JP2009194194A - Method of plasma treatment - Google Patents

Method of plasma treatment Download PDF

Info

Publication number
JP2009194194A
JP2009194194A JP2008034166A JP2008034166A JP2009194194A JP 2009194194 A JP2009194194 A JP 2009194194A JP 2008034166 A JP2008034166 A JP 2008034166A JP 2008034166 A JP2008034166 A JP 2008034166A JP 2009194194 A JP2009194194 A JP 2009194194A
Authority
JP
Japan
Prior art keywords
plasma
gas
insulating substrate
electrostatic chuck
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008034166A
Other languages
Japanese (ja)
Inventor
Shoichi Murakami
彰一 村上
Akiyasu Hatashita
晶保 畑下
Akimitsu Oishi
明光 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2008034166A priority Critical patent/JP2009194194A/en
Publication of JP2009194194A publication Critical patent/JP2009194194A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide method of plasma treatment, which applies plasma treatment on the whole surface of the insulating substrate uniformly and efficiently by cooling the insulating substrate before starting the plasma treatment. <P>SOLUTION: DC voltage is impressed on the electrodes 26, 27 of an electrostatic chuck 21 with the insulating substrate K disposed on the upper surface thereof and inert gas is supplied into a treatment chamber 11 to change the inert gas into plasma and attract the insulating substrate K onto the electrostatic chuck 21 to retain it, thereafter, the supply of cooling gas inbetween the rear surface of the insulating substrate K attracted and retained on the electrostatic chuck 21 and the upper surface of the electrostatic chuck 21 is started, subsequently, treatment gas for plasma treatment is supplied into the treatment chamber 11 instead of the inert gas to replace the inside of the treatment chamber by the treatment gas and to process the insulating substrate K by the treatment gas, which is changed into plasma, while changing the treatment gas into plasma successively under the state of attracting and retaining the insulating substrate K on the electrostatic chuck 21 while cooling the insulating substrate K by the cooling gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定の処理ガスをプラズマ化して絶縁基板に対しプラズマ処理を行うプラズマ処理方法に関する。   The present invention relates to a plasma processing method for performing plasma processing on an insulating substrate by converting a predetermined processing gas into plasma.

プラズマ処理の一例として、例えば、エッチング処理を挙げることができ、このようなエッチング処理を処理対象となる基板に施す装置として、従来、例えば、特公昭56−53853号公報に開示されたエッチング装置が知られている。   As an example of the plasma processing, for example, an etching process can be cited. As an apparatus for performing such an etching process on a substrate to be processed, for example, an etching apparatus disclosed in Japanese Patent Publication No. 56-53853 is conventionally known. Are known.

このエッチング装置は、真空室と、真空室内に上下に対向して配置された一対の電極と、下側の電極の上面に設けられた導電性ゴムシートと、導電性ゴムシート上に設けられた誘電体膜と、下側の電極に高周波電圧を印加する高周波電源と、下側の電極に直流電圧を印加する直流電源と、真空室内の圧力を減圧する排気装置と、真空室内にエッチングガスを供給するガス導入装置と、下側の電極を冷却する冷却機とを備えており、上側の電極は接地され、エッチング対象となる基板は誘電体膜の上面に載置される。   This etching apparatus is provided on a vacuum chamber, a pair of electrodes arranged vertically opposite to each other in the vacuum chamber, a conductive rubber sheet provided on the upper surface of the lower electrode, and the conductive rubber sheet A dielectric film, a high frequency power source for applying a high frequency voltage to the lower electrode, a DC power source for applying a DC voltage to the lower electrode, an exhaust device for reducing the pressure in the vacuum chamber, and an etching gas in the vacuum chamber A gas introducing device to be supplied and a cooler for cooling the lower electrode are provided, the upper electrode is grounded, and the substrate to be etched is placed on the upper surface of the dielectric film.

そして、このエッチング装置では、誘電体膜の上面に基板が載置され、排気装置及びガス導入装置により真空室内部がエッチングガスで満たされた後、高周波電源により下側の電極に高周波電圧が印加されるとともに、直流電源により下側の電極に直流電圧が印加される。   In this etching apparatus, the substrate is placed on the upper surface of the dielectric film, the inside of the vacuum chamber is filled with the etching gas by the exhaust device and the gas introduction device, and then the high frequency voltage is applied to the lower electrode by the high frequency power source. In addition, a DC voltage is applied to the lower electrode by a DC power source.

下側の電極に高周波電圧が印加されると、真空室内のエッチングガスがプラズマ化され、このプラズマ化されたエッチングガスによって誘電体膜上の基板がエッチングされる。また、下側の電極に直流電圧が印加されるとともに、真空室内にプラズマが生成されると、誘電体膜と基板との間に極性の異なる電荷が誘起されるような電気回路がプラズマを介して形成され、これにより、誘電体膜と基板との間に吸着力が生じて基板が誘電体膜側に吸着される。   When a high frequency voltage is applied to the lower electrode, the etching gas in the vacuum chamber is turned into plasma, and the substrate on the dielectric film is etched by the plasmaized etching gas. In addition, when a DC voltage is applied to the lower electrode and plasma is generated in the vacuum chamber, an electric circuit in which charges having different polarities are induced between the dielectric film and the substrate passes through the plasma. As a result, an attracting force is generated between the dielectric film and the substrate, and the substrate is attracted to the dielectric film side.

また、更に、基板が誘電体膜側に吸着されると、冷却機によって冷却された下側の電極と基板との間で熱移動が効果的に行われ、プラズマによって加熱される基板が冷却される。基板を冷却しているのは、基板に形成される膜の中には、例えば、レジスト膜などのように熱に弱いものがあることや、効率的且つ均一なエッチング処理を行うためには基板温度を制御する必要があるからである。   Furthermore, when the substrate is adsorbed to the dielectric film side, heat transfer is effectively performed between the lower electrode cooled by the cooler and the substrate, and the substrate heated by the plasma is cooled. The The substrate is cooled because some of the films formed on the substrate are vulnerable to heat, such as a resist film, and the substrate is used for efficient and uniform etching. This is because the temperature needs to be controlled.

特公昭56−53853号公報Japanese Patent Publication No. 56-53853

しかしながら、上記従来例のように、エッチングガスのプラズマを生成すると同時に基板を誘電体膜側に吸着したのでは、エッチング処理の開始時から基板の冷却が開始されることとなるので、エッチング処理開始後の一定時間は、基板温度が一定しないという問題や、エッチングガスのプラズマによって加熱される基板の冷却が不十分になるという問題のために、安定したエッチング処理を行うことができない。したがって、高精度なエッチング形状を得ることができなかった。   However, if the substrate is adsorbed to the dielectric film side at the same time as the plasma of the etching gas is generated as in the above conventional example, the cooling of the substrate starts from the start of the etching process, so the etching process starts. For a certain period of time later, a stable etching process cannot be performed due to the problem that the substrate temperature is not constant or the cooling of the substrate heated by the plasma of the etching gas becomes insufficient. Therefore, a highly accurate etching shape cannot be obtained.

尚、エッチング対象となる基板がガラス基板などの絶縁基板の場合には、単に下側の電極に直流電圧を印加しただけでは、誘電体膜と絶縁基板との間に極性の異なる電荷が誘起されるような電気回路が形成されず、絶縁基板を誘電体膜側に吸着することができないので、上記のように、プラズマが生成されていなければ、下側の電極に直流電圧を印加しても絶縁基板を誘電体膜側に吸着して冷却することはできない。   When the substrate to be etched is an insulating substrate such as a glass substrate, simply applying a DC voltage to the lower electrode induces charges having different polarities between the dielectric film and the insulating substrate. As described above, even if a DC voltage is applied to the lower electrode as long as no plasma is generated as described above, the insulating circuit cannot be adsorbed to the dielectric film side. The insulating substrate cannot be cooled by being attracted to the dielectric film side.

本発明は、以上の実情に鑑みなされたものであって、プラズマ処理の開始前から絶縁基板を冷却し、絶縁基板の全面に対してプラズマ処理を均一且つ効率的に行うことができるプラズマ処理方法の提供をその目的とする。   The present invention has been made in view of the above circumstances, and is a plasma processing method capable of cooling an insulating substrate before the start of plasma processing and uniformly and efficiently performing plasma processing on the entire surface of the insulating substrate. The purpose is to provide

上記目的を達成するための本発明は、
処理チャンバ内に絶縁基板を配置し、この処理チャンバ内にプラズマ処理を行うための処理ガスを供給,プラズマ化して前記絶縁基板を処理する方法であって、
前記処理チャンバ内に配置された静電チャックの上面に前記絶縁基板を載置した後、
前記静電チャックの電極に直流電圧を印加するとともに、前記処理チャンバ内に前記プラズマ処理に寄与しない不活性ガスを供給し、この不活性ガスをプラズマ化して前記静電チャック上に前記絶縁基板を吸着,保持し、
ついで、前記静電チャック上に吸着,保持された絶縁基板の裏面と前記静電チャックの上面との間に冷却ガスを供給してこの絶縁基板の冷却を開始し、
次に、前記不活性ガスに代え前記処理ガスを前記処理チャンバ内に供給してその内部を前記処理ガスに置換するとともに、この処理ガスをプラズマ化して引き続き前記静電チャック上に前記絶縁基板を吸着,保持しつつ且つ前記冷却ガスにより前記絶縁基板を冷却しつつ前記絶縁基板を処理するようにしたことを特徴とするプラズマ処理方法に係る。
To achieve the above object, the present invention provides:
A method of processing an insulating substrate by disposing an insulating substrate in a processing chamber, supplying a processing gas for performing plasma processing in the processing chamber, and converting the plasma into a plasma.
After placing the insulating substrate on the upper surface of the electrostatic chuck disposed in the processing chamber,
A DC voltage is applied to the electrode of the electrostatic chuck, an inert gas that does not contribute to the plasma processing is supplied into the processing chamber, the inert gas is turned into plasma, and the insulating substrate is placed on the electrostatic chuck. Adsorb, hold,
Then, a cooling gas is supplied between the back surface of the insulating substrate attracted and held on the electrostatic chuck and the top surface of the electrostatic chuck to start cooling the insulating substrate.
Next, in place of the inert gas, the processing gas is supplied into the processing chamber to replace the inside with the processing gas, and the processing gas is turned into plasma to continue the insulating substrate on the electrostatic chuck. The present invention relates to a plasma processing method characterized in that the insulating substrate is processed while being adsorbed and held and cooled by the cooling gas.

前記静電チャックは、誘電体などで構成されて上面に基板が載置される基板保持部材(サセプタ)と、この基板保持部材内に埋設された電極と、この電極に直流電圧を印加する直流電源とから構成されるものや、電極としても機能する基板載置台と、この基板載置台の上面に形成されて上面に基板が載置される誘電層と、基板載置台に直流電圧を印加する直流電源とから構成されるものなどがあり、前者は電極に直流電圧を印加して基板保持部材とその上面の基板との間に、後者は基板載置台に直流電圧を印加して誘電層とその上面の基板との間に、クーロン力やジョンソン・ラベック力などの静電力に基づく吸着力を生じさせ、これにより、基板を保持,固定する。   The electrostatic chuck includes a substrate holding member (susceptor) which is made of a dielectric material and on which a substrate is placed, an electrode embedded in the substrate holding member, and a direct current that applies a DC voltage to the electrode. A substrate mounting table that also functions as an electrode, a substrate mounting table that also functions as an electrode, a dielectric layer that is formed on the upper surface of the substrate mounting table and on which the substrate is mounted, and a DC voltage is applied to the substrate mounting table In the former, a DC voltage is applied to the electrode between the substrate holding member and the upper substrate, and the latter is applied to the substrate mounting table to apply the DC voltage to the dielectric layer. An adsorption force based on an electrostatic force such as a Coulomb force or a Johnson-Labeck force is generated between the substrate on the upper surface, thereby holding and fixing the substrate.

また、静電チャックは、通常、例えば、シリコン基板を保持,固定する際に用いられ、保持,固定対象となる基板が絶縁基板の場合には、これが電気的絶縁性を示すことから、単に電極或いは基板載置台に直流電圧を印加しただけでは、上述のように、基板保持部材或いは誘電層と絶縁基板との間に吸着力を生じさせることができず、絶縁基板を吸着することができない。   In addition, the electrostatic chuck is usually used when, for example, holding and fixing a silicon substrate. When the substrate to be held and fixed is an insulating substrate, it exhibits electrical insulation, so that it is simply an electrode. Alternatively, only by applying a DC voltage to the substrate mounting table, as described above, an adsorption force cannot be generated between the substrate holding member or the dielectric layer and the insulating substrate, and the insulating substrate cannot be adsorbed.

この発明では、まず、処理チャンバ内の静電チャックの上面に絶縁基板を載置し、ついで、静電チャックの電極に直流電圧を印加するとともに、処理チャンバ内にプラズマ処理に寄与しない不活性ガスを供給し、この不活性ガスをプラズマ化して静電チャック上に絶縁基板を吸着,保持する。   In this invention, first, an insulating substrate is placed on the upper surface of the electrostatic chuck in the processing chamber, then a DC voltage is applied to the electrode of the electrostatic chuck, and an inert gas that does not contribute to plasma processing in the processing chamber. The inert gas is turned into plasma and the insulating substrate is adsorbed and held on the electrostatic chuck.

電極に直流電圧を印加し且つ処理チャンバ内にプラズマを生成すると、静電チャックと絶縁基板との間に極性の異なる電荷が誘起されるような電気回路がプラズマを介して形成されるため、絶縁基板と静電チャックとの間に吸着力が生じて絶縁基板が静電チャック上に吸着,保持される。   When a DC voltage is applied to the electrode and plasma is generated in the processing chamber, an electric circuit is formed through the plasma so that charges of different polarities are induced between the electrostatic chuck and the insulating substrate. An attracting force is generated between the substrate and the electrostatic chuck, and the insulating substrate is attracted and held on the electrostatic chuck.

次に、静電チャック上に吸着,保持された絶縁基板の裏面と静電チャックの上面との間に冷却ガスを供給してこの絶縁基板の冷却を開始する。   Next, cooling gas is supplied between the back surface of the insulating substrate attracted and held on the electrostatic chuck and the upper surface of the electrostatic chuck to start cooling the insulating substrate.

この後、不活性ガスに代えプラズマ処理を行うための処理ガスを処理チャンバ内に供給してその内部を処理ガスに置換するとともに、この処理ガスをプラズマ化して引き続き静電チャック上に絶縁基板を吸着,保持しつつ且つ冷却ガスにより絶縁基板を冷却しつつ絶縁基板を処理する。絶縁基板は、プラズマ処理を実際に開始する前から冷却されているので、プラズマ処理の開始後も絶縁基板の温度を一定に維持したり、処理ガスのプラズマによって加熱される絶縁基板をプラズマ処理の開始直後から十分に冷却することができ、プラズマ処理の開始直後から安定した処理を実施することができる。このようにして、プラズマ処理の対象となる絶縁基板に対してプラズマ処理を施すことができる。   Thereafter, a processing gas for performing plasma processing instead of an inert gas is supplied into the processing chamber and the inside thereof is replaced with the processing gas, and the processing gas is converted into a plasma so that an insulating substrate is continuously formed on the electrostatic chuck. The insulating substrate is processed while adsorbing and holding and cooling the insulating substrate with a cooling gas. Since the insulating substrate is cooled before the plasma processing is actually started, the temperature of the insulating substrate is kept constant even after the plasma processing is started, or the insulating substrate heated by the plasma of the processing gas is subjected to the plasma processing. Cooling can be sufficiently performed immediately after the start, and stable processing can be performed immediately after the start of the plasma processing. In this manner, the plasma treatment can be performed on the insulating substrate to be subjected to the plasma treatment.

尚、前記絶縁基板としては、例えば、ガラス基板などを、前記不活性ガスとしては、例えば、アルゴンガスやヘリウムガスなどを、前記冷却ガスとしては、例えば、ヘリウムガスなどを、前記プラズマ処理としては、例えば、エッチング処理やアッシング処理、成膜処理などを挙げることができるが、これらに限定されるものではない。   The insulating substrate is, for example, a glass substrate, the inert gas is, for example, argon gas or helium gas, and the cooling gas is, for example, helium gas. Examples thereof include, but are not limited to, an etching process, an ashing process, and a film forming process.

斯くして、本発明に係るプラズマ処理方法によれば、プラズマ処理とは無関係の不活性ガスを供給,プラズマ化して絶縁基板を静電チャック上に吸着し、絶縁基板の冷却を開始した後、プラズマ処理を行うための処理ガスを供給,プラズマ化して絶縁基板を処理するようにしたので、プラズマ処理の開始前から絶縁基板を冷却しておくことができ、プラズマ処理の開始直後から高い冷却効果を得ることができる。これにより、安定したプラズマ処理を行うことができ、絶縁基板の全面に対しプラズマ処理を均一且つ効率的に実施することができる。また、静電チャックに特殊な電極構造を用いたり、静電チャックの電極に高い直流電圧を印加しなくても良いので、従来から用いられている通常の静電チャックをそのまま適用して、プラズマ処理の開始前から絶縁基板を吸着,冷却することができる。   Thus, according to the plasma processing method of the present invention, after supplying an inert gas irrelevant to the plasma processing, converting the plasma to adsorption onto the electrostatic chuck, and starting the cooling of the insulating substrate, Since the insulating substrate is processed by supplying a processing gas for performing plasma processing and converting it into plasma, the insulating substrate can be cooled before the start of the plasma processing, and a high cooling effect immediately after the start of the plasma processing. Can be obtained. Accordingly, stable plasma processing can be performed, and plasma processing can be performed uniformly and efficiently on the entire surface of the insulating substrate. In addition, there is no need to use a special electrode structure for the electrostatic chuck or to apply a high DC voltage to the electrode of the electrostatic chuck. The insulating substrate can be adsorbed and cooled before the start of processing.

以下、本発明の具体的な実施形態に係るプラズマ処理方法について、添付図面に基づき説明する。尚、本実施形態では、図1に示すようなエッチング装置1を用い、エッチング対象となるガラス基板Kにエッチング処理を施す場合を一例に挙げて説明する。   Hereinafter, a plasma processing method according to a specific embodiment of the present invention will be described with reference to the accompanying drawings. In the present embodiment, a case where the etching apparatus 1 as shown in FIG. 1 is used and an etching process is performed on the glass substrate K to be etched will be described as an example.

まず、図1に示したエッチング装置1について説明する。このエッチング装置1は、閉塞空間を有し、エッチング対象であるガラス基板Kが内部に配置される処理チャンバ11と、ガラス基板Kを保持する基板保持装置20と、処理チャンバ11内の圧力を減圧する排気装置35と、エッチング処理を行うための処理ガス及びエッチング処理に寄与しない不活性ガスを処理チャンバ11内に供給するガス供給装置38と、処理チャンバ11内に供給された処理ガス及び不活性ガスをプラズマ化するプラズマ生成装置42と、基板保持装置20の本体23に高周波電圧を印加する第1高周波電源45とを備える。   First, the etching apparatus 1 shown in FIG. 1 will be described. The etching apparatus 1 has a closed space, a processing chamber 11 in which a glass substrate K to be etched is disposed, a substrate holding apparatus 20 that holds the glass substrate K, and a pressure in the processing chamber 11 is reduced. An exhaust apparatus 35 for performing an etching process, a gas supply apparatus 38 for supplying an inert gas that does not contribute to the etching process into the processing chamber 11, and a processing gas and an inert gas supplied to the processing chamber 11 A plasma generation device 42 that converts gas into plasma and a first high-frequency power source 45 that applies a high-frequency voltage to the main body 23 of the substrate holding device 20 are provided.

前記処理チャンバ11は、相互に連通した内部空間を有する下部容器12及び上部容器13から構成され、上部容器13は、下部容器12よりも小さく形成される。下部容器12の側壁には、ガラス基板Kを搬入したり、搬出するための開口部12aが形成されており、この開口部12aは、シャッタ14によって開閉される。   The processing chamber 11 includes a lower container 12 and an upper container 13 having internal spaces communicating with each other. The upper container 13 is formed smaller than the lower container 12. An opening 12 a for carrying in and out of the glass substrate K is formed on the side wall of the lower container 12, and the opening 12 a is opened and closed by a shutter 14.

前記基板保持装置20は、ガラス基板Kを吸着して保持する静電チャック21と、この静電チャック21に保持されたガラス基板Kを冷却する冷却機構30と、静電チャック21の基台22を昇降させる昇降シリンダ33とから構成される。   The substrate holding device 20 includes an electrostatic chuck 21 that sucks and holds the glass substrate K, a cooling mechanism 30 that cools the glass substrate K held by the electrostatic chuck 21, and a base 22 of the electrostatic chuck 21. And an elevating cylinder 33 for elevating and lowering.

前記静電チャック21は、下部容器12内に配置される金属製の本体23、本体23の上面に積層された絶縁膜24,25、絶縁膜24,25間に埋め込まれた2つの電極26,27(第1電極26及び第2電極27)からなる基台22と、各電極26,27に極性の異なる直流電圧をそれぞれ印加する直流電源28,29(第1直流電源28及び第2直流電源29)とを備えており、本体23の下面に昇降シリンダ33が接続されている。   The electrostatic chuck 21 includes a metal main body 23 disposed in the lower container 12, insulating films 24 and 25 stacked on the upper surface of the main body 23, and two electrodes 26 embedded between the insulating films 24 and 25. 27 (first electrode 26 and second electrode 27), and DC power supplies 28 and 29 (first DC power supply 28 and second DC power supply) for applying DC voltages having different polarities to the electrodes 26 and 27, respectively. 29), and an elevating cylinder 33 is connected to the lower surface of the main body 23.

