JP2010089522A - Method for manufacturing rolling bearing unit for supporting wheel - Google Patents

Method for manufacturing rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2010089522A
JP2010089522A JP2008258196A JP2008258196A JP2010089522A JP 2010089522 A JP2010089522 A JP 2010089522A JP 2008258196 A JP2008258196 A JP 2008258196A JP 2008258196 A JP2008258196 A JP 2008258196A JP 2010089522 A JP2010089522 A JP 2010089522A
Authority
JP
Japan
Prior art keywords
peripheral surface
hub body
axial direction
inner ring
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008258196A
Other languages
Japanese (ja)
Inventor
Toshiaki Maeda
俊秋 前田
Yasuyuki Shimizu
康之 清水
Yutaka Yasuda
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008258196A priority Critical patent/JP2010089522A/en
Publication of JP2010089522A publication Critical patent/JP2010089522A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain a manufacturing method capable of suppressing a value of remained tensile stress generated on an inner diameter side portion existing at an inner side in a radial direction smaller than that of a cured layer with formation of the cured layer on an outer peripheral surface of an intermediate part of a hub body 9 by high frequency quenching. <P>SOLUTION: A recession hole 17 is formed on a bottom part of a recession part 12 provided on an outer end surface in an axial direction of the hub body 9 after the cured layer is formed. A part of a stress line of the remained tensile stress existing at an inner diameter side portion of the cured layer is cut by formation of the recession hole 17 and a value of the remained tensile stress applied to the inner diameter side portion can be reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動車の懸架装置に対して車輪を回転自在に支持する為の、車輪支持用転がり軸受ユニットの製造方法の改良に関し、軽量でしかも十分な耐久性を有する車輪支持用転がり軸受ユニットを得られる製造方法の実現を図るものである。   The present invention relates to an improvement in a method of manufacturing a wheel-supporting rolling bearing unit for rotatably supporting a wheel with respect to a suspension device of an automobile, and relates to a wheel-supporting rolling bearing unit that is lightweight and has sufficient durability. The realization of the resulting manufacturing method is intended.

自動車の懸架装置に対して車輪を回転自在に支持する為に、図4に示す様な車輪支持用転がり軸受ユニット1が使用されている。この車輪支持用転がり軸受ユニット1は、外輪2の内径側にハブ3を、複数個の転動体4、4を介して、回転自在に支持している。このうちの外輪2は、中炭素鋼製で、内周面に複列の外輪軌道5、5を、外周面に静止側フランジ6を、それぞれ有する。この様な外輪2は、使用時にはこの静止側フランジ6を上記懸架装置を構成するナックルに結合固定し、回転する事はない。又、上記ハブ3は、外周面に複列の内輪軌道7、7と回転側フランジ8とを有し、使用時に車輪と共に回転する。上記各転動体4、4は、軸受鋼或いはセラミック製で、上記両外輪軌道5、5と上記両内輪軌道7、7との間に、両列毎に複数個ずつ、転動自在に設けられている。又、上記回転側フランジ8には、使用状態で、車輪、及び、ディスクロータ等の制動用回転体を支持固定する。   In order to rotatably support the wheel with respect to the automobile suspension system, a wheel bearing rolling bearing unit 1 as shown in FIG. 4 is used. In this wheel support rolling bearing unit 1, a hub 3 is rotatably supported via a plurality of rolling elements 4, 4 on the inner diameter side of an outer ring 2. Out of these, the outer ring 2 is made of medium carbon steel, and has double-row outer ring raceways 5 and 5 on the inner peripheral surface and a stationary flange 6 on the outer peripheral surface. Such an outer ring 2 does not rotate when the stationary flange 6 is coupled and fixed to the knuckle constituting the suspension device when used. The hub 3 has double-row inner ring raceways 7 and 7 and a rotation side flange 8 on the outer peripheral surface, and rotates together with the wheel when in use. Each of the rolling elements 4 and 4 is made of bearing steel or ceramic and is provided between the outer ring raceways 5 and 5 and the inner ring raceways 7 and 7 so as to be freely rollable in both rows. ing. In addition, the rotating flange 8 supports and fixes a braking rotator such as a wheel and a disc rotor in use.

又、上記ハブ3は、ハブ本体9と内輪10とを結合固定して成る。このうちのハブ本体9は、中炭素鋼製で、軸方向外端寄り部分(軸方向に関して外とは、懸架装置に組み付けた状態で車体の幅方向外側となる側を言う。本明細書及び特許請求の範囲全体で同じ。)の外周面に上記回転側フランジ8を、軸方向中間部外周面に、上記複列の内輪軌道7、7のうち軸方向外側の内輪軌道7を、それぞれ直接形成している。又、上記ハブ本体9の軸方向外端部には、上記車輪及び上記制動用回転体を外嵌位置決めする為の、パイロット部と呼ばれる円筒部11を設けている。そして、この円筒部11の内径側を含め、上記ハブ本体9の軸方向外端部に、このハブ本体9の軸方向外端面の中央部に開口する凹部12を形成している。   The hub 3 is formed by connecting and fixing a hub body 9 and an inner ring 10. Of these, the hub main body 9 is made of medium carbon steel, and is a portion near the outer end in the axial direction (outside with respect to the axial direction means the side that is the outer side in the width direction of the vehicle body when assembled to the suspension device. The same applies to the entire claims.) The rotation-side flange 8 is directly attached to the outer peripheral surface of the inner ring raceway and the inner ring raceway 7 on the outer side in the axial direction of the double-row inner ring raceways 7 and 7 is directly Forming. A cylindrical portion 11 called a pilot portion is provided at the outer end of the hub body 9 in the axial direction for positioning the wheel and the braking rotator. A recess 12 is formed at the center of the axially outer end surface of the hub body 9 at the axially outer end of the hub body 9 including the inner diameter side of the cylindrical part 11.

一方、上記内輪10は、軸受鋼製で、外周面に、上記複列の内輪軌道7、7のうち軸方向内側(軸方向に関して内とは、懸架装置に組み付けた状態で車体の幅方向中央側となる側を言う。本明細書及び特許請求の範囲全体で同じ。)の内輪軌道7を形成している。この様な内輪10は、上記ハブ本体9の軸方向内端寄り部分に形成された小径段部13に外嵌固定した状態で、このハブ本体9の軸方向内端部に形成したかしめ部14により抑え付けて、このハブ本体9に対し結合固定している。尚、このハブ本体9に上記内輪10を結合固定する為に、このハブ本体9の軸方向内端部に設けた雄ねじ部にナットを螺合させる構造も、広く知られている。   On the other hand, the inner ring 10 is made of bearing steel and has an outer circumferential surface on the inner side in the axial direction of the double-row inner ring raceways 7 and 7. The inner ring raceway 7 is formed, which is the same in the entire specification and claims. Such an inner ring 10 is caulked 14 formed at the inner end in the axial direction of the hub body 9 in a state where the inner ring 10 is externally fitted and fixed to a small-diameter step 13 formed near the inner end of the hub body 9 in the axial direction. The hub body 9 is coupled and fixed to the hub body 9. A structure in which a nut is screwed to a male screw portion provided at an axially inner end portion of the hub body 9 in order to connect and fix the inner ring 10 to the hub body 9 is also widely known.

何れの構造の場合も、上記ハブ3の一部を焼き入れ硬化している。先ず、上記内輪10に関しては、全体を加熱後に焼き入れ油中に浸漬する、所謂ズブ焼き入れにより、全体を硬化させている。一方、上記ハブ本体9に関しては、図5に斜格子で示した部分を、高周波熱処理により焼き入れ硬化させる事で、当該部分に硬化層15を形成している。この硬化層15は、上記ハブ本体9の中間部外径寄り部分(外周面を含む表面層部分)で、前記回転側フランジ8の軸方向内側面側の基端部から、上記小径段部13の軸方向外半部に掛けての部分に形成している。この様な部分に硬化層15を形成する事で、上記回転側フランジ8のモーメント剛性の確保と、前記軸方向外側の内輪軌道7の転がり疲れ寿命の確保と、上記小径段部13のフレッチング摩耗の防止と、上記ハブ本体9全体としての曲げ剛性の確保とを図る。このハブ本体9の軸方向外端面に開口した上記凹部12は、このハブ本体9の軽量化に寄与する。   In any structure, a part of the hub 3 is quenched and hardened. First, the entire inner ring 10 is cured by so-called submerged quenching in which the entire inner ring 10 is heated and immersed in quenching oil. On the other hand, with respect to the hub main body 9, the hardened layer 15 is formed in the portion shown by the oblique lattice in FIG. 5 by quenching and hardening by high-frequency heat treatment. This hardened layer 15 is a portion closer to the outer diameter of the intermediate portion of the hub body 9 (surface layer portion including the outer peripheral surface), and from the proximal end portion on the inner side in the axial direction of the rotation side flange 8, the small diameter step portion 13. It is formed in the part hung on the outer half in the axial direction. By forming the hardened layer 15 in such a portion, the moment rigidity of the rotation side flange 8 is ensured, the rolling fatigue life of the inner ring raceway 7 on the outer side in the axial direction is ensured, and the fretting wear of the small diameter step portion 13 is achieved. And to secure the bending rigidity of the hub body 9 as a whole. The concave portion 12 opened on the outer end surface in the axial direction of the hub body 9 contributes to weight reduction of the hub body 9.

上述の様なハブ本体9を含む車輪支持用転がり軸受ユニット1の使用時に上記ハブ3には、大きな力(荷重)が加わる。特に、旋回走行時に上記回転側フランジ8には、この回転側フランジ8に支持固定した車輪と路面との接触部(接地面)から、大きなモーメントが加わる。この様なモーメントは、上記回転側フランジ8の基端部(内径側端部)と上記ハブ本体9の本体部分との連続部16で支承する。この連続部16の厚さは、上記凹部12の存在により元々小さいだけでなく、上記硬化層15の存在に基づき、靱性を確保し易い、未焼き入れの(所謂生のままの)部分の厚さが小さい。この為、何らの対策も施さないと、上記凹部12の容積を大きくする事による軽量化と、上記連続部16の強度及び剛性の確保とを両立させる事ができない。   When the wheel supporting rolling bearing unit 1 including the hub body 9 as described above is used, a large force (load) is applied to the hub 3. In particular, during turning, a large moment is applied to the rotation side flange 8 from the contact portion (ground contact surface) between the wheel supported on and fixed to the rotation side flange 8 and the road surface. Such a moment is supported by a continuous portion 16 between the base end portion (inner diameter side end portion) of the rotation side flange 8 and the main body portion of the hub main body 9. The thickness of the continuous portion 16 is not only originally small due to the presence of the concave portion 12, but also based on the presence of the hardened layer 15, the thickness of an unquenched (so-called raw) portion that is easy to ensure toughness. Is small. For this reason, unless any measures are taken, it is impossible to achieve both weight reduction by increasing the volume of the concave portion 12 and securing the strength and rigidity of the continuous portion 16.

