JP2004349665A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2004349665A
JP2004349665A JP2003183535A JP2003183535A JP2004349665A JP 2004349665 A JP2004349665 A JP 2004349665A JP 2003183535 A JP2003183535 A JP 2003183535A JP 2003183535 A JP2003183535 A JP 2003183535A JP 2004349665 A JP2004349665 A JP 2004349665A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
chuck
polymer resin
layer
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003183535A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatsumi
良昭 辰巳
Kinya Miyashita
欣也 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CREATIVE TECHNOLOGY KK
Creative Technology Corp
Original Assignee
CREATIVE TECHNOLOGY KK
Creative Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CREATIVE TECHNOLOGY KK, Creative Technology Corp filed Critical CREATIVE TECHNOLOGY KK
Priority to JP2003183535A priority Critical patent/JP2004349665A/en
Publication of JP2004349665A publication Critical patent/JP2004349665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck with which uniform treatment can be performed on the whole surface of a wafer, glass substrate, etc., by making the track of the primary particle of, for example, an electron beam exposure system etc., using an ion in plasma or the ion used in the conventional ion implantation and an electron having a smaller mass than the ion has hardly affected by the impressing voltage of the chuck, by increasing the attracting force of the chuck with a low voltage. <P>SOLUTION: For solving the problem, the substantial attracting force of the electrostatic chuck is increased by using a macromolecular resin material, such as the polyimide etc., to the surface of the chuck for maintaining a plasma resistance, and providing a ferroelectric ceramic layer having a very high specific inductive capacity immediately under the macromolecular resin material. Simultaneously, the leakage of electric fields to the circumference around the chuck is reduced by forming bipolar electrodes in the chuck. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体素子製造プロセスで用いられているエッチング処理、化学気相蒸着(CVD)による薄膜形成などのプラズマ処理装置、電子露光装置、イオン注入装置、また液晶パネルに使用されるイオンドーピング装置などに具備されている半導体ウエハの静電吸着機構、いわゆる静電チャックの技術に関する。
【0002】
【従来の技術】
半導体製造装置では被処理物である半導体ウエハをその装置内で位置決め、そして支持面への確固な保持を確保する必要がある。また、同時にこの行為は被処理半導体ウエハになんら損傷を与えるものであってはならない。一世代前には半導体ウエハの表面をなんらかの機構により、爪などで支持面へ抑えるクランプ方式が一般的であった。現在は処理基準が厳しく制限され、被処理半導体ウエハへの汚染量を管理する必要がある。これは、クランプ自身の材質、多くの場合はアルミニューム材、が処理プラズマ中にさらされることにより遊離、あるいはイオン注入ではそのイオン照射によりクランプ母材からスパッタされ浮遊し、被処理半導体ウエハに降りかかることにより、半導体素子の特性、歩留まりに著しく影響を与えるからである。
【0003】
そこで考案されたのが前述のような機械的でない、電気的な静電吸着力を利用した被処理ウエハの支持面への保持方法である。この方法では支持面下に組み込まれた電極に高電位を与え、支持面を構成する絶縁誘電体に分布した静電気と、被処理ウエハに分極帯電した電荷による静電気のクーロン力あるいはジャンセン−ラーベック力によって、被処理ウエハを支持面に吸着させる方法である。従い、被処理ウエハの表面上には前述のクランプは存在しない。特許出願の傾向から判断すると、日本国ではこの関連の技術進歩はおよそ1980年代の後半から始まっていると考えられ、現在半導体製造装置では不可欠な技術に成長している。
【0004】
近年の半導体素子製造では、プラズマ雰囲気中での静電チャックの耐性を増すことに加え、静電チャックの印加電圧から発生する電界によるイオンの飛跡の乱れによる、同装置内での処理の不均一性を無くすことが望まれている。後者に関して、一次処理粒子がイオンである場合も影響が見られるが、電子露光装置などで使われる質量の小さい電子では、問題はより顕著に現れることになる。以下これら項目についての従来技術の説明を行う。
【0005】
特開平07−335732号では、CVD処理装置で反応性プラズマに対して静電チャック表面の耐性を高めるため、柔軟性とプラズマ耐性をもつポリイミド表面にセラミックをコーティングすることで、両材料の長所を引き出す考案が提示されている。特開平9−323234では、静電チャック表面にポリイミド層を設け、そのプラズマ雰囲気での熱的耐性を向上させるために、直接冷却の溝を施したものが開示されている。また、特開平10−209257号では、接着手法によりポリイミド絶縁層を基盤に固着させるが、その厚みを薄くすることにより被処理ウエハの冷却効果を向上させる技術が開示されている。
特開2002−100669号では、ポリイミド層を泳動電着法により形成することが開示されている。
【0006】
上記従来技術では以下二つの項目についての技術開示であることが伺える。第一に、材質ポリイミドのプラズマ雰囲気中での耐性を認めたうえで、さらにその耐性を熱的な問題も含めて、解決するための提案であること。第二にポリイミド層の形成方法についての技術開示であること。
【0007】
【発明が解決しようとする課題】
しかし、従来技術では静電チャックに印加する電圧を極力低くする手法についての技術開示はされてない。プラズマ中のイオンあるいは、従来のイオン注入で使用するイオン、さらにイオンよりも質量の小さい電子を使う、たとえば電子ビーム露光装置、などの一次粒子の飛跡が静電チャックの印加電圧による影響うけることにより、ウエハあるいはガラスなどの基盤全表面での均一処理が困難になっているが、これを解決することが本発明の課題である。近年の基盤の大面積化において、本課題はさらに重要度が高まっている。
【0008】
【課題を解決するための手段】
上記課題を解決するために、静電チャック表面はプラズマ耐性を保つためにポリイミドなどの高分子樹脂材質とし、この直下に比誘電率の非常に高い絶縁層を設けることで、実質の吸着力を向上させる。同時に静電チャックには双極性の電極を形成することで、静電チャック部外の周辺への電界もれを少なくする。
【0009】
【発明の実施の形態】
以下、高分子樹脂表面層、強誘電体セラミック層を含有する双極型電極静電チャック1の一実施例を図1に基づいて説明する。下部は基盤9である。この部分は通常熱伝導度の高い銅、あるいはアルミニューム金属で製作し、被処理基盤を冷却、あるいは一定の恒温状態に保つよう制御する。また、図示していないが基盤9に高温の媒体を流すことで、数百℃極温状態への設定も可能となる。この基盤9の上層にエポキシ系、ポリイミド系、ポリビニールブチラール系などの第一の接着層8により第一の高分子樹脂層6を接着する。この高分子樹脂層にたとえば、ポリイミドを使用する。ポリイミド材質は−270℃〜400℃までの耐熱性を有し、高弾性、機械的強度も合わせ持つ。また放射線、薬品などに対する耐性もある。従い、物理的、電気的、化学的に強い高分子材料で、半導体製造装置にも良く使われる材質である。ポリイミド材質の比誘電率はおよそ5である。この第一の高分子樹脂層6の上部に、前記と同様にエポキシ系、ポリイミド系、ポリビニールブチラール系などの第二の接着層5を介して、誘電体層4を接着する。この誘電体層4の厚さはおよそ500μmである。この誘電体層4は強誘電体のセラミックであるチタン酸ジルコン酸鉛、あるいはチタン酸バリウムなどを使用する。これらの強誘電体は単品のコンデンサー部品、圧電素子などに使われ、近年では半導体集積素子に形成するコンデンサーにも使用される高い比誘電率を有する物質である。チタン酸ジルコン酸鉛、チタン酸バリウムの比誘電率は、それぞれおよそ2000、100〜5000程度を有す。この誘電体層4に、あらかじめ吸着電極7を、印刷手法あるいはペースト状の金属、例えばニッケル、クロム、銀、白金を塗布するなどして形成する。形成後の吸着電極7の厚さは1〜5μmである。磁場の影響を回避するため、吸着電極7の材質は非磁性体の導電金属で形成することが望ましい。本実施例では双極型の吸着電極7を形成する。誘電体層4の上部に表面層である、第二の高分子樹脂層2を、前記同様にエポキシ系、ポリイミド系、ポリビニールブチラール系などの第三の接着層3により接着する。第二の高分子樹脂層2の材質としてポリイミドを使用する。第二の高分子樹脂層2と第三の接着層3の合計の厚さはおよそ50μmである。
【0010】
【発明の効果】
本発明の実施例による、ポリイミド表面層、強誘電体セラミック層を含有する双極型電極静電チャックでは、強誘電体セラミック層がない従来の同型ポリイミド表面層、双極型電極静電チャックに比較し3.8倍の吸着力を発揮することが理論的、実験的に検証されている。誘電体層4がチタン酸ジルコン酸鉛性で誘電率2000、厚さ500μm、表面である第二の高分子樹脂層2をポリイミドとして、その直下部の第三の接着層3との合計の厚さを50μm、本二層の合成非誘電率を4とすると、誘電体層を含む上部の合成比誘電率εは1819となる。吸着力の指針である合成誘電率をその合計厚さの2乗で割った値、すなわちε/d=1819/(500+50)=6.0×10−3、と算出される。一方強誘電体セラミック層がない従来の場合には、同様にε/d=4/(50)=1.6×10−3、と算出される。本実施例での吸着力は従来の場合に比較し6.0/1.6=3.8倍高いことを示す。この効果は実験的にも確認されている。結果静電チャックに印加するに必要な電圧は1/3.8に比例して少なくできる。実際の電圧としては12インチのシリコン半導体ウエハでコンディションにもよるが±0.2から十分な吸着が確認されている。この効果は、従来より低い電圧で静電チャックの吸着力を確保できるため、その電位による処理装置の一次粒子などへの影響を少なくできるrとともに、従来の電圧でより吸着力を増加することが可能になる。
【図面の簡単な説明】
【図1】高分子樹脂表面層、強誘電体セラミック層を含有する双極性電極静電チャックの一実施形態の模式図
【符号の説明】
1 高分子樹脂表面層、高誘電体セラミック層を含有する双極型電極静電チャック
2 第二の高分子樹脂層
3 第三の接着層
4 誘電体層
5 第二の接着層
6 第一の高分子樹脂層
7 吸着電極
8 第一の接着層
9 基盤
10 吸着電位供給部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, an etching process used in a semiconductor device manufacturing process, a plasma processing device such as a thin film formed by chemical vapor deposition (CVD), an electron exposure device, an ion implantation device, and an ion doping used in a liquid crystal panel. The present invention relates to a technique of electrostatic chucking of a semiconductor wafer provided in an apparatus or the like, that is, a so-called electrostatic chuck.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor manufacturing apparatus, it is necessary to position a semiconductor wafer as an object to be processed in the apparatus and to secure firm holding of the semiconductor wafer on a support surface. At the same time, this action must not cause any damage to the semiconductor wafer to be processed. One generation ago, a clamping method in which the surface of a semiconductor wafer was held on a supporting surface by a nail or the like by some mechanism was generally used. At present, processing standards are severely limited, and it is necessary to control the amount of contamination on a semiconductor wafer to be processed. This is because the material of the clamp itself, often an aluminum material, is released by being exposed to the processing plasma, or in the case of ion implantation, is sputtered and floated from the clamp base material by the ion irradiation and falls on the semiconductor wafer to be processed. This significantly affects the characteristics and yield of the semiconductor element.
[0003]
Therefore, a method for holding a wafer to be processed on a supporting surface using an electric electrostatic attraction force, which is not mechanical as described above, has been devised. In this method, a high potential is applied to an electrode incorporated below the support surface, and the static electricity distributed on the insulating dielectric material constituting the support surface and the Coulomb force or the Jansen-Rahbek force of the static electricity due to the polarized charge on the wafer to be processed. This is a method in which a wafer to be processed is adsorbed on a support surface. Therefore, the above-mentioned clamp does not exist on the surface of the wafer to be processed. Judging from the tendency of patent applications, it is considered that in Japan, this related technological advance started from about the latter half of the 1980's, and has now become an indispensable technology in semiconductor manufacturing equipment.
[0004]
In recent years, in semiconductor device manufacturing, in addition to increasing the resistance of an electrostatic chuck in a plasma atmosphere, unevenness in ion track caused by an electric field generated from a voltage applied to the electrostatic chuck causes non-uniform processing in the apparatus. It is desired to eliminate the nature. Regarding the latter, the effect is also seen when the primary processing particles are ions, but the problem becomes more pronounced with small mass electrons used in electronic exposure equipment and the like. Hereinafter, a description of the related art regarding these items will be given.
[0005]
Japanese Patent Application Laid-Open No. 07-335732 discloses that in order to increase the resistance of a surface of an electrostatic chuck to reactive plasma in a CVD processing apparatus, a ceramic surface is coated on a polyimide surface having flexibility and plasma resistance so that the advantages of both materials can be obtained. The idea to draw is presented. Japanese Patent Application Laid-Open No. 9-323234 discloses an electrostatic chuck in which a polyimide layer is provided on the surface and a groove for direct cooling is provided in order to improve thermal resistance in a plasma atmosphere. Japanese Patent Application Laid-Open No. Hei 10-209257 discloses a technique in which a polyimide insulating layer is fixed to a base by an adhesive method, and the cooling effect of a wafer to be processed is improved by reducing its thickness.
JP-A-2002-100669 discloses that a polyimide layer is formed by an electrophoretic deposition method.
[0006]
It can be said that the above-mentioned prior art is a technical disclosure of the following two items. First, it is a proposal for recognizing the resistance of a polyimide material in a plasma atmosphere and further solving the resistance including thermal problems. Secondly, it is a technical disclosure on a method for forming a polyimide layer.
[0007]
[Problems to be solved by the invention]
However, the prior art does not disclose any technique for reducing the voltage applied to the electrostatic chuck as much as possible. Using ions in plasma or ions used in conventional ion implantation, and electrons with a smaller mass than ions, such as electron beam exposure equipment, the tracks of primary particles are affected by the voltage applied to the electrostatic chuck. However, it is difficult to perform uniform processing on the entire surface of a substrate such as a wafer or glass, and it is an object of the present invention to solve this problem. In recent years, with the area of the base increased, this problem has become even more important.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the surface of the electrostatic chuck is made of a polymer resin material such as polyimide in order to maintain plasma resistance, and an insulating layer having a very high relative dielectric constant is provided immediately below the surface, thereby realizing a substantial attraction force. Improve. At the same time, by forming a bipolar electrode on the electrostatic chuck, leakage of an electric field to the periphery outside the electrostatic chuck portion is reduced.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a bipolar electrode electrostatic chuck 1 containing a polymer resin surface layer and a ferroelectric ceramic layer will be described with reference to FIG. The lower part is the base 9. This part is usually made of copper or aluminum metal having high thermal conductivity, and is controlled so that the substrate to be processed is cooled or kept at a constant temperature. Although not shown, by setting a high-temperature medium to flow through the substrate 9, it is possible to set the temperature to an extremely high temperature of several hundred degrees Celsius. The first polymer resin layer 6 is adhered to the upper layer of the base 9 by a first adhesive layer 8 of epoxy, polyimide, polyvinyl butyral or the like. For example, polyimide is used for the polymer resin layer. The polyimide material has heat resistance from -270 ° C to 400 ° C, and also has high elasticity and mechanical strength. It also has resistance to radiation and chemicals. Therefore, it is a polymer material that is physically, electrically, and chemically strong and is often used in semiconductor manufacturing equipment. The relative permittivity of the polyimide material is about 5. The dielectric layer 4 is adhered to the upper portion of the first polymer resin layer 6 via the second adhesive layer 5 of epoxy, polyimide, polyvinyl butyral or the like as described above. The thickness of the dielectric layer 4 is approximately 500 μm. The dielectric layer 4 uses ferroelectric ceramics such as lead zirconate titanate or barium titanate. These ferroelectric substances are substances having a high relative dielectric constant, which are used for individual capacitor parts, piezoelectric elements and the like, and are also used for capacitors formed in semiconductor integrated elements in recent years. The relative dielectric constants of lead zirconate titanate and barium titanate are about 2,000 and about 100 to 5,000, respectively. The adsorption electrode 7 is formed on the dielectric layer 4 in advance by a printing method or by applying a paste-like metal such as nickel, chromium, silver, or platinum. The thickness of the suction electrode 7 after formation is 1 to 5 μm. In order to avoid the influence of the magnetic field, the material of the attraction electrode 7 is desirably formed of a non-magnetic conductive metal. In this embodiment, a bipolar adsorption electrode 7 is formed. A second polymer resin layer 2, which is a surface layer, is bonded to the upper part of the dielectric layer 4 by a third adhesive layer 3 of epoxy, polyimide, polyvinyl butyral or the like as described above. Polyimide is used as the material of the second polymer resin layer 2. The total thickness of the second polymer resin layer 2 and the third adhesive layer 3 is about 50 μm.
[0010]
【The invention's effect】
The bipolar electrode electrostatic chuck including the polyimide surface layer and the ferroelectric ceramic layer according to the embodiment of the present invention is compared with the conventional same type polyimide surface layer and the bipolar electrode electrostatic chuck without the ferroelectric ceramic layer. It has been verified theoretically and experimentally that it exhibits 3.8 times the adsorption power. The dielectric layer 4 is made of lead zirconate titanate and has a dielectric constant of 2,000, a thickness of 500 μm, and a total thickness of the second polymer resin layer 2 on the surface as polyimide, which is directly below the third adhesive layer 3. Assuming that the thickness is 50 μm and the combined non-dielectric constant of the two layers is 4, the combined relative dielectric constant ε of the upper portion including the dielectric layer is 1819. It is calculated as a value obtained by dividing the composite dielectric constant, which is a guide of the attraction force, by the square of the total thickness, that is, ε / d = 1819 / (500 + 50) 2 = 6.0 × 10 −3 . On the other hand, in the conventional case without the ferroelectric ceramic layer, it is similarly calculated as ε / d = 4 / (50) 2 = 1.6 × 10 −3 . This indicates that the attraction force in this example is 6.0 / 1.6 = 3.8 times higher than that of the conventional case. This effect has been confirmed experimentally. As a result, the voltage required to be applied to the electrostatic chuck can be reduced in proportion to 1 / 3.8. Although the actual voltage varies depending on the condition for a 12-inch silicon semiconductor wafer, a sufficient suction of ± 0.2 has been confirmed. This effect can secure the chucking force of the electrostatic chuck at a lower voltage than before, so that the influence of the potential on the primary particles of the processing apparatus can be reduced, and the chucking force can be increased with the conventional voltage. Will be possible.
[Brief description of the drawings]
FIG. 1 is a schematic view of one embodiment of a bipolar electrode electrostatic chuck containing a polymer resin surface layer and a ferroelectric ceramic layer.
DESCRIPTION OF SYMBOLS 1 Bipolar electrode electrostatic chuck containing polymer resin surface layer and high dielectric ceramic layer 2 Second polymer resin layer 3 Third adhesive layer 4 Dielectric layer 5 Second adhesive layer 6 First height Molecular resin layer 7 Adsorption electrode 8 First adhesive layer 9 Base 10 Adsorption potential supply section

Claims (5)

金属性基盤の上部に第一の高分子樹脂による絶縁層を介して吸着電極を有し、第二の高分子樹脂による絶縁層を表面に有する静電チャックにて、前記第二高分子樹脂絶縁層下部に、高い比誘電率を有する誘電体材質で形成される一以上の絶縁層を含有することを特徴とする、静電チャック。An electrostatic chuck having an adsorption electrode on an upper surface of a metal base via an insulating layer made of a first polymer resin, and an insulating layer made of a second polymer resin on the surface is used to insulate the second polymer resin. An electrostatic chuck characterized in that one or more insulating layers formed of a dielectric material having a high relative permittivity are included below the layer. 前記高分子樹脂膜の材質をポリイミド、あるいは導電性ポリイミドとし、接着材を含む前記高分子樹脂膜の厚さを20〜70μmとし、前記高分子樹脂膜の体積抵抗値を1010〜1016Ω・cmとすることを特徴とする、請求項1の静電チャック。The material of the polymer resin film is polyimide or conductive polyimide, the thickness of the polymer resin film including an adhesive is 20 to 70 μm, and the volume resistance value of the polymer resin film is 10 10 to 10 16 Ω. 2. The electrostatic chuck according to claim 1, wherein the value is cm. 前記誘電体材質をチタン酸ジルコン酸鉛のセラミックとし、前記高誘電体層の厚さを300〜700μm、前記高誘電体層の比誘電率を1000〜3000とすることを特徴とする、請求項1の静電チャック。The dielectric material is a ceramic of lead zirconate titanate, the high dielectric layer has a thickness of 300 to 700 μm, and the high dielectric layer has a relative dielectric constant of 1000 to 3000. 1 electrostatic chuck. 前記誘電体材質をチタン酸バリウムのセラミックとし、前記高誘電体層の厚さを300〜700μm、前記高誘電体層の比誘電率を100〜5000とすることを特徴とする、請求項1の静電チャック。2. The high dielectric layer according to claim 1, wherein the dielectric material is a barium titanate ceramic, the high dielectric layer has a thickness of 300 to 700 [mu] m, and the high dielectric layer has a relative dielectric constant of 100 to 5000. Electrostatic chuck. 前記吸着電極を双極型とし、当該極間印加電位を±0.2〜±3kVとすることを特徴とする、請求項1の静電チャック。2. The electrostatic chuck according to claim 1, wherein the attraction electrode is of a bipolar type, and a potential applied between the electrodes is ± 0.2 to ± 3 kV.
JP2003183535A 2003-05-23 2003-05-23 Electrostatic chuck Pending JP2004349665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183535A JP2004349665A (en) 2003-05-23 2003-05-23 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183535A JP2004349665A (en) 2003-05-23 2003-05-23 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2004349665A true JP2004349665A (en) 2004-12-09

Family

ID=33535306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183535A Pending JP2004349665A (en) 2003-05-23 2003-05-23 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2004349665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205510A (en) * 2008-05-15 2008-09-04 Ngk Spark Plug Co Ltd Electrostatic chuck and electrostatic chuck device
JP2015092632A (en) * 2008-04-07 2015-05-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of transfer by means of ferroelectric substrate
JP2016208054A (en) * 2016-08-18 2016-12-08 芝浦メカトロニクス株式会社 Table and plasma processing apparatus
GB2552450A (en) * 2016-05-18 2018-01-31 Aylesbury Automation Ltd Electroadhesive gripper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092632A (en) * 2008-04-07 2015-05-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of transfer by means of ferroelectric substrate
JP2008205510A (en) * 2008-05-15 2008-09-04 Ngk Spark Plug Co Ltd Electrostatic chuck and electrostatic chuck device
JP4612707B2 (en) * 2008-05-15 2011-01-12 日本特殊陶業株式会社 Electrostatic chuck, electrostatic chuck device, and manufacturing method of electrostatic chuck
GB2552450A (en) * 2016-05-18 2018-01-31 Aylesbury Automation Ltd Electroadhesive gripper
JP2016208054A (en) * 2016-08-18 2016-12-08 芝浦メカトロニクス株式会社 Table and plasma processing apparatus

Similar Documents

Publication Publication Date Title
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
JP4354983B2 (en) Substrate processing equipment
KR20020019030A (en) Electrostatic chuck and treating device
US8295026B2 (en) Electrostatic chuck and substrate processing apparatus having same
JP3292270B2 (en) Electrostatic suction device
KR19990063844A (en) Method and device for electrostatic holding of dielectric material in vacuum processor
JPH0652758B2 (en) Electrostatic check
WO2021111732A1 (en) Attracting-and-holding device and object surface machining method
JP5203663B2 (en) Substrate structure and method for manufacturing substrate structure
JP2521471B2 (en) Electrostatic suction device
JPH07335732A (en) Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture
JP2006080509A (en) Thin substrate support
TWI579875B (en) Variable power capacitor and its control method and use the same
JPH10154745A (en) Electrostatic attracting device
JP2004349665A (en) Electrostatic chuck
JPH07130826A (en) Electrostatic chuck
JP2006066857A (en) Bipolar electrostatic chuck
JP2000183143A (en) Electrostatic chuck
JPH07263527A (en) Electrostatic attraction device
JP2006253703A (en) Electrostatic chuck and insulating substrate electrostatic attraction treatment method
JP2006157032A (en) Electrostatic chuck, electrostatic attraction method, heating/cooling treatment device and electrostatic attraction treatment device
JPH02130915A (en) Plasma processing equipment
JP2006273447A (en) Substrate attracting method and device
JP2001217304A (en) Substrate stage, substrate processing apparatus and method using the substrate stage
JP2002368071A (en) Treatment board