JP2010087367A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2010087367A
JP2010087367A JP2008256625A JP2008256625A JP2010087367A JP 2010087367 A JP2010087367 A JP 2010087367A JP 2008256625 A JP2008256625 A JP 2008256625A JP 2008256625 A JP2008256625 A JP 2008256625A JP 2010087367 A JP2010087367 A JP 2010087367A
Authority
JP
Japan
Prior art keywords
cooler
cooling
substrate
linear expansion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256625A
Other languages
English (en)
Inventor
Tomoyuki Watanabe
智之 渡辺
Takeshi Yamanaka
勇史 山中
Akinori Eda
晶紀 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008256625A priority Critical patent/JP2010087367A/ja
Publication of JP2010087367A publication Critical patent/JP2010087367A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】線膨張係数の異なる部材を接合するに際して、簡易な方法によって各部材の反りを抑制することが可能な半導体装置の製造方法を提供する。
【解決手段】所定の線膨張係数を有するセラミックス製の基板と、基板の線膨張係数より大きい線膨張係数を有するアルミ製の冷却器とを、基板と冷却器との間に介装されるろう材を用いて接合するに際して、前記ろう材を加熱するろう付け工程S110と、基板、冷却器及びろう材等を冷却する冷却工程S115とを具備する半導体装置の製造工程S100において、冷却工程S115は、見かけの線膨張係数が小さい部材側を先に冷却する第一冷却工程S116と、見かけの線膨張係数が大きい部材側を後に冷却する第二冷却工程S117とを含む。
【選択図】図2

Description

本発明は、電力変換装置等に用いられる半導体装置の製造方法に関する。
インバータ等の電力変換装置は、絶縁材料からなる基板、基板表面にはんだ付けされる絶縁ゲートバイポーラトランジスタ(IGBT)等のパワー半導体素子、パワー半導体素子冷却用の冷却フィンを内蔵し、基板裏面にろう付けされる冷却器、パワー半導体素子及び基板等を内部に収納し、基板表面に接着されるハウジング等を具備する。
このような電力変換装置の製造工程は、基板を冷却器にろう付けする工程、パワー半導体素子を基板上にはんだ付けする工程、バスバモジュールを備えるハウジングを熱硬化性の接着剤を用いて冷却器上に接着し、パワー半導体素子とバスバモジュールとを電気的に接続する工程、ハウジング内に形成される空間に熱硬化性樹脂を充填し、封止する工程等を含む。
図9に示すように、一般的に、冷却器210はアルミニウム、銅等の熱伝導性の高い金属によって構成され、基板220は窒化アルミニウム、アルミナ等のセラミックスによって構成される。つまり、上記のようなろう付け工程において、線膨張係数が異なる部材同士をろう付けすることとなる(例えばアルミニウムは25ppm/K、セラミックスは4.5ppm/K)。このため、冷却器210において、基板220がろう付けされる側の面とされない側の面との間に見かけ上の線膨張係数の差が生じ、ろう材冷却時の収縮率に差が生じるので、ろう付け工程後の冷却器210に反りが発生していた。
冷却器210は、ろう付け工程の後工程における加熱によってもさらに変形され、これにより、基板220の接合に不具合が生じる、又は冷却器210の変形に伴うパワー半導体素子の位置ズレによって、パワー半導体素子の電気的な接続状態を検査する工程に影響を与える等の不具合を誘発し、結果として工程数の追加、生産ラインの停止等の弊害をもたらしていた。
また、ハイブリッド車、燃料電池車等に搭載されるインバータは、電源装置からの電圧値を変換するDC−DCコンバータを具備しており、前記冷却器は、このDC−DCコンバータを冷却するためにも利用されている。DC−DCコンバータは、パワー半導体素子と反対側の面に接触させて配置されることが一般的である。そのため、冷却器に反りが生じた場合は、DC−DCコンバータと冷却器との間に隙間が生じることとなり、DC−DCコンバータの冷却効率が悪くなるという問題もある。
上記のような問題を解消する手段として、以下に示す特許文献1のような技術が開示されている。
特許文献1に開示される半導体装置の製造方法は、基板を金属ベースの一面にろう付けした後に、金属ベースの反対面に対してショットピーニング処理する工程を含む。これにより、金属ベースの反対面を加工硬化し、ろう付けによって生じた反りと逆向きの変形を加えることになるため、金属ベースの反りを抑制できる。そして、このようにして得られた平坦な金属ベースに冷却フィンを取り付けることによって、良好な冷却性能を有する半導体装置を提供できる。
しかしながら、特許文献1に開示される技術は、ショットピーニング処理に係る設備及び機械加工工程が必要となり、コスト面、作業面で不利である。
特開2006−332084号公報
本発明は、線膨張係数の異なる部材を接合するに際して、簡易な方法によって各部材の反りを抑制することが可能な半導体装置の製造方法を提供することを課題とする。
本発明の半導体装置の製造方法は、所定の線膨張係数を有する第一部材と、前記第一部材の線膨張係数より大きい線膨張係数を有する第二部材とを、前記第一部材と第二部材との間に介装される接合部材を用いて接合するに際して、前記接合部材を加熱する加熱工程と、前記第一部材、第二部材及び接合部材を冷却する冷却工程とを具備する半導体装置の製造方法であって、前記冷却工程では、見かけの線膨張係数が小さい部材側を先に冷却し、その後、見かけの線膨張係数が大きい部材側を冷却する。
本発明の半導体装置の製造方法において、前記第一部材は、半導体素子が接合される基板であり、前記第二部材は、前記半導体素子冷却用の冷却器であり、前記接合部材は、ろう材であることが好ましい。
本発明の半導体装置の製造方法において、前記冷却器は、薄板形状、かつ、折り返し形状を有する冷却フィンと、該冷却フィンを内部に収納する冷却器本体とを含み、前記冷却フィンの折り返し部と前記冷却器本体の内側面とが接合されることが好ましい。
本発明の半導体装置の製造方法において、前記基板と前記冷却器との間には、前記冷却器から前記基板に伝達される応力を緩和する応力緩和材が設けられるが好ましい。
本発明によれば、簡易な方法によって線膨張係数の異なる各部材の反りを抑制することができる。
以下では、図1を参照して、本発明に係る半導体装置の製造方法により製造される半導体装置の実施の一形態である半導体装置1について説明する。半導体装置1は、パワー半導体素子を有する電力変換装置であり、例えばハイブリッド車、燃料電池車用のインバータである。
半導体装置1は、半導体モジュール10、基板20、パンチングアルミ30、冷却器40、ハウジング50、封止樹脂層60、DC−DCコンバータ70等を具備する。
半導体モジュール10は、パワー半導体素子(IGBT、Di、MOS等のパワーデバイス)、受動素子等を内蔵している。半導体モジュール10は基板20にはんだ付けにて接合されている。
基板20は、セラミックス製の絶縁基板21と、絶縁基板21の上面及び下面にろう付けされる高純度(例えば純度99.99%)アルミ製のアルミ板22・22とを含む。基板20はパンチングアルミ30を介して冷却器40にろう付けにて接合されている。絶縁基板21の表面には半導体モジュール10に応じたパターン回路が形成されている。
半導体装置1において、絶縁基板21はセラミックス製、アルミ板22・22はアルミ製であり、それぞれ熱電伝導性の良い材料によって構成されているため、半導体モジュール10からの発熱は、アルミ板22→絶縁基板21→アルミ板22へと良好に伝達される。
パンチングアルミ30は、パンチング加工を施した有孔のアルミ板であり、基板20と冷却器40との間に配置され、それぞれとろう付けにて接合されている。パンチングアルミ30は、冷却器40の熱変形による応力を基板20側へ伝達させないための応力緩和材である。
冷却器40は、冷却器本体41、冷却フィン42、ケーシング43を含む。冷却器40は、半導体モジュール10及びDC−DCコンバータ70を冷却する部材である。冷却器40は、平面方向一方向を長手方向とする略直方体に形成されており、上下方向の厚みは、長手方向の長さと比べて十分に小さくなるように形成されている(例えば厚み10mm、長手方向の長さ200mm)。
冷却器本体41は、内部に冷却フィン42を収納するアルミ製のケースである。冷却器本体41の内部には冷媒(例えばLLC)が充填されており、適宜循環されている。
冷却フィン42は、薄板プレス成形によって成形されるアルミ製のフィンであり、薄板形状、かつ、折り返し形状を有する。冷却フィン42は、冷却器40の冷却水路を構成する部材である。冷却フィン42は、その折り返し部である上端部及び下端部において冷却器本体41の内側面とろう付けにて接合されている。つまり、冷却フィン42の折り返し部は、冷却器本体41における、基板20がパンチングアルミ30を介して接合される側およびその反対側の内側面に接合されている。
ケーシング43は、内部に冷却器本体41を収納するアルミ製のケースであり、基板20がろう付けされる箇所に適宜の開口部を有している。このケーシング43の開口部の周囲と冷却器本体41とは、冷却器40のシール性能を十分に確保できるようにろう付けが施されている。
ハウジング50は、上面及び下面が開口している樹脂製の部材であり、例えばポリフェニレンサルファイド(PPS)樹脂からなる。ハウジング50は、内部にバスバモジュール51を有する。ハウジング50は、冷却器40上の半導体モジュール10及び基板20の周囲に熱硬化性の接着剤(例えばシリコン接着剤)を用いて接合されている。
バスバモジュール51は、アルミ製の導電部材であり、ハウジング50の内側面側に半導体モジュール10及び基板20との接続端子52を有し、ハウジング50の外側面又は上側面に適宜の電源装置との接続端子である外部端子53を有する。バスバモジュール51の接続端子52と半導体モジュール10及び基板20とは、それぞれボンディングワイヤ54を介して電気的に接続されている。これにより、半導体モジュール10に通電可能となり、インバータとして使用可能となる。
封止樹脂層60は、熱硬化性樹脂61を加熱して硬化させることによって形成される封止層であり、例えばシリコンゲルの層である。封止樹脂層60は、ハウジング50と冷却器40とによって囲まれる空間に設けられている。この封止樹脂層60により、半導体モジュール10、基板20等が封止され、それらの発熱、振動等を吸収・拡散するとともに湿度や外力から保護している。また、封止樹脂層60により、ハウジング50、冷却器40、パンチングアルミ30、基板20、及び半導体モジュール10のそれぞれの接合関係が補強されている。
以上のような半導体装置1において、半導体モジュール10からの発熱は、半導体モジュール10→アルミ板22→絶縁基板21→アルミ板22→パンチングアルミ30→冷却器本体41へと良好に伝達され、冷却器40内を循環する冷媒によって冷却される。また、半導体モジュール10からの発熱は、封止樹脂層60内に拡散されることによって緩和される。このようにして、半導体装置1の冷却性能が確保されている。
また、冷却器40における、半導体モジュール10等が設けられる側と反対側の面(図示において下面)には、DC−DCコンバータ70が設けられている。DC−DCコンバータ70は、熱抵抗低減用のグリスを介して冷却器40に密着した状態で配置されている。このように、冷却器40は、半導体モジュール10とDC−DCコンバータ70とを冷却している。
以下では、図2〜図8を参照して、半導体装置1を製造するための製造方法にかかる製造工程S100について説明する。
図2に示すように、製造工程S100は、基板20を冷却器40にろう付けにて接合するろう付け工程S110、半導体モジュール10を基板20にはんだ付けにて接合するはんだ付け工程S120、ハウジング50を冷却器40に接着剤にて接合する接着工程S130、ハウジング50と冷却器40とによって囲まれた空間に熱硬化性樹脂61を充填し、さらに加熱させて樹脂封止する封止工程S140、ろう付け工程S110、はんだ付け工程S120、接着工程S130、封止工程S140の後工程である冷却工程S115、S125,S135,S145等を具備する。
ろう付け工程S110では、基板20とパンチングアルミ30、及びパンチングアルミ30と冷却器40とをそれぞれろう付けすることにより、パンチングアルミ30を介して基板20を冷却器40に接合する。より厳密には、図3に示すように、半導体モジュール10がはんだ付けされる面(図示において上面)と反対の面(図示において下面)のアルミ板22とパンチングアルミ30との間、及びパンチングアルミ30と冷却器本体41との間に接合部材となるろう材を配置し、炉内にてろう材の融点温度(例えば600℃)まで加熱することによりろう材を溶融してろう付けする。
ろう付け工程S110終了後、基板20、パンチングアルミ30、冷却器40及び前記ろう材を冷却する冷却工程S115に移行する。この冷却工程S115によって、溶融されたろう材を凝固させて接合状態とし、さらに、後工程にて作業可能な温度まで冷却される。
冷却工程S115は、第一冷却工程S116と第二冷却工程S117とを含む。第一冷却工程S116では、冷却器40の基板20がろう付けされる面(図示において上面)側から窒素ブローによって、前記上面が常温付近(例えば50℃以下)になるまで冷却する。第二冷却工程S117では、冷却器40の基板20がろう付けされる面と反対側の面(図示において下面)に冷却用銅板を接触させることによって、前記下面が常温付近(例えば50℃以下)になるまで冷却する。
ここで、冷却器40の上面側には、アルミ製の冷却器40に加えてセラミックス製の絶縁基板21を含む基板20が配されるため、パンチングアルミ30と冷却器本体41とを接合するろう材が凝固する、ろう材の融点温度以下の温度では、冷却器40の上面の見かけの線膨張係数は、アルミ製の冷却器40のみとなる冷却器40の下面の見かけの線膨張係数よりも小さくなっている。つまり、冷却工程S115において、見かけの線膨張係数が小さい部材側を先に冷却し、その後、見かけの線膨張係数が大きい部材側を冷却している。
なお、冷却器40の上面および下面の見かけの線膨張係数とは、前記上面に接合される基板20などの他の部材により、冷却器40が本来有している線膨張係数が影響を受ける場合、その影響をも考慮した線膨張係数をいう。以下の説明においても同様とする。
第一冷却工程S116では、冷却器40の上面側を冷却するため、上面が収縮し、下面との間に収縮差が発生する。この収縮差は、パンチングアルミ30、冷却器40の冷却器本体41、冷却フィン42の塑性変形に加え、冷却器40の下面側のアルミ軟化特性による塑性変形によって吸収され、冷却器40は、図4に示すように、下凸の弓なり形状となる。
このとき、冷却フィン42は、上端部及び下端部の二点でろう付けされているため、ろう付けされていない部位は自由変形可能であり、係る部位にて塑性変形が起こり、上面と下面との収縮差を吸収している。また、上面側を冷却する際に冷却フィン42が熱抵抗となり、下面側の温度低下が抑制されている。
また、冷却器40の収縮量と基板20の収縮量との差はパンチングアルミ30の塑性変形により吸収されるため、基板20への熱応力の伝達が抑制される。これにより、基板20の耐久性は確保される。
第二冷却工程S117では、冷却器40の下面を冷却するため、下面が収縮し、上面との間に収縮差が発生する。この収縮差は、パンチングアルミ30、冷却器40の冷却器本体41、冷却フィン42の塑性変形によって吸収され、冷却器40は、図5に示すように、略平坦な形状となる。
このとき、上面側にはセラミックス製の絶縁基板21が配置されているため、上面側の見かけの線膨張係数は、アルミ製の部材が集中している下面側より小さくなる。これにより、下面側の収縮量は上面側より大きくなるので、冷却工程S115後の冷却器40は極微小な上凸傾向を形成する(例えば、長手方向の長さ200mmの冷却器に対して50μmの上凸傾向を形成する)。
また、冷却器40の塑性変形による応力はパンチングアルミ30の塑性変形により吸収されるため、基板20への応力の伝達が抑制される。これにより、基板20の耐久性は確保される。
一方、従来の冷却工程では、図9に示すように、冷却器210の上下両面側から同時に冷却していたため、上面と下面との収縮差を吸収することができず、冷却後に上凸の弓なり形状を残すこととなるとともに、熱応力による収縮差が冷却器210内の残留応力として残り、耐久性に影響することがあった。
これに対して、本実施形態では、冷却工程S115において、第一冷却工程S116にてセラミックス製の基板20が配される上面側から先に冷却し、第二冷却工程S117にてその反対側の下面側を後に冷却するので、それぞれの冷却工程S116・S117における収縮差は、冷却器40、パンチングアルミ30の塑性変形によって吸収される。従って、冷却後の冷却器40の反りを抑制することができる。さらに、係る冷却工程S115において特別な装置等を追加する必要がないので、コスト面でも有利である。
また、本実施形態では、冷却工程S115において、上述のように冷却器40が塑性変形するため、冷却器40に残留応力は残らず、冷却器40の耐久性が確保される。
冷却工程S115終了後、はんだ付け工程S120に移行する。
はんだ付け工程S120では、半導体モジュール10を基板20にはんだ付けする。より厳密には、図6に示すように、半導体モジュール10と基板20のアルミ板22の上面との間にペースト状のはんだを配置し、リフロー炉内にてはんだの融点温度(例えば300℃)まで加熱することによりはんだを溶融してはんだ付けする。
はんだ付け工程S120終了後、半導体モジュール10、基板20、パンチングアルミ30及び冷却器40を冷却する冷却工程S125に移行する。この冷却工程S125によって、溶融されたはんだを凝固させて接合状態とし、さらに、後工程にて作業可能な温度まで冷却される。
冷却工程S125は、第一冷却工程S126と第二冷却工程S127とを含む。第一冷却工程S126では、冷却器40の半導体モジュール10がはんだ付けされる面(図示において上面)側から窒素ブローによって、前記上面が常温付近(例えば50℃以下)になるまで冷却する。第二冷却工程S127では、冷却器40の半導体モジュール10がはんだ付けされる面と反対側の面(図示において下面)に冷却用銅板を接触させることによって、前記下面が常温付近(例えば50℃以下)になるまで冷却する。
ここで、冷却器40の上面側には、シリコン等のセラミックスを主成分とする半導体モジュール10とセラミックス製の絶縁基板21を含む基板20とが配されるため、冷却器40の上面の見かけの線膨張係数は、アルミ製の冷却器40のみである冷却器40の下面の見かけの線膨張係数より小さくなっている。つまり、冷却工程S125において、冷却工程S115と同様に見かけの線膨張係数が小さい部材側を先に冷却し、その後、見かけの線膨張係数が大きい部材側を冷却している。
これにより、冷却工程S125においても冷却工程S115と同様の効果を奏し、冷却工程S125後の冷却器40の反りを抑制できる。
冷却工程S125終了後、接着工程S130に移行する。
接着工程S130では、熱硬化性の接着剤を塗布し、ハウジング50を冷却器40に載置する。そして、バスバモジュール51の接続端子52と半導体モジュール10とをボンディングワイヤ54にて電気的に接続し、加熱することによって接着剤を硬化させてハウジング50を冷却器40に接着する。より厳密には、図7に示すように、ケーシング43の適宜箇所に接着剤を塗布し、半導体モジュール10、基板20及びパンチングアルミ30等をハウジング50の内部空間内に収納するようにハウジング50を載置して、接着剤の硬化温度(例えば150℃)まで加熱することにより接着剤を硬化してハウジング50をケーシング43に接着する。
接着工程S130終了後、半導体モジュール10、基板20、パンチングアルミ30、冷却器40、及びハウジング50を冷却する冷却工程S135に移行する。この冷却工程S135によって、後工程にて作業可能な温度まで冷却される。
冷却工程S135は、第一冷却工程S136と第二冷却工程S137とを含む。第一冷却工程S136では、冷却器40のハウジング50が接着される面(図示において上面)側から窒素ブローによって、前記上面が常温付近(例えば50℃以下)になるまで冷却する。第二冷却工程S137では、冷却器40のハウジング50が接着される面と反対側の面(図示において下面)に冷却用銅板を接触させることによって、前記下面が常温付近(例えば50℃以下)になるまで冷却する。
ここで、冷却器40の上面側には、セラミックスを主成分とする半導体モジュール10、セラミックス製の絶縁基板21を含む基板20及び熱硬化性樹脂を主成分とするハウジング50が配されるため、冷却器40の上面の見かけの線膨張係数は、アルミ製の冷却器40のみである冷却器40の下面の見かけの線膨張係数より小さくなっている。つまり、冷却工程S135において、冷却工程S115と同様に見かけの線膨張係数が小さい部材側を先に冷却し、その後、見かけの線膨張係数が大きい部材側を冷却している。また、熱硬化性樹脂を含むハウジング50は、アルミ等に比べて十分に硬度の低い部材であるため、冷却時に発生する反りの影響を受け難い。さらに、ハウジング50のバスバモジュール51はアルミ製であるため、冷却器40等との線膨張係数の差がないため、冷却時に発生する反りの影響を受け難い。
これにより、ハウジング50の熱応力による変形を抑制できるとともに、冷却工程S135において冷却工程S115と同様の効果を奏し、冷却工程S135後の冷却器40の反りを抑制できる。
冷却工程S135終了後、封止工程S140に移行する。
封止工程S140では、ハウジング50と冷却器40とによって囲まれる空間に熱硬化性の樹脂を充填し、加熱することによって樹脂を硬化させて封止樹脂層60を形成する。より厳密には、図8に示すように、ハウジング50の内部空間内に収納された半導体モジュール10、基板20及びパンチングアルミ30等を覆うように熱硬化性樹脂61を充填して、樹脂61の硬化温度(例えば150℃)まで加熱することにより樹脂封止する。
封止工程S140終了後、半導体モジュール10、基板20、パンチングアルミ30、冷却器40、及びハウジング50を冷却する冷却工程S145に移行する。この冷却工程S145によって後工程にて作業可能な温度まで冷却される。
冷却工程S145は、第一冷却工程S146と第二冷却工程S147とを含む。第一冷却工程S146では、冷却器40の封止樹脂層60が形成される面(図示において上面)側から窒素ブローによって、前記上面が常温付近(例えば50℃以下)になるまで冷却する。第二冷却工程S147では、冷却器40の封止樹脂層60が形成される面と反対側の面(図示において下面)に冷却用銅板を接触させることによって、前記下面が常温付近(例えば50℃以下)になるまで冷却する。
ここで、冷却器40の上面側には、セラミックスを主成分とする半導体モジュール10、セラミックス製の絶縁基板21を含む基板20、熱硬化性樹脂を主成分とするハウジング50及び熱硬化性樹脂を主成分とする封止樹脂層60が配されるため、冷却器40の上面の見かけの線膨張係数は、アルミ製の冷却器40のみである冷却器40の下面の線膨張係数より小さくなっている。つまり、冷却工程S145において、冷却工程S115と同様に線膨張係数が小さい部材側を先に冷却し、線膨張係数が大きい部材側を後に冷却している。また、熱硬化性樹脂からなる封止樹脂層60は、アルミ等に比べて十分に硬度の低い部材であるため、冷却時に発生する反りの影響を受け難い。
これにより、ハウジング50及び封止樹脂層60の熱応力による変形を抑制できるとともに、冷却工程S145において冷却工程S115と同様の効果を奏し、冷却工程S145後の冷却器40の反りを抑制できる。
冷却工程S145終了後、冷却器40の下面に熱抵抗低減用のグリスを塗布し、DC−DCコンバータ70を取り付けるコンバータ取り付け工程等の後工程に移行する。
このとき、冷却器40の反りが抑制されているので、DC−DCコンバータ70と冷却器40との隙間が極微小となる。これにより、DC−DCコンバータ70と冷却器40との間に介在させるグリス量を減らすことができ、DC−DCコンバータ70に対する冷却性能も確保される。
なお、本実施形態では、冷却器40に対して一対の半導体モジュール10及び基板20を設置することにより得られる半導体装置1について説明したが、これに限定されず、一つの冷却器40の長手方向に、複数対の半導体モジュール10及び基板20を設置し、それらをそれぞれ内部に収納可能な開口を有するハウジング50を用いた場合でも、同様の製造方法によって、冷却器40の反りを抑制できるとともに、良好な冷却効率を実現する半導体装置1を提供できる。
また、本実施形態では、冷却器40等の材料としてアルミを採用したが、高温状態で軟化特性を示す他の導電性金属を用いても良く、アルミには限定されない。
また、本実施形態では、半導体装置1の半導体モジュール10冷却用に設けられる冷却器40を、平面方向一方向を長手方向とする横長の部材としたが、平面視正方形状を有する部材としても、本発明に係る製造方法を採用すれば同様の作用効果を奏する。
本発明に係る半導体装置を示す模式図である。 本発明に係る半導体装置の製造工程を示すフロー図である。 半導体装置の製造工程におけるろう付け工程を示す模式図である。 冷却工程における第一冷却工程を示す模式図である。 冷却工程における第二冷却工程を示す模式図である。 半導体装置の製造工程におけるはんだ付け工程を示す模式図である。 半導体装置の製造工程における接着工程を示す模式図である。 半導体装置の製造工程における封止工程を示す模式図である。 従来の冷却工程及び冷却後の状態を示す模式図である。
符号の説明
1 半導体装置
10 半導体モジュール
20 基板
30 パンチングアルミ
40 冷却器
50 ハウジング
60 封止樹脂層

Claims (4)

  1. 所定の線膨張係数を有する第一部材と、前記第一部材の線膨張係数より大きい線膨張係数を有する第二部材とを、前記第一部材と第二部材との間に介装される接合部材を用いて接合するに際して、前記接合部材を加熱する加熱工程と、前記第一部材、第二部材及び接合部材を冷却する冷却工程とを具備する半導体装置の製造方法であって、
    前記冷却工程では、
    見かけの線膨張係数が小さい部材側を先に冷却し、その後、見かけの線膨張係数が大きい部材側を冷却することを特徴とする半導体装置の製造方法。
  2. 前記第一部材は、半導体素子が接合される基板であり、
    前記第二部材は、前記半導体素子冷却用の冷却器であり、
    前記接合部材は、ろう材である請求項1に記載の半導体装置の製造方法。
  3. 前記冷却器は、薄板形状、かつ、折り返し形状を有する冷却フィンと、該冷却フィンを内部に収納する冷却器本体とを含み、
    前記冷却フィンの折り返し部と前記冷却器本体の内側面とが接合される請求項2に記載の半導体装置の製造方法。
  4. 前記基板と前記冷却器との間には、
    前記冷却器から前記基板に伝達される応力を緩和する応力緩和材が設けられる請求項2又は請求項3に記載の半導体装置の製造方法。
JP2008256625A 2008-10-01 2008-10-01 半導体装置の製造方法 Pending JP2010087367A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256625A JP2010087367A (ja) 2008-10-01 2008-10-01 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256625A JP2010087367A (ja) 2008-10-01 2008-10-01 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010087367A true JP2010087367A (ja) 2010-04-15

Family

ID=42251008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256625A Pending JP2010087367A (ja) 2008-10-01 2008-10-01 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010087367A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183103A (ja) * 2012-03-02 2013-09-12 Toyota Industries Corp 半導体装置
CN104658995A (zh) * 2013-11-19 2015-05-27 株式会社丰田自动织机 半导体装置及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183103A (ja) * 2012-03-02 2013-09-12 Toyota Industries Corp 半導体装置
CN104658995A (zh) * 2013-11-19 2015-05-27 株式会社丰田自动织机 半导体装置及其制造方法

Similar Documents

Publication Publication Date Title
JP5588956B2 (ja) パワー半導体装置
JP4958735B2 (ja) パワー半導体モジュールの製造方法、パワー半導体モジュールの製造装置、パワー半導体モジュール、及び接合方法
US6690087B2 (en) Power semiconductor module ceramic substrate with upper and lower plates attached to a metal base
KR101188150B1 (ko) 냉각 장치
KR100866436B1 (ko) 전자 장치 제조 방법
CN101335263A (zh) 半导体模块和半导体模块的制造方法
JP6138500B2 (ja) パワー半導体装置
JP5262408B2 (ja) 位置決め治具および半導体装置の製造方法
WO2013171946A1 (ja) 半導体装置の製造方法および半導体装置
KR101933810B1 (ko) 냉각 장치, 냉각 장치의 제조 방법 및 전력 회로
JP5164962B2 (ja) 電力変換装置
KR20200069017A (ko) 양면 냉각형 파워모듈 및 그 제조 방법
JP6945418B2 (ja) 半導体装置および半導体装置の製造方法
JP6200759B2 (ja) 半導体装置およびその製造方法
JP2010165743A (ja) 半導体モジュールおよびその製造方法
JP2010097963A (ja) 回路基板及びその製造方法、電子部品モジュール
KR101994727B1 (ko) 전력 모듈 패키지 및 그 제조방법
JP2009283656A (ja) 半導体装置およびその製造方法
JP2014049582A (ja) 半導体装置
JP2010087367A (ja) 半導体装置の製造方法
JP2010199251A (ja) 半導体装置の製造方法
JP3669980B2 (ja) モジュール構造体の製造方法並びに回路基板の固定方法及び回路基板
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
JP5040418B2 (ja) 半導体装置
KR102039791B1 (ko) 반도체칩 실장방법 및 반도체칩 패키지