この為従来から、例えば特許文献1〜4に記載された様な手段により、ハブ本体の強度、剛性、耐久性の向上を図る事が考えられている。このうちの特許文献1には、ハブ本体を調質処理する事により、このハブ本体の強度を確保する技術が記載されている。又、特許文献2には、凹部の内面の脱炭層を除去してこの内面を滑らかにし、更にこの内面にショット・ピーニング又はターニング加工により残留圧縮応力を発生させて、上記内面を起点とする亀裂等の損傷を発生しにくくする技術が記載されている。又、特許文献3には、凹部の内周面部分に、径方向内方に突出する突起を形成して、この凹部の周囲部分の強度及び剛性を向上させる技術が記載されている。更に、特許文献4には、ハブ本体を造る為の鍛造加工の最後に凹部の内面部分を冷却して、この部分に微細フェライト・パーライト組織等の非標準組織の層を形成し、上記ハブ本体の強度及び疲れ寿命を向上させる技術が記載されている。   For this reason, conventionally, it has been considered to improve the strength, rigidity and durability of the hub body by means such as those described in Patent Documents 1 to 4, for example. Of these, Patent Document 1 describes a technique for securing the strength of the hub body by subjecting the hub body to a tempering treatment. Further, Patent Document 2 discloses that a crack is caused by removing the decarburized layer on the inner surface of the recess to make the inner surface smooth, and further generating residual compressive stress on the inner surface by shot peening or turning, and starting from the inner surface. The technique which makes it hard to generate | occur | produce damages, such as this, is described. Patent Document 3 describes a technique for forming a protrusion projecting radially inwardly on the inner peripheral surface portion of the recess to improve the strength and rigidity of the peripheral portion of the recess. Further, in Patent Document 4, the inner surface portion of the recess is cooled at the end of the forging process for manufacturing the hub body, and a layer of a non-standard structure such as a fine ferrite / pearlite structure is formed on this portion. Techniques for improving the strength and fatigue life of the steel are described.

上述の様な特許文献1〜4に記載された従来技術の場合、それなりの効果を得られるが、コストを抑えつつ、ハブ本体9の耐久性を確保しつつ、より軽量化を図る面からは、改良の余地がある事が、本発明者等の研究により分かった。即ち、上記特許文献1〜4に記載された従来技術では、コストを抑えつつ、前記硬化層15の加工に伴って、上記ハブ本体9のうちで前記連続部16に亀裂が発生し易くなるのを防止できない。即ち、本発明者等の研究により、この連続部16を含む、上記硬化層15の径方向内側に存在する内径側部分に、この硬化層15の加工に伴って大きな残留引っ張り応力が発生し、上記亀裂が発生し易くなる事が分かった。この点に就いて、図4を参照しつつ説明する。   In the case of the prior art described in Patent Documents 1 to 4 as described above, a certain effect can be obtained, but from the aspect of further reducing the weight while securing the durability of the hub body 9 while suppressing the cost. The inventors have found that there is room for improvement. That is, in the conventional techniques described in Patent Documents 1 to 4, cracks are likely to occur in the continuous portion 16 in the hub body 9 with the processing of the hardened layer 15 while suppressing costs. Cannot be prevented. That is, due to the study by the present inventors, a large residual tensile stress is generated in the inner diameter side portion existing on the radially inner side of the hardened layer 15 including the continuous portion 16 as the hardened layer 15 is processed, It was found that the cracks are likely to occur. This point will be described with reference to FIG.

上記硬化層15を形成すべく、上記ハブ本体9の外周面の軸方向中間部を高周波焼き入れした後に急冷すると、上記硬化層15となるべき部分が、熱膨張後に急激に熱収縮する。この結果、この硬化層15部分には、図5に示す様に、残留圧縮応力が加わる。一方、上記ハブ本体9のうちでこの硬化層15の径方向内側に存在する内径側部分には、残留引っ張り応力が加わる。即ち、この内径側部分は、上記高周波焼き入れの為の加熱時に、熱伝導に伴って温度上昇する一方で、上記急冷時の温度低下は、上記硬化層15となるべき部分に比べて遅れる。そして、上記内径側部分が温度低下に伴って収縮する際には、既に上記硬化層15が形成されており、この硬化層15が上記内径側部分が熱収縮する事に対する抵抗となる。この内径側部分は、この様な硬化層15による抵抗に抗して熱収縮する事になり、その結果、この内径側部分に残留引っ張り応力が加わる。これら各応力のうち、残留圧縮応力は、亀裂損傷を抑える力として作用するが、残留引っ張り応力は、この損傷を助長する力として作用する。   When the intermediate portion in the axial direction of the outer peripheral surface of the hub body 9 is induction-quenched and then rapidly cooled to form the hardened layer 15, the portion that should become the hardened layer 15 rapidly shrinks after thermal expansion. As a result, residual compressive stress is applied to the hardened layer 15 as shown in FIG. On the other hand, a residual tensile stress is applied to the inner diameter side portion of the hub body 9 that is present on the radially inner side of the hardened layer 15. That is, the inner diameter side portion rises in temperature with heat conduction during heating for induction hardening, while the temperature drop during the rapid cooling is delayed as compared with the portion to be the hardened layer 15. And when the said inner diameter side part shrink | contracts with a temperature fall, the said hardened layer 15 has already been formed, and this hardened layer 15 becomes resistance with respect to the said inner diameter side part thermally contracting. This inner diameter side portion is thermally contracted against the resistance caused by such a hardened layer 15, and as a result, residual tensile stress is applied to the inner diameter side portion. Of these stresses, the residual compressive stress acts as a force that suppresses crack damage, while the residual tensile stress acts as a force that promotes this damage.

この様に、上記内径側部分に残留引っ張り応力が作用した状態で、前記モーメントに伴ってこの部分に引っ張り方向の応力が加わると、この内径側部分を起点として上記ハブ本体9に、亀裂損傷が発生し易くなる。図6は、この様に残留引っ張り応力が作用する事で、亀裂損傷が発生し易くなる状況を、修正グッドマン線図に表したものである。この図6中、実線αはグッドマン線を、破線βは降伏線を、それぞれ表している。応力振幅が所定値(一定)であると仮定し、平均応力が0であるイ点を起点として、平均応力が引っ張り応力になると、この平均応力と応力振幅との組み合わせが、グッドマン線αの上側に移動し、特に、図6のロ点で示す様に著しい場合には、降伏点を越え、上記亀裂損傷が発生する可能性が高くなる。又、この様な原因での亀裂損傷は、前記ハブ本体9の軽量化をより進めるべく、前記凹部12の容積を増大させた(軸方向に関する深さを大きくした)場合に著しくなる。
前述の特許文献1〜4のうちの特許文献1、3、4に記載された従来技術は、この様な原因による亀裂損傷を抑えられるものではない。これに対して、特許文献2に記載された従来技術は、この様な原因による亀裂損傷を抑えられるが、その為にショット・ピーニング又はターニング加工の工程を新たに追加する必要があり、製造コストが上昇すると言った問題を生じる。
In this way, when residual tensile stress is applied to the inner diameter side portion and a stress in the tensile direction is applied to the portion in accordance with the moment, crack damage is caused in the hub body 9 starting from the inner diameter side portion. It tends to occur. FIG. 6 is a modified Goodman diagram showing a situation in which crack damage is likely to occur due to the residual tensile stress acting in this manner. In FIG. 6, a solid line α represents a Goodman line, and a broken line β represents a yield line. Assuming that the stress amplitude is a predetermined value (constant) and the average stress becomes a tensile stress starting from point a where the average stress is 0, the combination of this average stress and the stress amplitude is above the Goodman line α. Especially, as shown by point B in FIG. 6, there is a high possibility that the crack damage will occur beyond the yield point. In addition, crack damage due to such a cause becomes significant when the volume of the recess 12 is increased (the depth in the axial direction is increased) in order to further reduce the weight of the hub body 9.
The conventional techniques described in Patent Documents 1, 3, and 4 among the aforementioned Patent Documents 1 to 4 cannot suppress crack damage due to such a cause. On the other hand, the conventional technique described in Patent Document 2 can suppress crack damage due to such a cause, but for that purpose, it is necessary to newly add a shot peening or turning process, and the manufacturing cost is reduced. Cause the problem of rising.

特開2005−3061号公報JP 2005-3061 A 特開2005−145313号公報JP 2005-145313 A 特開2006−143069号公報JP 2006-143069 A 特開2007−38804号公報JP 2007-38804 A

本発明は、上述の様な事情に鑑み、低コストで実施できて、ハブ本体の中間部外周面に高周波焼き入れにより硬化層を形成するのに伴って、この硬化層よりも径方向内側に存在する内径側部分に発生する残留引っ張り応力の値を小さく抑えられる、車輪支持用転がり軸受ユニットの製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can be implemented at a low cost, and as the hardened layer is formed on the outer peripheral surface of the intermediate portion of the hub body by induction hardening, the inner side in the radial direction of the hardened layer is formed. The present invention was invented to realize a method of manufacturing a wheel-supporting rolling bearing unit that can keep the value of the residual tensile stress generated in the existing inner diameter side portion small.

本発明の製造方法の対象となる車輪支持用転がり軸受ユニットは、外輪と、ハブと、複数の転動体とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有し、使用時にも回転しない。
又、上記ハブは、外周面に複列の内輪軌道を有し、使用時に車輪と共に回転するもので、ハブ本体と内輪とを結合固定して成る。このうちのハブ本体は、軸方向外端寄り部分の外周面に上記車輪を支持固定する為の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成すると共に、軸方向外端面の中央部に凹部を形成している。又、上記内輪は、外周面に軸方向内側の内輪軌道を形成したもので、上記ハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定されている。そして、このハブ本体の中間部外周面で少なくとも上記軸方向外側の内輪軌道を含む部分に、高周波焼き入れにより硬化層を形成している。
更に、上記各転動体は、上記両外輪軌道と上記両内輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられている。
A wheel-supporting rolling bearing unit that is an object of the manufacturing method of the present invention includes an outer ring, a hub, and a plurality of rolling elements.
Among these, the outer ring has a double row outer ring raceway on the inner peripheral surface, and does not rotate during use.
The hub has a double-row inner ring raceway on the outer peripheral surface, and rotates together with the wheel when in use. The hub main body and the inner ring are coupled and fixed. Of these, the hub body directly forms the rotation side flange for supporting and fixing the wheel on the outer peripheral surface near the outer end in the axial direction, and the inner ring raceway on the outer side in the axial direction on the outer peripheral surface in the axial direction. A recess is formed in the central portion of the outer end surface in the axial direction. The inner ring is formed with an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and is fitted and fixed to a small-diameter step portion formed near the inner end in the axial direction of the hub body. A hardened layer is formed by induction hardening at least on the outer peripheral surface of the intermediate portion of the hub body including the inner ring raceway on the outer side in the axial direction.
Further, a plurality of rolling elements are provided between the outer ring raceways and the inner ring raceways so as to be freely rollable in both rows.

この様な車輪支持用転がり軸受ユニットを造る為に、本発明の車輪支持用転がり軸受ユニットの製造方法は、上記ハブ本体の加工工程を工夫する。そして、上記硬化層よりも径方向内側に存在する内径側部分に発生する残留引っ張り応力の値を小さく抑える。
この為に本発明の車輪支持用転がり軸受ユニットの製造方法の発明の場合には、上記凹部の底部に凹孔を、上記硬化層を形成した後に形成する。この凹孔は、ハブ本体の中心軸上に形成し、その大きさは、このハブ本体の強度及び剛性の確保を考慮しつつ、本発明の目的との関係で、適切に規制する。例えば、(凹部の開口部の内径が40〜60mm程度である)一般的な乗用車用のハブ本体の場合で、内径を5〜8mm(例えば6〜7mm)程度、深さを8〜15mm(例えば10mm)程度とする。
In order to manufacture such a wheel-supporting rolling bearing unit, the manufacturing method of the wheel-supporting rolling bearing unit of the present invention devises the processing process of the hub body. And the value of the residual tensile stress which generate | occur | produces in the internal diameter side part which exists in a radial inside rather than the said hardened layer is suppressed small.
For this reason, in the case of the invention of the method for manufacturing the wheel-supporting rolling bearing unit of the present invention, the concave hole is formed at the bottom of the concave portion after the hardened layer is formed. The concave hole is formed on the central axis of the hub body, and the size thereof is appropriately regulated in relation to the object of the present invention, while ensuring the strength and rigidity of the hub body. For example, in the case of a general passenger car hub body (the inner diameter of the opening of the recess is about 40 to 60 mm), the inner diameter is about 5 to 8 mm (for example, 6 to 7 mm), and the depth is 8 to 15 mm (for example, 10mm).

上述の様な構成を有する本発明の車輪支持用転がり軸受ユニットの製造方法によれば、ハブ本体の中間部外周面に高周波焼き入れにより硬化層を形成するのに伴ってこの硬化層の内径側に存在する内径側部分に発生した、残留引っ張り応力の値を小さくできる。この結果、この内径側部分を起点とする、上記ハブ本体の亀裂損傷を発生しにくくできる。
即ち、本発明の車輪支持用転がり軸受ユニットの製造方法の場合には、凹部の底部に凹孔を形成する事により、内径側部分に存在する残留引っ張り応力の応力線の一部を切断し、この結果、この内径側部分に作用する残留引っ張り応力の値を低くできる。
更に、本発明の車輪支持用転がり軸受ユニットの製造方法の場合には、上記ハブ本体の亀裂損傷の発生を抑える為に、前述した特許文献2に記載された従来技術の様に、この亀裂損傷の発生を抑える為に専用の工程を加える必要がない。この為、この特許文献2に記載された従来技術に比べて、製造コストの上昇を抑えられる。
According to the method for manufacturing the wheel-supporting rolling bearing unit of the present invention having the above-described configuration, a hardened layer is formed on the outer peripheral surface of the intermediate portion of the hub body by induction hardening, and the inner diameter side of the hardened layer is formed. It is possible to reduce the value of the residual tensile stress generated in the inner diameter side portion. As a result, cracking damage to the hub body starting from the inner diameter side portion can be prevented.
That is, in the case of the method of manufacturing the wheel-supporting rolling bearing unit of the present invention, by forming a concave hole at the bottom of the concave portion, a part of the stress line of the residual tensile stress existing in the inner diameter side portion is cut, As a result, the value of the residual tensile stress acting on the inner diameter side portion can be reduced.
Further, in the case of the method of manufacturing the wheel-supporting rolling bearing unit of the present invention, in order to suppress the occurrence of crack damage of the hub body, the crack damage as in the prior art described in Patent Document 2 described above. It is not necessary to add a dedicated process to suppress the occurrence of For this reason, compared with the prior art described in this patent document 2, an increase in manufacturing cost can be suppressed.

図1は、本発明の実施の形態の1例を示している。本例の場合には、ハブ本体9の軸方向中間部で外周面を含む外径寄り部分に高周波焼き入れにより硬化層を形成した後、このハブ本体9の軸方向外端部に設けた凹部12の底部に凹孔17を形成する。この凹孔17は、ボール盤を使用した(ドリル刃による)切削加工により形成するもので、奥半部に存在して内径が一定である円筒面部18と、開口側半部に存在して開口部に向かうに従って内径が大きくなる傾斜面部19とから成る。この様な凹孔17の大きさは、上記円筒面部18の内径Rで5〜8mm程度、奥端部の摺鉢状部を除く部分の深さDで8〜15mm、上記傾斜面部19の開き角度θは50〜70度程度とする。   FIG. 1 shows an example of an embodiment of the present invention. In the case of this example, a hardened layer is formed by induction hardening at a portion near the outer diameter including the outer peripheral surface at the axially intermediate portion of the hub main body 9, and then the concave portion provided at the outer axial end portion of the hub main body 9. A concave hole 17 is formed at the bottom of 12. The concave hole 17 is formed by a cutting process using a drilling machine (with a drill blade). The concave hole 17 exists in the back half and has a constant inner diameter, and in the opening side half. It consists of the inclined surface part 19 whose internal diameter becomes large as it goes to. The size of the concave hole 17 is about 5 to 8 mm at the inner diameter R of the cylindrical surface portion 18 and 8 to 15 mm at the depth D of the portion excluding the mortar-like portion at the back end portion. The angle θ is about 50 to 70 degrees.

上述の様な凹孔17を上記凹部12の底部に、上記硬化層を形成した後に形成する事により、連続部16を含む上記ハブ本体9の内径側部分に存在する残留引っ張り応力の応力線の一部が、上記凹孔17により切断される。この結果、上記内径側部分に作用する残留引っ張り応力の値を低くできて、この内径側部分を起点とする、上記ハブ本体9の亀裂損傷を発生しにくくできる。   By forming the concave hole 17 as described above at the bottom of the concave portion 12 after the hardened layer is formed, the stress line of the residual tensile stress existing in the inner diameter side portion of the hub body 9 including the continuous portion 16 is formed. A part is cut by the concave hole 17. As a result, the value of the residual tensile stress acting on the inner diameter side portion can be reduced, and cracking damage to the hub body 9 starting from the inner diameter side portion can be prevented.

尚、上述の様な凹孔17は、従来からも、ハブ本体9の軸方向外端面中心部に形成したものが知られていた。但し、従来の場合には、このハブ本体9に凹孔17を形成する作業を、このハブ本体9の中間部外径寄り部分に硬化層を形成する以前に行っていた。この為、この硬化層を形成する事に伴って上記ハブ本体9の内径側部分に生じた残留引っ張り応力を、上記凹孔17の存在に基づいて緩和する事はできなかった。これに対して本例の場合には、上記硬化層を形成した後に上記凹孔17を形成する為、上述した様に、この硬化層を形成する事に伴って発生した残留引っ張り応力を緩和(開放)できる。   In addition, what was conventionally formed in the center part of the axial direction outer end surface of the hub main body 9 was known for the above-mentioned concave holes 17. However, in the conventional case, the operation of forming the concave hole 17 in the hub body 9 has been performed before the hardened layer is formed near the outer diameter of the intermediate portion of the hub body 9. For this reason, the residual tensile stress generated in the inner diameter side portion of the hub body 9 due to the formation of the hardened layer cannot be reduced based on the presence of the concave hole 17. On the other hand, in the case of this example, since the concave hole 17 is formed after the hardened layer is formed, as described above, the residual tensile stress generated by forming the hardened layer is reduced ( Open).

更に、本例の車輪支持用転がり軸受ユニットの製造方法の場合には、上記ハブ本体9の亀裂損傷の発生を抑える為に、前述した特許文献2に記載された従来技術の様に、この亀裂損傷の発生を抑える為に専用の工程を加える必要がない。即ち、上記凹孔17は、自動車の組立工場で組立ロボットにより、車輪支持用転がり軸受ユニットを懸架装置に組み付ける際の、或はこの車輪支持用転がり軸受ユニットに車輪を組み付ける際の、それぞれ芯出し用の孔として利用する場合がある。この為、上記凹孔17を備えるハブ本体9を造る場合に限っては、この凹孔17を加工する工程の順番を変えるのみで上記亀裂損傷の発生を抑える事ができ、上記特許文献2に記載された従来技術に比べて、製造コストの上昇を抑えられる。   Furthermore, in the case of the manufacturing method of the wheel-supporting rolling bearing unit of this example, in order to suppress the occurrence of crack damage of the hub body 9, this crack is caused as in the prior art described in Patent Document 2 described above. There is no need to add a dedicated process to reduce the occurrence of damage. That is, the concave holes 17 are respectively centered when the wheel supporting rolling bearing unit is assembled to the suspension device by the assembly robot in the automobile assembly plant, or when the wheel is assembled to the wheel supporting rolling bearing unit. It may be used as a hole for use. For this reason, only when the hub body 9 having the concave hole 17 is manufactured, the occurrence of crack damage can be suppressed only by changing the order of the steps of processing the concave hole 17. Compared to the described prior art, an increase in manufacturing cost can be suppressed.

本発明の効果を確認する為に行った実験に就いて説明する。実験は、図2の(A)〜(C)に示した3種類の、それぞれが中炭素鋼製であるハブ本体9に関して、中間部外周面部分に硬化層を形成した後、凹部12の内面中心部に凹孔17を形成するか否かが、この凹部12の内面に作用する残留応力の大きさに及ぼす影響を知る為に行った。尚、この実験では、この残留応力の測定位置を、上記凹部12の内面のうちで、図2中の矢印が示す位置とした。又、上記3種類のハブ本体9は、何れも、一般乗用車用のもので、上記凹部12を囲む円筒部11の開口部の内径が48mmである。又、軸方向外端寄り部分の外周面に形成した回転側フランジ8は、図3に示す様な十字形とした。尚、上記図2の(A)〜(C)では、縦横比及び曲面部の曲率半径を、実際に即して(実際のプロポーション通りに)描いてある。又、形成した凹孔17の大きさは何れも、円筒面部18の内径Rを6mm、傾斜面部19の開き角θを60度、上記凹部12の底面からこの円筒面部18の奥端までの距離Lを9mmとした。   An experiment conducted for confirming the effect of the present invention will be described. In the experiment, three types of hub bodies 9 shown in FIGS. 2A to 2C, each of which is made of medium carbon steel, are formed with a hardened layer on the outer peripheral surface portion of the intermediate portion, and then the inner surface of the recess 12 is formed. Whether or not the concave hole 17 is formed in the central portion was determined in order to know the influence on the magnitude of the residual stress acting on the inner surface of the concave portion 12. In this experiment, the measurement position of the residual stress was set to the position indicated by the arrow in FIG. The three types of hub main bodies 9 are all for ordinary passenger cars, and the inner diameter of the opening of the cylindrical portion 11 surrounding the recess 12 is 48 mm. Further, the rotation-side flange 8 formed on the outer peripheral surface near the outer end in the axial direction has a cross shape as shown in FIG. In FIGS. 2A to 2C, the aspect ratio and the radius of curvature of the curved surface are drawn in accordance with the actual situation (according to the actual proportion). In addition, the size of each of the formed concave holes 17 is such that the inner diameter R of the cylindrical surface portion 18 is 6 mm, the opening angle θ of the inclined surface portion 19 is 60 degrees, and the distance from the bottom surface of the concave portion 12 to the back end of the cylindrical surface portion 18. L was 9 mm.

この様な条件下で行った実験の結果を、下記の表1に示す。尚、この表1中で残留応力の値が「+」であるのは、この残留応力が引っ張り応力である事を表している。

Figure 2010089522
この表1に示した実験結果から明らかな通り、本発明の車輪支持用転がり軸受ユニットの製造方法によれば、ハブ本体9の中間部外周面に硬化層15(図5参照)を形成するのに伴って、この硬化層15の内径側に存在する内径側部分に発生した引っ張り応力を緩和できる。 The results of experiments conducted under such conditions are shown in Table 1 below. In Table 1, a residual stress value of “+” indicates that this residual stress is a tensile stress.
Figure 2010089522
As is apparent from the experimental results shown in Table 1, according to the method for manufacturing the wheel-supporting rolling bearing unit of the present invention, the hardened layer 15 (see FIG. 5) is formed on the outer peripheral surface of the intermediate portion of the hub body 9. Accordingly, the tensile stress generated in the inner diameter side portion existing on the inner diameter side of the hardened layer 15 can be relaxed.

本発明は、ハブ本体を冷間鍛造により造る場合に適用して、特に顕著な効果を得られる。この理由は、冷間鍛造は加工抵抗が大きく、冷間鍛造により造られるハブ本体の内部には、元々大きな残留応力が発生し易い為である。即ち、元々大きな残留応力が存在するハブ本体に、硬化層形成に伴って発生する残留引っ張り応力が加わると、亀裂等の損傷が発生し易くなる。従って、この様な冷間鍛造により造られたハブ本体に本発明を適用すると、損傷の発生防止を有効に図れる。但し、温間鍛造や熱間鍛造の場合も、程度の差はあるにしても、造られるハブ本体の内部に残留応力が発生する為、本発明を適用する事は有効である。   The present invention can be applied to a case where the hub body is manufactured by cold forging, and a particularly remarkable effect can be obtained. The reason for this is that cold forging has a large processing resistance, and a large residual stress is likely to be generated inside the hub body produced by cold forging. That is, if a residual tensile stress generated along with the formation of a hardened layer is applied to a hub body that originally has a large residual stress, damage such as a crack is likely to occur. Therefore, when the present invention is applied to a hub body manufactured by such cold forging, it is possible to effectively prevent damage. However, even in the case of warm forging or hot forging, although there is a difference in degree, residual stress is generated inside the hub body to be produced, so it is effective to apply the present invention.

本発明の製造方法を実施する過程で、ハブ本体に高周波焼き入れにより硬化層を形成した後、凹孔を形成した状態を示す部分断面図。The fragmentary sectional view which shows the state which formed the concave hole after forming the hardening layer in the hub main body by induction hardening in the process of implementing the manufacturing method of this invention. 本発明の効果を確認する為に行った実験に使用した3種類のハブ本体の断面図。Sectional drawing of three types of hub main bodies used for the experiment conducted in order to confirm the effect of this invention. 図2に示した各ハブ本体を同図の右方から見た図。The figure which looked at each hub main body shown in FIG. 2 from the right side of the figure. 本発明の製造方法の対象となる車輪支持用転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows one example of the rolling bearing unit for wheel support used as the object of the manufacturing method of this invention. 硬化層形成に伴ってハブ本体内部に発生する残留応力を説明する為の半部断面図。The half part sectional view for demonstrating the residual stress which generate | occur | produces in a hub main body accompanying hardened layer formation. 残留引っ張り応力の発生に伴ってハブ本体の耐久性が低下する理由を説明する為の線図。The diagram for demonstrating the reason the durability of a hub main body falls with generation | occurrence | production of a residual tensile stress.

符号の説明Explanation of symbols

1 車輪支持用転がり軸受ユニット
2 外輪
3 ハブ
4 転動体
5 外輪軌道
6 静止側フランジ
7 内輪軌道
8 回転側フランジ
9 ハブ本体
10 内輪
11 円筒部
12 凹部
13 小径段部
14 かしめ部
15 硬化層
16 連続部
17 凹孔
18 円筒面部
19 傾斜面部
DESCRIPTION OF SYMBOLS 1 Rolling bearing unit for wheel support 2 Outer ring 3 Hub 4 Rolling body 5 Outer ring raceway 6 Stationary side flange 7 Inner ring raceway 8 Rotation side flange 9 Hub body 10 Inner ring 11 Cylindrical part 12 Recessed part 13 Small diameter step part 14 Caulking part 15 Hardening layer 16 Continuous Part 17 Recessed hole 18 Cylindrical surface part 19 Inclined surface part

Claims (1)

内周面に複列の外輪軌道を有し、使用時にも回転しない外輪と、外周面に複列の内輪軌道を有し、使用時に車輪と共に回転するハブと、これら両内輪軌道と上記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けられた転動体とを備え、上記ハブは、ハブ本体と内輪とを結合固定して成るものであって、このうちのハブ本体は、軸方向外端寄り部分の外周面に上記車輪を支持固定する為の回転側フランジを、軸方向中間部外周面に軸方向外側の内輪軌道を、それぞれ直接形成すると共に、軸方向外端面の中央部に凹部を形成したものであり、上記内輪は、外周面に軸方向内側の内輪軌道を形成したもので、上記ハブ本体の軸方向内端寄り部分に形成された小径段部に外嵌固定されており、このハブ本体の中間部外周面で少なくとも上記軸方向外側の内輪軌道を含む部分に、高周波焼き入れにより硬化層を形成している車輪支持用転がり軸受ユニットの製造方法であって、上記凹部の底部に凹孔を、上記硬化層を形成した後に形成する事を特徴とする車輪支持用転がり軸受ユニットの製造方法。   An outer ring having double-row outer ring raceways on the inner peripheral surface and not rotating even when used, a hub having a double row inner ring raceway on the outer peripheral surface and rotating together with the wheels during use, both inner ring raceways and the both outer rings A plurality of rolling elements are provided in each row between the raceway, and the hub is configured such that the hub body and the inner ring are coupled and fixed. The hub body directly forms the rotation side flange for supporting and fixing the wheel on the outer peripheral surface near the outer end in the axial direction, and the inner ring raceway on the outer peripheral surface in the axial direction on the outer peripheral surface in the axial direction. A concave portion is formed in the central portion of the outer end surface, and the inner ring is formed by forming an inner ring raceway on the outer peripheral surface on the inner side in the axial direction, and a small-diameter step portion formed near the inner end in the axial direction of the hub body. The outer peripheral surface of this hub body is at least above the outer peripheral surface. A method for manufacturing a wheel-supporting rolling bearing unit in which a hardened layer is formed by induction hardening on a portion including an inner ring raceway on an outer side in the axial direction, wherein a concave hole is formed at the bottom of the concave portion, and the hardened layer is formed. A method for manufacturing a wheel-supporting rolling bearing unit, which is formed later.
JP2008258196A 2008-10-03 2008-10-03 Method for manufacturing rolling bearing unit for supporting wheel Pending JP2010089522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258196A JP2010089522A (en) 2008-10-03 2008-10-03 Method for manufacturing rolling bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258196A JP2010089522A (en) 2008-10-03 2008-10-03 Method for manufacturing rolling bearing unit for supporting wheel

Publications (1)

Publication Number Publication Date
JP2010089522A true JP2010089522A (en) 2010-04-22

Family

ID=42252681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258196A Pending JP2010089522A (en) 2008-10-03 2008-10-03 Method for manufacturing rolling bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2010089522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189771A (en) * 2010-03-12 2011-09-29 Ntn Corp Bearing device for wheel
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
WO2012043706A1 (en) * 2010-09-30 2012-04-05 Ntn株式会社 Drive wheel bearing unit and method for manufacturing same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578731A (en) * 1991-09-24 1993-03-30 Toshiba Corp Hardening treatment of martensitic stainless steel
JP2001047805A (en) * 1999-08-11 2001-02-20 Nsk Ltd Wheel support hub unit
JP2003003279A (en) * 2001-06-21 2003-01-08 Toshiba Corp Surface hardening treatment method and thrust disk using the treatment method
JP2005003061A (en) * 2003-06-11 2005-01-06 Ntn Corp Wheel bearing device
JP2005145313A (en) * 2003-11-18 2005-06-09 Nsk Ltd Rolling bearing unit for supporting vehicle wheel
JP2005297728A (en) * 2004-04-09 2005-10-27 Nsk Ltd Method and device for manufacturing roller bearing unit for driving wheel
JP2006064036A (en) * 2004-08-25 2006-03-09 Nsk Ltd Bearing device for supporting axle
JP2006137297A (en) * 2004-11-12 2006-06-01 Ntn Corp Bearing device for wheel
JP2006143069A (en) * 2004-11-22 2006-06-08 Jtekt Corp Bearing device for axle
JP2007038804A (en) * 2005-08-02 2007-02-15 Ntn Corp Bearing device for wheel
JP2007271044A (en) * 2006-03-31 2007-10-18 Jtekt Corp Rolling bearing device for wheel
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008044613A (en) * 2007-10-22 2008-02-28 Jtekt Corp Bearing system and bearing device for vehicle
JP2008049790A (en) * 2006-08-23 2008-03-06 Nsk Ltd Bearing unit for wheel and manufacturing method for inner member or outer member with flange in the bearing unit for wheel
WO2008090848A1 (en) * 2007-01-22 2008-07-31 Nsk Ltd. Method for manufacturing raceway ring member
JP2008207588A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578731A (en) * 1991-09-24 1993-03-30 Toshiba Corp Hardening treatment of martensitic stainless steel
JP2001047805A (en) * 1999-08-11 2001-02-20 Nsk Ltd Wheel support hub unit
JP2003003279A (en) * 2001-06-21 2003-01-08 Toshiba Corp Surface hardening treatment method and thrust disk using the treatment method
JP2005003061A (en) * 2003-06-11 2005-01-06 Ntn Corp Wheel bearing device
JP2005145313A (en) * 2003-11-18 2005-06-09 Nsk Ltd Rolling bearing unit for supporting vehicle wheel
JP2005297728A (en) * 2004-04-09 2005-10-27 Nsk Ltd Method and device for manufacturing roller bearing unit for driving wheel
JP2006064036A (en) * 2004-08-25 2006-03-09 Nsk Ltd Bearing device for supporting axle
JP2006137297A (en) * 2004-11-12 2006-06-01 Ntn Corp Bearing device for wheel
JP2006143069A (en) * 2004-11-22 2006-06-08 Jtekt Corp Bearing device for axle
JP2007038804A (en) * 2005-08-02 2007-02-15 Ntn Corp Bearing device for wheel
JP2007271044A (en) * 2006-03-31 2007-10-18 Jtekt Corp Rolling bearing device for wheel
WO2008018439A1 (en) * 2006-08-07 2008-02-14 Nsk Ltd. Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
JP2008049790A (en) * 2006-08-23 2008-03-06 Nsk Ltd Bearing unit for wheel and manufacturing method for inner member or outer member with flange in the bearing unit for wheel
WO2008090848A1 (en) * 2007-01-22 2008-07-31 Nsk Ltd. Method for manufacturing raceway ring member
JP2008207588A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel
JP2008044613A (en) * 2007-10-22 2008-02-28 Jtekt Corp Bearing system and bearing device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189771A (en) * 2010-03-12 2011-09-29 Ntn Corp Bearing device for wheel
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
WO2012043706A1 (en) * 2010-09-30 2012-04-05 Ntn株式会社 Drive wheel bearing unit and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5183358B2 (en) Wheel bearing device
KR101576949B1 (en) Manufacturing method for outer ring of ball bearing and outer ring of ball bearing using the same
JP5250951B2 (en) Rolling bearing unit for wheel support
JP5223574B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2006291250A (en) Rolling bearing unit for wheel supporting
US10718377B2 (en) Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
JP2010089522A (en) Method for manufacturing rolling bearing unit for supporting wheel
JP4305166B2 (en) Manufacturing method of bearing ring for bearing unit for supporting wheel
JP2005145313A (en) Rolling bearing unit for supporting vehicle wheel
JP2006064036A (en) Bearing device for supporting axle
JP2007022464A (en) Bearing device for wheels
JP2008169941A (en) Wheel bearing device
JP2006329287A (en) Wheel supporting rolling bearing unit and its inner ring manufacturing method
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same
JP4797896B2 (en) Rolling bearing unit for wheel support
JP2010111133A (en) Method for manufacturing wheel support rolling bearing unit
JP5552884B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP4225061B2 (en) Rolling bearing unit for wheel support
JP2008223990A (en) Rolling bearing unit for supporting wheel
JP2007331560A (en) Wheel bearing device and its manufacturing method
JP2005282691A (en) Rolling bearing and wheel supporting bearing device
JP2011230614A5 (en)
JP2012192818A (en) Bearing device for wheel
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701