前記絶縁膜25の上面には、図示しない複数の溝が形成され、ガラス基板Kはこの絶縁膜25の上面に載置される。また、前記第1直流電源28及び第2直流電源29は、極性の異なる直流電圧を第1電極26及び第2電極27にそれぞれ印加する。   A plurality of grooves (not shown) are formed on the upper surface of the insulating film 25, and the glass substrate K is placed on the upper surface of the insulating film 25. The first DC power supply 28 and the second DC power supply 29 apply DC voltages having different polarities to the first electrode 26 and the second electrode 27, respectively.

この静電チャック21は、吸着対象となる基板が、例えば、シリコン基板などである場合には、各電極26,27に直流電圧を印加するだけで、このシリコン基板と絶縁膜25との間にクーロン力やジョンソン・ラベック力などの静電力に基づく吸着力を生じさせて当該シリコン基板を吸着,保持することができるが、本例のように、吸着,保持対象となる基板がガラス基板Kである場合には、これが電気的絶縁性を示すことから、単に各電極26,27に直流電圧を印加するだけでは、そのような吸着力を生じさせることができず、これを吸着,保持することができない。   When the substrate to be attracted is, for example, a silicon substrate, the electrostatic chuck 21 can be applied between the silicon substrate and the insulating film 25 only by applying a DC voltage to the electrodes 26 and 27. The silicon substrate can be adsorbed and held by generating an adsorbing force based on electrostatic force such as Coulomb force or Johnson / Labeck force, but the substrate to be adsorbed and held is a glass substrate K as in this example. In some cases, this exhibits electrical insulation, so that simply applying a DC voltage to each of the electrodes 26 and 27 cannot produce such an attractive force, and adsorbs and holds it. I can't.

前記冷却機構30は、上端が基台22(本体23及び絶縁膜24,25)の裏面側から貫通して絶縁膜25の上面に開口するように配置される複数の供給管31と、これらの各供給管31に冷却ガス(例えば、ヘリウムガス)を供給して各供給管31の上端開口部から吐出させる冷却ガス供給部32とを備えており、各供給管31の上端開口部から吐出され絶縁膜25の上面の溝(図示せず)内を流通する冷却ガスによってガラス基板Kを冷却する。   The cooling mechanism 30 includes a plurality of supply pipes 31 arranged such that the upper end penetrates from the back side of the base 22 (the main body 23 and the insulating films 24 and 25) and opens to the upper surface of the insulating film 25, and these A cooling gas supply unit 32 that supplies a cooling gas (for example, helium gas) to each supply pipe 31 and discharges it from the upper end opening of each supply pipe 31, and is discharged from the upper end opening of each supply pipe 31. The glass substrate K is cooled by a cooling gas flowing in a groove (not shown) on the upper surface of the insulating film 25.

前記排気装置35は、排気ポンプ36と、排気ポンプ36と下部容器12とを接続する排気管37とから構成され、排気管37を介して下部容器12内の気体を排気し、処理チャンバ11の内部を所定圧力にする。   The exhaust device 35 includes an exhaust pump 36 and an exhaust pipe 37 that connects the exhaust pump 36 and the lower container 12, and exhausts the gas in the lower container 12 through the exhaust pipe 37. The inside is set to a predetermined pressure.

前記ガス供給装置38は、前記処理ガスとしてエッチングガス(例えば、三フッ化メタンガスや四フッ化炭素ガス、酸素ガスなど)を含んだガスを供給する処理ガス供給部39と、前記不活性ガス(例えば、アルゴンガスやヘリウムガス)を供給する不活性ガス供給部40と、一端側が上部容器13の上面に接続し、他端側が分岐して処理ガス供給部39及び不活性ガス供給部40にそれぞれ接続した供給管41とから構成され、処理ガス供給部39及び不活性ガス供給部40から供給管40を介して上部容器13内に処理ガス及び不活性ガスを供給する。   The gas supply device 38 includes a processing gas supply unit 39 for supplying a gas containing an etching gas (for example, trifluoromethane gas, carbon tetrafluoride gas, oxygen gas, etc.) as the processing gas, and the inert gas ( For example, an inert gas supply unit 40 that supplies argon gas or helium gas), one end side is connected to the upper surface of the upper container 13, and the other end side branches to the processing gas supply unit 39 and the inert gas supply unit 40. The supply pipe 41 is connected, and the processing gas and the inert gas are supplied into the upper container 13 from the processing gas supply part 39 and the inert gas supply part 40 through the supply pipe 40.

前記プラズマ生成装置42は、上部容器13の外周部に配設された複数のコイル43と、各コイル43に高周波電圧を印加する第2高周波電源44とから構成され、第2高周波電源44によってコイル43に高周波電圧を印加することで、上部容器13内に供給された処理ガス及び不活性ガスをプラズマ化する。   The plasma generating device 42 includes a plurality of coils 43 disposed on the outer peripheral portion of the upper container 13 and a second high frequency power source 44 that applies a high frequency voltage to each coil 43. By applying a high frequency voltage to 43, the processing gas and inert gas supplied into the upper container 13 are turned into plasma.

前記第1高周波電源45は、静電チャック21の本体23に高周波電圧を印加することで、本体23と、処理チャンバ11内のプラズマとの間に電位差(バイアス電位)を生じさせる。   The first high-frequency power supply 45 applies a high-frequency voltage to the main body 23 of the electrostatic chuck 21 to generate a potential difference (bias potential) between the main body 23 and the plasma in the processing chamber 11.

次に、以上のように構成されたエッチング装置1を用いてガラス基板Kをエッチングする方法を説明する。まず、ガラス基板Kを処理チャンバ11の下部容器12内に搬入し、静電チャック21の基台22上(絶縁膜25の上面)に載置した後、第1直流電源28及び第2直流電源29により第1電極26及び第2電極27に極性の異なる直流電圧をそれぞれ印加する。尚、この時点では、各電極26,27に直流電圧を単に印加しただけであるので、閉回路が形成されておらず、静電チャック21によりガラス基板Kは吸着されない。   Next, a method for etching the glass substrate K using the etching apparatus 1 configured as described above will be described. First, the glass substrate K is carried into the lower container 12 of the processing chamber 11 and placed on the base 22 (the upper surface of the insulating film 25) of the electrostatic chuck 21, and then the first DC power supply 28 and the second DC power supply. 29, DC voltages having different polarities are applied to the first electrode 26 and the second electrode 27, respectively. At this time, since a DC voltage is simply applied to the electrodes 26 and 27, a closed circuit is not formed, and the glass substrate K is not attracted by the electrostatic chuck 21.

この後、第2高周波電源44によりコイル43に高周波電圧を印加し、不活性ガス供給部40から処理チャンバ11内に不活性ガスを供給するとともに、排気ポンプ36により処理チャンバ11内を減圧する。そして、処理チャンバ11内に供給した不活性ガスをプラズマ化し、静電チャック21上にガラス基板Kを吸着,保持する。これは、各電極26,27に直流電圧が印加され且つ処理チャンバ11内にプラズマが生成されていると、図2に示すように、直流電圧が印加された電極26,27を含み、これらの電極26,27がコンデンサ26a,27aの一方の電極として機能する電気回路が処理チャンバ11内のプラズマPを介して形成され、これにより、ガラス基板Kと絶縁膜25との間に極性の異なる電荷が誘起され、ガラス基板Kと絶縁膜25との間に吸着力が生じてガラス基板Kが吸着,保持されるのである。   Thereafter, a high frequency voltage is applied to the coil 43 by the second high frequency power supply 44 to supply an inert gas from the inert gas supply unit 40 into the processing chamber 11, and the inside of the processing chamber 11 is decompressed by the exhaust pump 36. Then, the inert gas supplied into the processing chamber 11 is turned into plasma, and the glass substrate K is attracted and held on the electrostatic chuck 21. This includes electrodes 26 and 27 to which a DC voltage is applied as shown in FIG. 2 when a DC voltage is applied to the electrodes 26 and 27 and plasma is generated in the processing chamber 11. An electric circuit in which the electrodes 26 and 27 function as one electrode of the capacitors 26 a and 27 a is formed via the plasma P in the processing chamber 11, whereby charges having different polarities between the glass substrate K and the insulating film 25. Is induced, an adsorption force is generated between the glass substrate K and the insulating film 25, and the glass substrate K is adsorbed and held.

次に、静電チャック21上に吸着,保持されたガラス基板Kの裏面と基台22の上面との間に冷却ガス供給部32から冷却ガスを供給してこのガラス基板Kの冷却を開始する。   Next, the cooling gas is supplied from the cooling gas supply unit 32 between the back surface of the glass substrate K attracted and held on the electrostatic chuck 21 and the upper surface of the base 22 to start cooling the glass substrate K. .

ついで、所定時間が経過すると、不活性ガス供給部40から処理チャンバ11内への不活性ガスの供給を停止するとともに、処理ガス供給部39から処理チャンバ11内に処理ガスを供給してその内部を処理ガスに置換し、第1高周波電源45により本体23に高周波電圧を印加する。また、引き続き、各直流電源28,29により各電極26,27に極性の異なる直流電圧をそれぞれ印加し、第2高周波電源44によりコイル43に高周波電圧を印加し、排気ポンプ36により処理チャンバ11内を減圧し、冷却ガス供給部32からガラス基板Kの裏面と基台22の上面との間に冷却ガスを供給する。そして、処理チャンバ11内の処理ガスをプラズマ化し、静電チャック21上にガラス基板Kを吸着,保持しつつ且つ冷却ガスによりガラス基板Kを冷却して処理ガスのプラズマによるガラス基板Kの温度上昇を抑えつつ、プラズマ化した処理ガスによってガラス基板Kをエッチングする。尚、処理ガスのプラズマが生成されたときも、不活性ガスのプラズマのときと同様の理由からガラス基板Kが静電チャック21上に吸着,保持される。   Next, when a predetermined time has elapsed, the supply of the inert gas from the inert gas supply unit 40 into the processing chamber 11 is stopped, and the processing gas is supplied from the processing gas supply unit 39 into the processing chamber 11 to the inside thereof. Is replaced with a processing gas, and a high frequency voltage is applied to the main body 23 by the first high frequency power supply 45. Further, DC voltages having different polarities are respectively applied to the electrodes 26 and 27 by the DC power supplies 28 and 29, a high frequency voltage is applied to the coil 43 by the second high frequency power supply 44, and the inside of the processing chamber 11 is exhausted by the exhaust pump 36. The cooling gas is supplied from the cooling gas supply unit 32 between the back surface of the glass substrate K and the upper surface of the base 22. Then, the processing gas in the processing chamber 11 is turned into plasma, the glass substrate K is adsorbed and held on the electrostatic chuck 21, and the glass substrate K is cooled by the cooling gas, and the temperature of the glass substrate K is increased by the processing gas plasma. The glass substrate K is etched by the plasma processing gas while suppressing the above. Even when the plasma of the processing gas is generated, the glass substrate K is attracted and held on the electrostatic chuck 21 for the same reason as that of the plasma of the inert gas.

ガラス基板Kのエッチングについては、例えば、プラズマ中のラジカルとガラス基板K上に形成された膜とが化学反応したり、プラズマ中のイオンがバイアス電位により基台22側に向けて移動してガラス基板K上の前記膜と衝突することによって行われ、これにより、ガラス基板K上の前記膜に所定の幅及び深さを備えた溝や穴が形成される。   As for the etching of the glass substrate K, for example, radicals in the plasma and a film formed on the glass substrate K chemically react, or ions in the plasma move toward the base 22 side by a bias potential to cause the glass. This is done by colliding with the film on the substrate K, whereby grooves and holes having a predetermined width and depth are formed in the film on the glass substrate K.

この後、一定時間が経過すると、各直流電源28,29、冷却ガス供給部32、排気ポンプ36、処理ガス供給部39の作動を停止させた後、ガラス基板Kを下部容器12の外部に搬出する。   Thereafter, after a certain period of time has elapsed, the operations of the DC power supplies 28, 29, the cooling gas supply unit 32, the exhaust pump 36, and the processing gas supply unit 39 are stopped, and then the glass substrate K is carried out of the lower container 12. To do.

斯くして、本例のエッチング方法によれば、処理ガスを供給,プラズマ化する前に不活性ガスを供給,プラズマ化してガラス基板Kを静電チャック21上に吸着,冷却するようにしたので、エッチング処理を実際に開始する前からガラス基板Kを冷却しておくことができ、エッチング処理の開始後もガラス基板Kの温度を一定に維持したり、処理ガスのプラズマによって加熱されるガラス基板Kをエッチング処理の開始直後から十分に冷却することができる。これにより、安定したエッチング処理を行うことができ、ガラス基板Kの全面に対しエッチング処理を均一且つ効率的に実施することができる。また、エッチング処理が均一に進むので、高精度なエッチング形状を得ることができる。また、静電チャック21に特殊な電極構造を用いたり、静電チャック21の電極26,27に高い直流電圧を印加しなくても良いので、従来から用いられている通常の静電チャック21をそのまま適用して、エッチング処理の開始前からガラス基板Kを吸着,冷却することができる。   Thus, according to the etching method of this example, the processing gas is supplied and the inert gas is supplied and turned into plasma before being turned into plasma, so that the glass substrate K is adsorbed and cooled on the electrostatic chuck 21. The glass substrate K can be cooled before actually starting the etching process, and the glass substrate K can be maintained at a constant temperature after the etching process is started or heated by plasma of a processing gas. K can be sufficiently cooled immediately after the start of the etching process. Thereby, the stable etching process can be performed and the etching process can be uniformly and efficiently performed on the entire surface of the glass substrate K. In addition, since the etching process proceeds uniformly, a highly accurate etching shape can be obtained. In addition, since a special electrode structure is used for the electrostatic chuck 21 or a high DC voltage does not have to be applied to the electrodes 26 and 27 of the electrostatic chuck 21, the conventional electrostatic chuck 21 that has been conventionally used is used. By applying as it is, the glass substrate K can be adsorbed and cooled before the etching process is started.

因みに、実施例として、本例のエッチング方法を適用して、直径が150mmで厚さが0.3mmの円板状ガラス基板の上面に形成された、SiO膜及び有機膜をそれぞれエッチングしたところ、エッチング速度は図3のようになった。尚、エッチング速度の検出部は、図4に示すように、ガラス基板の中央部(A部)一ヶ所、ガラス基板の端部(B部,C部,D部及びE部)4ヶ所である。また、SiO膜のエッチング条件は、CHFガスを100sccmで処理チャンバ11内に供給するとともに、処理チャンバ11内の圧力を1Paに減圧し、コイル43に1000Wの、本体23に300Wの高周波電圧をそれぞれ印加した。また、有機膜のエッチング条件は、Oガスを100sccmで処理チャンバ11内に供給するとともに、処理チャンバ11内の圧力を1Paに減圧し、コイル43に1000Wの、本体23に200Wの高周波電圧をそれぞれ印加した。また、SiO膜や有機膜を実際にエッチングする前段階では、Arガスを50sccmで処理チャンバ11内に供給するとともに、処理チャンバ11内の圧力を1Paに減圧し、コイル43に500Wの高周波電圧を印加してガラス基板を静電チャック21に吸着させ冷却した。また、この前段階処理は10秒間行った。また、更に、SiO膜及び有機膜のエッチング時並びにエッチング前段階においては、基板冷却ガスとしてヘリウムガスを、ガラス基板の裏面と基台22の上面との間に圧力が1KPaとなるように供給し、各電極26,27に6KVの直流電圧を印加した。 Incidentally, as an example, when the etching method of this example was applied, the SiO 2 film and the organic film formed on the upper surface of the disk-shaped glass substrate having a diameter of 150 mm and a thickness of 0.3 mm were respectively etched. The etching rate was as shown in FIG. In addition, as shown in FIG. 4, the detection part of an etching rate is one center part (A part) of a glass substrate, and four edge parts (B part, C part, D part, and E part) of a glass substrate. . The etching conditions of the SiO 2 film are as follows: CHF 3 gas is supplied into the processing chamber 11 at 100 sccm, the pressure in the processing chamber 11 is reduced to 1 Pa, the coil 43 has a high frequency voltage of 1000 W, and the main body 23 has a high frequency voltage of 300 W. Were respectively applied. The etching conditions for the organic film are as follows: O 2 gas is supplied into the processing chamber 11 at 100 sccm, the pressure in the processing chamber 11 is reduced to 1 Pa, and a high frequency voltage of 1000 W is applied to the coil 43 and 200 W is applied to the main body 23. Each was applied. Further, before the actual etching of the SiO 2 film or the organic film, Ar gas is supplied into the processing chamber 11 at 50 sccm, the pressure in the processing chamber 11 is reduced to 1 Pa, and a high-frequency voltage of 500 W is applied to the coil 43. Was applied to adsorb the glass substrate to the electrostatic chuck 21 and cooled. This pre-stage treatment was performed for 10 seconds. Furthermore, helium gas is supplied as a substrate cooling gas so that the pressure is 1 KPa between the back surface of the glass substrate and the upper surface of the base 22 during the etching of the SiO 2 film and the organic film and in the pre-etching stage. Then, a DC voltage of 6 KV was applied to each of the electrodes 26 and 27.

一方、比較例として、基板載置台側に基板の端部を押さえ付けてクランプする保持装置により、上記実施例で使用したガラス基板と同じ基板を保持,固定した後、基板載置台の上面とガラス基板の裏面との間に冷却ガスを供給してガラス基板を冷却しつつSiO膜及び有機膜をエッチングしたところ、エッチング速度は図5のようになった。尚、エッチング速度の検出部は、上記実施例と同様、図4で示した部分である。また、SiO膜のエッチング条件、有機膜のエッチング条件、SiO膜や有機膜を実際にエッチングする前段階における処理条件についても上記実施例と同様である。 On the other hand, as a comparative example, after holding and fixing the same substrate as the glass substrate used in the above embodiment by a holding device that presses and clamps the end of the substrate on the substrate mounting table side, the upper surface of the substrate mounting table and the glass When the SiO 2 film and the organic film were etched while cooling the glass substrate by supplying a cooling gas to the back surface of the substrate, the etching rate was as shown in FIG. The etching rate detection part is the part shown in FIG. 4 as in the above embodiment. Also, the etching conditions for the SiO 2 film, the etching conditions for the organic film, and the processing conditions before the actual etching of the SiO 2 film and the organic film are the same as in the above embodiment.

尚、上記実施例で使用したガラス基板と同じ基板を静電チャック21上に載置し、各電極26,27に直流電圧をそれぞれ印加した後、不活性ガスを処理チャンバ11内に供給してプラズマ化することなく、静電チャック21の上面とガラス基板の裏面との間に冷却ガスを供給したところ、ガラス基板が静電チャック21から外れ、エッチング処理を実施することができなかった。   The same substrate as the glass substrate used in the above embodiment was placed on the electrostatic chuck 21, and a DC voltage was applied to each of the electrodes 26 and 27, and then an inert gas was supplied into the processing chamber 11. When the cooling gas was supplied between the upper surface of the electrostatic chuck 21 and the back surface of the glass substrate without turning into plasma, the glass substrate was detached from the electrostatic chuck 21 and the etching process could not be performed.

前記実施例と比較例とを対比すると、実施例では、SiO膜のエッチング速度の範囲が389〜399でその差が10であり、有機膜のエッチング速度の範囲が999〜1048でその差が49であるのに対し、比較例では、SiO膜のエッチング速度の範囲が318〜395でその差が77であり、有機膜のエッチング速度の範囲が830〜1072でその差が242である。また、実施例では、ガラス基板中央部におけるSiO膜のエッチング速度が389でガラス基板端部におけるSiO膜のエッチング速度が390〜399であり、ガラス基板中央部における有機膜のエッチング速度が1039でガラス基板端部における有機膜のエッチング速度が999〜1048であるのに対し、比較例では、ガラス基板中央部におけるSiO膜のエッチング速度が318でガラス基板端部におけるSiO膜のエッチング速度が370〜395であり、ガラス基板中央部における有機膜のエッチング速度が830でガラス基板端部における有機膜のエッチング速度が1004〜1072である。また、実施例では、SiO膜の平均エッチング速度が394で、有機膜の平均エッチング速度が1026であるのに対し、比較例では、SiO膜の平均エッチング速度が370で、有機膜の平均エッチング速度が991である。これらのことから、本例のエッチング方法によれば、エッチング速度のバラツキが小さく、また、ガラス基板の中央部と端部とでエッチング速度も変わらないことが明らかであり、ガラス基板を、均一なエッチング速度で且つより速いエッチング速度でエッチングすることが可能なことが分かる。このような結果が得られた理由としては、比較例では、ガラス基板の端部のみが保持装置によって押さえ付けられているため、供給された冷却ガスによってガラス基板の中央部が高くなるように山形に反り、このようにガラス基板が変形すると、当該中央部のバイアス電位が端部よりも弱くなってエッチング速度が低下するからである。尚、上記各エッチング速度の単位は、nm/minである。 When the embodiment and the comparative example are compared, in the embodiment, the range of the etching rate of the SiO 2 film is 389 to 399 and the difference is 10, and the range of the etching rate of the organic film is 999 to 1048 and the difference is On the other hand, in the comparative example, the range of the etching rate of the SiO 2 film is 318 to 395 and the difference is 77, and the range of the etching rate of the organic film is 830 to 1072 and the difference is 242. In the example, the etching rate of the SiO 2 film at the center of the glass substrate is 389, the etching rate of the SiO 2 film at the end of the glass substrate is 390 to 399, and the etching rate of the organic film at the center of the glass substrate is 1039. In the comparative example, the etching rate of the SiO 2 film at the center of the glass substrate is 318 and the etching rate of the SiO 2 film at the end of the glass substrate is 999 to 1048. Is 370 to 395, the etching rate of the organic film at the center of the glass substrate is 830, and the etching rate of the organic film at the edge of the glass substrate is 1004 to 1072. In the example, the average etching rate of the SiO 2 film is 394 and the average etching rate of the organic film is 1026, whereas in the comparative example, the average etching rate of the SiO 2 film is 370, The etching rate is 991. From these facts, according to the etching method of this example, it is clear that the variation in the etching rate is small, and the etching rate does not change between the central portion and the end portion of the glass substrate. It can be seen that it is possible to etch at an etch rate and at a faster etch rate. The reason why such a result was obtained is that, in the comparative example, only the edge of the glass substrate is pressed by the holding device, so that the central portion of the glass substrate is raised by the supplied cooling gas. On the other hand, when the glass substrate is deformed in this way, the bias potential at the center becomes weaker than that at the end, and the etching rate decreases. The unit of each etching rate is nm / min.

以上、本発明の一実施形態について説明したが、本発明の採り得る具体的な態様は、何らこれに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all.

上例では、前記プラズマ処理の一例として、エッチング処理を挙げたが、これに限定されるものではなく、アッシング処理や成膜処理などにも、本発明のプラズマ処理方法を適用することができる。また、静電チャック21に吸着,保持される基板は、絶縁基板であれば、ガラス基板Kに限定されるものではない。また、上例では、静電チャック21として、双極型のものを一例に挙げたが、単極型のものであっても良く、更に、静電チャック21の構造は何ら限定されるものではない。また、上記エッチング方法を実施するための装置は、上記エッチング装置1に限定されるものではなく、各種のエッチング装置を用いることができる。   In the above example, the etching process is given as an example of the plasma process. However, the present invention is not limited to this, and the plasma processing method of the present invention can also be applied to an ashing process or a film forming process. The substrate attracted and held by the electrostatic chuck 21 is not limited to the glass substrate K as long as it is an insulating substrate. In the above example, the bipolar chuck is used as an example of the electrostatic chuck 21. However, the electrostatic chuck 21 may be of a single pole type, and the structure of the electrostatic chuck 21 is not limited at all. . Moreover, the apparatus for implementing the said etching method is not limited to the said etching apparatus 1, Various etching apparatuses can be used.

また、不活性ガスのプラズマ生成時にコイル43に印加する高周波電圧は、不活性ガスをプラズマ化することができれば、処理ガスのプラズマ生成時に比べて低くても、高くても良い。尚、これは、一対の平行平板電極に高周波電圧を印加して不活性ガス及び処理ガスのプラズマを生成する場合など、高周波電圧が印加されることによって不活性ガス及び処理ガスをプラズマ化する各種のプラズマ生成装置について言えることである。但し、不活性ガスのプラズマ生成時においては、印加する高周波電圧が低い方が静電チャック21上のガラス基板Kが加熱され難いため、好ましい。   Further, the high-frequency voltage applied to the coil 43 during plasma generation of the inert gas may be lower or higher than that during plasma generation of the processing gas as long as the inert gas can be converted into plasma. It should be noted that this is a case where various plasmas are generated by applying a high frequency voltage to the inert gas and the processing gas by applying a high frequency voltage to the pair of parallel plate electrodes to generate a plasma of the inert gas and the processing gas. This is true of the plasma generation apparatus. However, when the plasma of the inert gas is generated, it is preferable that the high frequency voltage to be applied is lower because the glass substrate K on the electrostatic chuck 21 is less likely to be heated.

また、上例では、各電極26,27に直流電圧を印加した後、処理チャンバ11内に不活性ガスを供給してプラズマ化し、静電チャック21上にガラス基板Kを吸着,保持するようにしたが、各電極26,27への直流電圧の印加と不活性ガスの供給,プラズマ化は、これを同時に行うようにしても、不活性ガスの供給,プラズマ化を先に行うようにしても良い。   In the above example, after applying a DC voltage to the electrodes 26 and 27, an inert gas is supplied into the processing chamber 11 to form plasma, and the glass substrate K is attracted and held on the electrostatic chuck 21. However, the application of the DC voltage to each of the electrodes 26 and 27, the supply of the inert gas, and the plasma generation may be performed simultaneously, or the inert gas supply and plasma generation may be performed first. good.

本発明の一実施形態に係るプラズマ処理方法(エッチング方法)を実施するためのプラズマ処理装置(エッチング装置)の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the plasma processing apparatus (etching apparatus) for enforcing the plasma processing method (etching method) which concerns on one Embodiment of this invention. プラズマを介して形成される電気回路を示した説明図である。It is explanatory drawing which showed the electric circuit formed through plasma. 実施例で得られるエッチング速度を示した図である。It is the figure which showed the etching rate obtained in the Example. ガラス基板表面のエッチング速度検出部位を示した平面図である。It is the top view which showed the etching rate detection site | part of the glass substrate surface. 比較例で得られるエッチング速度を示した図である。It is the figure which showed the etching rate obtained by a comparative example.

符号の説明Explanation of symbols

1 エッチング装置(プラズマ処理装置)
11 処理チャンバ
20 基板保持装置
21 静電チャック
24,25 絶縁膜
26 第1電極
27 第2電極
28 第1直流電源
29 第2直流電源
30 冷却機構
38 ガス供給装置
39 処理ガス供給部
40 不活性ガス供給部
42 プラズマ生成装置
K ガラス基板
1 Etching equipment (plasma processing equipment)
DESCRIPTION OF SYMBOLS 11 Processing chamber 20 Substrate holding device 21 Electrostatic chuck 24, 25 Insulating film 26 1st electrode 27 2nd electrode 28 1st DC power supply 29 2nd DC power supply 30 Cooling mechanism 38 Gas supply apparatus 39 Processing gas supply part 40 Inert gas Supply unit 42 Plasma generator K Glass substrate

Claims (1)

処理チャンバ内に絶縁基板を配置し、この処理チャンバ内にプラズマ処理を行うための処理ガスを供給,プラズマ化して前記絶縁基板を処理する方法であって、
前記処理チャンバ内に配置された静電チャックの上面に前記絶縁基板を載置した後、
前記静電チャックの電極に直流電圧を印加するとともに、前記処理チャンバ内に前記プラズマ処理に寄与しない不活性ガスを供給し、この不活性ガスをプラズマ化して前記静電チャック上に前記絶縁基板を吸着,保持し、
ついで、前記静電チャック上に吸着,保持された絶縁基板の裏面と前記静電チャックの上面との間に冷却ガスを供給してこの絶縁基板の冷却を開始し、
次に、前記不活性ガスに代え前記処理ガスを前記処理チャンバ内に供給してその内部を前記処理ガスに置換するとともに、この処理ガスをプラズマ化して引き続き前記静電チャック上に前記絶縁基板を吸着,保持しつつ且つ前記冷却ガスにより前記絶縁基板を冷却しつつ前記絶縁基板を処理するようにしたことを特徴とするプラズマ処理方法。
A method of processing an insulating substrate by disposing an insulating substrate in a processing chamber, supplying a processing gas for performing plasma processing in the processing chamber, and converting the plasma into a plasma.
After placing the insulating substrate on the upper surface of the electrostatic chuck disposed in the processing chamber,
A DC voltage is applied to the electrode of the electrostatic chuck, an inert gas that does not contribute to the plasma processing is supplied into the processing chamber, the inert gas is turned into plasma, and the insulating substrate is placed on the electrostatic chuck. Adsorb, hold,
Then, a cooling gas is supplied between the back surface of the insulating substrate attracted and held on the electrostatic chuck and the top surface of the electrostatic chuck to start cooling the insulating substrate.
Next, in place of the inert gas, the processing gas is supplied into the processing chamber to replace the inside with the processing gas, and the processing gas is turned into plasma to continue the insulating substrate on the electrostatic chuck. A plasma processing method characterized in that the insulating substrate is processed while adsorbing and holding and cooling the insulating substrate with the cooling gas.
JP2008034166A 2008-02-15 2008-02-15 Method of plasma treatment Pending JP2009194194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034166A JP2009194194A (en) 2008-02-15 2008-02-15 Method of plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034166A JP2009194194A (en) 2008-02-15 2008-02-15 Method of plasma treatment

