JP2010086859A - Method for forming catalyst layer for fuel cell using catalyst ink - Google Patents

Method for forming catalyst layer for fuel cell using catalyst ink Download PDF

Info

Publication number
JP2010086859A
JP2010086859A JP2008256448A JP2008256448A JP2010086859A JP 2010086859 A JP2010086859 A JP 2010086859A JP 2008256448 A JP2008256448 A JP 2008256448A JP 2008256448 A JP2008256448 A JP 2008256448A JP 2010086859 A JP2010086859 A JP 2010086859A
Authority
JP
Japan
Prior art keywords
catalyst ink
catalyst
ink
fuel cell
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256448A
Other languages
Japanese (ja)
Other versions
JP5403211B2 (en
Inventor
Masanori Aitake
将典 相武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008256448A priority Critical patent/JP5403211B2/en
Publication of JP2010086859A publication Critical patent/JP2010086859A/en
Application granted granted Critical
Publication of JP5403211B2 publication Critical patent/JP5403211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower viscosity of catalyst ink by eliminating coarse particles and air bubbles in catalyst ink and manufacture uniform catalyst ink. <P>SOLUTION: Catalyst ink materials containing powder comprising catalyst carrying conductive particles, resin having ionic conductivity and a dispersing medium are prepared (S1), shearing force is applied to the catalyst ink materials to disperse each material (S2), the catalyst ink materials are dispersed by cavitation effect produced by applying ultrasonic vibration to the catalyst ink materials (S3), and the catalyst ink obtained is applied to an electrolyte membrane (S4). All coarse particles are crushed in the process S2 and the catalyst carrying conductive particles are uniformly monodispersed, air bubbles are burst by ultrasonic waves in the process S3 to stably manufacture the uniform catalyst ink having stable viscosity, and the catalyst ink is applied to the electrolyte membrane to form an appropriate catalyst layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体分子形燃料電池(Polymer Electrolyte Fuel Cell、以下PEFCとする)を代表例とする電極触媒層用のインク(以下、触媒インクとする)を製造し、該触媒インクを電解質膜に塗布し、PEFCのような燃料電池用の触媒層を形成する製造方法に関する。   The present invention manufactures an ink for an electrode catalyst layer (hereinafter referred to as catalyst ink) typified by a polymer electrolyte fuel cell (hereinafter referred to as PEFC), and uses the catalyst ink as an electrolyte membrane. The present invention relates to a manufacturing method for applying and forming a catalyst layer for a fuel cell such as PEFC.

従来から、燃料電池用の触媒インクを製造する際に好適な触媒インクの分散方法が検討されてきた。例えば、特許文献1には、触媒インクの製造方法の分散工程で使う分散装置が複数種類について列挙されている。
しかし、複数種類の分散装置を採用しようとした場合、どのように選択し、どのように組み合わせるべきか、どのような順番で行うのが好適であるかについて、明確化されていなかった。
Conventionally, a method for dispersing a catalyst ink suitable for producing a catalyst ink for a fuel cell has been studied. For example, Patent Document 1 lists a plurality of types of dispersion devices used in the dispersion step of the catalyst ink production method.
However, when adopting a plurality of types of dispersion apparatuses, it has not been clarified how to select, how to combine them, and in what order.

ところで、燃料電池の触媒層の材料となる触媒インクは、触媒層全体に渡り触媒能力を持つことが望ましい。よって、白金担持炭素粒子に代表される触媒担持導電性粒子と、プロトン導電性を有する電解質とを溶媒中に均一分散させなければならない。
そのために、触媒インクに触媒担持導電性粒子を均一に懸濁することが好ましい。そして、この懸濁後均一的・安定的に触媒層を形成するためには、触媒インクの粘度、濃度等が経時変化しないことが好ましい。
By the way, it is desirable that the catalyst ink used as the material of the catalyst layer of the fuel cell has a catalytic ability over the entire catalyst layer. Therefore, the catalyst-carrying conductive particles represented by platinum-carrying carbon particles and the electrolyte having proton conductivity must be uniformly dispersed in the solvent.
Therefore, it is preferable that the catalyst-carrying conductive particles are uniformly suspended in the catalyst ink. And in order to form a catalyst layer uniformly and stably after this suspension, it is preferable that the viscosity, concentration, etc. of the catalyst ink do not change with time.

触媒インクを用いて形成された触媒層を含む燃料電池が好適な発電能を発揮するためには、触媒インク中で、触媒担持導電性粒子にイオン導電性樹脂を含む電解質溶液を均一に被覆させる必要がある。そのために、触媒担持導電性粒子(以下、単に「粒子」という。)を、例えば、粒子を0.1μmから1μm程度の範囲に入るように微粉化し、大きな粒子を含まないように、電解質溶液に分散することが好ましい。
特開2004−146165号公報
In order for a fuel cell including a catalyst layer formed using a catalyst ink to exhibit suitable power generation performance, the catalyst-supporting conductive particles are uniformly coated with an electrolyte solution containing an ion conductive resin in the catalyst ink. There is a need. For this purpose, catalyst-carrying conductive particles (hereinafter simply referred to as “particles”) are, for example, pulverized so that the particles fall within a range of about 0.1 μm to 1 μm, and are added to the electrolyte solution so as not to include large particles. It is preferable to disperse.
JP 2004-146165 A

以上を鑑みて、発明者は、鋭意検討の結果、せん断力による分散方法(以下「せん断力分散」という。)と、キャビテーション効果(超音波)による分散方法(以下「超音波分散」という。)との組み合わせによる方法を検討した。   In view of the above, as a result of intensive studies, the inventor has conducted a dispersion method using shearing force (hereinafter referred to as “shearing force dispersion”) and a dispersion method using cavitation effect (ultrasound) (hereinafter referred to as “ultrasonic dispersion”). The method by the combination with was examined.

しかし、せん断力分散によれば、1次粒子又は2次粒子に高い分散エネルギーを与えるため、これら粒子を好適に粉砕、分散することができる一方、せん断力が強まるほど、粒子同士又は粒子とメディアが強烈かつランダムに衝突するため、触媒インク内に多くの気泡が発生する。発生した気泡は、せん断分散中に装置内で噛み込みを生じさせ、気泡がクッションのように働き、微細に粒子を分散させ難い。また、気泡の噛み込みにより、触媒インクの粘度、濃度等の変動を大きくさせるため、安定して触媒層を形成し難い。   However, according to shear force dispersion, primary particles or secondary particles are given high dispersion energy, so these particles can be suitably pulverized and dispersed. On the other hand, as the shear force increases, particles or particles and media Violently and randomly collide, so that many bubbles are generated in the catalyst ink. The generated air bubbles cause biting in the apparatus during shear dispersion, and the air bubbles act like a cushion, making it difficult to finely disperse the particles. In addition, since the fluctuation of the viscosity and concentration of the catalyst ink is increased by the entrapment of bubbles, it is difficult to stably form the catalyst layer.

加えて、気泡がそのまま触媒インク内に残存すると、気泡部分は触媒として機能しないばかりか、気泡部分は電子伝導性やイオン導電性を阻害し、触媒層構造としても脆くなり、ひいては燃料電池の性能や耐久性に悪影響を及ぼす可能性もある。   In addition, if bubbles remain in the catalyst ink as they are, the bubbles do not function as a catalyst, but the bubbles inhibit electronic conductivity and ionic conductivity, and the catalyst layer structure becomes brittle, which leads to fuel cell performance. And the durability may be adversely affected.

一方、超音波分散によれば、触媒インク内で超音波が強め合う箇所に発生する強いキャビテーション力で1次粒子及び2次粒子を粉砕し、上記の気泡を破裂させる一方、例えば粉砕初期に存在する100μm程度の大きな触媒担持導電性粒子を粉砕するのは困難であり、仮に粉砕されたとしても、粉砕までの長時間を要し、製造効率を下げる。また、粉砕されなければ、そのまま大きな粒子が残存し触媒能が触媒層内で偏在してしまう。   On the other hand, according to ultrasonic dispersion, primary particles and secondary particles are pulverized by a strong cavitation force generated at locations where ultrasonic waves intensify in the catalyst ink, and the bubbles are ruptured. However, it is difficult to pulverize large catalyst-carrying conductive particles of about 100 μm, and even if pulverized, it takes a long time until pulverization and lowers the production efficiency. Moreover, if not pulverized, large particles remain as they are, and the catalytic ability is unevenly distributed in the catalyst layer.

本発明は、斯かる実情に鑑み、触媒インクを製造するに当たり、上記の2つの分散方法を組み合わせてその順番を決定し、さらに、各分散方法における最適な固形分濃度条件を提供することを目的とする。   In view of such circumstances, the present invention aims to determine the order by combining the above two dispersion methods in the production of a catalyst ink, and to provide optimum solid concentration conditions in each dispersion method. And

(発明の態様)
本発明では、超音波分散とせん断力分散の長所を活かし、短所は相互補完すべく、せん断力分散を十分行った後に、キャビテーション効果(超音波振動)による超音波分散を行って触媒インクを製造する。その結果、均一性に優れ、かつ、脱泡された触媒インクが製造できる。さらに、それぞれの分散工程間の、固形分濃度の大小関係を最適化し、さらに安定した触媒インクの分散を行うことができる。なお、本発明に係る、触媒インクを用いて燃料電池用の触媒層を形成する製造方法の各種態様、並びに、それらの作用及び効果については、以下の、発明の態様の項において詳しく説明する。
(Aspect of the Invention)
In the present invention, the advantage of ultrasonic dispersion and shear force dispersion is utilized, and the disadvantages are complemented with each other. After sufficient dispersion of shear force, ultrasonic dispersion by cavitation effect (ultrasonic vibration) is performed to produce catalyst ink. To do. As a result, a catalyst ink having excellent uniformity and defoaming can be produced. Furthermore, it is possible to optimize the magnitude relationship of the solid content concentration between the respective dispersion steps, and to further stably disperse the catalyst ink. Various aspects of the production method for forming a catalyst layer for a fuel cell using the catalyst ink according to the present invention, as well as their actions and effects, will be described in detail in the following section of the invention.

以下、特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の各項において、(1)項、(2)項、(3)項、及び(4)項の各々が、請求項1、請求項2、請求項3、及び請求項4の各々に相当する。   Hereinafter, some aspects of the invention that is recognized as being claimable (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. As with the claims, each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combinations of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiments, etc., and as long as the interpretation is followed, another aspect is added to the form of each section. In addition, an aspect in which constituent elements are deleted from the aspect of each item can be an aspect of the claimable invention. In each of the following items, each of the items (1), (2), (3), and (4) corresponds to each of claims 1, 2, 3, and 4. It corresponds to.

(1) 触媒インクを用いて形成される燃料電池用電極の製造方法であって、触媒インク材料にせん断力を与えて分散するせん断力分散工程と、該せん断力分散工程後の触媒インクにキャビテーション力を与えて触媒層インクを分散する超音波分散工程と、該超音波分散工程後の触媒インクを電解質膜に塗布、或いは転写基材に塗布した後電解質膜に転写することで該電解質膜に触媒層を形成するインク塗布工程とを含むことを特徴とする燃料電池用電極の製造方法。 (1) A method for producing an electrode for a fuel cell formed using a catalyst ink, comprising a shearing force dispersion step of applying a shearing force to a catalyst ink material to disperse, and a cavitation in the catalyst ink after the shearing force dispersion step An ultrasonic dispersion step for applying force to disperse the catalyst layer ink, and the catalyst ink after the ultrasonic dispersion step is applied to the electrolyte membrane, or applied to a transfer substrate and then transferred to the electrolyte membrane to thereby transfer the electrolyte to the electrolyte membrane. A method for producing an electrode for a fuel cell, comprising an ink application step for forming a catalyst layer.

本項の製造方法によれば、せん断力分散により、触媒インク材料中の大きな触媒担持導電性粒子の、せん断、粉砕を可能とする。これにより、従来必要とされていた分散不具合による粗大粒子を除去するためのフィルター処理工程(若しくはフィルター濾過装置)を省くことを可能とする。
また、超音波分散により、上記せん断力分散で触媒インク中に多数発生した気泡を破裂させ、かつ、触媒インクを均一化させることができる。このようにして、当該触媒インクは、超音波分散により脱泡されるため、当初より粘度が一定であり、その結果、塗布条件も一定となるため塗布条件を安定化させることができる。
According to the production method of this section, shearing and pulverization of large catalyst-carrying conductive particles in the catalyst ink material can be performed by shear force dispersion. This makes it possible to omit the filter processing step (or filter filtration device) for removing coarse particles due to dispersion problems that have been conventionally required.
Also, by ultrasonic dispersion, many bubbles generated in the catalyst ink due to the above-mentioned shear force dispersion can be ruptured, and the catalyst ink can be made uniform. Thus, since the catalyst ink is defoamed by ultrasonic dispersion, the viscosity is constant from the beginning, and as a result, the coating conditions are also constant, so that the coating conditions can be stabilized.

好ましくは、同製造方法を実施する際、湿式ジェットミルを用いて、せん断力分散を行い、次に、その触媒層材料インクに対して、超音波振動子を用い脱泡処理、均一化処理を行うようにする。当該態様によれば、湿式ジェットミルは、メディアレスなので、固液分離処理が不要であり、かつ、メディアが削れることに起因する不純物の混入もない。また湿式ジェットミルの処理チャンバーを用い、続けて超音波処理により脱泡処理および均一化処理を行うことができる。このことは触媒インク製造時の省力化を可能とする。   Preferably, when carrying out the production method, shear force dispersion is performed using a wet jet mill, and then the catalyst layer material ink is subjected to defoaming treatment and homogenization treatment using an ultrasonic vibrator. To do. According to this aspect, since the wet jet mill is media-free, solid-liquid separation processing is unnecessary, and there is no mixing of impurities due to media scraping. In addition, the defoaming treatment and the homogenization treatment can be performed by ultrasonic treatment using the treatment chamber of the wet jet mill. This makes it possible to save labor when manufacturing the catalyst ink.

(2) 前記触媒インク材料は、触媒担持導電性粒子からなる粉体、イオン導電性を有する樹脂、及び溶媒を含むことを特徴とする(1)の燃料電池用電極の製造方法。 (2) The method for producing an electrode for a fuel cell according to (1), wherein the catalyst ink material includes a powder composed of catalyst-carrying conductive particles, a resin having ionic conductivity, and a solvent.

本項は、(1)の触媒インクを製造する際の基本的な出発材料として、触媒担持導電性粒子からなる粉体、イオン導電性を有する樹脂、及び溶媒を規定する。
触媒インクは、電解質膜に塗布されて触媒層を形成するため、白金担持炭素粒子のような触媒担持導電性粒子が必要となる。この触媒は、水素ガス及び空気(若しくは酸素ガス)を、それぞれ、水素イオンと電子、酸素イオンと電子に分解する。また、デュポン社のナフィオン(商品名)のようなイオン導電性を有する樹脂が必要となる。これは上記の水素イオン、酸素イオン、電子の移動を促進する。そして、水若しくはアルコール系溶剤を溶媒とする。触媒インクは液体であり、上記の触媒担持導電性粒子(粉体)やイオン導電性樹脂の固体(固形分)を、溶媒に懸濁化、分散化させる必要があるためである。
なお、触媒インクの処方に必要な他の材料、例えば、表面張力調整剤、密着性向上剤を適宜添加することができる。
This section defines a powder composed of catalyst-carrying conductive particles, a resin having ionic conductivity, and a solvent as basic starting materials for producing the catalyst ink of (1).
Since the catalyst ink is applied to an electrolyte membrane to form a catalyst layer, catalyst-carrying conductive particles such as platinum-carrying carbon particles are required. This catalyst decomposes hydrogen gas and air (or oxygen gas) into hydrogen ions and electrons and oxygen ions and electrons, respectively. In addition, a resin having ion conductivity such as Nafion (trade name) manufactured by DuPont is required. This promotes the movement of the hydrogen ions, oxygen ions and electrons. Then, water or an alcohol solvent is used as a solvent. This is because the catalyst ink is a liquid, and it is necessary to suspend and disperse the catalyst-carrying conductive particles (powder) and the solid (solid content) of the ion conductive resin in a solvent.
In addition, other materials necessary for the formulation of the catalyst ink, for example, a surface tension adjusting agent and an adhesion improving agent can be added as appropriate.

(3) 前記せん断力分散工程で得られる触媒インクの固形分濃度をX、前記超音波分散工程で得られる触媒インクの固形分濃度をYとすると、XとYが等しい、又は、YがXより小さくなるように、X及びYの値を設定することを特徴とする(1)又は(2)に記載の燃料電池用電極の製造方法。 (3) If the solid content concentration of the catalyst ink obtained in the shearing force dispersion step is X and the solid content concentration of the catalyst ink obtained in the ultrasonic dispersion step is Y, X is equal to Y, or Y is X The value of X and Y is set so that it may become smaller, The manufacturing method of the electrode for fuel cells as described in (1) or (2) characterized by the above-mentioned.

本項によれば、せん断力分散工程よりも超音波分散工程では、超音波振動子からの超音波を溶媒を媒体として、触媒担持導電性粒子(粉体)とイオン導電性樹脂の固形分に伝達し、これらの固形分をキャビテーション力で溶媒中に分散し易くし、かつ、せん断力分散工程で触媒インクに内在した多数の気泡をキャビテーション力で破裂させる。固形分に関し、溶媒分を後者の工程でより多くする方が、超音波が伝達し易くなり好ましいと考えられるためである。   According to this section, in the ultrasonic dispersion step rather than the shear force dispersion step, the ultrasonic wave from the ultrasonic vibrator is used as a solvent for the catalyst-carrying conductive particles (powder) and the solid content of the ion conductive resin. The solid content is easily dispersed in the solvent by cavitation force, and a large number of bubbles in the catalyst ink are ruptured by cavitation force in the shearing force dispersion step. This is because regarding the solid content, it is considered preferable to increase the solvent content in the latter step because ultrasonic waves are easily transmitted.

(4) (1)から(3)のいずれか1項に記載の製造方法によって得られる固体高分子形燃料電池。 (4) A polymer electrolyte fuel cell obtained by the production method according to any one of (1) to (3).

本項は、上記製造方法を好適に適用できる燃料電池は、固体高分子形の燃料電池(PEFC)であることを規定したものである。また、ダイレクトメタノール形の燃料電池(DMFC)はPEFCと構造的に類似しているため同様に上記製造方法を好適に適用できる。ただし、上記製造方法で得られる触媒層インクはこれらの燃料電池以外の電解質膜にも適用可能である。   This section stipulates that the fuel cell to which the above manufacturing method can be suitably applied is a polymer electrolyte fuel cell (PEFC). In addition, since the direct methanol fuel cell (DMFC) is structurally similar to PEFC, the above manufacturing method can be suitably applied in the same manner. However, the catalyst layer ink obtained by the above production method can also be applied to electrolyte membranes other than these fuel cells.

(5)触媒インク材料にせん断力を与えて分散するせん断力分散工程と、該せん断力分散工程後の触媒インクにキャビテーション力を与えて触媒層インクを分散する超音波分散工程とを含むことを特徴とする燃料電池用触媒インクの製造方法。 (5) including a shearing force dispersion step of dispersing the catalyst ink material by applying a shearing force, and an ultrasonic dispersion step of dispersing the catalyst layer ink by applying a cavitation force to the catalyst ink after the shearing force dispersion step. A method for producing a fuel cell catalyst ink.

本項の製造方法によれば、主にせん断力分散工程において、触媒インク材料中の触媒担持導電性粒子の粗大粒をも粉砕、せん断可能とし、もって、分散処理後の触媒インク中の粒度分布曲線を、より急峻とし単分散化することができる。また、主に超音波分散工程によれば、上記せん断力分散工程において触媒インク中に内在した多数の気泡を破裂させることで粘度を下げ、かつ、さらにより均一性の優れた触媒インクを製造することができる。
このようして得られた触媒インクは好適な容器に収納、密閉され、燃料電池用触媒インクとして製販可能とされる。
According to the production method of this section, the coarse particles of the catalyst-carrying conductive particles in the catalyst ink material can be pulverized and sheared mainly in the shearing force dispersion step, so that the particle size distribution in the catalyst ink after the dispersion treatment is achieved. The curve can be made steeper and monodispersed. Also, mainly according to the ultrasonic dispersion step, the viscosity is lowered by rupturing a large number of bubbles present in the catalyst ink in the shearing force dispersion step, and a catalyst ink with further excellent uniformity is produced. be able to.
The catalyst ink thus obtained is housed and sealed in a suitable container, and can be manufactured and sold as a catalyst ink for fuel cells.

(6) 前記せん断力分散工程で得られる触媒インクの固形分濃度をX、前記超音波分散工程で得られる触媒インクの固形分濃度をYとすると、XとYが等しい、又は、YがXより小さくなるように、X及びYの値を設定することを特徴とする(5)に記載の燃料電池用触媒インクの製造方法。
(7) (5)又は(6)のいずれか1項に記載の製造方法によって得られる触媒インクを用いて製造される固体高分子形燃料電池。
(6) If the solid content concentration of the catalyst ink obtained in the shearing force dispersion step is X and the solid content concentration of the catalyst ink obtained in the ultrasonic dispersion step is Y, X is equal to Y, or Y is X The method for producing a catalyst ink for a fuel cell according to (5), wherein the values of X and Y are set so as to be smaller.
(7) A polymer electrolyte fuel cell manufactured using the catalyst ink obtained by the manufacturing method according to any one of (5) and (6).

(6)及び(7)の効果その他の内容は、(3)の項で述べた内容と同様なのでその説明を省略する。   The effects and other contents of (6) and (7) are the same as the contents described in the section (3), and the description thereof is omitted.

本発明によれば、固形分が溶媒に効率良く単分散化し、かつ、気泡を基本的に含まない安定した粘度の触媒インクを製造することができる。   According to the present invention, it is possible to produce a catalyst ink having a stable viscosity in which a solid content is efficiently monodispersed in a solvent and basically does not contain bubbles.

以下、本発明の実施の形態を、図1を参照して説明する。
図1は、S1で示される触媒インク材料を準備する触媒インク材料準備工程、S2で示されるせん断力分散工程、S3で示される超音波分散工程、及びS4で示される触媒インクを電解質膜に塗布するインク塗布工程からなる製造フローである。以下、この製造フローの流れに沿って各工程を説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 shows a catalyst ink material preparation step for preparing a catalyst ink material indicated by S1, a shearing force dispersion step indicated by S2, an ultrasonic dispersion step indicated by S3, and a catalyst ink indicated by S4 applied to the electrolyte membrane. It is a manufacturing flow which consists of an ink application | coating process. Hereafter, each process is demonstrated along the flow of this manufacturing flow.

触媒インク材料準備工程(S1):本工程では、出発材料(触媒インク材料)を準備する。触媒インク材料は、基本的に、触媒担持導電性粒子からなる粉体と、イオン導電性を有する樹脂と、分散媒である。
触媒担持導電性粒子は、白金担持炭素粒子、白金・ルテニウム担持炭素粒子、ニッケル担持炭素粒子等が好ましい。イオン導電性を有する樹脂は、デュポン社のナフィオン(登録商標)を代表とするパーフルオロ骨格にスルホン酸基等のイオン交換基を有する樹脂が挙げられる。分散媒は、水、又はメタノール、プロパノール、ブチルアルコール等のアルコール類が好ましい。その他インクの製造に必要な材料やインク作製方法については、目的とするインクの粘度・濃度等に応じて常法に従い決定する。
Catalyst ink material preparation step (S1) : In this step, a starting material (catalyst ink material) is prepared. The catalyst ink material is basically a powder made of catalyst-carrying conductive particles, a resin having ionic conductivity, and a dispersion medium.
The catalyst-carrying conductive particles are preferably platinum-carrying carbon particles, platinum / ruthenium-carrying carbon particles, nickel-carrying carbon particles, and the like. Examples of the resin having ion conductivity include a resin having an ion exchange group such as a sulfonic acid group in a perfluoro skeleton represented by Nafion (registered trademark) manufactured by DuPont. The dispersion medium is preferably water or alcohols such as methanol, propanol, and butyl alcohol. Other materials and ink preparation methods necessary for ink production are determined according to a conventional method according to the viscosity and concentration of the target ink.

せん断力分散工程(S2):本工程では、連続式二軸混練機、バッチ式混練機、圧力式ホモジナイザー、ビーズミル、ハイシェアミル、サンドミル、湿式ジェットミル等のせん断力によって分散・粉砕を行う混練機又は粉砕機を、せん断力装置として用いる。中でも、湿式ジェットミルを用いることが好ましい。
湿式ジェットミルは、粉砕用メディアを全く用いずに、触媒担持導電性粒子同士が強大なエネルギーで衝突し合い、粉砕が行われるため、粉砕・分散効率が高い。また、湿式ジェットミルのチャンバー内で、粉砕・分散が行われるため、粉砕用メディアの材料から触媒インク材料に不純物が混入することを防ぐこともできる。
Shearing force dispersion step (S2) : In this step, kneading is carried out by dispersing and pulverizing with a continuous biaxial kneader, batch kneader, pressure homogenizer, bead mill, high shear mill, sand mill, wet jet mill, etc. A mill or grinder is used as the shear force device. Among these, it is preferable to use a wet jet mill.
The wet jet mill has high pulverization / dispersion efficiency because the catalyst-carrying conductive particles collide with each other with great energy without using any pulverizing media, and pulverization is performed. Further, since the pulverization / dispersion is performed in the chamber of the wet jet mill, it is possible to prevent impurities from being mixed into the catalyst ink material from the material of the pulverization medium.

すなわち、他の粉砕機であれば、触媒インクと、せん断・粉砕用メディア、混練棒等との固液分離が必須となるが、湿式ジェットミルによれば、固液分離は不要であり、工程を簡略化・省力化でき、またメディアや混練棒の材質が触媒インクに不純物として混じることもない。   That is, for other pulverizers, solid-liquid separation between the catalyst ink, shearing and pulverizing media, kneading rods, etc. is essential, but according to the wet jet mill, solid-liquid separation is unnecessary, and the process Can be simplified and labor-saving, and the material of the media and the kneading rod is not mixed as impurities in the catalyst ink.

また、本工程で湿式ジェットミルのチャンバー内で触媒インク材料が処理された後、次工程で、その中に含まれる気泡を破裂させ除去する際、他の装置に触媒インクを移し替えることなく、同一チャンバー内で超音波処理をすることで実施可能である。   Further, after the catalyst ink material is processed in the chamber of the wet jet mill in this step, when the bubbles contained therein are ruptured and removed in the next step, the catalyst ink is not transferred to another device. This can be done by sonication in the same chamber.

超音波分散工程(S3):本工程では、せん断力分散工程によって製造された触媒インクに、超音波振動を与える。この超音波振動により、せん断力分散工程で製造された触媒担持導電性粒子スラリー(触媒インク)の中に含まれる気泡を破裂し脱泡処理が行われ、二次粒子となっている触媒担持導電性粒子を一次粒子に分解することができる。 Ultrasonic dispersion step (S3) : In this step, ultrasonic vibration is applied to the catalyst ink produced by the shearing force dispersion step. By this ultrasonic vibration, the bubbles contained in the catalyst-carrying conductive particle slurry (catalyst ink) produced in the shearing force dispersion process are ruptured and defoamed, and the catalyst-carrying conductive material that has become secondary particles. Particles can be decomposed into primary particles.

ただし、超音波振動では、超音波の波動が強め合う箇所が一定箇所(焦点)に固定されるため、処理中にチャンバーを、常時、衛星回転させるか、偏心回転させる、及び/又は、超音波振動子をチャンバー内またはチャンバー壁に沿って移動させるようにすることが好ましい。このようにして超音波振動によるキャビテーション効果(超音波分散処理)が、触媒担持導電性粒子スラリー全体に及ぶようにする。   However, in ultrasonic vibration, the place where the ultrasonic waves intensify is fixed at a fixed position (focal point), so the chamber is always satellite-rotated, eccentrically rotated, and / or ultrasonic waves during processing. It is preferable to move the vibrator in the chamber or along the chamber wall. In this way, the cavitation effect (ultrasonic dispersion treatment) by ultrasonic vibration is applied to the entire catalyst-supporting conductive particle slurry.

なお、超音波振動子(超音波振動装置)を、湿式ジェットミルのチャンバー内又はチャンバー壁に取り付けて、超音波分散を行うようにすることが望ましい。前述したように、製造の簡略化・省力化により製造コストを下げ、不純物の混入も回避できるためである。   Note that it is desirable to perform ultrasonic dispersion by attaching an ultrasonic vibrator (ultrasonic vibration device) in the chamber or wall of the wet jet mill. This is because, as described above, the manufacturing cost can be reduced and the mixing of impurities can be avoided by simplifying and saving labor.

さらに、触媒インクの製造効率を向上させるため、せん断力分散工程(S2)及び超音波分散工程(S3)、それぞれの工程で処理する前の触媒インク材料の固形分濃度(vol%)(固形分は、触媒担持導電性粒子による)を、それぞれ、X、Yとすると、X≧Yとすることが好ましい。
なお、本発明に係る触媒インクを用いて燃料電池用の触媒層を形成する製造方法は、この超音波分散工程(S3)で停止し、中間生産物の当該触媒インクを密閉容器に収納し製販することが可能である。
Furthermore, in order to improve the production efficiency of the catalyst ink, the solid content concentration (vol%) (solid content) of the catalyst ink material before being processed in each of the shearing force dispersion step (S2) and the ultrasonic dispersion step (S3). Is preferably X ≧ Y, where X and Y are the catalyst-carrying conductive particles).
The production method for forming a catalyst layer for a fuel cell using the catalyst ink according to the present invention stops at the ultrasonic dispersion step (S3), and the catalyst ink of the intermediate product is stored in a sealed container and manufactured and sold. Is possible.

インク塗布工程(S4):超音波分散工程(S3)で得られた触媒インクを、ドクターブレード法、スプレー法、スクリーン印刷法、グラビアコーティング法、ダイ塗工法、インクジェット法等の塗布(塗工)方法により、電解質膜に一定の厚さで塗布する。いずれの塗布方法でもよいが、塗布方法に応じて、触媒インクの溶媒を加えるか蒸発させる等により好適な粘度となるように塗布前に触媒インクの粘度調整をすることが望ましい。 Ink applying step (S4): a catalyst ink obtained by the ultrasonic dispersion process (S3), a doctor blade method, a spray method, a screen printing method, a gravure coating method, die coating method, coating and inkjet method (coating) By the method, it is applied to the electrolyte membrane with a certain thickness. Any coating method may be used, but it is desirable to adjust the viscosity of the catalyst ink before coating so as to obtain a suitable viscosity by adding or evaporating the solvent of the catalyst ink according to the coating method.

以下、本発明の実施例を、比較例と対比しながら説明する。ただし、本発明は下記の実施例によって限定されるものではない。
なお、触媒インクの粘度測定は、東機産業製のB型粘度計により行い、触媒インク中に粒度分布の測定は、レーザ回折により1次粒子のみならず2次粒子も含めた粒度分布が測定可能な日機装社のマイクロトラックMT3300EX(商品名)を用いた。
Examples of the present invention will be described below in comparison with comparative examples. However, the present invention is not limited to the following examples.
In addition, the viscosity of the catalyst ink is measured with a B-type viscometer manufactured by Toki Sangyo, and the particle size distribution in the catalyst ink is measured by laser diffraction to measure the particle size distribution including not only primary particles but also secondary particles. A possible Nikkiso Microtrack MT3300EX (trade name) was used.

<実施例1>
カーボンブラック(炭素粒子)に白金粒子を、カーボンブラックに対して50%担持させた粒子からなる粉体と、デュポン社のナフィオンからなる電解質溶液(イオン導電性を有する樹脂溶液)と、水、エタノール(分散媒)とを準備し、カーボンと電解質溶液中の電解質成分との比が1:1、固形分濃度が10.7%、炭素濃度(カーボンブラック中の炭素濃度)が3.6%になるように準備溶液を、全体量が3Lとなるように作製した。
<Example 1>
Carbon black (carbon particles) with 50% platinum particles supported on carbon black, DuPont Nafion electrolyte solution (ionic conductive resin solution), water, ethanol (Dispersion medium) is prepared, the ratio of carbon to the electrolyte component in the electrolyte solution is 1: 1, the solid content concentration is 10.7%, and the carbon concentration (carbon concentration in carbon black) is 3.6%. The prepared solution was prepared so that the total amount was 3 L.

実施例1では、準備溶液に対して、湿式ジェットミル、超音波振動の順で、分散処理を実施した。
湿式ジェットミルの分散は、3MPaの低圧力下で、15分間の粗分散処理を実施した後、150MPaの高圧力下で、30分間の分散処理を実施した。その後、20分間の超音波分散処理を実施した(以上の準備溶液の処方及び分散処理条件は、実施例2及び3でも同様に採用)。
そして、図2に示すように、分散処理の経過時間に対する準備溶液の粘度(mPa・s)を測定した。また、図3に示すように、粒径(μm)と体積頻度(%)との関係を測定した。
In Example 1, the dispersion treatment was performed on the preparation solution in the order of a wet jet mill and ultrasonic vibration.
The wet jet mill was dispersed for 15 minutes under a low pressure of 3 MPa, followed by a dispersion treatment for 30 minutes under a high pressure of 150 MPa. Thereafter, ultrasonic dispersion treatment was carried out for 20 minutes (the above preparation solution formulation and dispersion treatment conditions were also adopted in Examples 2 and 3).
And as shown in FIG. 2, the viscosity (mPa * s) of the preparation solution with respect to the elapsed time of a dispersion process was measured. Moreover, as shown in FIG. 3, the relationship between a particle size (micrometer) and volume frequency (%) was measured.

<比較例1>
比較例1では、準備溶液に対して、湿式ジェットミルのみによって、3MPaの低圧力下で、15分間の粗分散処理を実施した後、150MPaの高圧力下で、50分間の分散処理を実施した。そして、図2に示すように、分散処理の経過時間に対する準備溶液の粘度を、実施例と同様に粒径(μm)と体積頻度(%)との関係を測定した。
<Comparative Example 1>
In Comparative Example 1, the preparation solution was subjected to a rough dispersion treatment for 15 minutes under a low pressure of 3 MPa only by a wet jet mill, and then a dispersion treatment for 50 minutes under a high pressure of 150 MPa. . Then, as shown in FIG. 2, the viscosity of the preparation solution with respect to the elapsed time of the dispersion treatment was measured in the same manner as in the example, as a relationship between the particle size (μm) and the volume frequency (%).

<比較例2>
比較例2では、準備溶液に対して、超音波振動子のみによって65分間の超音波分散処理を実施した。そして、図3に示すように、超音波分散処理を行った触媒インクについて、粒度分布(粒径(μm)と体積頻度(%)との関係)について測定した。
<Comparative example 2>
In Comparative Example 2, the preparation solution was subjected to an ultrasonic dispersion process for 65 minutes using only an ultrasonic vibrator. As shown in FIG. 3, the particle size distribution (relationship between particle size (μm) and volume frequency (%)) of the catalyst ink subjected to ultrasonic dispersion treatment was measured.

<実施例2>
せん断力分散後に、固形分濃度が9.4%となるように、水とエタノールを添加して希釈化して実施例1と同様の条件で分散処理を実施した。そして、図3に示すように、同様に粒度分布(粒径(μm)と体積頻度(%)との関係)について測定した。
<比較例3>
触媒インクの分散方法は、実施例1と同様とし、せん断力分散後に、固形分濃度が12.5%となるように、水とエタノールを添加して希釈化して超音波分散を実施した。そして、図3に示すように、同様に粒度分布(粒径(μm)と体積頻度(%)との関係)について測定した。
<Example 2>
After the shearing force dispersion, water and ethanol were added and diluted so that the solid content concentration was 9.4%, and the dispersion treatment was performed under the same conditions as in Example 1. Then, as shown in FIG. 3, the particle size distribution (the relationship between the particle size (μm) and the volume frequency (%)) was measured in the same manner.
<Comparative Example 3>
The method for dispersing the catalyst ink was the same as in Example 1. After dispersing the shearing force, ultrasonic dispersion was performed by adding water and ethanol to dilute so that the solid content concentration was 12.5%. Then, as shown in FIG. 3, the particle size distribution (the relationship between the particle size (μm) and the volume frequency (%)) was measured in the same manner.

<評価>
図2の折れ線グラフは、実施例1と比較例1によって得られた触媒インクについて測定した粘度の経時変化を示すものである。せん断力分散処理と超音波分散処理をこの順で実施して得られた実施例1の触媒インクは、粘度測定開始時点から30時間経過しても、粘度は一定であった。一方、せん断力分散処理のみを実施して得られた比較例1の触媒インクは、その粘度が、粘度測定開始時点には、実施例1の触媒インクの3倍弱程度高かった。そして、15時間経過後に、実施例1の触媒インクの粘度とほぼ一致した。
これは、比較例1では、せん断力分散処理で得られた触媒インクに多くの気泡sが存在し、その粘度を高めていたためであり、その気泡が15時間経過後に、触媒インク中から自然に、徐々に浮上し破裂し、実施例1と同様の粘度となったためと考えられる。
この結果から、実施例1による触媒インクは、当初より一定の粘度を有するため、製造後、すぐ電解質膜に塗布し、安定した品質、優れた耐久性の触媒層を電解質膜上に形成することができることが分かった。このことは、製造時間の短縮にも貢献し、もって、製造コストを下げることをも可能とする。
<Evaluation>
The line graph in FIG. 2 shows the change over time in the viscosity measured for the catalyst inks obtained in Example 1 and Comparative Example 1. The catalyst ink of Example 1 obtained by carrying out the shearing force dispersion treatment and the ultrasonic dispersion treatment in this order had a constant viscosity even after 30 hours had passed since the viscosity measurement was started. On the other hand, the catalyst ink of Comparative Example 1 obtained by carrying out only the shearing force dispersion treatment had a viscosity about three times lower than that of the catalyst ink of Example 1 at the time of starting the viscosity measurement. And after 15 hours, it almost coincided with the viscosity of the catalyst ink of Example 1.
This is because in Comparative Example 1, many bubbles s were present in the catalyst ink obtained by the shearing force dispersion treatment, and the viscosity thereof was increased. After 15 hours, the bubbles naturally formed from the catalyst ink. This is thought to be due to the fact that it gradually floated and burst and became the same viscosity as in Example 1.
From this result, since the catalyst ink according to Example 1 has a certain viscosity from the beginning, it is applied to the electrolyte membrane immediately after production, and a stable quality and excellent durability catalyst layer is formed on the electrolyte membrane. I found out that This also contributes to shortening of the manufacturing time, thereby making it possible to reduce the manufacturing cost.

図3の曲線は、実施例1と比較例2によって得られた触媒インク中の粒度分布を示すものである。比較例2の粒度分布に着目すると、二山の分布に分かれており、超音波分散のみでは、100μmに近い粒子について粉砕・分散処理が行われなかった。一方、実施例1の粒度分布には、そのような粗粒側の山は存在しなかった。
この結果から、比較例1のように超音波分散のみでは、粗粒子が残存してしまうので、この後、従来技術(特許文献1参照)のように濾過フィルター処理が必要となりうるが、本発明に係る実施例1では、不要となることが分かった。
The curve in FIG. 3 shows the particle size distribution in the catalyst inks obtained in Example 1 and Comparative Example 2. Focusing on the particle size distribution of Comparative Example 2, the particle size distribution is divided into two peaks, and pulverization / dispersion treatment was not performed on particles close to 100 μm only by ultrasonic dispersion. On the other hand, the coarse particle side crest did not exist in the particle size distribution of Example 1.
From this result, since only the ultrasonic dispersion as in Comparative Example 1 leaves coarse particles, a filtration filter treatment may be necessary as in the prior art (see Patent Document 1). In Example 1 which concerns on this, it turned out that it becomes unnecessary.

図4の曲線は、実施例1、実施例2及び比較例3によって得られた触媒インク中の粒度分布を示すものであり、それぞれの固形分濃度は前述した通り、順に10.7%、9.4%、12.5%である。せん断力分散工程(S2)及び超音波分散工程(S3)の工程で処理する前の、触媒インク材料の固形分濃度(vol%)を、それぞれ、X=10.7%、Y=12.5%としてX≦Yと設定した比較例3では、比較例2で見られたような粗粒が存在するばかりか、粒度分布がブロードとなった。一方、X=10.7%、Y=9.4%としてX≧Yと設定した実施例2は、そのような粗粒は存在せず、粒度分布は、より急峻となった。これにより、固形分濃度をX≧Yと設定すると、より均一な触媒インクが製造されるものと考えられる。   The curves in FIG. 4 show the particle size distributions in the catalyst inks obtained in Example 1, Example 2 and Comparative Example 3, and the solid content concentrations are 10.7% and 9 in order as described above. 4% and 12.5%. The solid content concentrations (vol%) of the catalyst ink material before the treatment in the shearing force dispersion step (S2) and the ultrasonic dispersion step (S3) are X = 10.7% and Y = 12.5, respectively. In Comparative Example 3 in which X ≦ Y was set as%, not only the coarse particles found in Comparative Example 2 were present, but also the particle size distribution was broad. On the other hand, in Example 2 where X = 10.7% and Y = 9.4% and X ≧ Y was set, such coarse particles did not exist, and the particle size distribution became steeper. Thus, it is considered that a more uniform catalyst ink is produced when the solid content concentration is set as X ≧ Y.

尚、本発明に係る触媒層を電解質膜に形成する固体高分子形燃料電池(PEFC)用触媒層の製造方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、同製造方法は、ダイレクトメタノール形燃料電池(DMFC)の触媒層用の触媒インクに対しても適用可能である。   In addition, the manufacturing method of the catalyst layer for polymer electrolyte fuel cells (PEFC) which forms the catalyst layer based on this invention in an electrolyte membrane is not limited to above-described embodiment, It deviates from the summary of this invention. Of course, various modifications can be made within the range not to be performed. For example, the manufacturing method can be applied to a catalyst ink for a catalyst layer of a direct methanol fuel cell (DMFC).

図1は、本発明に係る固体分子形燃料電池用の触媒インク、及び当該インクを用いて形成される触媒層の製造方法の製造工程フローである。FIG. 1 is a manufacturing process flow of a catalyst ink for a solid molecular fuel cell according to the present invention and a method for manufacturing a catalyst layer formed using the ink. 図2は、実施例1と比較例1で得られた触媒インクの粘度の経時変化を示すグラフである。FIG. 2 is a graph showing the change over time in the viscosity of the catalyst inks obtained in Example 1 and Comparative Example 1. 図3は、実施例1と比較例2で得られた触媒インク中の白金担持炭素粒子の粒度分布を示す曲線である。FIG. 3 is a curve showing the particle size distribution of platinum-supported carbon particles in the catalyst inks obtained in Example 1 and Comparative Example 2. 図4は、実施例1、実施例2及び比較例2で得られた触媒インク中の白金担持炭素粒子の粒度分布を示す曲線である。FIG. 4 is a curve showing the particle size distribution of platinum-supported carbon particles in the catalyst inks obtained in Example 1, Example 2, and Comparative Example 2.

符号の説明Explanation of symbols

S1:触媒インク材料準備工程、S2:せん断力分散工程、S3:超音波分散工程、S4:触媒インク塗布工程 S1: Catalyst ink material preparation step, S2: Shear force dispersion step, S3: Ultrasonic dispersion step, S4: Catalyst ink application step

Claims (4)

触媒インクを用いて形成される燃料電池用電極の製造方法であって、
触媒インク材料にせん断力を与えて分散するせん断力分散工程と、
該せん断力分散工程後の触媒インクにキャビテーション力を与えて触媒層インクを分散する超音波分散工程と、
該超音波分散工程後の触媒インクを電解質膜に塗布、或いは転写基材に塗布した後電解質膜に転写することで該電解質膜に触媒層を形成するインク塗布工程と、を含むことを特徴とする燃料電池用電極の製造方法。
A method for producing a fuel cell electrode formed using a catalyst ink, comprising:
A shearing force dispersing step for dispersing the catalyst ink material by applying a shearing force;
An ultrasonic dispersion step of dispersing the catalyst layer ink by applying a cavitation force to the catalyst ink after the shearing force dispersion step;
An ink application step of forming a catalyst layer on the electrolyte membrane by applying the catalyst ink after the ultrasonic dispersion step to the electrolyte membrane, or applying the catalyst ink to a transfer substrate and then transferring the catalyst ink to the electrolyte membrane. A method for manufacturing an electrode for a fuel cell.
前記触媒インク材料は、触媒担持導電性粒子からなる粉体、イオン導電性を有する樹脂、及び溶媒を含むことを特徴とする請求項1の燃料電池用電極の製造方法。   2. The method for producing an electrode for a fuel cell according to claim 1, wherein the catalyst ink material includes a powder composed of catalyst-carrying conductive particles, a resin having ionic conductivity, and a solvent. 前記せん断力分散工程で得られる触媒インクの固形分濃度(vol%)をX、前記超音波分散工程で得られる触媒インクの固形分濃度(vol%)をYとすると、XとYが等しい又はXがYより大きくなるように、X及びYの値を設定することを特徴とする請求項1又は請求項2に記載の燃料電池用電極の製造方法。   If the solid content concentration (vol%) of the catalyst ink obtained in the shearing force dispersion step is X and the solid content concentration (vol%) of the catalyst ink obtained in the ultrasonic dispersion step is Y, X and Y are equal or The method for producing a fuel cell electrode according to claim 1 or 2, wherein the values of X and Y are set so that X is larger than Y. 請求項1から請求項3のいずれか1項に記載の製造方法によって得られる固体高分子形燃料電池。   The polymer electrolyte fuel cell obtained by the manufacturing method of any one of Claims 1-3.
JP2008256448A 2008-10-01 2008-10-01 Manufacturing method for forming catalyst layer for fuel cell using catalyst ink Expired - Fee Related JP5403211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256448A JP5403211B2 (en) 2008-10-01 2008-10-01 Manufacturing method for forming catalyst layer for fuel cell using catalyst ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256448A JP5403211B2 (en) 2008-10-01 2008-10-01 Manufacturing method for forming catalyst layer for fuel cell using catalyst ink

Publications (2)

Publication Number Publication Date
JP2010086859A true JP2010086859A (en) 2010-04-15
JP5403211B2 JP5403211B2 (en) 2014-01-29

Family

ID=42250612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256448A Expired - Fee Related JP5403211B2 (en) 2008-10-01 2008-10-01 Manufacturing method for forming catalyst layer for fuel cell using catalyst ink

Country Status (1)

Country Link
JP (1) JP5403211B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031060A1 (en) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 Method for producing catalyst ink, method for producing fuel cell, and fuel cell
JP2013168309A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Fuel cell, catalyst ink, and method for manufacturing catalyst ink
WO2014065807A1 (en) * 2012-10-26 2014-05-01 United Technologies Corporation Fuel cell membrane electrode assembly fabrication process
WO2014208386A1 (en) * 2013-06-28 2014-12-31 三井製糖株式会社 Method for producing sugar-crystal-containing fluid
JPWO2013031060A1 (en) * 2011-08-31 2015-03-23 トヨタ自動車株式会社 Method for producing catalyst ink, method for producing fuel cell, fuel cell
JP2017018909A (en) * 2015-07-13 2017-01-26 日産自動車株式会社 Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell
CN111952611A (en) * 2020-08-07 2020-11-17 上海电气集团股份有限公司 Catalyst slurry for fuel cell, preparation method thereof and membrane electrode
KR102600574B1 (en) * 2023-02-22 2023-11-09 주식회사 시스템알앤디 Supply method of clatalyst ink for forming electrode catalyst layer of fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085149A2 (en) * 2005-12-21 2008-07-17 E. I. Du Pont De Nemours And Company Membrane electrode assembly for organic/air fuel cells
JP2008218341A (en) * 2007-03-07 2008-09-18 Toyota Motor Corp Forming method for electrode layer and manufacturing method for film electrode structure
JP2008234910A (en) * 2007-03-19 2008-10-02 Aisin Chem Co Ltd Ink for fuel cell electrode catalyst layer, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085149A2 (en) * 2005-12-21 2008-07-17 E. I. Du Pont De Nemours And Company Membrane electrode assembly for organic/air fuel cells
JP2008218341A (en) * 2007-03-07 2008-09-18 Toyota Motor Corp Forming method for electrode layer and manufacturing method for film electrode structure
JP2008234910A (en) * 2007-03-19 2008-10-02 Aisin Chem Co Ltd Ink for fuel cell electrode catalyst layer, and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031060A1 (en) * 2011-08-31 2015-03-23 トヨタ自動車株式会社 Method for producing catalyst ink, method for producing fuel cell, fuel cell
CN103782429B (en) * 2011-08-31 2017-04-26 丰田自动车株式会社 Method for producing catalyst ink, method for producing fuel cell, and fuel cell
CN103782429A (en) * 2011-08-31 2014-05-07 丰田自动车株式会社 Method for producing catalyst ink, method for producing fuel cell, and fuel cell
WO2013031060A1 (en) * 2011-08-31 2013-03-07 トヨタ自動車株式会社 Method for producing catalyst ink, method for producing fuel cell, and fuel cell
JP2013168309A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Fuel cell, catalyst ink, and method for manufacturing catalyst ink
JP2015533448A (en) * 2012-10-26 2015-11-24 アウディ アクチェンゲゼルシャフトAudi Ag Manufacturing process of membrane electrode assembly for fuel cell
WO2014065807A1 (en) * 2012-10-26 2014-05-01 United Technologies Corporation Fuel cell membrane electrode assembly fabrication process
CN105050717A (en) * 2012-10-26 2015-11-11 奥迪股份公司 Fuel cell membrane electrode assembly fabrication process
JP2015008668A (en) * 2013-06-28 2015-01-19 三井製糖株式会社 Method for producing sugar crystal-containing liquid
WO2014208386A1 (en) * 2013-06-28 2014-12-31 三井製糖株式会社 Method for producing sugar-crystal-containing fluid
US9670555B2 (en) 2013-06-28 2017-06-06 Mitsui Sugar Co., Ltd. Method for producing a sugar crystal-containing liquid
JP2017018909A (en) * 2015-07-13 2017-01-26 日産自動車株式会社 Catalyst mixture, manufacturing method therefor, electrode catalyst layer using catalyst mixture, membrane electrode joint body and fuel cell
CN111952611A (en) * 2020-08-07 2020-11-17 上海电气集团股份有限公司 Catalyst slurry for fuel cell, preparation method thereof and membrane electrode
KR102600574B1 (en) * 2023-02-22 2023-11-09 주식회사 시스템알앤디 Supply method of clatalyst ink for forming electrode catalyst layer of fuel cell

Also Published As

Publication number Publication date
JP5403211B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5403211B2 (en) Manufacturing method for forming catalyst layer for fuel cell using catalyst ink
CN111135761A (en) Preparation method of anti-settling fuel cell catalyst slurry
DE102010028242A1 (en) Electrode for a polymer electrolyte membrane fuel cell and method of forming a membrane electrode assembly using the same
WO2013041393A1 (en) Gas diffusion layer with improved electrical conductivity and gas permeability
JP2003173785A (en) Forming method and device of catalyst layer for solid polymer fuel cell
CN101702436A (en) Sizing agent for proton exchange membrane fuel cell electrodes and preparation method thereof
JP2006302644A (en) Catalyst paste for fuel cell electrode and its manufacturing method as well as electrode for fuel cells
CN114188548A (en) Catalyst slurry preparation method, catalyst slurry, catalyst coating film and membrane electrode
JP2005302473A (en) Powdery catalyst material, its manufacturing method, electrode for solid polymer fuel cell using powdery catalyst material
JP4326973B2 (en) Catalyst paste for fuel cell and method for producing the same
JP2009059694A (en) Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
JP2008071617A (en) Electrode catalyst layer for solid polymer fuel cell and its manufacturing method
JP3012873B2 (en) Gas diffusion electrode and manufacturing method thereof
Jacobs Influence of catalyst ink mixing procedures on catalyst layer properties and in-situ PEMFC performance
JP4665536B2 (en) Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer
JP2006310216A (en) Manufacturing method of application liquid for catalyst electrode layer formation
Nam et al. Mechanical milling of catalyst support for enhancing the performance in fuel cells
JP5315854B2 (en) Method for producing catalyst layer for fuel cell
JPH0613085A (en) Manufacture of electrode catalytic layer for fuel cell
JP2011171120A (en) Manufacturing method of electrode catalyst
JP2023034773A (en) Method for manufacturing catalyst ink for fuel cell electrode
JP2020071922A (en) Method of manufacturing catalyst ink for fuel cell electrode
CN116666651A (en) Fuel cell catalyst slurry and preparation method thereof
JP5273004B2 (en) Method for treating catalyst carrier material and electrode catalyst
JP2005235521A (en) Electrode for solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R151 Written notification of patent or utility model registration

Ref document number: 5403211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees