JP6142305B2 - Electrostatic adsorption method and electrostatic adsorption device - Google Patents

Electrostatic adsorption method and electrostatic adsorption device Download PDF

Info

Publication number
JP6142305B2
JP6142305B2 JP2012172048A JP2012172048A JP6142305B2 JP 6142305 B2 JP6142305 B2 JP 6142305B2 JP 2012172048 A JP2012172048 A JP 2012172048A JP 2012172048 A JP2012172048 A JP 2012172048A JP 6142305 B2 JP6142305 B2 JP 6142305B2
Authority
JP
Japan
Prior art keywords
substrate
electrostatic
plasma
back surface
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012172048A
Other languages
Japanese (ja)
Other versions
JP2014033045A (en
JP2014033045A5 (en
Inventor
知行 野中
知行 野中
中野 博彦
博彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP2012172048A priority Critical patent/JP6142305B2/en
Publication of JP2014033045A publication Critical patent/JP2014033045A/en
Publication of JP2014033045A5 publication Critical patent/JP2014033045A5/ja
Application granted granted Critical
Publication of JP6142305B2 publication Critical patent/JP6142305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、プラズマを用いた基板のエッチングや成膜等の表面処理において、静電気力により該基板を支持部材に吸着固定するための、静電吸着方法及び装置に関する。   The present invention relates to an electrostatic adsorption method and apparatus for adsorbing and fixing a substrate to a support member by electrostatic force in surface treatment such as etching and film formation of the substrate using plasma.

基板にプラズマを用いたエッチングや成膜等の表面処理を行う場合、表面処理により熱が発生し、基板の温度が上昇する。基板の温度が上昇すると基板の材質や形状の変化等の理由により、エッチング等の表面処理に不具合が生じるといった問題がある。そこで、基板の温度上昇を防ぐ方法として、基板と該基板を載置・固定する台である支持部材を密着させ、基板の熱を支持部材を介して排出することで基板を冷却する方法が採られる。また、それに加えて熱伝導率の良好なHe(ヘリウム)ガスを基板と支持部材の間に流す機構を備えることで、両者間の熱伝達を良好とする。   When surface treatment such as etching or film formation using plasma is performed on the substrate, heat is generated by the surface treatment, and the temperature of the substrate rises. When the temperature of the substrate rises, there is a problem that a defect occurs in the surface treatment such as etching due to a change in the material and shape of the substrate. Therefore, as a method of preventing the temperature of the substrate from increasing, a method of cooling the substrate by bringing the substrate and a supporting member, which is a table for mounting and fixing the substrate, into close contact with each other and discharging the heat of the substrate through the supporting member is adopted. It is done. In addition, by providing a mechanism for flowing a He (helium) gas having a good thermal conductivity between the substrate and the support member, heat transfer between the two is improved.

基板を支持部材に密着させる方法の一つに、メカニカルチャックが知られている。メカニカルチャックは、爪やリングの機械的構造を用いて、基板の外周部を挟み込んだり、上部から押えることで、基板と支持部材を密着・保持するものである。しかし、表面処理の対象となる基板の中央部分は、挟み込んだり押さえたりすることができず、密着が弱くなる。さらに、基板の外周部の爪やリングに覆われた部分は表面処理を行うことができないという問題もある。   A mechanical chuck is known as one method for bringing a substrate into close contact with a support member. The mechanical chuck uses a mechanical structure of a claw or a ring to sandwich and hold the outer peripheral portion of the substrate or press it from the upper side, thereby closely contacting and holding the substrate and the support member. However, the central portion of the substrate to be surface-treated cannot be sandwiched or pressed, and the adhesion is weakened. Furthermore, there is a problem that the surface treatment cannot be performed on the portion of the outer periphery of the substrate covered with the claws or the ring.

メカニカルチャックとは別の方法として、静電チャックが知られている。静電チャックは、支持部材として電極を埋設した誘電体部材を用いるものである。このような支持部材の上に基板を載置し、電極に直流電圧を印加すると、基板の裏面が逆極性に帯電し、支持部材と基板の間に静電気力が生じて基板が支持部材に吸着される。静電チャックでは、電極の形状を工夫することで、メカニカルチャックでは密着させることが困難であった、基板の中央部分を含め、基板全体を支持部材に均一に密着させることができる。もちろん、基板を機械的に押さえることがないため、基板の外周が覆われ、表面処理を行うことができないという問題もない。   As a method different from the mechanical chuck, an electrostatic chuck is known. The electrostatic chuck uses a dielectric member in which an electrode is embedded as a support member. When a substrate is placed on such a support member and a DC voltage is applied to the electrodes, the back surface of the substrate is charged with a reverse polarity, and an electrostatic force is generated between the support member and the substrate so that the substrate is attracted to the support member. Is done. In the electrostatic chuck, by devising the shape of the electrode, the entire substrate including the central portion of the substrate, which has been difficult to adhere with the mechanical chuck, can be uniformly adhered to the support member. Of course, since the substrate is not mechanically pressed, there is no problem that the outer periphery of the substrate is covered and the surface treatment cannot be performed.

このような理由により、通常、シリコン基板等では静電チャックによる吸着方法が用いられている。しかし、シリコンではない基板の場合、基板が十分に支持部材に吸着されないことがあった。特に、絶縁抵抗の大きい基板の場合にそのような問題があった。   For these reasons, a suction method using an electrostatic chuck is usually used for silicon substrates and the like. However, in the case of a substrate that is not silicon, the substrate may not be sufficiently adsorbed by the support member. In particular, there is such a problem in the case of a substrate having a large insulation resistance.

絶縁抵抗の大きい基板の場合には、基板の裏面に予め導電膜を形成することにより静電吸着をアシストするという方法も可能であるが、導電膜の形成という余分な工程を入れなければならず、プラズマ処理のスループットが低下し、コストが上昇するほか、その導電膜が他の処理の妨げになる場合があるという課題があった。   In the case of a substrate having a high insulation resistance, a method of assisting electrostatic adsorption by forming a conductive film in advance on the back surface of the substrate is possible, but an extra step of forming a conductive film must be added. In addition to a decrease in plasma processing throughput and cost, there is a problem that the conductive film may interfere with other processing.

そこで、特許文献1では、これらの基板について、支持部材であるステージの上に基板を載置した状態で、まず第1のプラズマ放電を行い、基板の裏面を帯電させて、吸着性能を向上している。これにより、その後、基板が安定に保持された状態で本来の(第2の)プラズマ処理を行うことを可能としている。   Therefore, in Patent Document 1, with respect to these substrates, with the substrate placed on a stage that is a support member, first plasma discharge is performed to charge the back surface of the substrate to improve the adsorption performance. ing. As a result, the original (second) plasma treatment can be performed in a state where the substrate is stably held thereafter.

特開2005-51098号公報JP 2005-51098 A

しかしながら、特許文献1に記載の技術によって吸着性能が向上しても、なお吸着力が不足したり安定しない場合がある。そのため絶縁抵抗の大きい基板では、未だ基板の裏面に形成した導電膜を不要とするには至っていない。   However, even if the adsorption performance is improved by the technique described in Patent Document 1, the adsorption force may still be insufficient or unstable. Therefore, a substrate having a large insulation resistance has not yet made the conductive film formed on the back surface of the substrate unnecessary.

本発明が解決しようとする課題は、静電チャックによる吸着力をさらに向上、安定させることで絶縁抵抗が大きい基板についても、基板の裏面に導電膜を形成することなく、十分な吸着性能を得ることを可能とする、静電吸着方法及び装置を提供することである。   The problem to be solved by the present invention is to obtain sufficient adsorption performance without forming a conductive film on the back surface of a substrate even with a substrate having a large insulation resistance by further improving and stabilizing the adsorption force by the electrostatic chuck. It is an object of the present invention to provide an electrostatic adsorption method and apparatus that makes it possible.

上記課題を解決するために成された本発明に係る静電吸着方法は、処理対象である基板の表面をプラズマで処理するに際して、電極が埋設された誘電体からなる静電チャックを備えた支持部材の上に前記基板を載置し、該電極に電圧を印加することにより該支持部材と前記基板の間に静電気力を生じさせて該基板を支持部材に吸着して固定する静電吸着方法であって、
前記基板と前記支持部材の間に静電気力を生じさせる前に実行される工程である、前記基板の裏面と前記支持部材の基板載置面の間にギャップを形成する工程と、
前処理用プラズマで前記基板を処理する前処理工程と
備えることを特徴とする。
The electrostatic attraction method according to the present invention, which has been made to solve the above-mentioned problems, provides a support provided with an electrostatic chuck made of a dielectric in which electrodes are embedded when processing the surface of a substrate to be processed with plasma. the substrate is placed on the member, the electrostatic adsorption to be causing an electrostatic force between the substrate and the support member substrate by applying a voltage to the electrode and fixed to adsorb to the support member A method,
Forming a gap between the back surface of the substrate and the substrate mounting surface of the support member , which is a step performed before generating an electrostatic force between the substrate and the support member ;
A pretreatment step of treating the substrate with a pretreatment plasma ;
It is characterized by providing.

また、上記課題を解決するために成された本発明に係る静電吸着装置は、処理対象である基板の表面をプラズマで処理するに際して、該基板を静電気力により支持部材に吸着して固定する静電吸着装置であって、
前記支持部材に設けられた、電極が埋設された誘電体を有する静電チャックと、
前記基板の裏面と前記支持部材の基板載置面の間にギャップを形成するギャップ形成手段と、
前処理用プラズマを生成する前処理プラズマ生成手段と、
前記ギャップが形成された状態で前記前処理用プラズマを生成するように、前記ギャップ形成手段及び前記前処理プラズマ生成手段を制御する工程と、前記静電チャックの電極に電圧を印加して前記基板を静電気力により前記支持部材に吸着する工程を順に実行する制御手段と
備えることを特徴とする。
In addition, the electrostatic chucking apparatus according to the present invention, which has been made to solve the above-described problems, fixes the substrate to the support member by electrostatic force when processing the surface of the substrate to be processed with plasma. An electrostatic adsorption device,
An electrostatic chuck having a dielectric with electrodes embedded in the support member;
Gap forming means for forming a gap between the back surface of the substrate and the substrate mounting surface of the support member;
Pretreatment plasma generation means for generating pretreatment plasma;
Controlling the gap forming means and the pretreatment plasma generation means so as to generate the pretreatment plasma with the gap formed, and applying a voltage to the electrode of the electrostatic chuck to apply the substrate Control means for sequentially performing a step of adsorbing the support member to the support member by electrostatic force ;
It is characterized by providing.

ここで、「前処理用プラズマ」とは、基板を静電気により支持部材に吸着する前に行う処理(前処理)に用いるプラズマを意味するが、前記基板に対して目的とする表面処理(エッチング、成膜等)を行うためのプラズマ(以下、「本処理用プラズマ」という。)と同じであってもよいし、それよりも弱い、別のプラズマであってもよい。本処理用プラズマと同じとする場合は、本処理用プラズマでの処理時間よりも短い時間とすることが望ましい。前処理用プラズマを本処理用プラズマよりも弱くする場合、例えば、処理対象基板の裏面の面積あたり5.5以上55000mW/cm2以下の高周波電力を0.01以上100Pa以下の処理ガスに供給して生成する。さらに2000以上20000mW/cm2以下の高周波電力を0.1以上10Pa以下の処理ガスに共有して生成することがより好ましい。高周波電力がこの範囲より小さいと基板を静電気により支持部材に吸着できない傾向があり、この範囲より大きいとガス種によっては基板の表面がエッチングされる傾向がある。
前処理用プラズマの生成に用いる処理ガスとしては、例えばArガスやHeガスを用いることができ、また、これらに限らず、放電可能なガスであれば良い。
処理対象である基板は、例えばサファイア(Al2O3)や石英(SiO2)やアルカリガラスを含むガラス類、樹脂、窒化アルミニウム(AlN)から成り、抵抗値が109〜1014Ωm程度の基板を主たる対象とするが、本発明に係る静電吸着方法・装置はそのような基板に止まらず、比較的絶縁抵抗の小さい材料から成る基板に対しても適用可能である。また、基板の材料は一種類に限られず、例えば、裏面がサファイア等の絶縁体材料から成り、表面が導体或いは半導体材料から成る基板であってもよい。
Here, “plasma for pretreatment” means plasma used for treatment (pretreatment) performed before the substrate is adsorbed to the support member by static electricity, but the target surface treatment (etching, It may be the same as the plasma (hereinafter referred to as “main processing plasma”) for performing film formation or the like, or may be another plasma weaker than that. When the same processing plasma is used, it is desirable that the time is shorter than the processing time of the main processing plasma. When the pretreatment plasma is weaker than the main treatment plasma, for example, high frequency power of 5.5 to 55000 mW / cm 2 per area of the back surface of the substrate to be treated is supplied to a treatment gas of 0.01 to 100 Pa and generated. Further, it is more preferable that high frequency power of 2000 or more and 20000 mW / cm 2 or less is generated in common with a processing gas of 0.1 or more and 10 Pa or less. If the high-frequency power is smaller than this range, the substrate tends not to be adsorbed to the support member due to static electricity. If it exceeds this range, the surface of the substrate tends to be etched depending on the gas type.
For example, Ar gas or He gas can be used as the processing gas for generating the pretreatment plasma, and is not limited thereto, and any gas that can be discharged may be used.
The substrate to be processed is made of, for example, glass including sapphire (Al 2 O 3 ), quartz (SiO 2 ), alkali glass, resin, aluminum nitride (AlN), and has a resistance value of about 10 9 to 10 14 Ωm. The main object is a substrate, but the electrostatic adsorption method and apparatus according to the present invention is not limited to such a substrate, and can be applied to a substrate made of a material having a relatively small insulation resistance. Further, the material of the substrate is not limited to one type, and for example, the substrate may be a substrate whose back surface is made of an insulating material such as sapphire and whose surface is made of a conductor or a semiconductor material.

従来の静電吸着方法では、十分な吸着性能が得られない点について、本願発明者が鋭意検討を行った結果、一旦基板の裏面の電荷分布が不均一になると、特に絶縁抵抗の大きい基板では電荷が移動しにくく、シリコン基板等のように電荷が移動しやすい基板と比較して、基板の裏面を一様に帯電させることが困難なことが原因であるという知見を得た。また、基板の裏面に水分等の不均一な吸着が起こることもその一因であることを見出した。   As a result of diligent investigation by the inventors of the present invention on the point that sufficient adsorption performance cannot be obtained by the conventional electrostatic adsorption method, once the charge distribution on the back surface of the substrate becomes non-uniform, especially on a substrate having a large insulation resistance. It has been found that the cause is that it is difficult to uniformly charge the back surface of the substrate as compared with a substrate such as a silicon substrate or the like in which the charge is difficult to move. It was also found that uneven adsorption of moisture and the like occurs on the back surface of the substrate.

そして、静電吸着される基板は、以前に行われた処理の影響により、基板毎に裏面の帯電状態や水分等の吸着状態が異なる。そのため、これらの基板を何ら処理せず静電吸着させると、基板の裏面に帯電していた電荷の全部または一部が支持部材の表面に移動し、その部分については、電荷がキャンセルされ、基板と支持部材の間の静電気力が得られず、全体として吸着性能が低下すると考えられる。   And the board | substrate to which electrostatic adsorption is carried out differs in the charging state of a back surface and adsorption | suction states, such as a water | moisture content, for every board | substrate by the influence of the process performed previously. Therefore, if these substrates are electrostatically adsorbed without any treatment, all or part of the charge charged on the back surface of the substrate moves to the surface of the support member, and for that portion, the charge is canceled and the substrate It is considered that the electrostatic force between the support member and the support member cannot be obtained, and the adsorption performance is lowered as a whole.

そこで、本願発明では、基板を静電気力により吸着する前に、予め基板の裏面と支持部材の基板載置面の間にギャップを形成した状態で、前処理用プラズマを生成することによって基板の裏面の電荷を取り除くとともに、基板裏面に吸着した水分等も除去するものである。
本願発明の前処理用プラズマは、基板の裏面に上記のような作用を生じさせることを目的として用いるため、前処理用プラズマを生成するための処理ガスの圧力や種類、基板面積あたりの投入電力等の組み合わせが、基板のエッチングや成膜等の表面処理(本処理)に用いるプラズマと異っていてもかまわない。
Therefore, in the present invention, before the substrate is attracted by electrostatic force, the back surface of the substrate is generated by generating pretreatment plasma in a state where a gap is formed between the back surface of the substrate and the substrate mounting surface of the support member in advance. In addition to removing the electric charges, moisture adsorbed on the back surface of the substrate is also removed.
Since the pretreatment plasma of the present invention is used for the purpose of causing the above-described action on the back surface of the substrate, the pressure and type of the processing gas for generating the pretreatment plasma, and the input power per substrate area Or the like may be different from the plasma used for surface treatment (main treatment) such as substrate etching or film formation.

本願発明によれば、過去の基板処理の影響があったとしても、基板の裏面の過剰な電荷を取り除くことで、静電チャックによる安定した吸着性能が得られる。従って、絶縁抵抗の大きな基板であっても、基板裏面の導電膜の形成という余分な工程を入れる必要がなく、プラズマ処理のスループットが向上し、コストを低減させることができるほか、導電膜が他の処理の妨げになるという問題も生じない。また、基板の裏面の水分等を除去するため、絶縁抵抗が大きくない基板であっても、従来の方法では十分な静電吸着力が得られなかった場合において、本願発明では安定した静電吸着力が得られる。   According to the present invention, even if there is an influence of the past substrate processing, by removing the excessive charge on the back surface of the substrate, stable adsorption performance by the electrostatic chuck can be obtained. Therefore, even if the substrate has a high insulation resistance, there is no need to add an extra step of forming a conductive film on the back surface of the substrate, which can improve plasma processing throughput and reduce costs. There is no problem of hindering the processing. Further, in order to remove moisture and the like on the back surface of the substrate, even if the substrate does not have a large insulation resistance, if the conventional method fails to obtain sufficient electrostatic adsorption force, the present invention provides stable electrostatic adsorption. Power is obtained.

本実施例に係る静電吸着方法を実施するプラズマ処理装置の断面構成図。The cross-sectional block diagram of the plasma processing apparatus which implements the electrostatic adsorption method which concerns on a present Example. 本実施例に係る静電吸着方法の特徴的な動作を示す概略図。Schematic which shows the characteristic operation | movement of the electrostatic attraction method based on a present Example. 本実施例に係るプラズマ処理方法の手順を示すフローチャート。The flowchart which shows the procedure of the plasma processing method which concerns on a present Example.

以下、本発明の一実施例である静電吸着方法について、添付図面を参照しつつ詳述する。図1は、本実施例に係るプラズマ処理装置の断面構成図である。プラズマ処理装置10は、真空容器11の上部には、誘電体窓24を介してプラズマを励起するための高周波コイル12が備えられている。高周波コイル12の片端は整合器19を介して高周波電源20に接続されており、他端は直接、高周波電源20に接続されている。また、真空容器11の内部には、プラズマを励起するための下部電極13が設けられ、ブロッキングコンデンサ25、整合器26を介して第1高周波電源27に接続されている。下部電極13の上面には、プラズマ処理装置10のプラズマ処理の対象となる基板16を載置する誘電層14が設けられている。ここで、基板16は表面と裏面を有するが、表面とは誘電層14と反対側の面であり、基板16の裏面とは誘電層14と接する側の面のことである。
誘電層14の内部には電極が埋設され(図示せず)、この電極に電圧を印加して、基板16の裏面との間に静電気力を生じさせることにより、基板16を誘電層14に吸着し(静電チャックによる吸着)、固定する。
誘電層14及び下部電極13には、基板16を裏面から押し上げるためのピン21が収容されている。ピン21は駆動部22によって駆動され、駆動部22は制御装置23によって制御される。制御装置23は、前処理プラズマ生成手段としての機能を有する高周波電源20、27も制御する。さらに、誘電層14内部の電極への電圧印加等の制御についても、制御装置23で行うようにしてもよい。
Hereinafter, an electrostatic adsorption method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional configuration diagram of a plasma processing apparatus according to the present embodiment. In the plasma processing apparatus 10, a high-frequency coil 12 for exciting plasma through a dielectric window 24 is provided on the top of the vacuum vessel 11. One end of the high-frequency coil 12 is connected to the high-frequency power source 20 via the matching unit 19, and the other end is directly connected to the high-frequency power source 20. In addition, a lower electrode 13 for exciting plasma is provided inside the vacuum vessel 11, and is connected to a first high-frequency power source 27 via a blocking capacitor 25 and a matching unit 26. On the upper surface of the lower electrode 13 is provided a dielectric layer 14 on which a substrate 16 to be subjected to plasma processing of the plasma processing apparatus 10 is placed. Here, the substrate 16 has a front surface and a back surface. The front surface is a surface opposite to the dielectric layer 14, and the back surface of the substrate 16 is a surface in contact with the dielectric layer 14.
An electrode is embedded in the dielectric layer 14 (not shown), and a voltage is applied to the electrode to generate an electrostatic force between the back surface of the substrate 16 and thereby attract the substrate 16 to the dielectric layer 14. (Suction by electrostatic chuck) and fix.
The dielectric layer 14 and the lower electrode 13 contain pins 21 for pushing up the substrate 16 from the back surface. The pin 21 is driven by the drive unit 22, and the drive unit 22 is controlled by the control device 23. The control device 23 also controls the high-frequency power supplies 20 and 27 having a function as pretreatment plasma generation means. Furthermore, control such as voltage application to the electrodes inside the dielectric layer 14 may be performed by the control device 23.

誘電層14の上面には、基板16と誘電層14の間の熱伝導性を高めるために、Heガス等の熱媒体を循環させる溝15が設けられており、この溝15はHeガスを循環させるためのポンプや、Heガスの温度を調整するための熱交換器等に接続している(図示せず)。さらに下部電極13は、その内部に冷却水を循環させることにより該下部電極を冷却する冷却機構を備えている。ガス導入部17は、真空容器11内に基板16の表面処理用プラズマ及び前処理用プラズマを生成するための処理ガスを導入する部分である。排出口18はプラズマ処理を終えて不要となった処理ガスを真空容器11の外部に排出するためのものである。   A groove 15 for circulating a heat medium such as He gas is provided on the upper surface of the dielectric layer 14 in order to increase the thermal conductivity between the substrate 16 and the dielectric layer 14, and this groove 15 circulates the He gas. And a heat exchanger for adjusting the temperature of the He gas (not shown). Furthermore, the lower electrode 13 includes a cooling mechanism that cools the lower electrode by circulating cooling water therein. The gas introduction part 17 is a part for introducing a processing gas for generating the surface treatment plasma and the pretreatment plasma of the substrate 16 into the vacuum vessel 11. The exhaust port 18 is for exhausting the processing gas that is no longer required after the plasma processing to the outside of the vacuum vessel 11.

図2は、本実施例の静電吸着方法の特徴的な動作を示す。基板16を載置する。ピン21を駆動部22により上下に駆動することで、基板16を所定の高さまで押し上げ、基板16の裏面と誘電層14の間にギャップを形成する。ギャップが形成された状態で前処理用プラズマ(P)を生成すると、該前処理用プラズマが基板16の裏面と誘電層14との間に入り込むため、基板16の裏面が前処理用プラズマ中に露出する。   FIG. 2 shows a characteristic operation of the electrostatic adsorption method of the present embodiment. The substrate 16 is placed. By driving the pin 21 up and down by the driving unit 22, the substrate 16 is pushed up to a predetermined height, and a gap is formed between the back surface of the substrate 16 and the dielectric layer 14. When the pretreatment plasma (P) is generated in the state where the gap is formed, the pretreatment plasma enters between the back surface of the substrate 16 and the dielectric layer 14, so that the back surface of the substrate 16 is in the pretreatment plasma. Exposed.

ここで、ピン21を、基板16の裏面との接触により帯電状態に影響を与えないように、例えば基板16と同じ材料や、絶縁性の高い酸化アルミニウム等でコーティングすることも可能である。また、ピン21と基板16の裏面が3箇所以上で接触する構成とすれば、基板16を略水平に押し上げることができ、基板16の裏面が均一に前処理用プラズマに晒される。基板16の裏面と誘電層14の間のギャップは、基板16の裏面を前処理用プラズマ中に均一に露出させることができる大きさであれば良く、例えば6インチの基板に対しては1mm以上が好ましく、直径の異なる基板であればそれにほぼ比例した値以上とするのが好ましい。
また、下部電極13に高周波電力を印加することにより前処理用プラズマを発生させる場合は、制御装置23によって駆動部22を制御し、ピン21で基板16をシースよりも上の位置に押し上げることが好ましい。これは、基板16がシース内にあることにより、基板16の裏面が汚染されることを防ぐためである。
Here, the pins 21 may be coated with, for example, the same material as that of the substrate 16 or aluminum oxide having a high insulating property so that the charged state is not affected by contact with the back surface of the substrate 16. If the pin 21 and the back surface of the substrate 16 are in contact with each other at three or more locations, the substrate 16 can be pushed up substantially horizontally, and the back surface of the substrate 16 is uniformly exposed to the pretreatment plasma. The gap between the back surface of the substrate 16 and the dielectric layer 14 may be of a size that allows the back surface of the substrate 16 to be uniformly exposed in the pretreatment plasma. In the case of a substrate having a different diameter, it is preferable to set it to a value almost proportional to it.
Further, in the case where the pretreatment plasma is generated by applying high frequency power to the lower electrode 13, the driving unit 22 is controlled by the control device 23 and the substrate 16 is pushed up to a position above the sheath by the pin 21. preferable. This is to prevent the back surface of the substrate 16 from being contaminated by the substrate 16 being in the sheath.

以下図3を参照しつつ、本実施例のプラズマ処理方法を説明する。まず、基板を支持部材である誘電層14の上に載置する(ステップS1)。次に、制御装置23によって駆動部22を制御し、ピン21で基板16を押し上げる(ステップS2)。この状態で、真空容器11の内部に前処理用プラズマを励起するための処理ガスとして、Ar(アルゴン)ガスを真空容器11の内部に導入し(ステップS3)、制御装置23によって高周波電源20を制御して高周波コイル12に高周波電力を供給することで(ステップS4)、前処理用プラズマを生成する(ステップS5)。
前処理用プラズマは高周波コイル12または下部電極13のいずれか一方の電極に、基板面積あたり5.5以上 55000mW/cm2以下の高周波電力を投入し0.01Pa以上100Pa以下の圧力で生成する。さらに2000以上20000mW/cm2以下の高周波電力を0.1以上10Pa以下の処理ガスに共有して生成することがより好ましい。また、前処理プラズマを発生させる時間は10秒から60秒程度が好ましい。高周波電力、圧力および時間は、基板16の裏面に帯電している電荷量、基板16の裏面の材質、真空容器11の内部に導入する処理ガスの種類などによって適宜決めることが可能であるが、基板16の表面がエッチングされない条件にすることが好ましい。
生成した前処理用プラズマは、基板16の裏面と誘電層14の間に形成されたギャップに入り込む。これにより、基板16の裏面を前処理用プラズマ中に露出させる(ステップS6)。なお、ピン21で基板16をシースよりも上の位置に押し上げ、制御部23によって高周波電源20及び高周波電源27を制御し、高周波コイル12と下部電極13に高周波電力を同時に印加してもよい。
Hereinafter, the plasma processing method of the present embodiment will be described with reference to FIG. First, the substrate is placed on the dielectric layer 14 as a support member (step S1). Next, the drive unit 22 is controlled by the control device 23, and the substrate 16 is pushed up by the pin 21 (step S2). In this state, Ar (argon) gas is introduced into the vacuum vessel 11 as a processing gas for exciting the pretreatment plasma inside the vacuum vessel 11 (step S3). By controlling and supplying high-frequency power to the high-frequency coil 12 (step S4), pretreatment plasma is generated (step S5).
The pretreatment plasma is generated at a pressure of 0.01 Pa or more and 100 Pa or less by applying high frequency power of 5.5 to 55000 mW / cm 2 per substrate area to one of the high frequency coil 12 and the lower electrode 13. Further, it is more preferable that high frequency power of 2000 or more and 20000 mW / cm 2 or less is generated in common with a processing gas of 0.1 or more and 10 Pa or less. The time for generating the pretreatment plasma is preferably about 10 to 60 seconds. The high-frequency power, pressure and time can be appropriately determined depending on the amount of charge charged on the back surface of the substrate 16, the material of the back surface of the substrate 16, the type of processing gas introduced into the vacuum vessel 11, etc. It is preferable that the surface of the substrate 16 is not etched.
The generated pretreatment plasma enters a gap formed between the back surface of the substrate 16 and the dielectric layer 14. Thereby, the back surface of the substrate 16 is exposed in the pretreatment plasma (step S6). Note that the high frequency power supply 20 and the high frequency power supply 27 may be controlled by the control unit 23 so that the high frequency power is simultaneously applied to the high frequency coil 12 and the lower electrode 13 by pushing the substrate 16 to a position above the sheath with the pin 21.

一定の時間(例えば10〜60秒程度)が経過した後、制御部23によって高周波電源20を制御し、高周波コイル12への高周波電力の供給を停止する(ステップS7)。高周波コイル12への高周波電力の供給がなくなると、Arガスにはプラズマを生成するための電力が供給されなくなり、前処理用プラズマによる基板16の前処理が終了する。ここで、真空容器11内部のArガスを、排出口18を通じて真空容器11の外部に排出し(ステップS8)、制御部23によって駆動部22を制御し、基板16を押し上げていたピン21を元の位置に戻して、基板16を再び誘電層14の上に載置する(ステップS9)。そして、誘電層14の内部に埋設された電極に電圧を加え、静電気力により基板16を誘電層14に吸着して固定する(ステップS10、静電チャック)。その後、基板16の表面処理(本処理)を行う(ステップS11)。
なお、ピン21で基板16を押し上るタイミング(ステップS2)と、前処理用プラズマを生成するタイミング等(ステップS3〜S5)を逆にしてもよい。この場合であっても、基板16の裏面を前処理用プラズマ中に晒して前処理を行うことができる。
After a certain time (for example, about 10 to 60 seconds) elapses, the control unit 23 controls the high frequency power supply 20 to stop the supply of high frequency power to the high frequency coil 12 (step S7). When the supply of the high-frequency power to the high-frequency coil 12 is stopped, the power for generating plasma is not supplied to the Ar gas, and the pretreatment of the substrate 16 with the pretreatment plasma is completed. Here, the Ar gas inside the vacuum vessel 11 is discharged to the outside of the vacuum vessel 11 through the discharge port 18 (step S8), and the drive unit 22 is controlled by the control unit 23, and the pin 21 that has pushed up the substrate 16 is restored. The substrate 16 is again placed on the dielectric layer 14 (step S9). Then, a voltage is applied to the electrode embedded in the dielectric layer 14, and the substrate 16 is attracted and fixed to the dielectric layer 14 by electrostatic force (step S10, electrostatic chuck). Thereafter, a surface treatment (main treatment) of the substrate 16 is performed (step S11).
Note that the timing of pushing up the substrate 16 with the pin 21 (step S2) and the timing of generating the pretreatment plasma (steps S3 to S5) may be reversed. Even in this case, the pretreatment can be performed by exposing the back surface of the substrate 16 to the pretreatment plasma.

本実施例の効果を確認するために、基板16の裏面を前処理用プラズマ中に露出させた場合と、させなかった場合の静電チャックによる吸着力を測定したデータを下記の表1に示す。表1の数値は、静電チャックにより基板16が誘電層14に吸着して固定された状態で、基板16を冷却するために溝15内を循環しているHeガスの圧力を少しずつ大きくしていった場合に、基板16が誘電層14から外れた時の圧力の値を示している。この値は静電チャックによる吸着力とみなすことができる。   In order to confirm the effect of this example, data obtained by measuring the attractive force by the electrostatic chuck when the back surface of the substrate 16 is exposed to the pretreatment plasma and when it is not exposed are shown in Table 1 below. . The numerical values in Table 1 indicate that the He gas circulating in the groove 15 is gradually increased in order to cool the substrate 16 in a state where the substrate 16 is attracted and fixed to the dielectric layer 14 by the electrostatic chuck. In this case, the pressure value when the substrate 16 is detached from the dielectric layer 14 is shown. This value can be regarded as an attractive force by the electrostatic chuck.

Figure 0006142305
Figure 0006142305

基板16には、絶縁抵抗の大きい6インチのサファイア基板を用いた。真空容器11の大きさは、6インチの基板を1枚処理できるものであり、真空容器11内を0.1PaのArガスで満たした。Arガスから誘導結合プラズマを励起するための高周波電力は、周波数13.56MHz、投入電力を500Wとし、基板16の裏面を処理する時間は2分間とした。静電チャック時の誘電層14に埋設された電極の印加電圧は+1kVとした。この条件において静電チャックによる吸着力を測定する実験を5回行い、それぞれの実験で得られた吸着力の値とこれらの平均値を確認した。表1の中央欄の数値は基板16の裏面を前処理用プラズマ中に露出させなかったときの吸着力の値を、表1の右欄の数値は、基板16を前処理用プラズマ中に露出させたときの吸着力の値を示している。また、最下欄は5回の実験の平均値を計算した結果が記載されている。   As the substrate 16, a 6-inch sapphire substrate having a large insulation resistance was used. The size of the vacuum vessel 11 was such that one 6-inch substrate could be processed, and the inside of the vacuum vessel 11 was filled with 0.1 Pa Ar gas. The high frequency power for exciting the inductively coupled plasma from the Ar gas was 13.56 MHz, the input power was 500 W, and the processing time for the back surface of the substrate 16 was 2 minutes. The applied voltage of the electrode embedded in the dielectric layer 14 during electrostatic chucking was set to +1 kV. Under this condition, the experiment for measuring the adsorption force by the electrostatic chuck was performed five times, and the value of the adsorption force obtained in each experiment and the average value thereof were confirmed. The numerical value in the center column of Table 1 indicates the value of the adsorption force when the back surface of the substrate 16 is not exposed in the pretreatment plasma, and the numerical value in the right column of Table 1 indicates that the substrate 16 is exposed in the pretreatment plasma. The value of the adsorption force when it is made to show is shown. In the bottom column, the average value of five experiments is calculated.

基板16の裏面を前処理用プラズマ中に露出させなかった場合、静電チャックによる吸着力は0.6kPa〜1.0kPaとなった。この値は、基板16と誘電層14の熱伝達性を高めるために溝15内に循環させているHeガスの通常目安とされる圧力値である1.0〜2.0kPaよりも小さいため、十分な大きさではない。一方、基板16の裏面を前処理用プラズマ中に露出させた場合、5回の実験のいずれにおいても2.0kPa以上の吸着力が得られることが確認できた。   When the back surface of the substrate 16 was not exposed in the pretreatment plasma, the attractive force by the electrostatic chuck was 0.6 kPa to 1.0 kPa. This value is sufficiently large since it is smaller than 1.0 to 2.0 kPa, which is a normal pressure value of He gas circulated in the groove 15 in order to improve heat transfer between the substrate 16 and the dielectric layer 14. That's not it. On the other hand, when the back surface of the substrate 16 was exposed in the pretreatment plasma, it was confirmed that an adsorption force of 2.0 kPa or more was obtained in any of the five experiments.

さらに、誘導結合プラズマを励起するためにArガスに供給する高周波電力の大きさと、基板16の裏面の処理の時間を変化させた場合の、静電チャックによる吸着力の違いを下記の表2に示す。供給電力をOFF、500W、2000Wの3通り、処理時間を10秒間、60秒間の2通りについて実験を行った。ここで供給電力がOFFとは、Arガスを真空容器11内に導入するだけで、高周波コイル12及び下部電極13には高周波電力を供給せず、Arガスをプラズマ化しない事を意味している。表2の右欄には吸着力の値を記載している。この結果から、供給電力が500W以上であれば、10秒以上基板16の裏面を前処理用プラズマ中に露出させることで、安定して静電チャックによる2.0kPa以上の吸着力が得られることが確認できた。   Further, Table 2 below shows the difference in the attractive force by the electrostatic chuck when the magnitude of the high-frequency power supplied to the Ar gas to excite the inductively coupled plasma and the processing time of the back surface of the substrate 16 are changed. Show. The experiment was conducted with three types of power supply OFF, 500 W, and 2000 W, and two processing times of 10 seconds and 60 seconds. Here, the supply power is OFF means that only Ar gas is introduced into the vacuum vessel 11, no high-frequency power is supplied to the high-frequency coil 12 and the lower electrode 13, and the Ar gas is not converted into plasma. . In the right column of Table 2, the value of the adsorption force is described. From this result, if the supplied power is 500 W or more, it is possible to stably obtain an adsorption force of 2.0 kPa or more by the electrostatic chuck by exposing the back surface of the substrate 16 to the pretreatment plasma for 10 seconds or more. It could be confirmed.

Figure 0006142305
Figure 0006142305

なお、上記実施例では、サファイア基板を用いたが、石英基板であっても同等の作用効果が得られることを確認した。また、処理ガスの圧力は、上記実施例では0.1Paとしたが、0.1〜10Paの範囲において同様の作用効果が得られることを確認した。さらに、処理ガスとしては、Arガスの他、ヘリウムを用いることもできる。   In the above example, a sapphire substrate was used, but it was confirmed that an equivalent effect could be obtained even with a quartz substrate. Moreover, although the pressure of the process gas was 0.1 Pa in the above examples, it was confirmed that the same action and effect were obtained in the range of 0.1 to 10 Pa. Furthermore, helium can be used as the processing gas in addition to Ar gas.

10…プラズマ処理装置
11…真空容器
12…高周波コイル
13…下部電極
14…誘電層
15…溝
16…基板
17…ガス導入部
18…排出口
19、26…整合器
20、27…高周波電源
21…ピン
22…駆動部
23…制御装置
24…誘電体窓
25…ブロッキングコンデンサ
DESCRIPTION OF SYMBOLS 10 ... Plasma processing apparatus 11 ... Vacuum vessel 12 ... High frequency coil 13 ... Lower electrode 14 ... Dielectric layer 15 ... Groove 16 ... Substrate 17 ... Gas introduction part 18 ... Outlet 19, 26 ... Matching device 20, 27 ... High frequency power supply 21 ... Pin 22 ... Driver 23 ... Control device 24 ... Dielectric window 25 ... Blocking capacitor

Claims (12)

処理対象である基板の表面をプラズマで処理するに際して、電極が埋設された誘電体からなる静電チャックを備えた支持部材の上に前記基板を載置し、該電極に電圧を印加することにより該支持部材と前記基板の間に静電気力を生じさせて該基板を支持部材に吸着して固定する静電吸着方法であって、
前記基板と前記支持部材の間に静電気力を生じさせる前に実行される工程である、前記基板の裏面と前記支持部材の基板載置面の間にギャップを形成する工程と、
前処理用プラズマで前記基板を処理する前処理工程と
備えることを特徴とする静電吸着方法。
When the surface of a substrate to be processed is processed with plasma, the substrate is placed on a support member having an electrostatic chuck made of a dielectric with an electrode embedded therein, and a voltage is applied to the electrode. the by causing an electrostatic force substrate between the substrate and the support member an electrostatic adsorption method of fixing by adsorption to the support member,
Forming a gap between the back surface of the substrate and the substrate mounting surface of the support member , which is a step performed before generating an electrostatic force between the substrate and the support member ;
A pretreatment step of treating the substrate with a pretreatment plasma ;
Electrostatic adsorption method, characterized in that it comprises a.
前記基板が少なくとも裏面が絶縁体材料から成る基板であることを特徴とする請求項1に記載の静電吸着方法。   2. The electrostatic chucking method according to claim 1, wherein the substrate is a substrate made of an insulating material at least on the back surface. 前記基板が少なくとも裏面がサファイアから成る基板であることを特徴とする請求項1に記載の静電吸着方法。   The electrostatic chucking method according to claim 1, wherein the substrate is a substrate made of sapphire at least on the back surface. 前記基板が少なくとも裏面が石英から成る基板であることを特徴とする請求項1に記載の静電吸着方法。   The electrostatic chucking method according to claim 1, wherein the substrate is a substrate having at least a back surface made of quartz. 前記前処理工程が、前記基板の裏面の面積あたり2000以上20000mW/cm2以下の高周波電力を0.1以上10Pa以下の処理ガスに供給してプラズマを生成する工程であることを特徴とする請求項1〜4のいずれか1項に記載の静電吸着方法。   The pretreatment step is a step of generating plasma by supplying high-frequency power of 2000 to 20000 mW / cm2 per area of the back surface of the substrate to a processing gas of 0.1 to 10 Pa. 5. The electrostatic adsorption method according to any one of 4 above. 請求項1〜5のいずれか1項に記載の静電吸着方法を用いて基板を支持部材に吸着し、該基板の表面を処理することを特徴とするプラズマ処理方法。   A plasma processing method comprising: adsorbing a substrate to a support member using the electrostatic adsorption method according to claim 1, and treating the surface of the substrate. 処理対象である基板の表面をプラズマで処理するに際して、該基板を静電気力により支持部材に吸着して固定する静電吸着装置であって、
前記支持部材に設けられた、電極が埋設された誘電体を有する静電チャックと、
前記基板の裏面と前記支持部材の基板載置面の間にギャップを形成するギャップ形成手段と、
前処理用プラズマを生成する前処理プラズマ生成手段と、
前記ギャップが形成された状態で前記前処理用プラズマを生成するように、前記ギャップ形成手段及び前記前処理プラズマ生成手段を制御する工程と、前記静電チャックの電極に電圧を印加して前記基板を静電気力により前記支持部材に吸着する工程を順に実行する制御手段と
備えることを特徴とする静電吸着装置。
An electrostatic adsorption device for adsorbing and fixing a substrate to a support member by electrostatic force when processing the surface of the substrate to be processed with plasma,
An electrostatic chuck having a dielectric with electrodes embedded in the support member;
Gap forming means for forming a gap between the back surface of the substrate and the substrate mounting surface of the support member;
Pretreatment plasma generation means for generating pretreatment plasma;
Controlling the gap forming means and the pretreatment plasma generation means so as to generate the pretreatment plasma with the gap formed, and applying a voltage to the electrode of the electrostatic chuck to apply the substrate Control means for sequentially performing a step of adsorbing the support member to the support member by electrostatic force ;
Electrostatic chuck, characterized in that it comprises a.
前記基板が少なくとも裏面が絶縁体材料から成る基板であることを特徴とする請求項7に記載の静電吸着装置。   The electrostatic attraction apparatus according to claim 7, wherein the substrate is a substrate made of an insulating material at least on the back surface. 前記基板が少なくとも裏面がサファイアから成る基板であることを特徴とする請求項7に記載の静電吸着装置。   The electrostatic attraction apparatus according to claim 7, wherein the substrate is a substrate made of sapphire at least on the back surface. 前記基板が少なくとも裏面が石英から成る基板であることを特徴とする請求項7に記載の静電吸着装置。   The electrostatic attraction apparatus according to claim 7, wherein the substrate is a substrate having at least a back surface made of quartz. 前記前処理プラズマ生成手段が、前記基板の裏面の面積あたり2000以上20000mW/cm2以下の高周波電力を0.1以上10Pa以下の処理ガスに供給してプラズマを生成する手段であることを特徴とする請求項7〜10のいずれか1項に記載の静電吸着装置。 The pretreatment plasma generation means is means for generating plasma by supplying a high frequency power of 2000 to 20000 mW / cm 2 per area of the back surface of the substrate to a process gas of 0.1 to 10 Pa. Item 11. The electrostatic attraction apparatus according to any one of Items 7 to 10. 請求項7〜11のいずれか1項に記載の静電吸着装置を用いて基板を支持部材に吸着する手段と、
前記基板の表面を処理する手段と、
を備えることを特徴とするプラズマ処理装置。
Means for adsorbing a substrate to a support member using the electrostatic attraction device according to any one of claims 7 to 11;
Means for treating the surface of the substrate;
A plasma processing apparatus comprising:
JP2012172048A 2012-08-02 2012-08-02 Electrostatic adsorption method and electrostatic adsorption device Active JP6142305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012172048A JP6142305B2 (en) 2012-08-02 2012-08-02 Electrostatic adsorption method and electrostatic adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172048A JP6142305B2 (en) 2012-08-02 2012-08-02 Electrostatic adsorption method and electrostatic adsorption device

Publications (3)

Publication Number Publication Date
JP2014033045A JP2014033045A (en) 2014-02-20
JP2014033045A5 JP2014033045A5 (en) 2015-06-18
JP6142305B2 true JP6142305B2 (en) 2017-06-07

Family

ID=50282652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172048A Active JP6142305B2 (en) 2012-08-02 2012-08-02 Electrostatic adsorption method and electrostatic adsorption device

Country Status (1)

Country Link
JP (1) JP6142305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132957B2 (en) * 2015-10-13 2017-05-24 ヤス カンパニー リミテッド Substrate chucking method and system by charging process
CN106816402B (en) * 2015-12-02 2021-01-29 北京北方华创微电子装备有限公司 Method for eliminating electrostatic charge and method for unloading substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869384B2 (en) * 1995-06-30 1999-03-10 東京エレクトロン株式会社 Plasma processing method
US5847918A (en) * 1995-09-29 1998-12-08 Lam Research Corporation Electrostatic clamping method and apparatus for dielectric workpieces in vacuum processors
JPH11111830A (en) * 1997-10-07 1999-04-23 Tokyo Electron Ltd Electrostatic sucking device and method, and method and device for treatment apparatus using them
JP2002134489A (en) * 2000-10-25 2002-05-10 Tokyo Electron Ltd Method for destaticizing substrate, vapor depositing device and method for manufacturing semiconductor device
JP2007258636A (en) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd Dry-etching method and its device
JP2009194194A (en) * 2008-02-15 2009-08-27 Sumitomo Precision Prod Co Ltd Method of plasma treatment
JP2010010214A (en) * 2008-06-24 2010-01-14 Oki Semiconductor Co Ltd Method for manufacturing semiconductor device, semiconductor manufacturing apparatus and storage medium
US20100184290A1 (en) * 2009-01-16 2010-07-22 Applied Materials, Inc. Substrate support with gas introduction openings
JP2010272709A (en) * 2009-05-22 2010-12-02 Tokyo Electron Ltd Substrate processing apparatus, substrate detaching method and program

Also Published As

Publication number Publication date
JP2014033045A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
TWI521589B (en) An electrode unit, a substrate processing device, and an electrode unit
JP5372419B2 (en) Plasma processing apparatus and plasma processing method
JP4847909B2 (en) Plasma processing method and apparatus
US20150181683A1 (en) Electrostatic chuck including declamping electrode and method of declamping
KR100298910B1 (en) Semiconductor wafer chucking device and method for stripping semiconductor wafer
US9530657B2 (en) Method of processing substrate and substrate processing apparatus
KR102001018B1 (en) Method for detaching sample and plasma processing device
JP2007242870A5 (en)
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
JP5317509B2 (en) Plasma processing apparatus and method
JP2006269556A (en) Plasma processing apparatus and method of manufacturing semiconductor device
JP6142305B2 (en) Electrostatic adsorption method and electrostatic adsorption device
JP2018022756A (en) Plasma processing device and sample detachment method
JP4330737B2 (en) Vacuum processing method
WO2013027584A1 (en) Vacuum processing device and vacuum processing method
JP2009194194A (en) Method of plasma treatment
CN111755374A (en) Substrate processing method and substrate processing apparatus
KR20020029978A (en) A Plasma Etching apparatus for fabricating semiconductor
JP5131762B2 (en) Plasma processing method, plasma processing apparatus, and plasma processing tray
JPH11330218A (en) Heating and cooling device and vacuum-treatment device using the device
JP2009141014A (en) Plasma processing apparatus and processing method
TW201637742A (en) Self-cleaning substrate contact surfaces
JP2007165743A (en) Method for holding object to be worked and etching method
JP2012074650A (en) Plasma treatment tray and plasma treatment device
JP3831582B2 (en) Control method of plasma processing apparatus and plasma processing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6142305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250