Publications (1)

Publication Number Publication Date
JP2009194194A true JP2009194194A (en) 2009-08-27

Family

ID=41075946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034166A Pending JP2009194194A (en) 2008-02-15 2008-02-15 Method of plasma treatment

Country Status (1)

Country Link
JP (1) JP2009194194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030721A1 (en) * 2009-09-09 2011-03-17 株式会社アルバック Method for operating substrate processing apparatus
WO2011052296A1 (en) * 2009-10-27 2011-05-05 住友精密工業株式会社 Plasma etching method
JP2014033045A (en) * 2012-08-02 2014-02-20 Samco Inc Electrostatic attraction method and electrostatic attraction device
JP2018026194A (en) * 2016-08-08 2018-02-15 株式会社日立ハイテクノロジーズ Plasma processing device and plasma processing method
KR20200090989A (en) * 2014-08-26 2020-07-29 어플라이드 머티어리얼스, 인코포레이티드 High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653853B2 (en) * 1978-12-26 1981-12-22
JPH07147274A (en) * 1993-11-24 1995-06-06 Tokyo Electron Ltd Control of low-temperature processing device
JPH088232A (en) * 1994-06-22 1996-01-12 Sony Corp Plasma treatment method
JPH08115901A (en) * 1994-03-25 1996-05-07 Tokyo Electron Ltd Plasma processing method and plasma processor
JPH11111830A (en) * 1997-10-07 1999-04-23 Tokyo Electron Ltd Electrostatic sucking device and method, and method and device for treatment apparatus using them
JP2000208594A (en) * 1999-01-08 2000-07-28 Nissin Electric Co Ltd Attraction holding method for glass substrate
JP2003520431A (en) * 2000-01-13 2003-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for performing plasma warm-up on a semiconductor wafer
JP2005051098A (en) * 2003-07-30 2005-02-24 Sony Corp Device and method for plasma treating
JP2006186334A (en) * 2004-11-30 2006-07-13 Sanyo Electric Co Ltd Processing method of object to be attracted and electrostatic attraction method
JP2006253703A (en) * 2006-04-07 2006-09-21 Toto Ltd Electrostatic chuck and insulating substrate electrostatic attraction treatment method
JP2007227604A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Plasma processing method, and method of manufacturing electrooptical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653853B2 (en) * 1978-12-26 1981-12-22
JPH07147274A (en) * 1993-11-24 1995-06-06 Tokyo Electron Ltd Control of low-temperature processing device
JPH08115901A (en) * 1994-03-25 1996-05-07 Tokyo Electron Ltd Plasma processing method and plasma processor
JPH088232A (en) * 1994-06-22 1996-01-12 Sony Corp Plasma treatment method
JPH11111830A (en) * 1997-10-07 1999-04-23 Tokyo Electron Ltd Electrostatic sucking device and method, and method and device for treatment apparatus using them
JP2000208594A (en) * 1999-01-08 2000-07-28 Nissin Electric Co Ltd Attraction holding method for glass substrate
JP2003520431A (en) * 2000-01-13 2003-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for performing plasma warm-up on a semiconductor wafer
JP2005051098A (en) * 2003-07-30 2005-02-24 Sony Corp Device and method for plasma treating
JP2006186334A (en) * 2004-11-30 2006-07-13 Sanyo Electric Co Ltd Processing method of object to be attracted and electrostatic attraction method
JP2007227604A (en) * 2006-02-23 2007-09-06 Seiko Epson Corp Plasma processing method, and method of manufacturing electrooptical device
JP2006253703A (en) * 2006-04-07 2006-09-21 Toto Ltd Electrostatic chuck and insulating substrate electrostatic attraction treatment method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030721A1 (en) * 2009-09-09 2011-03-17 株式会社アルバック Method for operating substrate processing apparatus
US9305752B2 (en) 2009-09-09 2016-04-05 Ulvac, Inc. Method for operating substrate processing apparatus
CN102484065A (en) * 2009-09-09 2012-05-30 株式会社爱发科 Method For Operating Substrate Processing Apparatus
JPWO2011030721A1 (en) * 2009-09-09 2013-02-07 株式会社アルバック Operation method of substrate processing apparatus
KR101338771B1 (en) * 2009-09-09 2013-12-06 가부시키가이샤 알박 Method for operating substrate processing apparatus
TWI496515B (en) * 2009-09-09 2015-08-11 Ulvac Inc Method for operating a apparatus for processing substrates
US8673781B2 (en) 2009-10-27 2014-03-18 Sumitomo Precision Products Co., Ltd. Plasma etching method
WO2011052296A1 (en) * 2009-10-27 2011-05-05 住友精密工業株式会社 Plasma etching method
JP2014033045A (en) * 2012-08-02 2014-02-20 Samco Inc Electrostatic attraction method and electrostatic attraction device
KR20200090989A (en) * 2014-08-26 2020-07-29 어플라이드 머티어리얼스, 인코포레이티드 High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
KR102392697B1 (en) * 2014-08-26 2022-04-28 어플라이드 머티어리얼스, 인코포레이티드 High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
KR20220054731A (en) * 2014-08-26 2022-05-03 어플라이드 머티어리얼스, 인코포레이티드 High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
KR102579197B1 (en) * 2014-08-26 2023-09-14 어플라이드 머티어리얼스, 인코포레이티드 High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
JP2018026194A (en) * 2016-08-08 2018-02-15 株式会社日立ハイテクノロジーズ Plasma processing device and plasma processing method
US11355322B2 (en) 2016-08-08 2022-06-07 Hitachi High-Tech Corporation Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
CN106992121B (en) Plasma etching method
TWI668726B (en) Plasma processing device
US9299579B2 (en) Etching method and plasma processing apparatus
US8809199B2 (en) Method of etching features in silicon nitride films
TWI478234B (en) Method of etching silicon nitride films
TWI231540B (en) Method and apparatus for removing material from chamber and wafer surfaces by high temperature hydrogen-containing plasma
KR102100011B1 (en) Etching method
TW200947548A (en) Plasma etching method, plasma etching apparatus and computer-readable storage medium
US10854470B2 (en) Plasma etching method
JP2007242870A5 (en)
TW201248713A (en) Pulse-plasma etching method and pulse-plasma etching apparatus
TW201705270A (en) Method of etching layer to be etched
KR20150048134A (en) Plasma processing method and plasma processing device
JP2009194194A (en) Method of plasma treatment
KR20100004891A (en) Plasma etching method, control program and computer storage medium
JP2017098323A (en) Plasma etching method
US8268721B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2008235735A (en) Electrostatic chuck and plasma processing equipment having it
JP2004319972A (en) Etching method and etching device
JP5089871B2 (en) Manufacturing method of semiconductor device
JP4615290B2 (en) Plasma etching method
JP6142305B2 (en) Electrostatic adsorption method and electrostatic adsorption device
KR100855323B1 (en) Processing chamber and apparatus of treating substrate using plasma
JP2004327507A (en) Method of manufacturing semiconductor device
US20200294773A1 (en) Plasma processing method and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130204