JP2009059694A - Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same - Google Patents

Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same Download PDF

Info

Publication number
JP2009059694A
JP2009059694A JP2008204136A JP2008204136A JP2009059694A JP 2009059694 A JP2009059694 A JP 2009059694A JP 2008204136 A JP2008204136 A JP 2008204136A JP 2008204136 A JP2008204136 A JP 2008204136A JP 2009059694 A JP2009059694 A JP 2009059694A
Authority
JP
Japan
Prior art keywords
catalyst
dispersion
fuel cell
particles
catalyst ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008204136A
Other languages
Japanese (ja)
Inventor
Yoshitaka Endo
美登 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008204136A priority Critical patent/JP2009059694A/en
Publication of JP2009059694A publication Critical patent/JP2009059694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst ink for a fuel cell capable of having a larger amount of electrolyte adsorption to a catalyst holding conductor and stably maintaining diameters of colloidal particles and a dispersed state, a manufacturing method capable of effectively forming such catalyst ink, and a fuel cell electrode. <P>SOLUTION: The catalyst ink for a fuel cell is provided by dispersing colloidal particles wherein catalyst holding conductor particles for adsorbing a solid polymer electrolyte are condensed and further, the solid polymer electrolyte is adsorbed on the outer periphery of a condensed body, and a median diameter of the colloidal particles is 3 to 15 μm. The catalyst ink can be obtained by dispersing catalyst holding conductors by ultrasonic waves at a low energy level or by using ionomer resin obtained by drying commercial ionomer solution as a solid polymer electrolyte. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高子分型燃料電池などの燃料電池の触媒層に塗布される触媒担持導電体を高分散させた触媒インクとその製造方法およびそれを用いた燃料電池電極に関する。   The present invention relates to a catalyst ink in which a catalyst-carrying conductor applied to a catalyst layer of a fuel cell such as a solid high-molecular fuel cell is highly dispersed, a method for producing the same, and a fuel cell electrode using the same.

固体高分子型燃料電池は、イオン交換膜からなる電解質膜と、この両面に配置される触媒層及びガス拡散層からなる膜電極接合体(MEA)と、膜電極接合体に積層されるセパレータなどを備える。触媒層の形成には、白金などの触媒を担持したカーボン粒子(触媒担持導電体)とイオン交換樹脂である固体高分子電解質とを溶媒に分散させた触媒インクが用いられ、この触媒インクを電解質膜あるいはガス拡散層に塗布して乾燥させる、所謂湿式法が多く採用されている。   A polymer electrolyte fuel cell includes an electrolyte membrane composed of an ion exchange membrane, a membrane electrode assembly (MEA) composed of a catalyst layer and a gas diffusion layer disposed on both sides thereof, a separator laminated on the membrane electrode assembly, etc. Is provided. For the formation of the catalyst layer, a catalyst ink is used in which carbon particles carrying a catalyst such as platinum (catalyst carrying conductor) and a solid polymer electrolyte that is an ion exchange resin are dispersed in a solvent, and this catalyst ink is used as an electrolyte. Many so-called wet methods are employed in which the film or gas diffusion layer is applied and dried.

固体高分子型燃料電池の電池性能を向上させるには、セパレータからの水素および酸素が、電解質膜と触媒層の界面(三層界面)に一様に且つ速やかに供給されると同時に、酸素極側で生成した水がセパレータへ速やかに排出されなければならない。そのために、触媒物質(触媒粒子)にも、電子伝導性、ガス拡散経路、触媒物質のプロトン伝導パスが十分に形成されたバランスのよい三層界面が形成されることが望ましい。   In order to improve the cell performance of the polymer electrolyte fuel cell, hydrogen and oxygen from the separator are uniformly and rapidly supplied to the interface between the electrolyte membrane and the catalyst layer (three-layer interface), and at the same time, the oxygen electrode The water produced on the side must be discharged quickly to the separator. Therefore, it is desirable that a well-balanced three-layer interface in which electron conductivity, a gas diffusion path, and a proton conduction path of the catalyst material are sufficiently formed is formed in the catalyst material (catalyst particles).

その目的で特許文献1には、触媒インク中で固体高分子電解質をコロイド化して利用することが提案されている。すなわち、触媒担持導電体を有機溶媒に分散した分散液を得、その分散液と固体高分子電解質のアルコール溶液とを混合して、固体高分子電解質のコロイドを生成させるとともに、該コロイドを触媒担持導電体に吸着させて混合液とし、それをガス拡散層の片面に塗布して電極を作製するようにしている。   For this purpose, Patent Document 1 proposes to use a solid polymer electrolyte in the form of a colloid in a catalyst ink. That is, a dispersion in which a catalyst-carrying conductor is dispersed in an organic solvent is obtained, and the dispersion and a solid polymer electrolyte alcohol solution are mixed to form a solid polymer electrolyte colloid, and the colloid is supported by the catalyst. It is made to adsorb | suck to a conductor, and it is set as a liquid mixture, and it applies to the single side | surface of a gas diffusion layer, and produces an electrode.

固体高分子電解質のコロイドを生成することにより、触媒担持導電体(貴金属触媒を担持した炭素粉末)と固体高分子電解質とを十分に接触させることができるので、触媒層の内部で触媒の微粒子と炭素微粒子と固体高分子電解質とを、相互に十分に密着した状態で分散させることが可能となり、良好な三層界面が触媒層に形成されると記載されている。   By generating a solid polymer electrolyte colloid, the catalyst-supported conductor (carbon powder supporting a noble metal catalyst) and the solid polymer electrolyte can be sufficiently brought into contact with each other. It is described that it is possible to disperse the carbon fine particles and the solid polymer electrolyte in a state in which they are sufficiently adhered to each other, and a good three-layer interface is formed in the catalyst layer.

一般にこのようにして得られる触媒担持導電体を核とする固体高分子電解質のコロイドは、溶媒により外部から凝集させることになるので、必ずしも触媒担持導電体にコロイド化した固体高分子電解質を均一に吸着させることができない。従って、触媒粒子への電解質吸着量が多いとはいえず材料利用率を高くすることができなかった。
特開平8−264190号公報
In general, the solid polymer electrolyte colloid having the catalyst-supported conductor as the core obtained in this way is agglomerated from the outside by a solvent. Therefore, the colloidal solid polymer electrolyte is not necessarily uniformly formed on the catalyst-supported conductor. It cannot be adsorbed. Therefore, it cannot be said that the amount of electrolyte adsorption on the catalyst particles is large, and the material utilization rate cannot be increased.
JP-A-8-264190

本発明は、上記の事情に鑑みてなされたものであり、触媒担持導電体への電解質吸着量が多くかつ適度なコロイド粒子径と分散状態とを安定して維持することのできる燃料電池用触媒インクと、このような触媒インクを効率よく形成することのできる製造方法、及び燃料電池電極とを提供することを課題とする。   The present invention has been made in view of the above circumstances, and has a large amount of electrolyte adsorbed on a catalyst-carrying conductor and can stably maintain an appropriate colloidal particle diameter and dispersion state. It is an object of the present invention to provide an ink, a production method capable of efficiently forming such a catalyst ink, and a fuel cell electrode.

本発明の燃料電池用触媒インクは、分散媒と、該分散媒中に分散したコロイド粒子とを備えた燃料電池用触媒インクであって、前記コロイド粒子は、固体高分子電解質を吸着した触媒担持導電体粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着してなり、該コロイド粒子のメジアン径が3〜15μmであることを特徴とする。ここで、メジアン径とは、粒度分布を左右に2分割して粒径の大きい側と小さい側とが等量となる粒径である。   The fuel cell catalyst ink of the present invention is a fuel cell catalyst ink comprising a dispersion medium and colloidal particles dispersed in the dispersion medium, wherein the colloidal particles carry a catalyst carrying an adsorbed solid polymer electrolyte. Conductive particles are aggregated, and the solid polymer electrolyte is further adsorbed on the outer periphery of the aggregate, and the median diameter of the colloidal particles is 3 to 15 μm. Here, the median diameter is a particle diameter in which the particle size distribution is divided into right and left parts, and the larger side and the smaller side are equal.

また、本発明の燃料電池用触媒インクの製造方法は、少なくとも触媒担持導電体と固体高分子電解質と分散媒とを混合して混合液を得る混合液調合工程と、該混合液に超音波処理を施して前記触媒担持導電体が分散した分散液を得る分散工程と、該分散液を所定時間攪拌することで前記固体高分子電解質を吸着した前記触媒担持導電体の分散粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着したコロイド粒子を形成する攪拌工程とを備え、前記分散工程は、超音波分散機の振動子に接する前記混合液の温度を40℃以下に保持するように前記超音波処理を施すことを特徴とする。   The method for producing a fuel cell catalyst ink according to the present invention includes a mixed liquid preparation step of mixing at least a catalyst-carrying conductor, a solid polymer electrolyte, and a dispersion medium to obtain a mixed liquid, and sonicating the mixed liquid. A dispersion step of obtaining a dispersion in which the catalyst-carrying conductor is dispersed, and aggregating dispersed particles of the catalyst-carrying conductor adsorbing the solid polymer electrolyte by stirring the dispersion for a predetermined time, An agitation step of forming colloidal particles adsorbing the solid polymer electrolyte on the outer periphery of the aggregate, and the dispersion step reduces the temperature of the mixed solution in contact with the vibrator of the ultrasonic disperser to 40 ° C. or less. The ultrasonic treatment is performed so as to hold.

このような燃料電池用触媒インクの製造方法において、振動子に接する混合溶液の温度を0〜30℃に保持することがより好ましく、振動子に接する混合溶液の温度を2〜30℃に保持することがさらに好ましい。   In such a fuel cell catalyst ink manufacturing method, the temperature of the mixed solution in contact with the vibrator is more preferably maintained at 0 to 30 ° C., and the temperature of the mixed solution in contact with the vibrator is maintained at 2 to 30 ° C. More preferably.

また、本発明の燃料電池用触媒インクの他の製造方法は、固体高分子電解質であるアイオノマーを水及び/又はエタノールなどの低級アルコールに溶解したアイオノマー溶液を乾燥して固体化したアイオノマー樹脂を得る乾燥工程と、該アイオノマー樹脂を分散媒中に分散しアイオノマー分散液を得るアイオノマー分散工程と、触媒担持導電体と、該アイオノマー分散液と、分散媒とを混合して混合液を得る混合液調合工程と、該混合液に超音波処理を施して前記固体高分子電解質を吸着した前記触媒担持導電体の分散粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着したコロイド粒子を形成する超音波処理工程とを備えることを特徴とする。   Another method for producing a fuel cell catalyst ink of the present invention is to obtain a solidified ionomer resin by drying an ionomer solution obtained by dissolving an ionomer, which is a solid polymer electrolyte, in water and / or a lower alcohol such as ethanol. Mixing of a liquid mixture to obtain a liquid mixture by mixing a drying process, an ionomer dispersion process in which the ionomer resin is dispersed in a dispersion medium to obtain an ionomer dispersion liquid, a catalyst-supported conductor, the ionomer dispersion liquid, and a dispersion medium A colloid in which dispersed particles of the catalyst-carrying conductor adsorbing the solid polymer electrolyte are agglomerated by subjecting the mixed solution to ultrasonic treatment, and the solid polymer electrolyte is further adsorbed on the outer periphery of the aggregate And an ultrasonic treatment step for forming particles.

また、本発明の燃料電池用電極は、この燃料電池用触媒インクを用いて形成したことを特徴とする。   In addition, the fuel cell electrode of the present invention is formed using the fuel cell catalyst ink.

本発明の燃料電池用触媒インクは、固体高分子電解質を吸着した触媒担持導電体の分散粒子を凝集し、この凝集体の外周部にさらに固体高分子電解質を吸着したコロイド粒子を分散してなるので、触媒担持導電体粒子に多量の固体高分子電解質を安定して吸着している。そして、分散しているコロイド粒子のメジアン径が電解質の量により3〜15μmに変化するので、電解質の量に拘わらずコロイド表面積当たりの電解質量が一定となる。従って、この触媒インクで形成される電極の触媒層の内部で触媒金属と導電体と電解質とが接する三層界面が増大し反応効率を向上することができる。つまり本発明の触媒インクによれば、触媒金属の材料利用率を高めることができ、従来よりも少ない電解質量で高い発電性能を示し、電解質量が同じであればさらに高い発電性能を示す燃料電池を得ることができる。   The fuel ink catalyst ink of the present invention is obtained by aggregating dispersed particles of a catalyst-supporting conductor adsorbing a solid polymer electrolyte, and further dispersing colloidal particles adsorbing the solid polymer electrolyte on the outer periphery of the aggregate. Therefore, a large amount of the solid polymer electrolyte is stably adsorbed on the catalyst-carrying conductive particles. Since the median diameter of the dispersed colloidal particles changes to 3 to 15 μm depending on the amount of the electrolyte, the electrolytic mass per colloidal surface area is constant regardless of the amount of the electrolyte. Therefore, the three-layer interface where the catalyst metal, the conductor and the electrolyte are in contact with each other inside the catalyst layer of the electrode formed with this catalyst ink is increased, and the reaction efficiency can be improved. That is, according to the catalyst ink of the present invention, the fuel metal material utilization rate of the catalyst metal can be increased, high power generation performance can be achieved with less electrolytic mass than before, and higher power generation performance can be achieved if the electrolytic mass is the same. Can be obtained.

本発明の燃料電池用触媒インクの製造方法は、分散工程において触媒担持導電体を低エネルギで超音波分散する以外は従来と同様に実施することができるので、従来の工程を大幅に変更することなく簡便にかつ効率よく所望の燃料電池用触媒インクを製造することができる。   The method for producing a fuel cell catalyst ink of the present invention can be carried out in the same manner as in the prior art except that the catalyst-carrying conductor is ultrasonically dispersed with low energy in the dispersing step, so that the conventional process is greatly changed. The desired fuel cell catalyst ink can be produced easily and efficiently.

また、本発明の燃料電池用触媒インクの他の製造方法は、市販のアイオノマー溶液を乾燥したアイオノマー樹脂を固体高分子電解質として用いる以外は、従来とほぼ同様に実施することができるので、従来の工程を大幅に変更することなく簡便にかつ効率よく所望の燃料電池用触媒インクを製造することができる。   In addition, other methods for producing the fuel cell catalyst ink of the present invention can be carried out in substantially the same manner as in the prior art, except that a commercially available ionomer solution is used as a solid polymer electrolyte. A desired fuel cell catalyst ink can be easily and efficiently produced without greatly changing the process.

以下本発明の好適な実施の形態について図を参照しながら説明する。
(触媒インク)
本発明の燃料電池用触媒インク(以後、単に触媒インクという)は、分散媒と、該分散媒中に分散したコロイド粒子とを備えた燃料電池用触媒インクであって、前記コロイド粒子は、固体高分子電解質(いご、単に電解質ともいう)を吸着した触媒担持導電体粒子(以後、触媒粒子ともいう)を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着してなり、該コロイド粒子のメジアン径が3〜15μmであることを特徴とする。
Preferred embodiments of the present invention will be described below with reference to the drawings.
(Catalyst ink)
The fuel cell catalyst ink of the present invention (hereinafter simply referred to as catalyst ink) is a fuel cell catalyst ink comprising a dispersion medium and colloid particles dispersed in the dispersion medium, wherein the colloid particles are solid. The catalyst-supported conductor particles (hereinafter also referred to as catalyst particles) adsorbing a polymer electrolyte (also referred to simply as an electrolyte) are aggregated, and the solid polymer electrolyte is further adsorbed on the outer periphery of the aggregate. The median diameter of the colloidal particles is 3 to 15 μm.

本発明の触媒インクの好適な一実施の形態を図9(b)に示す。図9(b)は触媒インク3の分散媒30中に分散しているコロイド粒子40を模式的に示している。コロイド粒子40は、電解質20を吸着した触媒粒子10を凝集して凝集体60とし、この凝集体60の表面にさらに電解質20を吸着している。このためこの触媒インク3を用いて形成される触媒層において触媒と導電体と電解質とが接する三層界面が増大し反応効率を向上することができる。また、凝集体60の表面にさらに電解質20を吸着したコロイド粒子40を形成しているので触媒粒子への電解質の吸着力も大きい。従って、図8(b)の写真に示すように分散媒30中に分散したコロイド粒子40の分散状態を安定的に維持することがでる。   FIG. 9 (b) shows a preferred embodiment of the catalyst ink of the present invention. FIG. 9B schematically shows the colloidal particles 40 dispersed in the dispersion medium 30 of the catalyst ink 3. The colloidal particles 40 aggregate the catalyst particles 10 that have adsorbed the electrolyte 20 into aggregates 60, and further adsorb the electrolyte 20 on the surface of the aggregates 60. For this reason, in the catalyst layer formed using this catalyst ink 3, the three-layer interface where the catalyst, the conductor and the electrolyte are in contact with each other is increased, and the reaction efficiency can be improved. Further, since colloidal particles 40 are formed on the surface of the aggregate 60 by further adsorbing the electrolyte 20, the adsorption power of the electrolyte to the catalyst particles is large. Accordingly, as shown in the photograph of FIG. 8B, the dispersion state of the colloidal particles 40 dispersed in the dispersion medium 30 can be stably maintained.

本実施の形態において、触媒インク3におけるコロイド粒子40のメジアン径は3〜15μmである。このメジアン径が3μm未満では、電解質20のコロイド化が不完全であるので反応に寄与しない触媒が存在することがある。また、15μmを越えて大きくなると触媒粒子10が過凝集となって生成水が触媒層内に滞留するフラッディング現象が生じる虞がある。触媒インク1のコロイド粒子径は7〜10μmがさらに好ましい。   In the present embodiment, the median diameter of the colloidal particles 40 in the catalyst ink 3 is 3 to 15 μm. If the median diameter is less than 3 μm, there may be a catalyst that does not contribute to the reaction because the colloidalization of the electrolyte 20 is incomplete. On the other hand, if it exceeds 15 μm, the catalyst particles 10 may be over-agglomerated to cause a flooding phenomenon in which the produced water stays in the catalyst layer. The colloidal particle diameter of the catalyst ink 1 is more preferably 7 to 10 μm.

触媒インク3におけるコロイド粒子40のコロイド粒子径が上記の範囲にあれば、三層界面が必要でかつ充分に存在することになるので利用可能なPtなどの触媒量が常に一定となる。   If the colloidal particle diameter of the colloidal particles 40 in the catalyst ink 3 is in the above range, the three-layer interface is necessary and sufficient, so that the amount of available catalyst such as Pt is always constant.

このような触媒インク1においては、一定の電解質吸着量を維持した状態で触媒粒子10と電解質20とが分散している。このため電解質20の偏析が発生し難く、液水による気孔(コロイド間の隙間)の閉塞が抑制される。このため生成水の外部への排出が容易となりガスが触媒表面に導入されやすくなる。結果、拡散抵抗が低下して反応がスムーズに進行することになる。   In such a catalyst ink 1, the catalyst particles 10 and the electrolyte 20 are dispersed while maintaining a constant electrolyte adsorption amount. For this reason, the segregation of the electrolyte 20 hardly occurs, and blockage of pores (gap between colloids) due to liquid water is suppressed. For this reason, the generated water can be easily discharged to the outside, and the gas can be easily introduced to the catalyst surface. As a result, the diffusion resistance is lowered and the reaction proceeds smoothly.

すなわち、触媒インク3を用いることによって材料利用率の高い性能面で有利な燃料電池を得ることが期待できる。
(触媒インクの製造方法)
このような触媒インク3は以下のようにして製造することができる。
(第1の実施形態)
本発明の燃料電池用触媒インクの製造方法における第1の実施形態は、少なくとも触媒担持導電体と固体高分子電解質と分散媒とを混合して混合液を得る混合液調合工程と、この混合液に超音波処理を施して触媒担持導電体が分散した分散液を得る分散工程と、この分散液を所定時間攪拌することで固体高分子電解質を吸着した触媒担持導電体の分散粒子を凝集し、この凝集体の外周部にさらに固体高分子電解質を吸着したコロイド粒子を形成する攪拌工程とを備え、前記分散工程は、超音波分散機の振動子に接する混合液の温度を40℃以下に保持するように超音波処理を施すことを特徴とする。
That is, by using the catalyst ink 3, it can be expected to obtain a fuel cell advantageous in terms of performance with a high material utilization rate.
(Method for producing catalyst ink)
Such a catalyst ink 3 can be manufactured as follows.
(First embodiment)
The first embodiment of the method for producing a catalyst ink for a fuel cell of the present invention includes a mixed liquid preparation step for mixing at least a catalyst-supporting conductor, a solid polymer electrolyte, and a dispersion medium to obtain a mixed liquid, and this mixed liquid. A dispersion step of obtaining a dispersion in which the catalyst-carrying conductor is dispersed by subjecting to sonication, and aggregating dispersed particles of the catalyst-carrying conductor adsorbing the solid polymer electrolyte by stirring the dispersion for a predetermined time; An agitation step for forming colloidal particles adsorbing solid polymer electrolyte on the outer periphery of the aggregate, and the dispersion step maintains the temperature of the liquid mixture in contact with the vibrator of the ultrasonic disperser at 40 ° C. or lower. Thus, ultrasonic treatment is performed.

まず、混合液調合工程では、触媒粒子と電解質と分散媒と、必要に応じて高沸点の乾燥防止剤や添加剤を加えて均一に混練・攪拌して混合液を調合する。   First, in the mixed solution preparation step, catalyst particles, an electrolyte, a dispersion medium, and, if necessary, a high-boiling anti-drying agent or additive are added and uniformly mixed and stirred to prepare a mixed solution.

触媒粒子は、例えば、触媒物質(例えば、Ptなど)を担持した炭素粉末のように、従来この種の触媒インクに用いられる触媒粒子を任意に用いることができる。また、電解質も同様に、パーフルオロカーボンスルホン酸アイオノマーのように、従来この種の触媒インクに用いられる電解質を任意に用いることができる。   As the catalyst particles, for example, catalyst particles conventionally used for this type of catalyst ink can be arbitrarily used, such as carbon powder supporting a catalyst substance (for example, Pt). Similarly, electrolytes conventionally used in this type of catalyst ink such as perfluorocarbon sulfonic acid ionomer can be arbitrarily used.

また、分散媒としては、エチルアルコールと水(純水)とを好適に用いることができ、さらに所望に応じて、プロピレンゴリコール、エチレングリコール、(イソ,n−)プロピレンアルコール、シクロヘキサノール、n−酢酸ブチル、n−酢酸、n−ブチルアミン、メチルアミン、テトラヒドロフランのような乾燥剤や添加剤を用いることができる。   Moreover, as a dispersion medium, ethyl alcohol and water (pure water) can be used suitably, Furthermore, as desired, propylene glycol, ethylene glycol, (iso, n-) propylene alcohol, cyclohexanol, n -A desiccant or additive such as butyl acetate, n-acetic acid, n-butylamine, methylamine, or tetrahydrofuran can be used.

本実施形態において、触媒粒子、電解質および分散媒の配合比率は特に限定されることなく、コロイド粒子を生成する触媒インクに従来用いられる混合液の配合比率とすればよい。   In the present embodiment, the blending ratio of the catalyst particles, the electrolyte, and the dispersion medium is not particularly limited, and may be a blending ratio of the liquid mixture conventionally used for the catalyst ink that generates colloidal particles.

例えば、調合された混合液全体を100質量%として、触媒粒子3〜15%、電解質2〜20%、分散媒50〜95%である。また、分散媒におけるアルコールと水とは、その質量比(アルコール/水)が1/3〜1/0.5であることが望ましい。この比率が1/3未満では電解質自身がコロイド化しやすくなり、1/0.5を越えると吸着が進行しないことがあるので好ましくない。より好ましくは、1/1〜1.5/1である。   For example, the total amount of the prepared mixed liquid is 100% by mass, and the catalyst particles are 3 to 15%, the electrolyte is 2 to 20%, and the dispersion medium is 50 to 95%. Moreover, as for the alcohol and water in a dispersion medium, it is desirable that the mass ratio (alcohol / water) is 1/3-1 / 0.5. If this ratio is less than 1/3, the electrolyte itself tends to colloid. If it exceeds 1 / 0.5, the adsorption may not proceed, which is not preferable. More preferably, it is 1/1 to 1.5 / 1.

混合液調合工程では、触媒粒子と電解質とが分散媒中で均一に混在するように混合すれば良く、混練・攪拌方法には特に制約はない。例えば、周知のプロペラ型攪拌機やマグネチックスターラやポットミルなど従来用いられている攪拌機や混練機などを用いて定法により全体が均一に攪拌されるように回転して混合すればよい。   In the mixed liquid preparation step, the catalyst particles and the electrolyte may be mixed so that they are uniformly mixed in the dispersion medium, and the kneading / stirring method is not particularly limited. For example, the mixture may be rotated and mixed using a known method such as a well-known propeller type stirrer, a magnetic stirrer, a pot mill or the like and a conventional method such that the whole is uniformly stirred.

このようにして得られた混合液1中では、図1(a)に概念図で示すように、破砕されていない塊状の触媒粒子10と電解質20とが溶媒30中にランダムに分散している。   In the mixed liquid 1 obtained in this way, as shown in a conceptual diagram in FIG. 1A, unbroken bulk catalyst particles 10 and the electrolyte 20 are randomly dispersed in the solvent 30. .

次に、分散工程では、得られた混合液に超音波処理を施して内部裁断により塊状の触媒粒子10を微細に粉砕するとともに分散媒30中に分散させた分散液2を得る。   Next, in the dispersion step, the obtained mixed solution is subjected to ultrasonic treatment, and the dispersed catalyst 2 is obtained by finely pulverizing the massive catalyst particles 10 by internal cutting and dispersing them in the dispersion medium 30.

この超音波分散処理において、従来は高出力タイプ(例えば、300W)の振動子を用いて塊状の触媒粒子を細かく分散させることが行われていた。しかし、本実施形態では、外部から加えるエネルギを小さくするために、超音波分散機としては10〜100W程度(例えば、50W)の低出力の振動子を用い、混合液1に与えるエネルギの大きさを従来の1/6〜1/7とする。   In this ultrasonic dispersion treatment, conventionally, a large amount of catalyst particles has been finely dispersed using a high output type (for example, 300 W) vibrator. However, in this embodiment, in order to reduce the energy applied from the outside, a low output vibrator of about 10 to 100 W (for example, 50 W) is used as the ultrasonic disperser, and the amount of energy given to the mixed liquid 1 Is 1/6 to 1/7 of the prior art.

混合液に外部からエネルギを加えて触媒粒子に分散処理を施すと、混合液の温度は上昇する。そしてこの温度上昇により混合液に微小な変化が発生し、その微小な変化が出来上がり時の触媒インクの性状を大きく左右する。   When energy is applied to the mixed liquid from the outside to disperse the catalyst particles, the temperature of the mixed liquid rises. This temperature rise causes a minute change in the mixed liquid, and the minute change greatly affects the properties of the catalyst ink when it is completed.

すなわち、混合液に付与するエネルギが大きいと、分散媒の酸化が進行しやすく、また、触媒粒子表面に活性点ができやすいことから、分散後の攪拌工程で電解質が触媒粒子表面から分離しやすい触媒インクとなることがある。従って、触媒粒子表面に電解質が強く吸着した触媒インクを得ることができない。   That is, if the energy applied to the mixed liquid is large, the dispersion medium is likely to oxidize, and active points are easily formed on the surface of the catalyst particles, so that the electrolyte is easily separated from the surface of the catalyst particles in the stirring step after dispersion. May become catalyst ink. Therefore, a catalyst ink in which the electrolyte is strongly adsorbed on the catalyst particle surface cannot be obtained.

本実施形態では、混合液に与えるエネルギの大きさを小さくして、分散処理後の触媒粒子と電解質の分散状態を均一且つ強固な吸着として、分散後の攪拌工程で触媒インクが電解質を吸着した触媒粒子の凝集体を核とするコロイド粒子になるようにする。   In this embodiment, the amount of energy applied to the mixed liquid is reduced, and the dispersed state of the catalyst particles and the electrolyte after the dispersion treatment is made uniform and strong adsorption, and the catalyst ink adsorbs the electrolyte in the stirring step after dispersion. Colloidal particles with agglomerates of catalyst particles as nuclei are formed.

分散工程の概略を図2に示す。分散工程では混合液Lに振動子Hの先端を浸漬して超音波分散処理を行う。ここで、Jは、冷却水を流通させるジャケットであり、Tは温度センサである。   An outline of the dispersion process is shown in FIG. In the dispersion step, ultrasonic dispersion treatment is performed by immersing the tip of the vibrator H in the mixed solution L. Here, J is a jacket for circulating cooling water, and T is a temperature sensor.

図2に示すように触媒粒子分散作動中に溶液Lとこの振動子Hとが直接触れている混合液部分(例えば、振動子直下)Laの液温が最も高い。従って、触媒粒子分散作動中に振動子直下Laの液温を制御することで良好な分散状態を得るようにする。   As shown in FIG. 2, the temperature of the liquid mixture La (for example, immediately below the vibrator) La where the solution L and the vibrator H are in direct contact during the catalyst particle dispersion operation is the highest. Therefore, a good dispersion state is obtained by controlling the liquid temperature immediately below the vibrator during the catalyst particle dispersion operation.

図3に分散処理時における振動子直下Laの液温と、攪拌処理後に得られるコロイド粒子のメジアン径との関係を示す。図3から、振動子直下の温度を40℃以下に保持すると、攪拌処理後にメジアン径の大きなコロイド粒子の得られることが分かる。すなわち、触媒粒子分散作動中の混合溶液の保持温度は40度以下であり、より好ましくは、0〜30℃であり、さらに好ましくは、20〜30℃である。   FIG. 3 shows the relationship between the liquid temperature immediately below the vibrator during the dispersion treatment and the median diameter of the colloidal particles obtained after the stirring treatment. From FIG. 3, it can be seen that colloidal particles having a large median diameter can be obtained after the stirring process if the temperature immediately below the vibrator is kept at 40 ° C. or lower. That is, the holding temperature of the mixed solution during the catalyst particle dispersion operation is 40 ° C. or less, more preferably 0 to 30 ° C., and further preferably 20 to 30 ° C.

分散工程後の分散液2の状態を図1(b)に概念図で示す。触媒粒子10は分散媒30中に細かく粉砕されて分散されており、一部の電解質20aはコロイド化して触媒粒子10を核として包含している(吸着されている)ものもある。このような分散液2においては、触媒粒子10のメジアン径は0.5μm以下であることが望ましい。分散処理後の触媒粒子のメジアン径が0.5μmを越えて大きいと、以後の攪拌処理において、コロイド中に解砕不足の触媒粒子10が存在することとなり、均一なコロイド化ができなくなることがあるので好ましくない。   The state of the dispersion 2 after the dispersion step is shown in a conceptual diagram in FIG. The catalyst particles 10 are finely pulverized and dispersed in the dispersion medium 30, and some of the electrolyte 20 a is colloidal and includes (adsorbs) the catalyst particles 10 as nuclei. In such a dispersion 2, it is desirable that the median diameter of the catalyst particles 10 is 0.5 μm or less. If the median diameter of the catalyst particles after the dispersion treatment is larger than 0.5 μm, the catalyst particles 10 that are insufficiently crushed will be present in the colloid in the subsequent stirring treatment, and uniform colloidalization may not be possible. This is not preferable.

次に、攪拌工程では、上記で得られた分散液2を攪拌して、分散工程で生成した電解質20を吸着した触媒粒子10同士をさらに橋架け効果で凝集させる。そして、図1(c)に示すような電解質20を吸着した触媒粒子10の凝集体60を核とし、さらにその外周部に多量の電解質20を吸着したコロイド粒子40が生成させて分散場羽30中にコロイド粒子40が分散してなる触媒インク3とする。   Next, in the stirring step, the dispersion liquid 2 obtained above is stirred, and the catalyst particles 10 adsorbing the electrolyte 20 generated in the dispersing step are further aggregated by a bridging effect. Then, the colloidal particles 40 adsorbing a large amount of the electrolyte 20 are generated on the outer periphery of the aggregate 60 of the catalyst particles 10 adsorbing the electrolyte 20 as shown in FIG. The catalyst ink 3 is obtained by dispersing the colloidal particles 40 therein.

攪拌は従来と同様に行うことができ、分散液2の温度を10〜30℃に保持して12〜24時間攪拌すればよい。   Stirring can be performed in the same manner as before, and the temperature of dispersion 2 may be maintained at 10 to 30 ° C. and stirred for 12 to 24 hours.

このようにして、メジアン径が3〜15μmのコロイド粒子40が溶媒30中に分散してなる触媒インク3を得ることができる。触媒インク3のメジアン径が3μm未満では、コロイド化が不完全であるので反応に帰依しない触媒が生じることがある。また、15μmを越えると触媒粒子10が過凝集となってフラッディング現象を生じることがある。従って、メジアン径が3μm未満の場合には、例えば水を加えてエタノール濃度を下げるように調整し、15μmを越える場合には、例えばエタノールを添加して、コロイドを弱く破壊することで、コロイド粒子40のメジアン径を所望の大きさに調整することができる。 このような調整は、例えば、長期保管によりコロイド化が進行しすぎた場合や、材料、特異触媒表面の物性によりコロイド径の変化が発生する場合などに実施するとよい。   Thus, a catalyst ink 3 in which colloidal particles 40 having a median diameter of 3 to 15 μm are dispersed in the solvent 30 can be obtained. When the median diameter of the catalyst ink 3 is less than 3 μm, colloidalization is incomplete and a catalyst that does not depend on the reaction may be generated. On the other hand, if it exceeds 15 μm, the catalyst particles 10 may be excessively aggregated to cause a flooding phenomenon. Therefore, when the median diameter is less than 3 μm, for example, water is added to adjust the ethanol concentration to decrease, and when it exceeds 15 μm, for example, ethanol is added to break the colloid weakly, thereby colloidal particles. The median diameter of 40 can be adjusted to a desired size. Such adjustment may be performed, for example, when colloidalization has progressed excessively due to long-term storage or when the colloid diameter changes due to the physical properties of the material or specific catalyst surface.

以上のようにして得られる触媒インクのコロイド粒子のメジアン径は、触媒インクが含有する電解質の含有量によって変化する。そこで、触媒粒子の配合量は一定として、電解質の配合量を変化させて混合液を調合し、上記の手順に従って含有する電解質量の異なる7水準の触媒インクを作製した。混合液の配合比率を表1に示す。   The median diameter of the colloidal particles of the catalyst ink obtained as described above varies depending on the content of the electrolyte contained in the catalyst ink. Therefore, the blending amount of the catalyst particles was constant and the blending amount of the electrolyte was changed to prepare a mixed solution, and seven-level catalyst inks containing different electrolytic masses were prepared according to the above procedure. Table 1 shows the mixing ratio of the mixed solution.

作製した触媒インクの粒度分布を測定し、そのメジアン径と電解質量との関係を図4に示した。図4から、電解質量の増加とともに凝集後のコロイド粒子の粒子サイズ(メジアン径)は直線的に小さくなり、電解質量が11.5%で変量点のあることが分かる。このことは、電解質量が11.5%以上と11.5%未満ではコロイド粒子の凝集形態が異なっていることを示唆している。すなわち、電解質量が11.5%未満では単相吸着または凝集であり、11.5%以上では複相吸着または凝集となっていることが推測される。   The particle size distribution of the produced catalyst ink was measured, and the relationship between the median diameter and the electrolytic mass is shown in FIG. FIG. 4 shows that the particle size (median diameter) of the colloidal particles after aggregation decreases linearly with an increase in electrolytic mass, and there is a variable point when the electrolytic mass is 11.5%. This suggests that the aggregated form of colloidal particles is different when the electrolytic mass is 11.5% or more and less than 11.5%. That is, it is presumed that when the electrolytic mass is less than 11.5%, single-phase adsorption or aggregation occurs, and when it is 11.5% or more, double-phase adsorption or aggregation occurs.

ここで、単相吸着(又は凝集)とは、電解質(又は触媒粒子)が触媒表面に直接吸着している状態を意味し、複相吸着(または凝集)とは、電解質(又は触媒粒子)が電解質上にさらに吸着している状態を意味する。従って、単相吸着状態が望ましい。   Here, the single-phase adsorption (or aggregation) means a state in which the electrolyte (or catalyst particles) is directly adsorbed on the catalyst surface, and the multi-phase adsorption (or aggregation) means that the electrolyte (or catalyst particles) is It means a state of being further adsorbed on the electrolyte. Therefore, a single phase adsorption state is desirable.

また、この7種類の触媒インクについて触媒粒子に吸着されている電解質の吸着量を測定した。吸着量は以下の手順によって求めた。   Further, the adsorption amount of the electrolyte adsorbed on the catalyst particles was measured for these seven types of catalyst inks. The amount of adsorption was determined by the following procedure.

まず、表1に示す各溶液組成から触媒粒子を除いた7水準の検量線作成用の溶液を準備し、各溶液の粘度を測定した。粘度測定には英光精機株式会社製のRC550を用いた。各触媒インクについて得られた粘度測定データから剪断速度に対する剪断応力の増加割合(勾配)を求め、この勾配を電解質量に対してプロットすることで検量線を得た。   First, a solution for preparing a 7-level calibration curve obtained by removing catalyst particles from each solution composition shown in Table 1 was prepared, and the viscosity of each solution was measured. RC550 manufactured by Eiko Seiki Co., Ltd. was used for viscosity measurement. From the viscosity measurement data obtained for each catalyst ink, the increase rate (gradient) of the shear stress with respect to the shear rate was determined, and a calibration curve was obtained by plotting this gradient against the electrolytic mass.

次に、作製した7水準の触媒インクをそれぞれフィルタで濾過(デュラポア、日本ミリポア株式会社製)し、その濾液の粘度を上記と同様にして測定した。得られたデータから剪断速度を横軸、剪断応力を縦軸とした直線の勾配を求め、この勾配と前記の検量線から濾液中に含まれる電解質量を求めた。得られた電解質量と配合時の電解質量との差分を触媒粒子に吸着された電解質量とした。   Next, each of the prepared 7-level catalyst inks was filtered with a filter (Durapore, manufactured by Nihon Millipore Corporation), and the viscosity of the filtrate was measured in the same manner as described above. From the obtained data, a linear gradient with the shear rate as the horizontal axis and the shear stress as the vertical axis was determined, and the electrolytic mass contained in the filtrate was determined from this gradient and the calibration curve. The difference between the obtained electrolytic mass and the electrolytic mass at the time of blending was defined as the electrolytic mass adsorbed on the catalyst particles.

図5に電解質の配合量(質量%)と吸着量(質量%)との関係を示す。図5から、触媒粒子への電解質の吸着量は、その配合量が増加するとともに増加することが分かる。しかし、その増加の割合は一様ではなく、配合量が12%付近までは吸着量は4〜6%と漸増するが、12%を越えると吸着量は急増する。この変曲点は図4のメジアン径の変量点に近似しており、吸着量の増大は、メジアン径の小さいコロイド粒子の増加、すなわち、触媒インクのコロイド構造が壊れていくことを示唆していることが分かる。   FIG. 5 shows the relationship between the blending amount (mass%) of the electrolyte and the adsorption amount (mass%). From FIG. 5, it can be seen that the amount of electrolyte adsorbed on the catalyst particles increases as the blending amount increases. However, the rate of increase is not uniform, and the amount of adsorption gradually increases to 4-6% until the blending amount is close to 12%, but the amount of adsorption increases rapidly when it exceeds 12%. This inflection point approximates the median diameter variable point in FIG. 4, and an increase in the amount of adsorption suggests an increase in colloidal particles with a small median diameter, that is, the colloidal structure of the catalyst ink is broken. I understand that.

以上のように、加えた電解質量により凝集後のコロイド粒子径が変化すること、その変化の仕方が加えた電解質量と強い相関を持っていることが確認できた。   As described above, it was confirmed that the colloidal particle diameter after aggregation was changed by the added electrolytic mass, and that the change method had a strong correlation with the added electrolytic mass.

また、図5から、電解質の配合量が概ね5〜12%の範囲内では、配合量に関わらず触媒粒子への吸着量がほぼ一定になっていることが分かった。すなわち、電解質量が増大すると粒子径の小さなコロイド粒子が増大して結果としてコロイド粒子の総表面積は増大する。そして、凝集した個々の触媒粒子への電解質の吸着量(分配)が常に一定となる領域が存在し、かつコロイドの強い吸引力により従来よりも多くの電解質を触媒表面に吸着させることができる。   Further, from FIG. 5, it was found that the amount of adsorption to the catalyst particles was almost constant regardless of the blending amount when the blending amount of the electrolyte was within a range of about 5 to 12%. That is, when the electrolytic mass increases, colloidal particles having a small particle diameter increase, and as a result, the total surface area of the colloidal particles increases. In addition, there is a region where the amount of adsorption (distribution) of the electrolyte to the aggregated individual catalyst particles is always constant, and more electrolyte can be adsorbed on the catalyst surface than in the past due to the strong suction force of the colloid.

従って、電解質量の増大がほぼ一定になる領域では、常に均一の組成の粒子を大きさだけを変えて作製することができるわけである。そして、保水性などを維持するのに充分で、かつ触媒反応に必要充分な電解質量を確保できる。
(第2の実施形態)
本発明の燃料電池用触媒インクの製造方法における第2の実施形態は、固体高分子電解質であるアイオノマーを水及び/又はエタノールなどの低級アルコールに溶解したアイオノマー溶液を乾燥して固体化したアイオノマー樹脂を得る乾燥工程と、このアイオノマー樹脂を分散媒中に分散しアイオノマー分散液を得るアイオノマー分散工程と、触媒担持導電体と、このアイオノマー分散液と、分散媒とを混合して混合液を得る混合液調合工程と、この混合液に超音波処理を施して固体高分子電解質を吸着した触媒担持導電体の分散粒子を凝集し、この凝集体の外周部にさらに固体高分子電解質を吸着したコロイド粒子を形成する超音波処理工程とを備えることを特徴とする。
Therefore, in a region where the increase in electrolytic mass is almost constant, particles having a uniform composition can always be produced by changing only the size. In addition, an electrolytic mass sufficient to maintain water retention and the like and necessary and sufficient for the catalytic reaction can be secured.
(Second Embodiment)
The second embodiment of the method for producing a fuel cell catalyst ink of the present invention is a solidified ionomer resin obtained by drying an ionomer solution obtained by dissolving an ionomer, which is a solid polymer electrolyte, in water and / or a lower alcohol such as ethanol. A drying step for obtaining a mixture, an ionomer dispersion step for dispersing the ionomer resin in a dispersion medium to obtain an ionomer dispersion, a catalyst-carrying conductor, the ionomer dispersion, and a dispersion medium for mixing to obtain a mixture The liquid preparation step and the mixed liquid are subjected to ultrasonic treatment to agglomerate dispersed particles of the catalyst-carrying conductor adsorbing the solid polymer electrolyte, and the colloidal particles further adsorbing the solid polymer electrolyte to the outer periphery of the aggregate And an ultrasonic treatment step for forming the structure.

一般に固体高分子電解質はアイオノマーを水及び/又はエタノールなどの低級アルコールに溶解したアイオノマー溶液として市販されている。乾燥工程では、まずこの市販されているアイオノマー溶液を乾燥させてアイオノマー樹脂をうる。   In general, a solid polymer electrolyte is commercially available as an ionomer solution in which an ionomer is dissolved in water and / or a lower alcohol such as ethanol. In the drying step, the commercially available ionomer solution is first dried to obtain an ionomer resin.

本実施の形態において、電解質はパーフルオロカーボンスルホン酸アイオノマーのように、従来この種の燃料電池用触媒インクに用いられる電解質を任意に用いることができる。例えば、パーフルオロカーボンスルホン酸アイオノマーを水及び/又はエタノールなどの低級アルコールに溶解したNafion Solution(商品名、Aldrichi社製)等を好適に用いることができる。   In the present embodiment, as the electrolyte, an electrolyte conventionally used in this type of fuel cell catalyst ink, such as perfluorocarbon sulfonic acid ionomer, can be arbitrarily used. For example, Nafion Solution (trade name, manufactured by Aldrich) in which perfluorocarbonsulfonic acid ionomer is dissolved in water and / or lower alcohol such as ethanol can be suitably used.

乾燥手段には制約はないが、乾燥を促進するために例えばアイオノマー溶液をシャーレやトレーなどの開口面積の広い容器に収容してから、50〜150℃で10−1〜10−4Paの真空乾燥としてもよい。なお、アイオノマー樹脂の乾燥状態は重量変化で判定し、乾燥重量が分散場意中の固体分の95重量%以上となったら乾燥完了とすればよい。 There are no restrictions on the drying means, but for example, an ionomer solution is accommodated in a container having a wide opening area such as a petri dish or a tray in order to promote drying, and then a vacuum of 10 −1 to 10 −4 Pa at 50 to 150 ° C. It is good also as drying. The dry state of the ionomer resin is determined by a change in weight. When the dry weight reaches 95% by weight or more of the solid content in the dispersion field, the drying may be completed.

次に、得られたアイオノマー樹脂を分散媒中に分散してアイオノマー分散液を調整する。分散媒としては、エチルアルコールと水(純水)とを好適に用いることができる。ここで、分散媒におけるアルコールと水とは、その質量比(アルコール/水)が100/0〜50/50であることが望ましい。アルコールが50/50よりも少ないとアイオノマー樹脂が溶解し難い。より好ましくは、80/20〜70/30である。   Next, the obtained ionomer resin is dispersed in a dispersion medium to prepare an ionomer dispersion. As the dispersion medium, ethyl alcohol and water (pure water) can be suitably used. Here, as for the alcohol and water in a dispersion medium, it is desirable that the mass ratio (alcohol / water) is 100 / 0-50 / 50. If the alcohol is less than 50/50, the ionomer resin is difficult to dissolve. More preferably, it is 80 / 20-70 / 30.

このような分散媒にアイオノマー樹脂を質量%で10〜20%混合して通常の攪拌機などを用いて全体が均一になるように混合する。その後この混合液に超音波処理を施し、アイオノマーを分散媒中に均一に分散させる。超音波処理は、従来の高出力タイプ(例えば、300W)の振動子を用いて5分〜1時間行い、その後、常温で2時間以上静置することで分散媒中にアイオノマーが均一に分散したアイオノマー分散液を得ることができる。   The ionomer resin is mixed with such a dispersion medium in an amount of 10 to 20% by mass and mixed so as to be uniform using a normal stirrer. Thereafter, the mixed solution is subjected to ultrasonic treatment to uniformly disperse the ionomer in the dispersion medium. The ultrasonic treatment is performed for 5 minutes to 1 hour using a conventional high-power type (for example, 300 W) vibrator, and then the ionomer is uniformly dispersed in the dispersion medium by allowing to stand at room temperature for 2 hours or more. An ionomer dispersion can be obtained.

次ぎに、混合液調合工程ではこのアイオノマー分散液と触媒粒子と分散媒とを混合して混合液を調合する。   Next, in the mixed liquid preparation step, the ionomer dispersion liquid, the catalyst particles, and the dispersion medium are mixed to prepare a mixed liquid.

ここで、触媒粒子は、例えば、触媒物質(例えば、Pt)を担持した炭素粉末のように、従来この種の触媒インクに用いられる触媒粒子を任意に用いることができる。   Here, as the catalyst particles, for example, catalyst particles conventionally used in this type of catalyst ink, such as carbon powder supporting a catalyst substance (for example, Pt), can be arbitrarily used.

本実施形態において、触媒粒子、アイオノマー分散液および分散媒の配合比率は特に限定はない。コロイド粒子を生成する触媒インクに従来用いられる混合液の配合比率とすればよい。例えば、調合された混合液全体を100質量%として、触媒粒子3〜15%、電解質(アイオノマー分散液中のアイオノマー分)2〜20%、分散媒50〜95%である。また、分散媒におけるアルコールと水とは、その質量比(アルコール/水)が2/3〜1/0.5であることが望ましい。   In the present embodiment, the mixing ratio of the catalyst particles, the ionomer dispersion, and the dispersion medium is not particularly limited. What is necessary is just to set it as the mixture ratio of the liquid mixture conventionally used for the catalyst ink which produces | generates a colloid particle. For example, the total amount of the prepared mixed liquid is 100% by mass, and the catalyst particles are 3 to 15%, the electrolyte (ionomer content in the ionomer dispersion) is 2 to 20%, and the dispersion medium is 50 to 95%. Moreover, as for the alcohol and water in a dispersion medium, it is desirable that the mass ratio (alcohol / water) is 2/3-1 / 0.5.

混合液調合工程では、触媒粒子と電解質とが分散媒中で均一に混在するように混合すれば良く、混練・攪拌方法には特に制約はない。例えば、周知のプロペラ型攪拌機やマグネチックスターラやポットミルなど従来用いられている攪拌機や混練機などを用いて定法により全体が均一に攪拌されるように回転して混合すればよい。なお、混合液には所望に応じて高沸点の乾燥防止剤や添加剤を加えてもよい。   In the mixed liquid preparation step, the catalyst particles and the electrolyte may be mixed so that they are uniformly mixed in the dispersion medium, and the kneading / stirring method is not particularly limited. For example, the mixture may be rotated and mixed using a known method such as a well-known propeller type stirrer, a magnetic stirrer, a pot mill or the like and a conventional method such that the whole is uniformly stirred. In addition, you may add a high boiling point drying inhibitor and additive to a liquid mixture as needed.

続いて、この混合液に超音波処理を施して分散した電解質吸着触媒粒子を凝集し、この凝集体の外周部にさらに電解質を吸着したコロイド粒子を形成する
超音波処理は一般的に用いられる高出力タイプ(例えば、300W)のものを使用することができる。高出力タイプの振動子を用いることで塊状の触媒粒子を効率よく解砕するとともに、凝集してコロイド化を進行させることができる。従って、コロイド粒子径が所望のサイズになったところで分散処理を終了させればよい。
Subsequently, the mixed solution is subjected to ultrasonic treatment to agglomerate the dispersed electrolyte adsorption catalyst particles, and colloidal particles are further adsorbed on the outer periphery of the aggregate. An output type (for example, 300 W) can be used. By using a high-power type vibrator, the massive catalyst particles can be efficiently crushed and agglomerated for colloidalization. Therefore, the dispersion process may be terminated when the colloidal particle diameter reaches a desired size.

本実施形態によれば、アイオノマー分散液と触媒粒子(触媒担持導電体)と分散媒とを混合させるだけでコロイド化が進行する。得られたコロイドは親水コロイドと推定され、電解質は触媒粒子表面に疎水部、分散媒側にイオン基を向けた吸着状態で安定化されていると推定される。   According to this embodiment, colloidalization proceeds only by mixing an ionomer dispersion, catalyst particles (catalyst-supported conductor), and a dispersion medium. The obtained colloid is presumed to be a hydrocolloid, and the electrolyte is presumed to be stabilized in an adsorbed state in which the hydrophobic part is directed to the catalyst particle surface and the ionic group is directed to the dispersion medium side.

かかる燃料電池用触媒インクについて、電解質の配合量による触媒インクのコロイド粒子径(メジアン径)と電解質吸着量の変化を確認した。第1の実施形態と同様に電解質量の異なる7水準の触媒インクを作製し、それぞれのコロイド粒子のメジアン径と電解質の吸着量を測定した。結果を図4(○)と図5(●)のグラフに示す。これらのグラフから本実施形態によっても前記第1の実施形態と同様に、乾燥後分散媒中に分散したアイオノマーの配合量によってコロイド粒子径はほぼ直線的に変化するので、触媒カーボン(あるいは触媒物質)の表面積当たりの電解質吸着量が一定であることが分かる。従って、加えた電解質量にかかわらず常に一定の触媒反応条件を作り出すことができる。   With respect to the catalyst ink for fuel cells, changes in the colloidal particle diameter (median diameter) of the catalyst ink and the amount of electrolyte adsorbed depending on the amount of electrolyte added were confirmed. As in the first embodiment, seven-level catalyst inks having different electrolytic masses were prepared, and the median diameter and the amount of electrolyte adsorbed on each colloidal particle were measured. The results are shown in the graphs of FIG. 4 (◯) and FIG. 5 (●). From these graphs, as in the first embodiment, the colloidal particle diameter changes almost linearly depending on the amount of ionomer dispersed in the dispersion medium after drying. It can be seen that the amount of electrolyte adsorption per surface area is constant. Therefore, a constant catalytic reaction condition can always be created regardless of the added electrolytic mass.

上記の各実施形態で得られる燃料電池用触媒インクは、いずれもペースト状の混合液として、パーフルオロスルフォン酸膜や炭素水素系膜などに塗布、乾燥して、触媒層とすることができる。また、フリーズドドライなどの周知の方法で粉体化して適宜の粉体塗布法を用いて触媒層としてもよい。このような触媒層では、触媒粒子の内部にまで良好な三層界面が形成されることになるので、かかる触媒層を有する電極を備えた燃料電池の性能も確実に向上する。   Each of the fuel cell catalyst inks obtained in the above embodiments can be applied to a perfluorosulfonic acid film, a carbon-hydrogen film, or the like as a paste-like mixed liquid and dried to form a catalyst layer. Alternatively, the catalyst layer may be formed by pulverizing by a known method such as freeze-drying and using an appropriate powder coating method. In such a catalyst layer, a good three-layer interface is formed even inside the catalyst particles, so that the performance of a fuel cell including an electrode having such a catalyst layer is also improved.

以下実施例により本発明をさらに詳しく説明する。
(実施例1)
第1の実施形態の手順に沿って触媒インクIを作製した。
<手順1>
質量比で触媒粒子(10〜70wt%Pt/C)10%、電解質(パーフルオロカーボンスルホン酸アイオノマー)6%、水40%、エタノール44%をマグネチックスターラ(アズワン社製)で均一に混練、攪拌して混合液を得た。この時、調合後のインク全体の重量は20gであった。
<手順2>
得られた混合液に投げ込み式超音波分散機(UH−300 SMT社製)を用いて分散処理を施した。分散処理には、低出力の50W振動子を用いた。この時、振動子直下の液温が30±5℃となるように出力を調整しながら分散を行った。分散は100sの分散と、120sの冷却を交互に20回繰り返した。この分散処理における超音波分散機の出力と振動子直下Laの液温の変化を図6に示す。なお、分散液を収容している容器の外側に設けたジャケットJ(図2)に5℃の冷却水を流通して分散液を冷却した。また、液温測定には、HA−400E(安立計器株式会社製)を用いた。
<手順3>
分散処理終了後、粒度分布計(MT3000 Micro Track社製)を用いて分散粒子の粒度分布を測定しメジアン径が0.5μm以下であることを確認した。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example 1)
Catalyst ink I was produced according to the procedure of the first embodiment.
<Procedure 1>
Catalyst particles (10-70 wt% Pt / C) 10% by mass, electrolyte (perfluorocarbon sulfonic acid ionomer) 6%, water 40%, ethanol 44% are uniformly kneaded and stirred with a magnetic stirrer (manufactured by ASONE). To obtain a mixed solution. At this time, the total weight of the ink after preparation was 20 g.
<Procedure 2>
The obtained mixed liquid was subjected to a dispersion treatment using a throwing type ultrasonic dispersion machine (manufactured by UH-300 SMT). A low output 50 W vibrator was used for the dispersion process. At this time, dispersion was performed while adjusting the output so that the liquid temperature directly below the vibrator was 30 ± 5 ° C. For dispersion, 100 s dispersion and 120 s cooling were alternately repeated 20 times. FIG. 6 shows changes in the output of the ultrasonic disperser and the liquid temperature immediately below the vibrator in this dispersion process. In addition, 5 degreeC cooling water was distribute | circulated to the jacket J (FIG. 2) provided in the outer side of the container which accommodates the dispersion liquid, and the dispersion liquid was cooled. Moreover, HA-400E (made by Anritsu Keiki Co., Ltd.) was used for the liquid temperature measurement.
<Procedure 3>
After completion of the dispersion treatment, the particle size distribution of the dispersed particles was measured using a particle size distribution meter (manufactured by MT3000 Micro Track), and it was confirmed that the median diameter was 0.5 μm or less.

続いて、攪拌機(アズワン社製 RS−1A)を用いて分散液温度を25℃に保持して12時間の攪拌処理を行い触媒インクIを得た。
<結果>
結果を図7と図8とに示す。
Subsequently, the dispersion liquid temperature was maintained at 25 ° C. using a stirrer (RS-1A manufactured by ASONE Co., Ltd.), and a stirring process was performed for 12 hours to obtain catalyst ink I.
<Result>
The results are shown in FIG. 7 and FIG.

図7は、上記の粒度分布計による測定結果であり、Aは分散処理直後の触媒インクIの粒度分布であり、Bは攪拌処理後の触媒インクIの粒度分布である。Aのメジアン径は0.35μmであり、Bは8.5μmであった。   FIG. 7 shows the result of measurement by the particle size distribution meter, where A is the particle size distribution of the catalyst ink I immediately after the dispersion treatment, and B is the particle size distribution of the catalyst ink I after the stirring treatment. The median diameter of A was 0.35 μm, and B was 8.5 μm.

また、図8は顕微鏡(VH−7000 キーエンス製)でインク内部の粒子を直接観察して凝集を確認した顕微鏡観察写真であり、(a)は分散処理直後の分散液の状態であり、(b)は攪拌処理後の触媒インクI(3)である。図9に模式的に示すように、分散処理直後には、一部触媒粒子10に電解質20が吸着しているものもあるものの、微細に分散した触媒粒子10と電解質20とは溶媒30中にバラバラに存在している。しかし、攪拌処理後の触媒インク3では、電解質20を吸着した触媒粒子10が凝集し、その凝集体60を核としてさらにその外周部に電解質20が吸着されてコロイド粒子40を形成している。図9において、50はPtなどの触媒金属である。
(実施例2)
混合液において電解質の配合量を7%、エタノールの配合量を43%とした以外は実施例1と同様にして触媒インクIIを得た。分散処理後の分散液のメジアン径は0.35μmであり、12時間攪拌処理後の触媒インクIIのメジアン径は8.5μmであった。
(実施例3)
第2の実施形態の手順に沿って以下のようにして触媒インクIIIを得た。
<手順1>
アイオノマー溶液(NafionR 20wt%Solution Aldrichi社製)100gをシャーレ(開口面積:80cm)に採取して50℃×1時間、10−1Paの真空乾燥を施して、固体化した10gのアイオノマー樹脂を得た。
<手順2>
得られたアイオノマー樹脂(10g)と水とエタノールとをマグネチックスターラ(アズワン社製)で均一に混練、攪拌して電解質の混合溶液を得た。配合は質量比で、水:エタノール:アイオノマー樹脂=15:65:20とした。
FIG. 8 is a microscopic photograph in which particles inside the ink are directly observed with a microscope (manufactured by VH-7000 Keyence) to confirm aggregation. (A) is a state of the dispersion immediately after the dispersion treatment, (b ) Is the catalyst ink I (3) after the stirring treatment. As schematically shown in FIG. 9, immediately after the dispersion treatment, some of the electrolyte 20 is adsorbed on the catalyst particles 10, but the finely dispersed catalyst particles 10 and the electrolyte 20 are in the solvent 30. It exists apart. However, in the catalyst ink 3 after the stirring treatment, the catalyst particles 10 that have adsorbed the electrolyte 20 are aggregated, and the electrolyte 20 is further adsorbed on the outer periphery using the aggregate 60 as a nucleus to form colloidal particles 40. In FIG. 9, 50 is a catalyst metal such as Pt.
(Example 2)
A catalyst ink II was obtained in the same manner as in Example 1 except that the blending amount of the electrolyte in the mixed solution was 7% and the blending amount of ethanol was 43%. The median diameter of the dispersion liquid after the dispersion treatment was 0.35 μm, and the median diameter of the catalyst ink II after the stirring treatment for 12 hours was 8.5 μm.
(Example 3)
A catalyst ink III was obtained as follows in accordance with the procedure of the second embodiment.
<Procedure 1>
Ionomer solution (NafionR 20wt% Solution Aldrichi Co.) 100 g of the dish (opening area: 80 cm 2) were taken into 50 ° C. × 1 hour, subjected to vacuum drying at 10 -1 Pa, the solidified 10g ionomer resin Obtained.
<Procedure 2>
The obtained ionomer resin (10 g), water and ethanol were uniformly kneaded and stirred with a magnetic stirrer (manufactured by ASONE) to obtain a mixed solution of an electrolyte. The formulation was by mass and water: ethanol: ionomer resin = 15: 65: 20.

得られたアイオノマーの混合溶液に投げ込み式超音波分散機(UH−300 SMT社製)を用いて1時間の分散処理を施した。分散処理には、高出力の300W振動子を用いた。分散処理後、2時間静置して再溶解アイオノマー分散液を得た。
<手順3>
質量比で触媒粒子(10〜70wt%Pt/C)10%、電解質(アイオノマー分散液中のアイオノマー)6%、水40%、エタノール44%をマグネチックスターラ(アズワン社製)で均一に混練、攪拌して混合液を得た。この時、調合後のインク全体の重量は20gであった。
<手順4>
得られた混合液に投げ込み式超音波分散機(UH−300 SMT社製)を用いて後述する比較例と同様に30〜60℃(冷却と分散を繰り返すため温度は変化する。)で分散処理を施した。分散処理には、高出力の300W振動子を用いた。
<手順5>
分散処理終了後、粒度分布計(MT3000 Micro Track社製)を用いて分散粒子の粒度分布を測定し、メジアン径が8〜9μmになったことを確認して分散処理を終了して触媒インクIIIを得た。分散処理時間は1.5時間であった。
<結果>
粒度分布測定結果を図12に示す。
The obtained ionomer mixed solution was subjected to a dispersion treatment for 1 hour using a throwing type ultrasonic dispersion machine (manufactured by UH-300 SMT). A high output 300 W vibrator was used for the dispersion process. After the dispersion treatment, the mixture was allowed to stand for 2 hours to obtain a re-dissolved ionomer dispersion.
<Procedure 3>
Catalyst particles (10-70 wt% Pt / C) 10% by mass ratio, electrolyte (ionomer in ionomer dispersion) 6%, water 40%, ethanol 44% are uniformly kneaded with a magnetic stirrer (manufactured by ASONE). The mixture was obtained by stirring. At this time, the total weight of the ink after preparation was 20 g.
<Procedure 4>
Dispersion treatment was carried out at 30 to 60 ° C. (temperature changes because cooling and dispersion are repeated) in the same manner as in the comparative example described later using a throwing type ultrasonic dispersion machine (UH-300 SMT). Was given. A high output 300 W vibrator was used for the dispersion process.
<Procedure 5>
After the dispersion treatment is completed, the particle size distribution of the dispersed particles is measured using a particle size distribution meter (manufactured by MT3000 Micro Track), and it is confirmed that the median diameter is 8 to 9 μm. Got. The dispersion processing time was 1.5 hours.
<Result>
The particle size distribution measurement results are shown in FIG.

図12は、上記の粒度分布計による測定結果である。Cは触媒インクIIIの粒度分布であり、Dは後述する比較例の触媒インクIVの粒度分布である。Cのメジアン径は8.5μmであり、Dは0.35μmであった。   FIG. 12 shows the results of measurement using the above particle size distribution meter. C is the particle size distribution of the catalyst ink III, and D is the particle size distribution of the catalyst ink IV of the comparative example described later. The median diameter of C was 8.5 μm, and D was 0.35 μm.

また、触媒インクIIIの内部の粒子を顕微鏡で直接観察して凝集を確認したところ、図8(b)と同様に7.5〜9.5μmのコロイド粒子が均一に分散した状態が確認された。
(比較例)
従来技術を比較例とした。実施例2と同様の組成を有する混合液を調合し、超音波分散機(UH−600 SMT社製)の高出力タイプの振動子(300W)を用いて該混合液に分散処理を施した以外は、実施例1と同様にして比較例の触媒インクIVを得た。なお、分散処理時の液温測定は、振動子から離れた任意の混合液中(例えば、図2のP点)で測定し、この温度が40℃以下に保持されるように超音波分散機の出力を調整した。この時の振動子直下Laの液温は55〜65℃であった。
Further, when the particles inside the catalyst ink III were directly observed with a microscope to confirm aggregation, it was confirmed that the colloidal particles of 7.5 to 9.5 μm were uniformly dispersed in the same manner as in FIG. 8B. .
(Comparative example)
The prior art was used as a comparative example. A liquid mixture having the same composition as in Example 2 was prepared, and the liquid mixture was subjected to a dispersion treatment using a high output type vibrator (300 W) of an ultrasonic disperser (manufactured by UH-600 SMT). Produced a catalyst ink IV of Comparative Example in the same manner as in Example 1. The liquid temperature at the time of dispersion treatment is measured in an arbitrary mixed liquid separated from the vibrator (for example, point P in FIG. 2), and an ultrasonic disperser is used so that this temperature is maintained at 40 ° C. or lower. The output of was adjusted. At this time, the liquid temperature of La just below the vibrator was 55 to 65 ° C.

図10にインク内部の粒子の観察写真を示す。(a)は分散終了後の分散液の状態であり、(b)は12時間攪拌処理後の触媒インクIVである。図10(a)のメジアン径は0.38μmであり、(b)は0.40μmであった。すなわち、触媒インクIVでは触媒粒子が凝集することなく、触媒粒子と電解質が溶媒中に微細に分散した状態であることが分かる。このため触媒インクIVでは電解質の触媒粒子への吸着は弱く、また吸着量も少ないので触媒材料の利用率も限定的である。
(電池性能評価)
得られた触媒インクI、II、IIIおよびIVを、Ptの重量が0.3mg/cmとなるようにそれぞれ電解質膜(パーフルオロスルフォン酸)へスプレー塗布して、評価用の電池電極を作製し、電流密度と電圧との関係からその電池性能を評価した。結果を図11に示す。
FIG. 10 shows an observation photograph of particles inside the ink. (A) is the state of the dispersion liquid after completion of dispersion, and (b) is the catalyst ink IV after 12 hours of stirring treatment. The median diameter in FIG. 10 (a) was 0.38 μm, and (b) was 0.40 μm. That is, it can be seen that in the catalyst ink IV, the catalyst particles and the electrolyte are finely dispersed in the solvent without aggregation. For this reason, in the catalyst ink IV, the adsorption of the electrolyte to the catalyst particles is weak and the amount of adsorption is small, so that the utilization rate of the catalyst material is limited.
(Battery performance evaluation)
The obtained catalyst inks I, II, III, and IV were spray-coated on the electrolyte membrane (perfluorosulfonic acid) so that the weight of Pt was 0.3 mg / cm 2 , thereby producing a battery electrode for evaluation. The battery performance was evaluated from the relationship between current density and voltage. The results are shown in FIG.

実施例の触媒インクI(−□−)、II(−△−)およびIII(−○−)は、いずれも比較例である触媒インクIV(−◆−)よりも優れた電池性能を有していることが分かる。   The catalyst inks I (-□-), II (-Δ-) and III (-○-) of the examples all have battery performance superior to that of the catalyst ink IV (-◆-) which is a comparative example. I understand that

例えば、触媒インクIIとIVとは同量の電解質を含有するが、触媒インクII(実施例2)の方が、触媒インクIV(比較例)よりも高い発電性能を示している。   For example, although the catalyst inks II and IV contain the same amount of electrolyte, the catalyst ink II (Example 2) shows higher power generation performance than the catalyst ink IV (Comparative Example).

また、フラッディングを抑制するために触媒インクII(実施例2)よりも電解質量を減じた触媒インクI(実施例1)では、電流密度の全領域にわたって性能面での改善が見られた。   Further, in the catalyst ink I (Example 1) in which the electrolytic mass was reduced compared to the catalyst ink II (Example 2) in order to suppress flooding, an improvement in performance was observed over the entire current density range.

図11において、実施例1〜3は比較例よりも触媒活性を示す0.2A/cm付近で性能が向上している。従って、実施例1〜3では触媒利用率が向上していることは明らかである。また、実施例1〜3は1.0A/cm付近の負荷の高い領域でさらに性能が向上している。コロイドは一般に強い吸着力を持つこと、および0.2A/cm付近での性能向上を考慮すると、この性能の向上は電解質が従来よりも強く均一に触媒粒子表面に吸着された結果であると推測される。 In FIG. 11, the performance of Examples 1 to 3 is improved in the vicinity of 0.2 A / cm 2, which shows catalytic activity as compared with the comparative example. Therefore, it is clear that the catalyst utilization is improved in Examples 1 to 3. In Examples 1 to 3, the performance is further improved in a high load region around 1.0 A / cm 2 . Considering that colloids generally have a strong adsorptive power and an improvement in performance in the vicinity of 0.2 A / cm 2 , this improvement in performance is a result of the electrolyte being strongly and uniformly adsorbed on the surface of the catalyst particles. Guessed.

以上のように本発明の触媒インクによれば、触媒材料(特に、Ptなど)の利用率を高めることができるので、従来よりも少ない電解質量で高い発電性能を示し、電解質量が同じであればさらに高い発電性能を示すことが期待できる。   As described above, according to the catalyst ink of the present invention, the utilization factor of the catalyst material (particularly, Pt, etc.) can be increased. Therefore, it is possible to provide high power generation performance with less electrolysis mass and the same electrolysis mass. It can be expected that even higher power generation performance will be exhibited.

本発明は、固体高分子型燃料電池の触媒層を形成する燃料電池用触媒インクに好適に用いることができる。   The present invention can be suitably used for a catalyst ink for a fuel cell that forms a catalyst layer of a polymer electrolyte fuel cell.

液中の触媒担持伝導体と固体高分子電解質の形態を示す概念図である。(a)は混合液、(b)は分散処理後の分散液、(c)は攪拌処理後の触媒インクである。It is a conceptual diagram which shows the form of the catalyst support conductor and solid polymer electrolyte in a liquid. (A) is a mixed liquid, (b) is a dispersion liquid after dispersion treatment, and (c) is a catalyst ink after stirring treatment. 分散工程における超音波分散処理方法を示す模式図である。It is a schematic diagram which shows the ultrasonic dispersion processing method in a dispersion | distribution process. 超音波処理時の振動子直下Laの液温と、攪拌処理後に得られるコロイド粒子のメジアン径との関係を示すグラフである。It is a graph which shows the relationship between the liquid temperature of La just under a vibrator | oscillator at the time of an ultrasonic treatment, and the median diameter of the colloid particle obtained after a stirring process. 固体高分子電解質の配合量と触媒インクにおけるコロイド粒子のメジアン径との関係を示すグラフである。It is a graph which shows the relationship between the compounding quantity of a solid polymer electrolyte, and the median diameter of the colloid particle in a catalyst ink. 固体高分子電解質の配合量と触媒粒子への吸着量との関係を示すグラフである。It is a graph which shows the relationship between the compounding quantity of a solid polymer electrolyte, and the adsorption amount to a catalyst particle. 分散工程における超音波出力と液温との変化を示す概要図である。It is a schematic diagram which shows the change of the ultrasonic output and liquid temperature in a dispersion | distribution process. 分散液の粒度分布(A)と触媒インクにおけるコロイド粒子の粒度分布(B)を示すグラフである。It is a graph which shows the particle size distribution (A) of a dispersion liquid, and the particle size distribution (B) of the colloid particle in a catalyst ink. 触媒インクIの顕微鏡観察写真である。(a)は分散処理直後、(b)は攪拌処理後を示す。2 is a microscopic observation photograph of catalyst ink I. (A) shows immediately after the dispersion treatment, and (b) shows after the stirring treatment. 触媒インクIにおける(a)攪拌処理前の液中の触媒担持伝導体と固体高分子電解質の形態と、(b)攪拌処理後に生成されたコロイド粒子を説明する模式図である。FIG. 2 is a schematic diagram for explaining (a) the form of a catalyst-carrying conductor and solid polymer electrolyte in a liquid before stirring treatment in catalyst ink I, and (b) colloidal particles generated after stirring treatment. 触媒インクIVの顕微鏡観察写真である。(a)は分散処理直後、(b)は攪拌処理後である。It is a microscope observation photograph of catalyst ink IV. (A) is immediately after the dispersion treatment, and (b) is after the stirring treatment. 電池性能試験結果を示すグラフである。It is a graph which shows a battery performance test result. 触媒インクIIIの粒度分布(C)と触媒インクIVの粒度分布(D)を示すグラフである。It is a graph which shows the particle size distribution (C) of catalyst ink III, and the particle size distribution (D) of catalyst ink IV.

符号の説明Explanation of symbols

1:混合液 2:分散液 3:触媒インク 10:触媒担持導電体 20:固体高分子電解質 30:分散媒 40:コロイド粒子 50:触媒物質(触媒金属) 60:凝集体 H:振動子 J:冷却用ジャケット L:混合液 T:温度センサ 1: Mixed liquid 2: Dispersion liquid 3: Catalyst ink 10: Catalyst-carrying conductor 20: Solid polymer electrolyte 30: Dispersion medium 40: Colloidal particles 50: Catalytic substance (catalytic metal) 60: Aggregate H: Vibrator J: Jacket for cooling L: Liquid mixture T: Temperature sensor

Claims (6)

分散媒と、該分散媒中に分散したコロイド粒子とを備えた燃料電池用触媒インクであって、
前記コロイド粒子は、固体高分子電解質を吸着した触媒担持導電体粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着してなり、該コロイド粒子のメジアン径が3〜15μmであることを特徴とする燃料電池用触媒インク。
A fuel cell catalyst ink comprising a dispersion medium and colloidal particles dispersed in the dispersion medium,
The colloidal particles are obtained by aggregating the catalyst-supported conductive particles adsorbing the solid polymer electrolyte and further adsorbing the solid polymer electrolyte on the outer periphery of the aggregate, and the median diameter of the colloidal particles is 3 to 15 μm. A fuel cell catalyst ink, wherein:
少なくとも触媒担持導電体と固体高分子電解質と分散媒とを混合して混合液を得る混合液調合工程と、
該混合液に超音波処理を施して前記触媒担持導電体が分散した分散液を得る分散工程と、
該分散液を所定時間攪拌することで前記固体高分子電解質を吸着した前記触媒担持導電体の分散粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着したコロイド粒子を形成する攪拌工程とを備え、
前記分散工程は、超音波分散機の振動子に接する前記混合液の温度を40℃以下に保持するように前記超音波処理を施すことを特徴とする燃料電池用触媒インクの製造方法。
A mixed liquid preparation step of mixing at least a catalyst-carrying conductor, a solid polymer electrolyte, and a dispersion medium to obtain a mixed liquid;
A dispersion step of subjecting the mixture to ultrasonic treatment to obtain a dispersion in which the catalyst-carrying conductor is dispersed;
By agitating the dispersion for a predetermined time, the dispersed particles of the catalyst-supported conductor adsorbing the solid polymer electrolyte are aggregated, and colloidal particles further adsorbing the solid polymer electrolyte are formed on the outer periphery of the aggregate And a stirring step to
In the dispersion step, the ultrasonic treatment is performed so that the temperature of the mixed solution in contact with the vibrator of the ultrasonic disperser is kept at 40 ° C. or lower.
前記振動子に接する前記混合液の温度を0〜30℃に保持する請求項2に記載の燃料電池用触媒インクの製造方法。   The method for producing a catalyst ink for a fuel cell according to claim 2, wherein the temperature of the mixed solution in contact with the vibrator is maintained at 0 to 30 ° C. 前記振動子に接する前記混合液の温度を10〜20℃に保持する請求項2に記載の燃料電池用触媒インクの製造方法。   The method for producing a catalyst ink for a fuel cell according to claim 2, wherein the temperature of the mixed solution in contact with the vibrator is maintained at 10 to 20 ° C. 固体高分子電解質であるアイオノマーを水及び/又はエタノールなどの低級アルコールに溶解したアイオノマー溶液を乾燥して固体化したアイオノマー樹脂を得る乾燥工程と、
該アイオノマー樹脂を分散媒中に分散しアイオノマー分散液を得るアイオノマー分散工程と、
触媒担持導電体と、該アイオノマー分散液と、分散媒とを混合して混合液を得る混合液調合工程と、
該混合液に超音波処理を施して前記固体高分子電解質を吸着した前記触媒担持導電体の分散粒子を凝集し、該凝集体の外周部にさらに前記固体高分子電解質を吸着したコロイド粒子を形成する超音波処理工程とを備えることを特徴とする燃料電池用触媒インクの製造方法。
A drying step of obtaining a solidified ionomer resin by drying an ionomer solution obtained by dissolving an ionomer, which is a solid polymer electrolyte, in water and / or a lower alcohol such as ethanol;
An ionomer dispersion step of dispersing the ionomer resin in a dispersion medium to obtain an ionomer dispersion;
A mixed liquid preparation step of mixing the catalyst-supported conductor, the ionomer dispersion, and the dispersion medium to obtain a mixed liquid;
The mixed solution is subjected to ultrasonic treatment to aggregate the dispersed particles of the catalyst-carrying conductor adsorbing the solid polymer electrolyte, and colloidal particles adsorbing the solid polymer electrolyte are further formed on the outer periphery of the aggregate An ultrasonic treatment step for producing a catalyst ink for a fuel cell.
請求項1に記載の燃料電池用触媒インクを用いたことを特徴とする燃料電池用電極。   A fuel cell electrode comprising the fuel cell catalyst ink according to claim 1.
JP2008204136A 2007-08-07 2008-08-07 Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same Pending JP2009059694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204136A JP2009059694A (en) 2007-08-07 2008-08-07 Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007205686 2007-08-07
JP2008204136A JP2009059694A (en) 2007-08-07 2008-08-07 Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same

Publications (1)

Publication Number Publication Date
JP2009059694A true JP2009059694A (en) 2009-03-19

Family

ID=40555227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204136A Pending JP2009059694A (en) 2007-08-07 2008-08-07 Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same

Country Status (1)

Country Link
JP (1) JP2009059694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014910A1 (en) 2011-07-27 2013-01-31 トヨタ自動車株式会社 Catalyst ink for fuel cell electrodes, membrane electrode assembly, fuel cell
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
JP2016066510A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Catalyst ink and method for manufacturing the same
JP2017027724A (en) * 2015-07-21 2017-02-02 凸版印刷株式会社 Coating device, membrane electrode assembly, fuel cell stack, polymer electrolyte fuel cell, and coating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
WO2013014910A1 (en) 2011-07-27 2013-01-31 トヨタ自動車株式会社 Catalyst ink for fuel cell electrodes, membrane electrode assembly, fuel cell
JP2013030287A (en) * 2011-07-27 2013-02-07 Toyota Motor Corp Catalyst ink for fuel cell electrode, membrane electrode assembly, and fuel cell
CN103688397A (en) * 2011-07-27 2014-03-26 丰田自动车株式会社 Catalyst ink for fuel cell electrodes, membrane electrode assembly, fuel cell
JP2016066510A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Catalyst ink and method for manufacturing the same
JP2017027724A (en) * 2015-07-21 2017-02-02 凸版印刷株式会社 Coating device, membrane electrode assembly, fuel cell stack, polymer electrolyte fuel cell, and coating method

Similar Documents

Publication Publication Date Title
CN112133928B (en) Stable and high-performance proton exchange membrane fuel cell catalyst slurry and preparation method thereof
US6187468B1 (en) Electrodes for fuel cells
Wang et al. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells
JP2017041454A (en) Fuel cell electrode with conduction network
JP2013534707A5 (en)
JP2010257929A (en) Method of manufacturing electrode catalyst slurry for fuel cell, electrode for polymer electrolyte fuel cell, and membrane electrode assembly
JP5403211B2 (en) Manufacturing method for forming catalyst layer for fuel cell using catalyst ink
Yang et al. Influence of the dispersion state of ionomer on the dispersion of catalyst ink and the construction of catalyst layer
Yang et al. Effect of rheological properties of catalyst slurry on the structure of catalyst layer in PEMFC
JP5108199B2 (en) POWDERED CATALYST MATERIAL, PROCESS FOR PRODUCING THE SAME, AND POLYMER FUEL CELL ELECTRODE
JP5561200B2 (en) Method for producing catalyst and method for controlling characteristics of reaction layer for fuel cell using catalyst
JP2009059694A (en) Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
JP2006302644A (en) Catalyst paste for fuel cell electrode and its manufacturing method as well as electrode for fuel cells
CN104718650B (en) The manufacture method of catalyst and catalyst
JP5387418B2 (en) Catalyst layer for fuel cell, method for producing catalyst layer for fuel cell, and membrane electrode assembly
CN108461753A (en) A kind of carbon nanotube conducting agent slurry and preparation method thereof for lithium ion battery negative material
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
Guo et al. Solvent effects on the rheology of fuel cell catalyst ink and the adsorption of ionomers on the particles
KR101228545B1 (en) A Catalyst Slurry Composition, a Method for Preparing a Membrane-Electrode Assembly For Fuel Cell Using the Same and the Membrane-Electrode Assembly For Fuel Cell Prepared Therefrom
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP7152049B2 (en) Method for manufacturing catalyst layer, catalyst layer, membrane-electrode assembly including the same, and fuel cell
JP5839176B2 (en) Catalyst production method
JP2012074347A (en) Method for producing catalyst paste and apparatus thereof
JP5821330B2 (en) Fuel cell catalyst manufacturing equipment
WO2022172948A1 (en) Method for producing electrode catalyst, method for producing gas diffusion electrode, and method for producing film-electrode joint body