JP2007038804A - Bearing device for wheel - Google Patents

Bearing device for wheel Download PDF

Info

Publication number
JP2007038804A
JP2007038804A JP2005224343A JP2005224343A JP2007038804A JP 2007038804 A JP2007038804 A JP 2007038804A JP 2005224343 A JP2005224343 A JP 2005224343A JP 2005224343 A JP2005224343 A JP 2005224343A JP 2007038804 A JP2007038804 A JP 2007038804A
Authority
JP
Japan
Prior art keywords
hub
bearing device
wheel
standard
organization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224343A
Other languages
Japanese (ja)
Other versions
JP5105722B2 (en
Inventor
Kohei Yoshino
康平 芳野
Isao Hirai
功 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005224343A priority Critical patent/JP5105722B2/en
Priority to EP06768021.5A priority patent/EP1908852B1/en
Priority to PCT/JP2006/313659 priority patent/WO2007010772A1/en
Priority to CN2006800263284A priority patent/CN101223291B/en
Priority to US11/989,102 priority patent/US8240922B2/en
Publication of JP2007038804A publication Critical patent/JP2007038804A/en
Application granted granted Critical
Publication of JP5105722B2 publication Critical patent/JP5105722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device for a wheel capable of improving strength and fatigue strength of a hub shaft part under high stress and repeated stress, while reducing the weight of the hub, and capable of restricting lowering of productivity due to increase of energy costs and increase of man-hours for modification. <P>SOLUTION: This bearing device for a vehicle has an inner member 1 and an outer member 2 freely to rotate in relation to each other through a several lines of rolling bodies 3. A central part of the hub 14 structuring the inner member 1 is formed into a recessed part 40 recessed in the axial direction. The hub 14 is a hot forging product of a steel material, and a main material part is formed into a standard organization, and the inner surface of the recessed part 40 is formed with a non-standard organization part 30. As the non-standard organization, any one of fine ferrite-pearlite organization, fine ferrite-cementite organization, bainite organization, tempered organization and particular pearlite organization is used. The non-standard organization is an organization obtained by, for example, cooling during the hot forging process or in the last stage of the hot forging process for self-restoration of heat or tempering to hold restoration of heat. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、乗用車用や貨物車用等の高強度化を図った車輪用軸受装置に関する。   The present invention relates to a bearing device for a wheel that has been improved in strength for passenger cars, freight cars, and the like.

従動輪用の車輪用軸受装置において、ハブのアウトボード側の端面には、軽量化などのために、軸方向に凹む凹部が形成されている。このような凹部が深く形成されたものでは、ハブの軸部における前記凹部の外周部分の強度が不足することがある。すなわち、前記凹部の外周部分は、車輪取付用フランジの付け根部となるが、この車輪取付用フランジの付け根部は、車両の急旋回時等に高応力が繰り返し発生する。   In a wheel bearing device for a driven wheel, a concave portion that is recessed in the axial direction is formed on the end face of the hub on the outboard side in order to reduce the weight. When such a recess is formed deeply, the strength of the outer peripheral portion of the recess in the shaft portion of the hub may be insufficient. That is, the outer peripheral portion of the concave portion serves as a root portion of the wheel mounting flange, and high stress is repeatedly generated at the base portion of the wheel mounting flange when the vehicle suddenly turns.

そのため、破損対策として疲れ強さを向上させるために、上記凹部の内面に高周波熱処理を施す方法やショットピーニングを行う方法(例えば特許文献1)が提案されている。
また、疲労強度を上げるために、部品全体を調質し、硬度を高める方法も提案されている(例えば特許文献2)。
Therefore, in order to improve fatigue strength as a countermeasure against damage, a method of subjecting the inner surface of the recess to high-frequency heat treatment or a method of performing shot peening (for example, Patent Document 1) has been proposed.
Further, in order to increase the fatigue strength, a method of tempering the entire part and increasing the hardness has been proposed (for example, Patent Document 2).

図11は、従来の第3世代型の車輪用軸受装置におけるハブの一般的な製造方法の例を示す。同図(A)に示すバー材W0を所定寸法に切断して、1個のハブの素材となるビレットW1を得る(同図(B))。ビレットW1は、熱間鍛造の工程として、複数の工程(鍛造1パス、鍛造2パス、鍛造3パス)を経て、次第にハブの形状に近づけ、最終鍛造工程で、ハブのおおまかな形状となる鍛造仕上がりの素材W4を得る(同図(C)〜(E))。   FIG. 11 shows an example of a general manufacturing method of a hub in a conventional third-generation wheel bearing device. The bar material W0 shown in FIG. 6A is cut to a predetermined size to obtain a billet W1 that is a material of one hub (FIG. 5B). The billet W1 is a forging process in which a plurality of processes (forging 1 pass, forging 2 pass, forging 3 pass) are gradually brought closer to the shape of the hub as a hot forging process, and the hub is roughly shaped in the final forging process. A finished material W4 is obtained (FIGS. (C) to (E)).

鍛造仕上がりの素材W4は、スケール落としのためのショットブラストを行い、必要に応じて焼準または調質を行い(同図(F))、その後、旋削(同図(G))、および軌道面等の高周波熱処理(同図(H))を行う。必要なものは、フランジ面等の二次旋削を行う(同図(I))。この後、研削を行ってハブ14を仕上げ、車輪用軸受装置として組み立てる。
特開2005−145313号公報 特開2005−003061号公報
The forged finished material W4 is shot blasted for scale reduction, normalized or tempered as necessary (Fig. (F)), then turned (Fig. (G)), and raceway surface And the like (FIG. (H)). What is necessary is secondary turning of the flange surface, etc. ((I) in the figure). Thereafter, grinding is performed to finish the hub 14, and the wheel bearing device is assembled.
JP 2005-145313 A JP-A-2005-003061

従来の疲れ強さ向上のための高周波熱処理は、ハブの鍛造および旋削加工を終えた後に行われる。そのため、高周波熱処理では、工程が増えたり、熱ひずみ等によって車輪取付用フランジの振れ精度を劣化させる恐れもある。   Conventional high-frequency heat treatment for improving fatigue strength is performed after hub forging and turning. Therefore, in the high frequency heat treatment, there is a possibility that the number of processes increases or the runout accuracy of the wheel mounting flange is deteriorated due to thermal strain or the like.

また、ショットピーニングでは、工程が増えるという問題がある。
部品全体を調質して硬度アップをする方法の場合は、工程が増える上に、硬度アップにより全体の加工性(例えば、被削性や、加締め加工などの冷間加工性)が低下し、ハブボルトの食い込み性低下によるスリップトルクの低下等が生じることがある。
In shot peening, there is a problem that the number of processes increases.
In the case of increasing the hardness by refining the entire part, the number of processes is increased and the overall workability (for example, machinability and cold workability such as caulking) decreases due to the increased hardness. In addition, slip torque may be reduced due to a decrease in the biting property of the hub bolt.

図11に示した従来方法では、ハブ14の全体の疲れ強さの向上のために、焼準または調質を行うが、これら焼準または調質の工程の増加のために、生産に手間が掛かるうえ、鍛造が完了して冷却された後に再度の加熱を行うことになるため、消費エネルギも多くなる。焼準や調質を省く場合もあるが、これらを省くと、組織の結晶粒が大きくて、強度、靱性が低下し、疲れ強さの弱いものとなる。   In the conventional method shown in FIG. 11, normalization or tempering is performed to improve the overall fatigue strength of the hub 14. In addition, since heating is performed again after forging is completed and cooled, energy consumption increases. There are cases where normalization and tempering are omitted, but if these are omitted, the crystal grains of the structure are large, the strength and toughness are lowered, and the fatigue strength is weak.

また、近年、燃費の向上、環境への負荷の低減のために、車輪用軸受装置においても、小型、軽量化が強く望まれており、疲れ強さ、寿命を維持しながら、小型、軽量化を図ることが必要となる。そのため、ハブ端面の凹部は、可能な範囲で大きくすることが必要となる。   In recent years, in order to improve fuel efficiency and reduce environmental impact, wheel bearing devices are also strongly desired to be smaller and lighter, and while maintaining fatigue strength and life, they are also smaller and lighter. It is necessary to plan. Therefore, it is necessary to make the concave portion of the hub end surface as large as possible.

この発明の目的は、ハブの端面に凹部を設けて軽量化を図りながら、高応力や繰り返し応力に対して、ハブ軸部の前記凹部付近の強度や疲れ強さを向上させることができ、かつ改質のためのエネルギコストの増大や工程増による生産性の低下が抑えられる車輪用軸受装置を提供することである。   The object of the present invention is to improve the strength and fatigue strength in the vicinity of the concave portion of the hub shaft portion against high stress and repeated stress while providing a concave portion on the end surface of the hub to reduce weight, and An object of the present invention is to provide a wheel bearing device in which an increase in energy cost for reforming and a decrease in productivity due to an increase in processes are suppressed.

この発明の車輪用軸受装置は、複列の転動体を介して互いに回転自在な内方部材および外方部材を備え、前記内方部材が、車輪取付用フランジを有するハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記ハブがアウトボード側の端面に、前記車輪取付用フランジの根元部から突出してホイールおよび制動部品を案内するパイロット部を有し、前記ハブのアウトボード側の端面における前記パイロット部よりも中心側の部分が、軸方向に凹む凹部となった車輪用軸受装置において、前記ハブが鋼材の熱間鍛造品であり、このハブは、母材部分が標準組織であって、前記端面の凹部内の表面に非標準組織の部分を有し、前記非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織のうちのいずれかであることを特徴とする。なおここで言うハブは、軸受とは独立した部品のハブであっても、また軌道面が形成されて軸受の一部を構成するハブであっても良い。   A wheel bearing device according to the present invention includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange, and a shaft of the hub. An inner ring fitted to the outer periphery of the part, and the hub has a pilot part projecting from a root part of the wheel mounting flange on an end surface on the outboard side, and guiding a wheel and a brake component. In the wheel bearing device in which a portion closer to the center than the pilot portion on the end surface on the board side is a recess recessed in the axial direction, the hub is a hot forged product of steel, and the hub has a base material portion. A standard structure having a portion of a non-standard structure on a surface of the end surface of the recess, wherein the non-standard structure includes a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martenser. Wherein the bets any of tissue, or is any one of two or more mixed structure of at least one of these tissues. The hub referred to here may be a hub that is independent of the bearing, or may be a hub that forms a raceway surface and constitutes a part of the bearing.

前記非標準組織は、例えば、熱間鍛造の工程中または工程の最後に冷却して自己復熱させるかまたは復熱保持焼戻しをすることで得られた組織である。
具体的には、前記微細フェライト・パーライト組織は、前記熱間鍛造工程の最後に、前記部品に冷媒を浴びせることで部分的に冷却することにより得られる。または、熱間鍛造工程が複数段階の鍛造工程からなる場合に、最終段階の鍛造工程の前に冷却を行い、その後に最終段階の鍛造工程を行うことで得られる。前記焼戻マルテンサイト組織は、熱間鍛造工程の最後に、前記部品を部分的に、マルテンサイト・スタート・ポイント以下まで冷却し、その後、復熱焼戻しを行うことで得られる。前記上部ベイナイト組織および下部ベイナイト組織は、熱間鍛造工程の最後に、所定の冷却速度に制御し、室温程度まで冷却することで得られる。下部ベイナイト組織は、上部ベイナイト組織の場合よりも冷却速度を遅くすることで得られる。
The non-standard structure is, for example, a structure obtained by cooling during the hot forging process or at the end of the process for self-reheating or re-heating holding tempering.
Specifically, the fine ferrite / pearlite structure is obtained by partially cooling the part by immersing it in a coolant at the end of the hot forging step. Alternatively, when the hot forging process includes a plurality of forging processes, cooling is performed before the final forging process, and then the final forging process is performed. The tempered martensite structure is obtained by partially cooling the part to below the martensite start point at the end of the hot forging process and then performing reheat tempering. The upper bainite structure and the lower bainite structure are obtained by controlling to a predetermined cooling rate at the end of the hot forging step and cooling to about room temperature. The lower bainite structure can be obtained by lowering the cooling rate than that of the upper bainite structure.

この構成の車輪用軸受装置によると、次の作用が得られる。ハブの端面に凹部を設けたため、ハブの軽量化が図れる。この場合に、ハブ端面の凹部は、ハブの車輪取付用フランジの内周に位置し、自動車の旋回時等には、車輪取付用フランジに大きな振幅の撓みが繰り返し生じる。前記フランジの根元部であるハブの軸部には、車輪取付用フランジの撓みにって高応力が繰り返し発生する。ハブ軸部の上記フランジ根元部は上記凹部の周囲であるため、凹部を深くすると強度確保が難しい。しかし、このような繰り返し発生する高応力に対して、ハブ端面の凹部の内面が前記非標準組織であると、組織微細化や硬度アップによって強度や疲れ強さが向上し、上記凹部から亀裂が発生することが抑制される。つまり、亀裂発生→車輪取付用フランジの変位増加→車両の振動増加→車輪用軸受装置の損傷、という作用が抑えられ、長寿命化される。そのため、ハブ端面の凹部を十分に大きくして軽量化を図りながら、高応力や繰り返し応力に対して、ハブ軸部の前記凹部付近の強度や疲れ強さを向上させることができる。   According to the wheel bearing device having this configuration, the following effects can be obtained. Since the recess is provided on the end surface of the hub, the hub can be reduced in weight. In this case, the recess on the end face of the hub is located on the inner circumference of the wheel mounting flange of the hub, and a large amplitude flexure is repeatedly generated in the wheel mounting flange when the automobile turns. High stress is repeatedly generated in the shaft portion of the hub which is the root portion of the flange due to the bending of the wheel mounting flange. Since the flange root portion of the hub shaft portion is around the recess, it is difficult to ensure the strength if the recess is deepened. However, when the inner surface of the recess on the end face of the hub is the non-standard structure against such high stress that repeatedly occurs, the strength and fatigue strength are improved by the refinement of the structure and the increase in hardness, and cracks are generated from the recess. Occurrence is suppressed. That is, the effect of crack generation → increased displacement of the wheel mounting flange → increase in vehicle vibration → damage of the wheel bearing device is suppressed, and the life is extended. Therefore, the strength and fatigue strength of the hub shaft near the recess can be improved against high stress and repeated stress while sufficiently reducing the weight of the recess on the end surface of the hub.

すなわち、上記微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織の非標準組織の部分は、標準組織からなる母材部分に比べて組織が微細であり、また硬度が同等以上のものとなる。このような組織微細化や硬度アップにより、非標準組織の部分の強度や疲れ強さが向上し、通常の標準組織のみからなるハブに比べて、高い応力振幅に耐え、つまり高強度化され、長寿命化できる。そのため、通常の標準組織の車輪用軸受装置に比べて軽量化が図れる。したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。   That is, the fine ferrite pearlite structure, the upper bainite structure, the lower bainite structure, any of the tempered martensite structure, or at least a portion of the non-standard structure of the mixed structure of two or more of these structures, Compared to the base material portion made of the standard structure, the structure is fine and the hardness is equal to or higher than that. By such structure refinement and hardness increase, the strength and fatigue strength of the non-standard structure part are improved, and it withstands high stress amplitude, that is, increased in strength, compared to a hub consisting only of a normal standard structure, Long life can be achieved. Therefore, the weight can be reduced as compared with a wheel bearing device having a normal standard structure. Accordingly, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost.

前記非標準組織の部分は、熱間鍛造の工程中または工程の最後に冷却することで得られるため、簡易な処理の追加で済み、工程増による生産性の低下が抑えられる。また、熱間鍛造の熱を利用するため、組織の改質のための処理に用いるエネルギが削減できる。また、高周波熱処理等の場合における熱ひずみの問題が生じない。
前記非標準組織とする部分は、少なくともハブ端面の凹部内に設ければ良く、例えばハブの全体の表面に設けても良いが、凹部内だけという限られた範囲にすると、ハブの全体の表面を非標準組織とする場合と異なり、被削性や加締性などの加工性の低下が最小限に抑えられる。
Since the part of the non-standard structure is obtained by cooling during the hot forging process or at the end of the process, it is only necessary to add a simple process, and a decrease in productivity due to an increase in the process can be suppressed. Moreover, since the heat of hot forging is used, the energy used for the process for the structure modification can be reduced. Further, there is no problem of thermal distortion in the case of high-frequency heat treatment or the like.
The non-standard tissue portion may be provided at least in the concave portion of the end surface of the hub. For example, the non-standard tissue portion may be provided on the entire surface of the hub. Unlike the case of using a non-standard structure, the deterioration of workability such as machinability and caulking properties can be minimized.

前記ハブ端面の凹部は、ハブの軸心部に至るに従い深くなる形状であって、最深部が前記車輪取付用フランジの位置と同等かまたはこの車輪取付用フランジよりも軸方向に深く凹んだものであっても良い。このような深い凹部であっても、その内面に前記非標準組織の部分を設けることで、強度や疲れ強さを確保することができる。   The concave portion of the hub end surface has a shape that becomes deeper as it reaches the axial center portion of the hub, and the deepest portion is equal to the position of the wheel mounting flange or is deeper in the axial direction than the wheel mounting flange. It may be. Even in such a deep recess, the strength and fatigue strength can be ensured by providing the non-standard structure portion on the inner surface.

ハブ端面の凹部に設ける前記非標準組織の部分は、前記凹部の略全面であっても良く、また前記凹部の底側部分であっても良い。この底側部分は、例えば深さの中央よりも底側の部分である。
強度や疲れ強さの向上の点からは、非標準組織の部分を凹部の略全面に設けることが好ましいが、凹部の内面で強度が必要となる箇所が、凹部の底側部分である場合は、底側部分のみに前記非標準組織の部分を設けても、高応力や繰り返し応力に対して強度や疲れ強さを向上させることができる。
The portion of the non-standard structure provided in the concave portion of the hub end surface may be substantially the entire surface of the concave portion, or may be the bottom side portion of the concave portion. This bottom portion is, for example, a portion closer to the bottom than the center of the depth.
From the viewpoint of improving strength and fatigue strength, it is preferable to provide a non-standard structure portion on substantially the entire surface of the recess, but when the location where strength is required on the inner surface of the recess is the bottom portion of the recess Even if the non-standard structure portion is provided only on the bottom portion, the strength and fatigue strength can be improved against high stress and repeated stress.

前記内方部材が、ハブとこのハブのインボード側端の外周に嵌合した内輪とでなり、これらハブおよび内輪に各列の軌道面が形成されたものであっても良い。
また、前記ハブは、例えば複列軸受からなる軸受の完成品とは独立した部品のハブであっても良い。すなわち、前記ハブが軌道面を有せず、前記内輪が複列の軌道面を有するものであってもよい。
The inner member may be composed of a hub and an inner ring fitted to the outer periphery of the inboard side end of the hub, and each of the hub and the inner ring may have a raceway surface in each row.
Further, the hub may be a hub that is independent of a finished product of, for example, a double row bearing. That is, the hub may not have a raceway surface, and the inner ring may have a double row raceway surface.

この発明の前記各構成の車輪用軸受装置において、非標準組織の部分、および標準組織の部分の硬さは、適宜設定すれば良いが、例えば、非標準組織の硬さを20〜40HRCとし、母材部分の硬さを13〜25HRCとしても良い。
非標準組織の部分の硬さの下限は、硬度アップによる疲れ強さ向上のために、母材硬さの中央程度の値となる20HRC以上、できれば25HRC以上とすることが好ましい。非標準組織の部分の硬さの上限は、被削性確保のために40HRC以下であることが好ましい。
使用材料は炭素鋼(C量0.4〜0.8%)であるが、S53C等の場合、標準組織部分の硬さは13〜25HRCとなる。加締等の冷間加工を行う場合や、ハブボルトを圧入する部分等を考慮すると、最大で25HRCとすることが好ましい。
In the wheel bearing device of each configuration of the present invention, the hardness of the non-standard tissue portion and the standard tissue portion may be set as appropriate, for example, the non-standard tissue hardness is 20 to 40 HRC, The base material portion may have a hardness of 13 to 25 HRC.
The lower limit of the hardness of the non-standard structure portion is preferably 20 HRC or more, preferably 25 HRC or more, which is about the center of the base material hardness, in order to improve fatigue strength by increasing hardness. The upper limit of the hardness of the non-standard structure portion is preferably 40 HRC or less in order to ensure machinability.
The material used is carbon steel (C content 0.4 to 0.8%), but in the case of S53C or the like, the hardness of the standard structure portion is 13 to 25 HRC. In the case of performing cold working such as caulking, or taking into account the portion into which the hub bolt is press-fitted, it is preferable that the maximum is 25 HRC.

この発明の車輪用軸受装置は、複列の転動体を介して互いに回転自在な内方部材および外方部材を備え、前記内方部材が、車輪取付用フランジを有するハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記ハブがアウトボード側の端面に、前記車輪取付用フランジの根元部から突出してホイールおよび制動部品を案内するパイロット部を有し、前記ハブのアウトボード側の端面における前記パイロット部よりも中心側の部分が、軸方向に凹む凹部となった車輪用軸受装置において、前記ハブが鋼材の熱間鍛造品であり、このハブは、母材部分が標準組織であって、前記端面の凹部内の表面に非標準組織の部分を有し、前記非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織のうちのいずれかであり、または前記非標準組織が、熱間鍛造の工程中または工程の最後に冷却して自己復熱させるかまたは復熱保持焼戻しをすることで得られた組織であるため、ハブの端面に凹部を設けて軽量化を図りながら、高応力や繰り返し応力に対して、ハブ軸部の前記凹部付近の強度や疲れ強さを向上させることができ、かつ改質のためのエネルギコストの増大や工程増による生産性の低下を抑えることができる。   A wheel bearing device according to the present invention includes an inner member and an outer member that are rotatable with respect to each other via a double row of rolling elements, and the inner member includes a hub having a wheel mounting flange, and a shaft of the hub. An inner ring fitted to the outer periphery of the part, and the hub has a pilot part projecting from a root part of the wheel mounting flange on an end surface on the outboard side, and guiding a wheel and a brake component. In the wheel bearing device in which a portion closer to the center than the pilot portion on the end surface on the board side is a recess recessed in the axial direction, the hub is a hot forged product of steel, and the hub has a base material portion. A standard structure having a portion of a non-standard structure on a surface of the end surface of the recess, wherein the non-standard structure includes a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martenser. Or any of at least two mixed structures of these structures, or the non-standard structure is cooled during the hot forging process or at the end of the process. Therefore, it is a structure obtained by self-recuperation or by recuperation holding and tempering. The strength and fatigue strength in the vicinity of the recess can be improved, and an increase in energy cost for reforming and a decrease in productivity due to an increase in processes can be suppressed.

なお、この発明の上記各構成の車輪用軸受装置において、熱間鍛造工程の最後に冷却することで得られる組織としたものは、通常の熱間鍛造品を再加熱したものを冷却しても良い。   In addition, in the wheel bearing device of each of the above-described configurations of the present invention, the structure obtained by cooling at the end of the hot forging step can be obtained by cooling a reheated normal hot forged product. good.

この発明の第1の実施形態を図1ないし図5と共に説明する。図1は車輪用軸受装置の一例を示しており、この例は第3世代型の従動輪支持用に適用するものである。この車輪用軸受装置は、複列の転動体3を介して互いに回転自在な内方部材1および外方部材2を有し、転動体3は各列毎に保持器4により保持されている。ここで言う複列とは、2列以上のことを言い、3列以上であっても良いが、図示の例では2列とされている。内方部材1および外方部材2は、それぞれ複列の軌道面6,7および軌道面8,9を有している。この車輪用軸受装置は、複列アンギュラ玉軸受型とされていて、転動体3はボールからなり、軌道面6,7は、接触角が外向きとなるように形成されている。内方部材1と外方部材2との間の軸受空間の両端は、シール10,11により密封されている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an example of a wheel bearing device, and this example is applied to support a third generation driven wheel. This wheel bearing device has an inner member 1 and an outer member 2 that are rotatable with respect to each other via a double row of rolling elements 3, and the rolling elements 3 are held by a cage 4 for each row. The term “double row” as used herein refers to two or more rows and may be three or more rows, but in the illustrated example, it is two rows. The inner member 1 and the outer member 2 have double-row raceway surfaces 6 and 7 and raceway surfaces 8 and 9, respectively. This wheel bearing device is a double-row angular contact ball bearing type, the rolling elements 3 are formed of balls, and the raceway surfaces 6 and 7 are formed so that the contact angles are outward. Both ends of the bearing space between the inner member 1 and the outer member 2 are sealed with seals 10 and 11.

外方部材2は、全体が一体の一つの部品からなり、幅方向の任意の位置に車体取付用フランジ12が設けられている。外方部材2の車体取付用フランジ12よりもインボード側の外径面部分は、車体の懸架装置となるナックル(図示せず)が嵌合する面となる。なお、この明細書で、車体に取付けた状態で車幅方向の外側寄りとなる側をアウトボード側と呼び、車幅方向の中央寄りとなる側をインボード側と呼ぶ。車体取付用フランジ12の円周方向の複数箇所には、ボルト挿通孔またはねじ孔からなる車体取付孔13が設けられている。   The outer member 2 is composed of a single integral part, and a vehicle body mounting flange 12 is provided at an arbitrary position in the width direction. The outer diameter surface portion of the outer member 2 closer to the inboard side than the vehicle body mounting flange 12 is a surface to which a knuckle (not shown) serving as a suspension device of the vehicle body is fitted. In this specification, the side closer to the outer side in the vehicle width direction when attached to the vehicle body is referred to as the outboard side, and the side closer to the center in the vehicle width direction is referred to as the inboard side. At a plurality of locations in the circumferential direction of the vehicle body mounting flange 12, vehicle body mounting holes 13 including bolt insertion holes or screw holes are provided.

内方部材1は、ハブ14と、このハブ14の軸部14aのインボード側端の外周に嵌合した内輪15との2つの部品で構成される。これらハブ14および内輪15に、内方部材1側の上記各軌道面6,7がそれぞれ形成されている。ハブ14の軸部14aの外周におけるインボード側端には、段差を持って小径となる内輪嵌合面16が設けられ、この内輪嵌合面16に内輪15が嵌合している。内輪15は、ハブ14の軸部14aのインボード側端を外径側へ加締めた加締部14bによって、ハブ14に対して軸方向に固定されている。   The inner member 1 is composed of two parts, a hub 14 and an inner ring 15 fitted to the outer periphery of the inboard side end of the shaft portion 14a of the hub 14. The hub 14 and the inner ring 15 are formed with the raceway surfaces 6 and 7 on the inner member 1 side. An inner ring fitting surface 16 having a step and a small diameter is provided at the inboard side end on the outer periphery of the shaft portion 14 a of the hub 14, and the inner ring 15 is fitted to the inner ring fitting surface 16. The inner ring 15 is fixed in the axial direction with respect to the hub 14 by a caulking portion 14b obtained by caulking the inboard side end of the shaft portion 14a of the hub 14 to the outer diameter side.

ハブ14は、軸部14aのアウトボード側端の外周に車輪取付用フランジ17を有しており、この車輪取付用フランジ17の円周方向複数箇所に設けられた各ボルト圧入孔18に、ハブボルト19が圧入状態に取付けられている。
ハブ14の車輪取付用フランジ17の根元部からは、ハブ14と同心の円環状のパイロット部20が突出している。パイロット部20は、車輪取付用フランジ17のアウトボード側の側面に重ねて取付けられるブレーキディスクを案内する部分となるブレーキパイロット20aと、このブレーキパイロット20aよりもアウトボード側に突出するホイールパイロット20bとからなる。なお、パイロット部20は、円周方向複数箇所に切欠が設けられて複数個に分割されたものであっても良い。
The hub 14 has a wheel mounting flange 17 on the outer periphery of the end on the outboard side of the shaft portion 14a. A hub bolt is inserted into each bolt press-fitting hole 18 provided at a plurality of locations in the circumferential direction of the wheel mounting flange 17. 19 is attached in a press-fit state.
An annular pilot portion 20 concentric with the hub 14 protrudes from the base portion of the wheel mounting flange 17 of the hub 14. The pilot portion 20 includes a brake pilot 20a serving as a portion for guiding a brake disc that is attached to the side surface on the outboard side of the wheel mounting flange 17, and a wheel pilot 20b that protrudes further to the outboard side than the brake pilot 20a. Consists of. The pilot unit 20 may be divided into a plurality of portions provided with notches at a plurality of locations in the circumferential direction.

ハブ14のアウトボード側の端面におけるパイロット部20よりも中心側の部分は、軸方向に凹む凹部40とされている。凹部40は、ハブ14の軸心部に至るに従い深くなる凹球面状とされ、底側部分40bが開口側部分40aよりも曲率半径の小さな球面状となっていてもよい。この凹部40は、最深部が車輪取付用フランジ17のインボード側の側面よりも軸方向に深く凹んでいて、ハブ14のアウトボード側の軌道面6の付近の軸方向位置に達している。底側部分40bと開口側部分40aの境界は、車輪取付用フランジ17のインボード側の側面の軸方向位置付近に位置している。   A portion closer to the center than the pilot portion 20 on the end face of the hub 14 on the outboard side is a recess 40 that is recessed in the axial direction. The recess 40 may have a concave spherical shape that becomes deeper as it reaches the axial center of the hub 14, and the bottom side portion 40b may have a spherical shape with a smaller radius of curvature than the opening side portion 40a. The deepest portion of the recess 40 is recessed deeper in the axial direction than the side surface on the inboard side of the wheel mounting flange 17, and reaches the axial position in the vicinity of the track surface 6 on the outboard side of the hub 14. The boundary between the bottom side portion 40b and the opening side portion 40a is located near the axial position of the side surface of the wheel mounting flange 17 on the inboard side.

内方部材1を構成する部品であるハブ14、内輪15、および外方部材2は、いずれも鋼材の熱間鍛造品である。このうち、ハブ14は、端面の凹部40の内面の略全面が、非標準組織の部分30とされている。ハブ14の母材部分は標準組織である。非標準組織部分30の非標準組織は、熱間鍛造工程の途中または最後に、冷媒を浴びせることで、ハブ14を局部的に冷却することなどで得た組織であり、例えば、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織とされる。   The hub 14, the inner ring 15, and the outer member 2, which are parts constituting the inner member 1, are all hot forged products of steel. Of these, the hub 14 has a non-standard tissue portion 30 that is substantially the entire inner surface of the recess 40 at the end face. The base material portion of the hub 14 has a standard structure. The non-standard structure of the non-standard structure portion 30 is a structure obtained by, for example, locally cooling the hub 14 by bathing a coolant during or at the end of the hot forging process. For example, fine ferrite pearlite Any one of a structure, an upper bainite structure, a lower bainite structure, and a tempered martensite structure, or at least a mixed structure of two or more of these structures.

図3は、ハブ14の製造工程のうち、熱間鍛造工程を示し、図4はハブ14の熱間鍛造後の製造工程を示す。
図3(A)に示すように、ハブ14の1個分の素材となるビレットW1が、バー材(図示せず)を定寸に切断することで準備される。このビレットW1は、熱間鍛造の工程として、複数の工程、ここでは鍛造1パス、鍛造2パス、鍛造3パスを経て、次第にハブの形状に近づけ、最終鍛造工程(鍛造3パス)で、ハブ14のおおまかな形状となる鍛造仕上がり品である素材W4を得る(同図(B)〜(D))。
FIG. 3 shows a hot forging process among the manufacturing processes of the hub 14, and FIG. 4 shows a manufacturing process after hot forging of the hub 14.
As shown in FIG. 3A, a billet W1 as a material for one hub 14 is prepared by cutting a bar material (not shown) into a fixed size. The billet W1 is subjected to a plurality of processes as a hot forging process, here, a forging 1 pass, a forging 2 pass, and a forging 3 pass, and gradually approaching the shape of the hub. A material W4, which is a forged finished product having 14 rough shapes, is obtained (FIGS. (B) to (D)).

鍛造仕上がりの素材W4は、図4(A)のように旋削され、軌道面6および内輪嵌合面16が高周波熱処理される(同図(B))。この後、軌道面6などの研削が行われる(同図(D))。必要なものは、研削の前に車輪取付用フランジ17の表面等の二次旋削が行われる(同図(C))。軌道面の研削の完了したハブ14は、車輪用軸受装置に組み立てられる(同図(E))。   The forged finished material W4 is turned as shown in FIG. 4A, and the raceway surface 6 and the inner ring fitting surface 16 are subjected to high-frequency heat treatment (FIG. 4B). Thereafter, the raceway surface 6 and the like are ground ((D) in the figure). What is required is secondary turning of the surface of the wheel mounting flange 17 and the like before grinding ((C) in the figure). The hub 14 for which the raceway surface has been ground is assembled into a wheel bearing device (FIG. 5E).

ハブ14の前記非標準組織の部分30は、図3(D)に示すように、鍛造工程の終了時に、改質対象箇所であるハブ端面の凹部40に冷媒を部分的に吹き付けることにより改質され、または図3(C)のように最終鍛造工程(鍛造3パス)の前の鍛造工程(鍛造2パス)の終了後に、改質対象箇所に冷媒を部分的に吹き付けることにより改質される。   As shown in FIG. 3D, the portion 30 of the non-standard structure of the hub 14 is modified by partially blowing a coolant to the concave portion 40 of the hub end surface, which is a modification target portion, at the end of the forging process. Or after the forging step (forging 2 pass) before the final forging step (forging 3 pass) as shown in FIG. 3 (C), the material is reformed by partially blowing a coolant to the portion to be reformed. .

冷媒は、液体、そのミストや気体、例えば、油、または低温エアー等が用いられる。また、冷媒には、用途に応じて、潤滑剤、メディア、防錆剤などを混入し、素材の潤滑・離型効果、金型の摩耗防止、冷却効果、鍛造後のショットブラスト等によるスケール落としの省略、防錆効果等を得るようにしても良い。   As the refrigerant, a liquid, its mist or gas, for example, oil, low temperature air or the like is used. Also, depending on the application, lubricants, media, rust preventives, etc. may be mixed in the refrigerant to reduce the scale by material lubrication / mold release effect, mold wear prevention, cooling effect, shot blasting after forging, etc. The omission, the antirust effect, etc. may be obtained.

冷媒の吹き付け時は、全周に均一に冷却が行われるように、ハブ14となる素材W4を、その軸心回りに回転させながら、冷媒を吹き付けても良い。また、素材W4は回転させずに、冷媒吹付け装置(図示せず)を回転させても良い。
冷媒の吹き付けは、噴出し孔を多数開けたリング状の冷却ジャケット(図示せず)を使用しても良いし、またハブ14となる素材W4を回転させるのであれば、1箇所のノズルから吹き付けるものであっても良い。
At the time of spraying the coolant, the coolant may be sprayed while rotating the material W4 serving as the hub 14 around its axis so that the cooling is uniformly performed on the entire circumference. Moreover, you may rotate a refrigerant | coolant spraying apparatus (not shown), without rotating the raw material W4.
The coolant may be sprayed by using a ring-shaped cooling jacket (not shown) having a large number of ejection holes, or by spraying from a single nozzle if the material W4 to be the hub 14 is rotated. It may be a thing.

冷却時にハブ14となる素材W4を回転させる場合は、縦軸,横軸のどちらでも良い。また、冷媒の噴出し方向も、回転縦軸のときに上向き,下向きのいずれとしても良く、回転横軸のときに横向きの他、いずれの方向としても良い。なお、図1の例のようなハブ14のパイロット部20の内径側の貫通していない凹部40を冷却する場合は、冷媒が溜まらないように、上向きに噴出するのが良い。図3(D)では下向きに噴出させるように図示しているが、この図とは上下逆にする。   When rotating the material W4 that becomes the hub 14 during cooling, either the vertical axis or the horizontal axis may be used. Also, the direction in which the refrigerant is ejected may be either upward or downward when the rotational vertical axis is used, and may be any direction other than the horizontal direction when the rotational horizontal axis is used. In addition, when cooling the recessed part 40 which is not penetrating the inner diameter side of the pilot part 20 of the hub 14 as in the example of FIG. 1, it is preferable to spray upward so that the refrigerant does not accumulate. In FIG. 3 (D), it is shown to be ejected downward, but this is upside down.

冷却時のハブ14となる素材W4の保持方法は、冷却部が均一に冷却されるのを阻害しなければ良く、軸部14aの保持、車輪取付用フランジ17の外径部の保持、パイロット部20の外径部または内径部の保持等としても良い。   The method of holding the material W4 that becomes the hub 14 at the time of cooling does not have to prevent the cooling part from being uniformly cooled, and holds the shaft part 14a, the outer diameter part of the wheel mounting flange 17, and the pilot part. For example, 20 outer diameter portions or inner diameter portions may be held.

冷却により、非標準組織部分30の組織を、前記微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織のうちのいずれにするかは、図5と共に示すように、冷却方法によって選択することができる。
図5において、横軸は時間の経過を、縦軸は温度を示す。図中のA3 は、A3 変態点となる温度、A1 はA1 変態点となる温度である。Ms はマルテンサイト・スタート・ポイント(以下「Ms 点」と称す)であり、Mf はマルテンサイト・フィニッシュ・ポイント(以下「Mf 点」と称す)である。
素材となる鋼材は、例えばS53C等のC量が0.4〜0.8%の炭素鋼である。
By cooling, the structure of the non-standard structure portion 30 is any one of the fine ferrite pearlite structure, the upper bainite structure, the lower bainite structure, and the tempered martensite structure, or at least two or more of these structures. Any of the mixed tissues can be selected by a cooling method as shown in FIG.
In FIG. 5, the horizontal axis indicates the passage of time, and the vertical axis indicates the temperature. In the figure, A 3 is the temperature that becomes the A 3 transformation point, and A 1 is the temperature that becomes the A 1 transformation point. M s is a martensite start point (hereinafter referred to as “M s point”), and M f is a martensite finish point (hereinafter referred to as “M f point”).
The steel material used as the material is carbon steel having a C content of 0.4 to 0.8%, such as S53C.

図5において、曲線(0) に示すように、部品を鍛造温度T1(A3 変態点よりも高い)から単に空冷すると、従来の鍛造による組織である標準組織、すなわちフェライト・パーライト組織となる。 5, as shown by the curve (0), when simply cooled from forging the component temperature T1 (A greater than 3 transformation point), the standard organization is a tissue of the conventional forging, that is, a ferrite-pearlite structure.

曲線(1) は、非標準組織として微細フェライト・パーライト組織を得る場合の冷却曲線である。熱間鍛造工程の最後、つまり熱間鍛造を終えて冷却されるまでの間に、図3(D)のように冷媒を浴びせることで改質対象の部品(素材)を部分的に冷却し、冷却時間を制限して、冷却後に自己復熱させることにより、前記非標準組織として微細フェライト・パーライト組織が得られる。微細フェライト・パーライト組織は、焼準によって得られる組織、つまり焼準組織である。   Curve (1) is a cooling curve when a fine ferrite / pearlite structure is obtained as a non-standard structure. Until the end of the hot forging process, that is, until the hot forging is finished and cooling, the component (material) to be reformed is partially cooled by being exposed to a coolant as shown in FIG. By limiting the cooling time and allowing self-recuperation after cooling, a fine ferrite and pearlite structure can be obtained as the non-standard structure. The fine ferrite pearlite structure is a structure obtained by normalization, that is, a normalization structure.

曲線(2) は、非標準組織として微細フェライト・パーライト組織を得る場合の別の冷却曲線を示す。この場合、図3のように熱間鍛造工程が複数段階の鍛造工程からなるときに、最終段階の鍛造工程(図3(D))の前(図3(C))に、部品(素材W3)の一部または全体の冷却を行い、その後に最終段階の鍛造工程(図3(D))を行う。最終鍛造工程は、前記冷却の後の自己復熱の途中などで行われる。これにより、冷却後に鍛造工程の一つが加わることで、動的な歪みが与えられ、微細フェライト・パーライト組織が得られる。   Curve (2) shows another cooling curve when a fine ferrite / pearlite structure is obtained as a non-standard structure. In this case, as shown in FIG. 3, when the hot forging process is composed of a plurality of forging processes, the component (material W3) is placed before the final forging process (FIG. 3D) (FIG. 3C). ) Is partially or wholly cooled, and then the final forging step (FIG. 3D) is performed. The final forging step is performed during the self-recuperation after the cooling. Thus, by adding one of the forging steps after cooling, dynamic strain is given and a fine ferrite / pearlite structure is obtained.

曲線(3) ,(4) は、それぞれ非標準組織として、調質組織である焼戻マルテンサイト組織を得る場合の冷却曲線を示す。熱間鍛造工程の最後に、部品を部分的にMs 点以下でMf 点以上の範囲まで冷却し、その後、所定温度範囲内で復熱焼戻しを行うことで、非標準組織として調質組織、すなわち焼戻マルテンサイト組織が得られる。復熱焼戻しの温度を約500〜600℃程度とすると、組織はソルバイトとなる。復熱焼戻しの温度を約350〜400℃程度とすると、組織はトルースタイトとなる。 Curves (3) and (4) show cooling curves when a tempered martensite structure, which is a tempered structure, is obtained as a non-standard structure. At the end of the hot forging process, the part is partially cooled to a range below the M s point and above the M f point, and then reheated and tempered within a predetermined temperature range, thereby providing a tempered structure as a non-standard structure. That is, a tempered martensite structure is obtained. When the recuperating and tempering temperature is about 500 to 600 ° C., the structure becomes sorbite. When the recuperating and tempering temperature is about 350 to 400 ° C., the structure becomes troostite.

曲線(5) ,(6) は、それぞれ非標準組織として上部ベイナイトおよび下部ベイナイトを得る場合の冷却曲線を示す。熱間鍛造工程の最後に、制御冷却として、焼入れの冷却速度(マルテンサイトが生成する冷却速度)よりややゆっくり冷却することで、組織は上部ベイナイトとなる。この冷却速度よりもさらにゆっくりとした冷却速度の焼入れを行うと、組織は下部ベイナイトとなる。   Curves (5) and (6) show the cooling curves when upper bainite and lower bainite are obtained as non-standard structures, respectively. At the end of the hot forging process, as a controlled cooling, the structure becomes upper bainite by cooling slightly slower than the quenching cooling rate (cooling rate generated by martensite). When quenching is performed at a cooling rate slower than the cooling rate, the structure becomes lower bainite.

なお、図5では各種の冷却方法を述べたが、図1の例におけるハブ14の凹部40内に非標準組織の部分30を設ける場合は、図5の各曲線(1) 〜(6) で示す冷却方法のうち、曲線(1) 〜(4) に示す方法が好ましい。また、冷却曲線(5) , (6) に示す方法であってもよい。   Although various cooling methods are described in FIG. 5, when the non-standard tissue portion 30 is provided in the recess 40 of the hub 14 in the example of FIG. 1, the curves (1) to (6) in FIG. Of the cooling methods shown, the methods shown in curves (1) to (4) are preferred. Further, the method shown in the cooling curves (5) and (6) may be used.

この構成の車輪用軸受装置によると、次の作用効果が得られる。ハブ14の端面の凹部40内の表面を非標準組織の部分30とし、その非標準組織を、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織としたため、凹部40の内面とハブ14の軸部外周面との間の部分14cの強度が向上し、長寿命化が得られる。すなわち、自動車の旋回時等には、車輪取付用フランジ17に大きな振幅の撓みが繰り返し生じ、このフランジ17の根元部には高応力が繰り返し発生する。この根元部となるハブ14の軸部14aにおける凹部40の外周の部分14cにも高応力が繰り返し発生する。このような繰り返し発生する高応力に対して、凹部40の内面部分30が非標準組織であると、標準組織からなる母材部分に比べて組織が微細であり、また硬度が同等以上のものとなり、これらの組織微細化や硬度アップによって強度や疲れ強さが向上する。そのため、通常の標準組織のみからなるハブに比べて、高強度化されて、高い応力振幅に耐え、凹部外周部分14cに亀裂が発生することが抑制され、長寿命化できる。つまり、亀裂発生→車輪取付用フランジ17の変位増加→車両の振動増加→車輪用軸受装置の損傷、という作用が抑えられ、長寿命化される。
このため、凹部40をできるだけ大きくして軽量化を図りながら、高応力や繰り返し応力に対して、ハブ軸部14bの前記凹部外周部分14cの強度や疲れ強さを向上させることができる。
According to the wheel bearing device of this configuration, the following effects can be obtained. The surface in the recess 40 at the end face of the hub 14 is a non-standard structure portion 30, and the non-standard structure is any one of a fine ferrite / pearlite structure, an upper bainite structure, a lower bainite structure, and a tempered martensite structure. Alternatively, since at least two or more of these structures are mixed, the strength of the portion 14c between the inner surface of the recess 40 and the outer peripheral surface of the shaft portion of the hub 14 is improved, and a long life is obtained. That is, when the automobile turns, for example, a large amplitude flexure is repeatedly generated in the wheel mounting flange 17, and high stress is repeatedly generated in the root portion of the flange 17. High stress is repeatedly generated in the outer peripheral portion 14c of the recess 40 in the shaft portion 14a of the hub 14 serving as the root portion. When the inner surface portion 30 of the recess 40 has a non-standard structure against such repeated high stress, the structure is finer and the hardness is equal to or higher than that of the base material portion made of the standard structure. The strength and fatigue strength are improved by refining the structure and increasing the hardness. Therefore, compared with a hub made of only a normal standard structure, the strength is increased, it can withstand a high stress amplitude, and the occurrence of cracks in the outer peripheral portion 14c of the recess is suppressed, and the life can be extended. That is, the action of crack generation → increased displacement of the wheel mounting flange 17 → increased vibration of the vehicle → damage of the wheel bearing device is suppressed and the life is extended.
Therefore, the strength and fatigue strength of the recessed portion outer peripheral portion 14c of the hub shaft portion 14b can be improved against high stress and repeated stress while making the recessed portion 40 as large as possible to reduce the weight.

そのため、通常の標準組織の車輪用軸受装置に比べて、軽量化が図れ、したがって、車輪用軸受装置の製品製作の投入重量が削減されて、コストの削減が図れ、安価に提供することが可能となる。   Therefore, it is possible to reduce the weight as compared with a wheel bearing device of a normal standard structure. Therefore, the input weight for manufacturing the wheel bearing device can be reduced, the cost can be reduced, and it can be provided at a low cost. It becomes.

前記非標準組織の部分30は、熱間鍛造の工程中または工程の最後に冷却することで得られるため、簡易な処理の追加で済み、工程増による生産性の低下が抑えられる。例えば焼準や調質を行う場合に比べて、工程が簡略化できる。また、熱間鍛造の熱を利用するため、高周波熱処理等と異なり、組織の改質のための処理に用いるエネルギが削減できる。また、高周波熱処理等の場合における熱ひずみの問題が生じない。
非標準組織とする部分30は、凹部40の内面であるため、ハブ14の他の部分の被削性や、加締部14bの加締性などの加工性の低下が最小限に抑えられる。
Since the non-standard-structure portion 30 is obtained by cooling during the hot forging process or at the end of the process, it is only necessary to add a simple process, and a decrease in productivity due to an increase in the process can be suppressed. For example, the process can be simplified as compared with the case of normalizing or tempering. Further, since the heat of hot forging is used, energy used for the processing for modifying the structure can be reduced unlike high-frequency heat treatment or the like. Further, there is no problem of thermal distortion in the case of high-frequency heat treatment or the like.
Since the non-standard texture portion 30 is the inner surface of the recess 40, a decrease in workability such as the machinability of other portions of the hub 14 and the caulking performance of the caulking portion 14b can be minimized.

なお、上記実施形態では、ハブ14の端面の凹部40内の略全面を非標準組織の部分30としたが、非標準組織の部分30は、例えば図6に示すように、凹部40の底側部分40bだけとしても良い。この例では、具体的には、車輪取付用フランジ17のインボード側の側面の付近から、凹部40の最深部の付近までの環状の内面部分を非標準組織の部分30としている。また、上記のように凹部40における曲率半径の異なる2つの凹球面で形成されるうちの曲率半径の小さな部分である底側部分40bに非標準組織の部分30を設けている。
車輪取付用フランジ17からの繰り返し応力が作用する部分は、凹部40の外周部分17cのうち、主に車輪取付用フランジ17と軌道面6の間の部分であるため、上記のように底側部分40bのみに前記非標準組織の部分30を設けても、車輪取付用フランジ17を介して作用する高応力や繰り返し応力に対して強度や疲れ強さを向上させることができる。
In the above embodiment, the substantially entire surface of the end surface of the hub 14 in the recess 40 is the non-standard tissue portion 30, but the non-standard tissue portion 30 is, for example, as shown in FIG. Only the portion 40b may be used. Specifically, in this example, an annular inner surface portion from the vicinity of the side surface on the inboard side of the wheel mounting flange 17 to the vicinity of the deepest portion of the recess 40 is used as the non-standard tissue portion 30. Further, as described above, the non-standard tissue portion 30 is provided in the bottom side portion 40b which is a portion having a small curvature radius among the two concave spherical surfaces having different curvature radii.
Since the portion where the repeated stress from the wheel mounting flange 17 acts is mainly the portion between the wheel mounting flange 17 and the raceway surface 6 in the outer peripheral portion 17c of the recess 40, the bottom side portion as described above. Even if the non-standard tissue portion 30 is provided only on 40b, the strength and fatigue strength can be improved against high stress and repeated stress acting through the wheel mounting flange 17.

図7ないし図10は、それぞれこの発明の他の実施形態を示す。これらの各実施形態においても、凹部40の内面に非標準組織の部分30を設けたことにより、ハブ14の端面に凹部40を設けて軽量化を図りながら、高応力や繰り返し応力に対して、ハブ軸部14bの前記凹部40の付近の強度や疲れ強さを向上させることができ、かつ改質のためのエネルギコストの増大や工程増による生産性の低下が抑えられる。
なお、これらの各実施形態において、特に説明した事項の他は、図1ないし図5と共に説明した第1の実施形態と同じである。
また、図7ないし図10の各例は、凹部40の内面の略全体に非標準組織の部分30を設けた例を示したが、これら図7ないし図10の各例において、図6の例と同様に凹部40内の一部である底側部分40bのみに非標準組織の部分30を設けても良い。
7 to 10 each show another embodiment of the present invention. Also in each of these embodiments, by providing the non-standard tissue portion 30 on the inner surface of the concave portion 40, while providing the concave portion 40 on the end surface of the hub 14 to reduce the weight, against high stress and repeated stress, The strength and fatigue strength of the hub shaft portion 14b in the vicinity of the recess 40 can be improved, and an increase in energy cost for reforming and a decrease in productivity due to an increase in processes can be suppressed.
In each of these embodiments, the matters other than those specifically described are the same as those of the first embodiment described with reference to FIGS.
7 to 10 show examples in which the non-standard tissue portion 30 is provided on substantially the entire inner surface of the recess 40. In these examples of FIGS. 7 to 10, the example of FIG. Similarly, the non-standard tissue portion 30 may be provided only on the bottom side portion 40b which is a part of the recess 40.

図7の車輪用軸受装置は、従動輪支持用のアンギュラ玉軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられていて、インボード側の内輪15の方が、アウトボード側の内輪15よりも、厚さおよび軸方向寸法が大きいものとされている。また、内輪15は、ハブ14に設けられた加締部14bでハブ14に軸方向に固定されている。外方部材2は、一つの一体の部品からなり、外径面は全体に渡って円筒状面とされ、図1の例における車体取付用フランジ12は有していない。   The wheel bearing device of FIG. 7 is of an angular ball bearing type for supporting a driven wheel, and the inner member 1 is a double row in which the hub 14 and the outer periphery of the shaft portion 14a of the hub 14 are fitted. It consists of an inner ring 15. The inner ring 15 is provided for each row, and the inner ring 15 on the inboard side is larger in thickness and axial dimension than the inner ring 15 on the outboard side. The inner ring 15 is fixed to the hub 14 in the axial direction by a caulking portion 14 b provided on the hub 14. The outer member 2 is composed of one integral part, and the outer diameter surface is a cylindrical surface throughout, and does not have the vehicle body mounting flange 12 in the example of FIG.

図8の車輪用軸受装置は、従動輪支持用の円すいころ軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられている。外方部材1は、一つの1体の部品からなる。   The wheel bearing device of FIG. 8 is of a tapered roller bearing type for supporting a driven wheel, and the inner member 1 is a double row in which the inner member 1 is fitted to the outer periphery of the hub 14 and the shaft portion 14a of the hub 14. It consists of an inner ring 15. The inner ring 15 is provided for each row. The outer member 1 is composed of a single component.

図9の車輪用軸受装置は、図7の例と同じく、従動輪支持用のアンギュラ玉軸受型のものであって、内方部材1が、ハブ14と、このハブ14の軸部14aの外周に嵌合した複列の内輪15とからなる。内輪15は各列毎に設けられている。この例では、両列の内輪15が同じ大きさのものとされている。その他の構成は図7の例と同じである。   The wheel bearing device of FIG. 9 is an angular ball bearing type for supporting a driven wheel, as in the example of FIG. 7, and the inner member 1 includes a hub 14 and an outer periphery of a shaft portion 14 a of the hub 14. And a double row of inner rings 15 fitted to each other. The inner ring 15 is provided for each row. In this example, the inner rings 15 in both rows are of the same size. Other configurations are the same as the example of FIG.

図10の車輪用軸受装置は、図9の例において、外方部材2が外周に車体取付用フランジ12を有するものとしたものである。その他の構成は、図9の例と同じである。   The wheel bearing device of FIG. 10 is such that the outer member 2 has a vehicle body mounting flange 12 on the outer periphery in the example of FIG. Other configurations are the same as those in the example of FIG.

なお、前記各実施形態は、いずれも内方部材1を構成する部品の表面に部分的に非標準組織の部分30を設けるようにしたが、内方部材1を構成する部品、ハブ14の表面の全体を非標準組織の部分30としても良い。   In each of the above embodiments, the non-standard tissue portion 30 is partially provided on the surface of the component constituting the inner member 1, but the component constituting the inner member 1, the surface of the hub 14. May be used as the non-standard tissue portion 30.

この発明の第1の実施形態に係る車輪用軸受装置を示す断面図である。It is sectional drawing which shows the wheel bearing apparatus which concerns on 1st Embodiment of this invention. 同車輪用軸受装置のハブの断面図である。It is sectional drawing of the hub of the bearing apparatus for wheels. 同車輪用軸受装置のハブの鍛造工程の工程説明図である。It is process explanatory drawing of the forge process of the hub of the bearing apparatus for wheels. 同車輪用軸受装置のハブの鍛造後の工程の工程説明図である。It is process explanatory drawing of the process after the forge of the hub of the bearing apparatus for wheels. 熱間鍛造された部品の各種非標準組織を得る冷却曲線の説明図である。It is explanatory drawing of the cooling curve which obtains various non-standard structure | tissues of the hot forged components. この発明の他の実施形態に係る車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which concerns on other embodiment of this invention. さらに他の実施形態に係る車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which concerns on other embodiment. さらに他の実施形態に係る車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which concerns on other embodiment. さらに他の実施形態に係る車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which concerns on other embodiment. さらに他の実施形態に係る車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus which concerns on other embodiment. 従来の車輪用軸受装置のハブの鍛造工程およびその後の工程を示す工程説明図である。It is process explanatory drawing which shows the forge process of the hub of the conventional wheel bearing apparatus, and a subsequent process.

符号の説明Explanation of symbols

1…内方部材
2…外方部材
3…転動体
6〜9…軌道面
12…車体取付用フランジ
14…ハブ
14a…軸部
14b…加締部
14c…凹部内面とハブ軸部外周面との間の部分
15…内輪
17…車輪取付用フランジ
20…パイロット部
30…非標準組織となる部分
40…凹部
40b…底側部分
DESCRIPTION OF SYMBOLS 1 ... Inner member 2 ... Outer member 3 ... Rolling elements 6-9 ... Track surface 12 ... Body mounting flange 14 ... Hub 14a ... Shaft part 14b ... Clamping part 14c ... Recess inner surface and hub shaft outer peripheral surface Intermediate part 17 ... Inner ring 17 ... Wheel mounting flange 20 ... Pilot part 30 ... Non-standard structure part 40 ... Recess 40b ... Bottom side part

Claims (7)

複列の転動体を介して互いに回転自在な内方部材および外方部材を備え、前記内方部材が、車輪取付用フランジを有するハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記ハブがアウトボード側の端面に、前記車輪取付用フランジの根元部から突出してホイールおよび制動部品を案内するパイロット部を有し、前記ハブのアウトボード側の端面における前記パイロット部よりも中心側の部分が、軸方向に凹む凹部となった車輪用軸受装置において、 前記ハブが鋼材の熱間鍛造品であり、このハブは、母材部分が標準組織であって、前記端面の凹部内の表面に非標準組織の部分を有し、前記非標準組織が、微細フェライト・パーライト組織、上部ベイナイト組織、下部ベイナイト組織、焼戻マルテンサイト組織のうちのいずれか、もしくは少なくともこれらの組織のうちの2種類以上の混合組織であることを特徴とする車輪用軸受装置。   An inner member and an outer member that are rotatable with respect to each other via double row rolling elements, the inner member having a hub having a wheel mounting flange, and an inner ring fitted to the outer periphery of the shaft portion of the hub, The hub has a pilot portion that projects from a root portion of the wheel mounting flange on the end surface on the outboard side, and guides the wheel and the brake component, and the pilot portion on the end surface on the outboard side of the hub In the wheel bearing device in which the central side portion is a concave portion recessed in the axial direction, the hub is a hot forged product of steel material, and the hub has a standard structure, and the hub portion is a standard structure. It has a part of non-standard structure on the surface in the recess, the non-standard structure is one of fine ferrite pearlite structure, upper bainite structure, lower bainite structure, tempered martensite structure, Wheel bearing apparatus characterized by properly is at least two or more mixed structure of these tissues. 複列の転動体を介して互いに回転自在な内方部材および外方部材を備え、前記内方部材が、車輪取付用フランジを有するハブと、このハブの軸部の外周に嵌合した内輪とでなり、前記ハブがアウトボード側の端面に、前記車輪取付用フランジの根元部から突出してホイールおよび制動部品を案内するパイロット部を有し、前記ハブのアウトボード側の端面における前記パイロット部よりも中心側の部分が、軸方向に凹む凹部となった車輪用軸受装置において、前記非標準組織が、熱間鍛造の工程中または工程の最後に冷却して自己復熱させるかまたは復熱保持焼戻しをすることで得られた組織であることを特徴とする車輪用軸受装置。   An inner member and an outer member that are rotatable with respect to each other via double row rolling elements, the inner member having a hub having a wheel mounting flange, and an inner ring fitted to the outer periphery of the shaft portion of the hub, The hub has a pilot portion that projects from a root portion of the wheel mounting flange on the end surface on the outboard side, and guides the wheel and the brake component, and the pilot portion on the end surface on the outboard side of the hub In the wheel bearing device in which the central part is a recess recessed in the axial direction, the non-standard structure is cooled during the hot forging process or at the end of the process to be self-recovered or recuperated. A wheel bearing device characterized by being a structure obtained by tempering. 請求項1または請求項2において、前記凹部は、ハブの軸心部に至るに従い深くなる形状であって、最深部が前記車輪取付用フランジの位置と同等かまたはこの車輪取付用フランジよりも軸方向に深く凹んだものである車輪用軸受装置。   3. The recess according to claim 1, wherein the concave portion has a shape that becomes deeper as it reaches the axial center of the hub, and the deepest portion is equal to the position of the wheel mounting flange or is more axial than the wheel mounting flange. Wheel bearing device that is deeply recessed in the direction. 請求項1ないし請求項3のいずれか1項において、前記非標準組織の部分が、前記凹部の略全面である車輪用軸受装置。   4. The wheel bearing device according to claim 1, wherein the portion of the non-standard structure is substantially the entire surface of the concave portion. 5. 請求項3において、前記非標準組織の部分が、前記凹部の底側部分である車輪用軸受装置。   The wheel bearing device according to claim 3, wherein the portion of the non-standard structure is a bottom portion of the recess. 請求項1ないし請求項5のいずれか1項において、前記内方部材が、ハブとこのハブのインボード側端の外周に嵌合した内輪とでなり、これらハブおよび内輪に各列の軌道面が形成されたものである車輪用軸受装置。   6. The inner surface according to claim 1, wherein the inner member includes a hub and an inner ring fitted to an outer periphery of an inboard side end of the hub. Is a bearing device for wheels. 請求項1ないし請求項5のいずれか1項において、前記ハブが軌道面を有せず、前記内輪が複列の軌道面を有するものである車輪用軸受装置。
The wheel bearing device according to any one of claims 1 to 5, wherein the hub does not have a raceway surface, and the inner ring has a double-row raceway surface.
JP2005224343A 2005-07-20 2005-08-02 Wheel bearing device Expired - Fee Related JP5105722B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005224343A JP5105722B2 (en) 2005-08-02 2005-08-02 Wheel bearing device
EP06768021.5A EP1908852B1 (en) 2005-07-20 2006-07-10 Bearing device for wheel
PCT/JP2006/313659 WO2007010772A1 (en) 2005-07-20 2006-07-10 Bearing device for wheel
CN2006800263284A CN101223291B (en) 2005-07-20 2006-07-10 Bearing device for wheel
US11/989,102 US8240922B2 (en) 2005-07-20 2006-07-10 Bearing device for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224343A JP5105722B2 (en) 2005-08-02 2005-08-02 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2007038804A true JP2007038804A (en) 2007-02-15
JP5105722B2 JP5105722B2 (en) 2012-12-26

Family

ID=37797182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224343A Expired - Fee Related JP5105722B2 (en) 2005-07-20 2005-08-02 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP5105722B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089522A (en) * 2008-10-03 2010-04-22 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
JP2010167875A (en) * 2009-01-22 2010-08-05 Jtekt Corp Rolling bearing device
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060003A (en) * 2002-07-29 2004-02-26 Topy Ind Ltd Method for producing link for endless track
JP2005003061A (en) * 2003-06-11 2005-01-06 Ntn Corp Wheel bearing device
JP2005145313A (en) * 2003-11-18 2005-06-09 Nsk Ltd Rolling bearing unit for supporting vehicle wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060003A (en) * 2002-07-29 2004-02-26 Topy Ind Ltd Method for producing link for endless track
JP2005003061A (en) * 2003-06-11 2005-01-06 Ntn Corp Wheel bearing device
JP2005145313A (en) * 2003-11-18 2005-06-09 Nsk Ltd Rolling bearing unit for supporting vehicle wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089522A (en) * 2008-10-03 2010-04-22 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel
JP2010167875A (en) * 2009-01-22 2010-08-05 Jtekt Corp Rolling bearing device
JP2011230614A (en) * 2010-04-27 2011-11-17 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel

Also Published As

Publication number Publication date
JP5105722B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP2007024273A (en) Method of manufacturing bearing device for wheel
JP5121168B2 (en) Rolling member manufacturing method and rolling bearing manufacturing method
JP5019727B2 (en) Wheel bearing device
JP5121246B2 (en) Wheel bearing device and manufacturing method thereof
JP2008207589A (en) Bearing device for wheel and its manufacturing method
EP1908852B1 (en) Bearing device for wheel
US7942750B2 (en) Constant velocity joint
JP5105722B2 (en) Wheel bearing device
JP2008169941A (en) Wheel bearing device
JP5105727B2 (en) Wheel bearing device
JP5105723B2 (en) Wheel bearing device
JP5105725B2 (en) Wheel bearing device
JP2007182609A (en) Rolling member for use in wheel bearing device, manufacturing method therefor and wheel bearing device
JP5105728B2 (en) Wheel bearing device
JP5105726B2 (en) Wheel bearing device
US7909517B2 (en) Wheel support bearing assembly and manufacturing method thereof
JP5025925B2 (en) Wheel bearing device
WO2009150928A1 (en) Ball for constant velocity joint and method for producing the same
JP2007038805A (en) Bearing device for wheel
JP2007038803A (en) Bearing device for wheel
JP2009299759A (en) Wheel supporting rolling bearing unit
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP2009262769A (en) Bearing device for wheels
CN108559821A (en) A kind of turbine wheel shaft heat treatment method
JP2008207586A (en) Wheel bearing device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5105722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees