target is placed on the electrostatic adsorption apparatus. Is electrostatically adsorbed, and a heater in the electrostatic attraction apparatus is energized to raise the temperature of the film formation target.

図3は、プラズマCVD装置の真空槽内に配置される静電吸着装置112の内部構造を説明するための図面である。
この静電吸着装置112は、双極型であり、板状の絶縁物139内に正電極1151と負電極1152が配置されている。
FIG. 3 is a drawing for explaining the internal structure of the electrostatic adsorption device 112 disposed in the vacuum chamber of the plasma CVD apparatus.
This electrostatic adsorption device 112 is of a bipolar type, and a positive electrode 115 1 and a negative electrode 115 2 are arranged in a plate-like insulator 139.

正電極1151と負電極1152は互いに離間して配置されており、正電極1151と負電極1152は、吸着電源の正電圧端子と負電圧端子に接続されている。成膜対象物表面に薄膜を形成する際には、静電吸着装置112の絶縁物139上に成膜対象物を配置し、正電極1151と負電極1152に正電圧と負電圧をそれぞれ印加する。この電圧印加による静電誘導で、成膜対象物の正電極1151上の部分には負電荷が発生し、負電極1152上の部分には正電荷が発生し、成膜対象物と正負電極1151、1152の間に生じる静電吸着力によって成膜対象物が静電吸着装置112表面に静電吸着される。 Positive electrode 115 1 and the negative electrode 115 2 is disposed apart from each other, the positive electrode 115 1 and the negative electrode 115 2 is connected to a positive voltage terminal and a negative voltage terminal of the adsorption power. When forming a thin film on the film-forming target surface, the film-forming target is placed on the insulator 139 of the electrostatic chuck 112, the positive electrode 115 1 and the negative electrode 115 2 positive and negative voltages respectively Apply. By electrostatic induction by this voltage application, the portion of the positive electrode 115 on the first film-forming target negative charge is generated, in part, on the negative electrode 115 2 positive charges are generated, the film-forming target and negative The film-forming target is electrostatically attracted to the surface of the electrostatic attracting device 112 by the electrostatic attracting force generated between the electrodes 115 1 and 115 2 .

しかし、このような静電吸着装置112上にプラズマを形成し、正負電極1151、1152に正電圧と負電圧を印加しながら薄膜を形成しようとすると、プラズマ分布が正負電極1151、1152の配置パターンに影響され、その結果、形成される薄膜の膜厚分布や膜質分布が不均一になるという問題がある。 However, when plasma is formed on such an electrostatic adsorption device 112 and a thin film is formed while applying positive and negative voltages to the positive and negative electrodes 115 1 and 115 2 , the plasma distribution becomes positive and negative electrodes 115 1 and 115. it is influenced by the second arrangement pattern, so that the film thickness distribution and the film quality distribution of a thin film to be formed is a problem that becomes uneven.

正負電極1151、1152間の距離を小さくすれば、プラズマへの影響を減少させることができるが、正負電極1151、1152間の距離が小さくなると正負電極1151、1152間に印加できる電圧も小さくなり、静電吸着力が弱くなってしまう。
プラズマCVD装置を記載した文献は多数有り、例えば下記文献が挙げられる。
特開2001−85415号公報
By reducing the distance between the positive and negative electrodes 115 1, 115 2, applied to it can reduce the influence of the plasma, the positive and negative electrodes 115 1 when the distance between the positive and negative electrodes 115 1, 115 2 is reduced, 115 between 2 The voltage that can be reduced is also reduced, and the electrostatic attractive force is weakened.
There are a large number of documents describing plasma CVD apparatuses. For example, the following documents can be cited.
JP 2001-85415 A

本発明は上記従来技術の課題を解決するために創作されたものであり、プラズマに影響を与えず、膜厚分布や膜質分布が均一な薄膜を形成できるプラズマCVD装置を提供することにある。   The present invention was created to solve the above-described problems of the prior art, and an object thereof is to provide a plasma CVD apparatus capable of forming a thin film having a uniform film thickness distribution and film quality distribution without affecting plasma.

上記課題を解決するため、本発明は、真空槽と、前記真空槽内に配置され、絶縁性基板が配置されるサセプタと、前記サセプタ内に配置され、正電圧または負電圧のいずれか一方の電圧である吸着電圧が印加される平板状の吸着電極と、開口を有し、前記絶縁性基板上に配置される導電性マスクと、前記真空槽内の前記サセプタの上方に配置されたプラズマ生成電極と、前記真空槽内に原料ガスを導入するガス導入系と、前記真空槽内を真空排気する真空排気系と、前記吸着電極と前記真空槽との間に直流電圧を印加する吸着電源と、前記プラズマ生成電極に交流電圧を印加するプラズマ電源とを有し、前記吸着電源により、前記吸着電極に前記吸着電圧を印加し、前記絶縁性基板上に配置された前記導電性マスクに単一の極性の電荷を誘起して前記絶縁性基板を静電吸着しながら、前記プラズマ生成電極に交流電圧を印加して前記原料ガスのプラズマを発生させて前記開口の底面に露出する前記絶縁性基板の表面に薄膜を成長させるプラズマCVD装置である。
また、本発明は、絶縁物の基板表面にパターニングされた薄膜を形成する薄膜形成方法であって、ラズマCVD装置の真空槽内に配置されたサセプタ上に前記基板と、前記基板上に開口を有する導電性マスクとを配置した状態で、前記サセプタ内に配置された吸着電極に正電圧又は負電圧のいずれか一方の電圧を印加し、前記導電性マスクを静電吸着しながら前記真空糟内に原料ガスを導入し、前記真空槽内の前記サセプタの上方に配置されたプラズマ生成電極に電圧を印加して前記原料ガスのプラズマを発生させ、前記導電性マスクの前記開口底面に露出する前記基板表面に薄膜を成長させる薄膜形成方法である。
また、本発明は、前記基板よりも大きな前記吸着電極と前記導電性マスクを用い、前記基板が前記吸着電極と前記導電性マスクからはみ出さないようにして前記導電性マスクを静電吸着する薄膜形成方法である。
In order to solve the above-described problems, the present invention provides a vacuum chamber, a susceptor disposed in the vacuum chamber and having an insulating substrate disposed therein, and disposed in the susceptor, and being either positive voltage or negative voltage. A flat suction electrode to which a suction voltage as a voltage is applied, a conductive mask having an opening and disposed on the insulating substrate, and plasma generation disposed above the susceptor in the vacuum chamber An electrode, a gas introduction system that introduces a source gas into the vacuum chamber, a vacuum exhaust system that evacuates the vacuum chamber, and an adsorption power source that applies a DC voltage between the adsorption electrode and the vacuum chamber; the plasma power source for applying an AC voltage to the plasma generating electrode, have a, by the suction power, the attraction voltage is applied to the chucking electrode, the single to the conductive mask disposed on the insulating substrate Induce a charge of one polarity Then, while electrostatically adsorbing the insulating substrate, an AC voltage is applied to the plasma generation electrode to generate plasma of the source gas and grow a thin film on the surface of the insulating substrate exposed at the bottom of the opening This is a plasma CVD apparatus.
Further, the present invention provides a thin film forming method for forming a thin film that is patterned on the substrate surface of the insulator, and the substrate on a support septum disposed in the vacuum chamber of the flop plasma CVD device, on said substrate In a state where a conductive mask having an opening is disposed , either a positive voltage or a negative voltage is applied to the suction electrode disposed in the susceptor, and the vacuum is applied while electrostatically attracting the conductive mask. the raw material gas is introduced into the cake, the voltage is applied to the upwardly disposed plasma generating electrode of the susceptor in the vacuum chamber to generate plasma of the source gas, the bottom surface of the opening of the conductive mask A thin film forming method of growing a thin film on the surface of the substrate exposed to the substrate.
The present invention also provides a thin film that electrostatically adsorbs the conductive mask using the suction electrode and the conductive mask that are larger than the substrate so that the substrate does not protrude from the suction electrode and the conductive mask. It is a forming method.

膜厚分布や膜質分布が均一な薄膜を形成できるプラズマCVD装置、薄膜形成方法が得られる。   A plasma CVD apparatus and a thin film forming method capable of forming a thin film with uniform film thickness distribution and film quality distribution can be obtained.

図1の符号3は、本発明の一例のプラズマCVD装置を示している。
このプラズマCVD装置3は真空槽11を有しており、真空槽11の内部には、サセプタ12が配置されている。
真空槽11の外部には、真空排気系32と、ガス導入系33と、吸着電源31と、プラズマ電源34とが配置されている。
真空槽11には真空排気系32が接続されており、真空槽11内部を真空排気し、真空雰囲気にした状態で成膜対象物20を真空槽11内に搬入し、サセプタ12上に配置する。
サセプタ12の内部には吸着電極15が配置されている。
Reference numeral 3 in FIG. 1 represents a plasma CVD apparatus according to an example of the present invention.
The plasma CVD apparatus 3 has a vacuum chamber 11, and a susceptor 12 is disposed inside the vacuum chamber 11.
A vacuum exhaust system 32, a gas introduction system 33, an adsorption power supply 31, and a plasma power supply 34 are disposed outside the vacuum chamber 11.
An evacuation system 32 is connected to the vacuum chamber 11, the inside of the vacuum chamber 11 is evacuated, and the film formation target 20 is carried into the vacuum chamber 11 in a vacuum atmosphere, and is placed on the susceptor 12. .
An adsorption electrode 15 is arranged inside the susceptor 12.

図1の符号20は、サセプタ12上に配置された成膜対象物を示している。この成膜対象物20は、プラスチック基板やガラス基板等の絶縁性基板19と、該絶縁性基板19の表面に配置された導電性マスク17とで構成されており、絶縁性基板19が、その鉛直下方に位置するサセプタ12に密着して配置されている。従って、導電性マスク17は鉛直上方に向けられており、絶縁性基板19は、吸着電極15と導電性マスク17の間に位置し、吸着電極15と導電性マスク17によって挟まれている。なお、導電性マスク17は、導電性材料で構成されており、例えば、金属製である。   Reference numeral 20 in FIG. 1 indicates a film formation target disposed on the susceptor 12. This film formation target 20 is composed of an insulating substrate 19 such as a plastic substrate or a glass substrate, and a conductive mask 17 disposed on the surface of the insulating substrate 19. It is placed in close contact with the susceptor 12 located vertically below. Accordingly, the conductive mask 17 is directed vertically upward, and the insulating substrate 19 is located between the adsorption electrode 15 and the conductive mask 17 and is sandwiched between the adsorption electrode 15 and the conductive mask 17. The conductive mask 17 is made of a conductive material, and is made of metal, for example.

吸着電極15の周囲は絶縁物39で覆われており、絶縁性基板19と吸着電極15は直接接触しないように構成されている。
吸着電極15は吸着電源31に接続され、真空槽11は接地電位に接続されており、吸着電源31により、真空槽11と吸着電極15の間に電圧を印加できるように構成されている。
The periphery of the adsorption electrode 15 is covered with an insulator 39 so that the insulating substrate 19 and the adsorption electrode 15 are not in direct contact with each other.
The adsorption electrode 15 is connected to an adsorption power source 31, and the vacuum chamber 11 is connected to a ground potential. The adsorption power source 31 is configured to apply a voltage between the vacuum chamber 11 and the adsorption electrode 15.

導電性マスク17と吸着電極15の間と、導電性マスク17と真空槽11との間には、それぞれ容量成分が発生しており、吸着電源31によって吸着電極15と真空槽11の間に直流電圧が印加されると、導電性マスク17と吸着電極15の間の容量成分と、導電性マスク17と真空槽11との間の容量成分がそれぞれ充電され、導電性マスク17と吸着電極15に誘起された電荷によって導電性マスク17が吸着電極15に静電吸着される。吸着電極15に印加される電圧が正電圧であっても負電圧であっても、導電性マスク17は静電吸着される。   Capacitance components are generated between the conductive mask 17 and the suction electrode 15 and between the conductive mask 17 and the vacuum chamber 11, and a direct current is generated between the suction electrode 15 and the vacuum chamber 11 by the suction power source 31. When a voltage is applied, the capacitive component between the conductive mask 17 and the suction electrode 15 and the capacitive component between the conductive mask 17 and the vacuum chamber 11 are charged, and the conductive mask 17 and the suction electrode 15 are charged. The conductive mask 17 is electrostatically attracted to the attracting electrode 15 by the induced charge. The conductive mask 17 is electrostatically adsorbed regardless of whether the voltage applied to the adsorption electrode 15 is a positive voltage or a negative voltage.

導電性マスク17は絶縁性基板19よりも大きく形成されており、絶縁性基板19が導電性マスク17よりも外側にはみ出さないように構成されている。また、吸着電極15も絶縁性基板19よりも大きく形成されており、絶縁性基板19が吸着電極15よりも外側にはみ出さないように構成されている。
吸着電極15と導電性マスク17は、絶縁性基板19と相似形であり、絶縁性基板19が四角形の場合、吸着電極15と導電性マスク17も四角形になる。
The conductive mask 17 is formed larger than the insulating substrate 19, and is configured so that the insulating substrate 19 does not protrude outside the conductive mask 17. Further, the adsorption electrode 15 is also formed larger than the insulating substrate 19, and is configured so that the insulating substrate 19 does not protrude outside the adsorption electrode 15.
The adsorption electrode 15 and the conductive mask 17 are similar to the insulating substrate 19, and when the insulating substrate 19 is square, the adsorption electrode 15 and the conductive mask 17 are also square.

図2は、吸着電極15の平面形状を示しており、平面形状が四角形の金属膜や金属板によって構成されている。
吸着電極15は絶縁性基板19よりも大きく、孔や溝は形成されていないから、絶縁性基板19のどの部分でも、絶縁性基板19の裏面に吸着電極15が位置している。
導電性マスク17には、所定のパターンで開口21が形成されており、開口21の底面には絶縁性基板19の表面が露出されている。
FIG. 2 shows the planar shape of the adsorption electrode 15, and the planar shape is constituted by a rectangular metal film or metal plate.
Since the adsorption electrode 15 is larger than the insulating substrate 19 and no hole or groove is formed, the adsorption electrode 15 is located on the back surface of the insulating substrate 19 in any part of the insulating substrate 19.
An opening 21 is formed in the conductive mask 17 in a predetermined pattern, and the surface of the insulating substrate 19 is exposed on the bottom surface of the opening 21.

導電性マスク17の開口21の部分を除き、絶縁性基板19上の導電性マスク17のどの部分でも、導電性マスク17は絶縁物39を介して吸着電極15と対面するように構成されており、従って、導電性マスク17が吸着電極15に静電吸着されると、絶縁性基板19の外周を含む全体がサセプタ12上に押しつけられ、絶縁性基板19とサセプタ12が密着した状態になる。   Except for the portion of the opening 21 of the conductive mask 17, the conductive mask 17 is configured to face the adsorption electrode 15 through the insulator 39 in any portion of the conductive mask 17 on the insulating substrate 19. Therefore, when the conductive mask 17 is electrostatically attracted to the suction electrode 15, the whole including the outer periphery of the insulating substrate 19 is pressed onto the susceptor 12, and the insulating substrate 19 and the susceptor 12 are brought into close contact with each other.

サセプタ12の内部には、ヒータ24が吸着電極15とは絶縁した状態で配置されている。
ヒータ24は、不図示の加熱電源に接続されており、加熱電源によってヒータに通電し、発熱させるとサセプタ12が加熱される。
Inside the susceptor 12, a heater 24 is disposed in a state of being insulated from the adsorption electrode 15.
The heater 24 is connected to a heating power source (not shown). When the heater is energized by the heating power source to generate heat, the susceptor 12 is heated.

導電性マスク17を静電吸着し、絶縁性基板19とサセプタ12との間の密着性を高くされているとサセプタ12の熱は絶縁性基板19へ伝導され、真空雰囲気に置かれた絶縁性基板19が加熱される。絶縁性基板19とサセプタ12との間の密着性は高いので、絶縁性基板19の昇温速度は速い。   When the conductive mask 17 is electrostatically adsorbed and the adhesion between the insulating substrate 19 and the susceptor 12 is increased, the heat of the susceptor 12 is conducted to the insulating substrate 19 and is insulated in a vacuum atmosphere. The substrate 19 is heated. Since the adhesion between the insulating substrate 19 and the susceptor 12 is high, the temperature rise rate of the insulating substrate 19 is fast.

サセプタ12の鉛直上方にはプラズマ生成電極13が配置されている。
プラズマ生成電極13は内部が中空であり、ガス導入系33はプラズマ生成電極13に接続され、内部の中空部分に原料ガスを導入できるように構成されている。
A plasma generation electrode 13 is disposed vertically above the susceptor 12.
The plasma generation electrode 13 is hollow inside, and the gas introduction system 33 is connected to the plasma generation electrode 13 so that the source gas can be introduced into the hollow portion inside.

プラズマ生成電極13のサセプタ12に面する面には、中空部分と連通する多数の小孔が設けられており、ガス導入系33からプラズマ生成電極13の内部に原料ガスを導入すると、小孔から真空雰囲気の真空槽11の内部に原料ガスが噴出されるように構成されている。   The surface of the plasma generation electrode 13 facing the susceptor 12 is provided with a large number of small holes communicating with the hollow portion. When the source gas is introduced into the plasma generation electrode 13 from the gas introduction system 33, The material gas is jetted into the vacuum chamber 11 in a vacuum atmosphere.

真空槽11の内部が所定圧力で安定したところで、プラズマ電源34によってプラズマ生成電極13に交流電圧を印加すると、真空槽11の内部に原料ガスのプラズマが形成され、プラズマ中で原料ガスの反応種(イオンやラジカル)が生成される。反応種が導電性マスク17の開口21底面の絶縁性基板19表面に到達すると、その部分に薄膜が成長する。   When an AC voltage is applied to the plasma generating electrode 13 by the plasma power source 34 when the inside of the vacuum chamber 11 is stabilized at a predetermined pressure, a plasma of the source gas is formed inside the vacuum chamber 11, and the reactive species of the source gas in the plasma (Ions and radicals) are generated. When the reactive species reaches the surface of the insulating substrate 19 at the bottom of the opening 21 of the conductive mask 17, a thin film grows on that portion.

本発明では、絶縁性基板19の裏面には、絶縁物39を間に挟んで、吸着電極15が配置されており、この吸着電極15は正電圧又は負電圧のいずれか一方の電圧が印加される単一極性の電極である。   In the present invention, the adsorption electrode 15 is disposed on the back surface of the insulating substrate 19 with the insulator 39 interposed therebetween, and either the positive voltage or the negative voltage is applied to the adsorption electrode 15. Single polarity electrode.

従って、導電性マスク17の表面には、単一の極性の電荷(吸着電極15と同極性の電荷)が誘起されるので、導電性マスク17の表面近傍に形成される電界は均一であり、プラズマ密度の不均一性は生じない。従って、双極型の静電吸着装置の場合のような、双極の電極の分布に応じた膜厚分布の薄膜が形成されることもない。即ち、本願のプラズマCVD装置3では、絶縁性基板19の表面に形成される薄膜の面内膜厚分布は均一である。
開口21底面に所定膜厚の薄膜が形成されると、原料ガスの導入と、プラズマ電源34の出力を停止し、真空槽11の外部に成膜対象物20を搬出する。
Accordingly, since a single polarity charge (a charge having the same polarity as the adsorption electrode 15) is induced on the surface of the conductive mask 17, the electric field formed in the vicinity of the surface of the conductive mask 17 is uniform, There is no plasma density non-uniformity. Therefore, a thin film having a film thickness distribution corresponding to the distribution of the bipolar electrodes as in the case of the bipolar electrostatic attraction apparatus is not formed. That is, in the plasma CVD apparatus 3 of the present application, the in-plane film thickness distribution of the thin film formed on the surface of the insulating substrate 19 is uniform.
When a thin film having a predetermined thickness is formed on the bottom surface of the opening 21, the introduction of the source gas and the output of the plasma power supply 34 are stopped, and the film formation target 20 is carried out of the vacuum chamber 11.

なお、上記実施例ではガス導入系33をプラズマ生成電極13に接続し、プラズマ生成電極13から真空槽11内に原料ガスを導入したが、ガス導入系33を真空槽11に接続し、真空槽11内に直接原料ガスを導入することもできる。   In the above embodiment, the gas introduction system 33 is connected to the plasma generation electrode 13 and the raw material gas is introduced from the plasma generation electrode 13 into the vacuum chamber 11. However, the gas introduction system 33 is connected to the vacuum chamber 11, and the vacuum chamber It is also possible to introduce the raw material gas directly into 11.

上記吸着電極はアルミニウムで構成させ、絶縁物39はアルマイトで構成させることができる。
なお、図1では、サセプタ12の底面に、放電防止用の接地電極38が設けられている。
The adsorption electrode can be made of aluminum, and the insulator 39 can be made of alumite.
In FIG. 1, a ground electrode 38 for preventing discharge is provided on the bottom surface of the susceptor 12.

本発明のプラズマCVD装置を説明するための図面The drawing for explaining the plasma CVD apparatus of the present invention 本発明に用いられる吸着電極の形状を説明するための図面Drawing for explaining the shape of the adsorption electrode used in the present invention 従来技術のプラズマCVD装置に用いられる静電吸着装置を説明するための図面Drawing for explaining an electrostatic attraction apparatus used in a plasma CVD apparatus of the prior art

符号の説明Explanation of symbols

3……プラズマCVD装置
11……真空槽
12……サセプタ
13……プラズマ生成電極
15……吸着電極
17……導電性マスク
19……絶縁性基板
31……吸着電源
32……真空排気系
33……ガス導入系
34……プラズマ電源
3 ... Plasma CVD apparatus 11 ... Vacuum chamber 12 ... Susceptor 13 ... Plasma generating electrode 15 ... Adsorption electrode 17 ... Conductive mask 19 ... Insulating substrate 31 ... Adsorption power source 32 ... Vacuum exhaust system 33 …… Gas introduction system 34 …… Plasma power supply

Claims (3)

真空槽と、
前記真空槽内に配置され、絶縁性基板が配置されるサセプタと、
前記サセプタ内に配置され、正電圧または負電圧のいずれか一方の電圧である吸着電圧が印加される平板状の吸着電極と、
開口を有し、前記絶縁性基板上に配置される導電性マスクと、
前記真空槽内の前記サセプタの上方に配置されたプラズマ生成電極と、
前記真空槽内に原料ガスを導入するガス導入系と、
前記真空槽内を真空排気する真空排気系と、
前記吸着電極と前記真空槽との間に直流電圧を印加する吸着電源と、
前記プラズマ生成電極に交流電圧を印加するプラズマ電源とを有し、
前記吸着電源により、前記吸着電極に前記吸着電圧を印加し、前記絶縁性基板上に配置された前記導電性マスクに単一の極性の電荷を誘起して前記絶縁性基板を静電吸着しながら、前記プラズマ生成電極に交流電圧を印加して前記原料ガスのプラズマを発生させて前記開口の底面に露出する前記絶縁性基板の表面に薄膜を成長させるプラズマCVD装置。
A vacuum chamber;
A susceptor disposed in the vacuum chamber and disposed with an insulating substrate ;
A plate-like adsorption electrode that is arranged in the susceptor and to which an adsorption voltage that is either a positive voltage or a negative voltage is applied ;
A conductive mask having an opening and disposed on the insulating substrate;
A plasma generating electrode disposed above the susceptor in the vacuum chamber;
A gas introduction system for introducing a raw material gas into the vacuum chamber;
An evacuation system for evacuating the vacuum chamber;
An adsorption power source for applying a DC voltage between the adsorption electrode and the vacuum chamber;
Have a, a plasma power source for applying an AC voltage to the plasma generating electrode,
The adsorption power source applies the adsorption voltage to the adsorption electrode, induces a single polarity charge on the conductive mask disposed on the insulating substrate, and electrostatically adsorbs the insulating substrate. A plasma CVD apparatus in which an alternating voltage is applied to the plasma generating electrode to generate plasma of the source gas to grow a thin film on the surface of the insulating substrate exposed at the bottom surface of the opening .
絶縁物の基板表面にパターニングされた薄膜を形成する薄膜形成方法であって、
ラズマCVD装置の真空槽内に配置されたサセプタ上に前記基板と、前記基板上に開口を有する導電性マスクとを配置した状態で、前記サセプタ内に配置された吸着電極に正電圧又は負電圧のいずれか一方の電圧を印加し、前記導電性マスクを静電吸着しながら前記真空糟内に原料ガスを導入し、前記真空槽内の前記サセプタの上方に配置されたプラズマ生成電極に電圧を印加して前記原料ガスのプラズマを発生させ、前記導電性マスクの前記開口底面に露出する前記基板表面に薄膜を成長させる薄膜形成方法。
A thin film forming method for forming a patterned thin film on a substrate surface of an insulator,
Said substrate on arranged service septa of the vacuum chamber of the flop plasma CVD apparatus, in the state in which the conductive mask having an opening on said substrate, a positive voltage to the adsorption electrode disposed within the susceptor or applying any one of a voltage of a negative voltage, wherein a conductive mask introducing a raw material gas into the vacuum dregs while electrostatically attracting the plasma generation electrodes disposed above the susceptor in the vacuum chamber by applying a voltage to generate a plasma of the material gas, a thin film forming method of growing a thin film on the substrate surface exposed to the bottom surface of the opening of the conductive mask.
前記基板よりも大きな前記吸着電極と前記導電性マスクを用い、前記基板が前記吸着電極と前記導電性マスクからはみ出さないようにして前記導電性マスクを静電吸着する請求項2記載の薄膜形成方法。   3. The thin film formation according to claim 2, wherein the adsorption electrode and the conductive mask larger than the substrate are used, and the conductive mask is electrostatically adsorbed so that the substrate does not protrude from the adsorption electrode and the conductive mask. Method.
JP2007001558A 2007-01-09 2007-01-09 Plasma CVD apparatus and thin film forming method Active JP4993694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001558A JP4993694B2 (en) 2007-01-09 2007-01-09 Plasma CVD apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001558A JP4993694B2 (en) 2007-01-09 2007-01-09 Plasma CVD apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2008171888A JP2008171888A (en) 2008-07-24
JP4993694B2 true JP4993694B2 (en) 2012-08-08

Family

ID=39699729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001558A Active JP4993694B2 (en) 2007-01-09 2007-01-09 Plasma CVD apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP4993694B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773731B2 (en) * 2011-05-02 2015-09-02 株式会社アルバック Vacuum processing equipment
KR102629497B1 (en) * 2016-09-21 2024-01-25 주성엔지니어링(주) The Substrate Holding Apparatus And The Operation Method Of The Same
KR102659429B1 (en) * 2016-11-11 2024-04-22 주성엔지니어링(주) The Substrate Holding Apparatus And Substrate Processing Apparatus
WO2018098075A1 (en) * 2016-11-22 2018-05-31 Veeco Instruments Inc. Thickness uniformity control for epitaxially-grown structures in a chemical vapor deposition system
KR102650613B1 (en) * 2018-10-30 2024-03-21 캐논 톡키 가부시키가이샤 Electrostatic chuk system, apparatus for forming film, adsorption method, method for forming film, and manufacturing method of electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380524A (en) * 1986-09-24 1988-04-11 Tech Res Assoc Conduct Inorg Compo Manufacture of strip amorphous silicon thin film
JPH0235438U (en) * 1988-08-29 1990-03-07
JP3887842B2 (en) * 1995-03-17 2007-02-28 東京エレクトロン株式会社 Stage equipment
JP2839003B2 (en) * 1996-04-05 1998-12-16 日本電気株式会社 Vacuum deposition equipment
JP4037956B2 (en) * 1998-04-28 2008-01-23 東海カーボン株式会社 Chamber inner wall protection member
JP4296628B2 (en) * 1999-04-01 2009-07-15 住友電気工業株式会社 Manufacturing method of flexible printed wiring board

Also Published As

Publication number Publication date
JP2008171888A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP7357664B2 (en) Substrate support with multiple embedded electrodes
CN206758401U (en) Control the radio frequency amplitude of the edge ring of capacitance coupling plasma process equipment
US8295026B2 (en) Electrostatic chuck and substrate processing apparatus having same
US10904996B2 (en) Substrate support with electrically floating power supply
CN109872939A (en) The assemble method of bearing assembly and bearing assembly
US20190088521A1 (en) System for coupling a voltage to portions of a substrate
CN113166942B (en) Film stress control for plasma enhanced chemical vapor deposition
US8097082B2 (en) Nonplanar faceplate for a plasma processing chamber
CN106165070B (en) The temprature control method of heating installation power supply mechanism and mounting table
JP4993694B2 (en) Plasma CVD apparatus and thin film forming method
US10497545B2 (en) Plasma processing apparatus and cleaning method
US10388528B2 (en) Non-ambipolar electric pressure plasma uniformity control
JP2023103283A (en) Plasma processing device and mounting table
TW202306441A (en) Plasma processing apparatus
JP5654083B2 (en) Electrostatic chuck and substrate processing apparatus
WO2013027584A1 (en) Vacuum processing device and vacuum processing method
US11410869B1 (en) Electrostatic chuck with differentiated ceramics
US11195700B2 (en) Etching apparatus
WO2019239946A1 (en) Electrostatic chuck, focus ring, support base, plasma processing apparatus, and plasma processing method
JP4890313B2 (en) Plasma CVD equipment
US20210020407A1 (en) Plasma processing method and plasma processing apparatus
WO2022168642A1 (en) Plasma processing device, and plasma processing method
KR102353090B1 (en) Apparatus for supporting a substrate and method of operating an electrostatic clamp
JPH04348543A (en) Electrostatic attraction device
JP2008192732A (en) Vacuum processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250