JP2013026014A - Catalyst for fuel cell and manufacturing method of catalyst for fuel cell - Google Patents

Catalyst for fuel cell and manufacturing method of catalyst for fuel cell Download PDF

Info

Publication number
JP2013026014A
JP2013026014A JP2011159502A JP2011159502A JP2013026014A JP 2013026014 A JP2013026014 A JP 2013026014A JP 2011159502 A JP2011159502 A JP 2011159502A JP 2011159502 A JP2011159502 A JP 2011159502A JP 2013026014 A JP2013026014 A JP 2013026014A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
noble metal
core
metal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011159502A
Other languages
Japanese (ja)
Inventor
Hiroaki Komoda
宏章 小茂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011159502A priority Critical patent/JP2013026014A/en
Publication of JP2013026014A publication Critical patent/JP2013026014A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for a fuel cell capable of controlling a void inside an electrode, and to provide a manufacturing method of a catalyst for a fuel cell.SOLUTION: The catalyst for the fuel cell 1 is arranged so that a precious metal catalyst 4 is supported on a surface of a resin-made core 3.

Description

本発明は、コアに貴金属を担持させた燃料電池用触媒及び燃料電池用触媒の製造方法に関する。   The present invention relates to a fuel cell catalyst in which a noble metal is supported on a core and a method for producing the fuel cell catalyst.

従来、燃料電池用電極として、白金等の触媒金属そのものや前記触媒金属を担持したカーボンを電解質樹脂と溶媒と混合してペースト状とし、電解質膜上に直接塗工するなどして形成するものが知られている(例えば、特許文献1参照)。   Conventionally, an electrode for a fuel cell is formed by mixing a catalyst metal itself such as platinum or carbon carrying the catalyst metal with an electrolyte resin and a solvent to form a paste, and directly coating the electrolyte film on the electrolyte membrane. It is known (see, for example, Patent Document 1).

特開2006−120433号公報JP 2006-120433 A

ところで、電極内部の空隙の大きさは、水素や酸素等の電極に供給されるガスの拡散性や、電気化学反応により電極で生成する水の排出性に影響し、ひいては燃料電池の出力に影響を及ぼす。したがって、電極内部の空隙を所望の値に制御できることが望ましい。
しかしながら、上記従来の構成では、電極内部に存在する空隙の大きさを制御すること、特に空隙を大きくすることが困難であった。
本発明は、上述した事情に鑑みてなされたものであり、電極内部の空隙の大きさを制御可能な燃料電池用触媒及び燃料電池用触媒の製造方法を提供することを目的とする。
By the way, the size of the void inside the electrode affects the diffusivity of the gas supplied to the electrode such as hydrogen and oxygen, and the discharge of water generated at the electrode by an electrochemical reaction, and consequently the output of the fuel cell. Effect. Therefore, it is desirable that the gap inside the electrode can be controlled to a desired value.
However, in the above conventional configuration, it is difficult to control the size of the gap existing inside the electrode, and in particular to increase the gap.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a fuel cell catalyst capable of controlling the size of the gap inside the electrode and a method for producing the fuel cell catalyst.

上記目的を達成するために、本発明は、樹脂製のコアの表面に貴金属触媒を担持させたことを特徴とする。
上記構成によれば、樹脂製のコアの径を制御することで、電極内部の空隙を所望の値に制御することができ、燃料電池の出力を向上させることができる。
In order to achieve the above object, the present invention is characterized in that a noble metal catalyst is supported on the surface of a resin core.
According to the said structure, the space | gap inside an electrode can be controlled to a desired value by controlling the diameter of resin-made cores, and the output of a fuel cell can be improved.

また本発明は、樹脂製のコアと貴金属触媒を溶媒中で混合することにより、前記コア材の表面に前記貴金属触媒を担持させることを特徴とする。
上記構成によれば、樹脂製のコアの表面に貴金属触媒を担持させることができるため、電極内部の空隙の大きさの制御が容易で、燃料電池の出力を向上させることができる燃料電池用触媒を容易に製造できる。
The present invention is also characterized in that the noble metal catalyst is supported on the surface of the core material by mixing a resin core and a noble metal catalyst in a solvent.
According to the above configuration, since the noble metal catalyst can be supported on the surface of the resin core, the size of the void inside the electrode can be easily controlled, and the output of the fuel cell can be improved. Can be easily manufactured.

また本発明は、樹脂製のコアと貴金属触媒を気流中で対向衝突させ、前記コア材の表面に前記貴金属触媒を担持させることを特徴とする。
上記構成によれば、樹脂製のコアの表面に貴金属触媒を担持させることができるため、電極内部の空隙の大きさの制御が容易で、燃料電池の出力を向上させることができる燃料電池用触媒を製造できる。
Further, the present invention is characterized in that a resin core and a noble metal catalyst are caused to face each other in an air flow, and the noble metal catalyst is supported on the surface of the core material.
According to the above configuration, since the noble metal catalyst can be supported on the surface of the resin core, the size of the void inside the electrode can be easily controlled, and the output of the fuel cell can be improved. Can be manufactured.

本発明によれば、樹脂製のコアを用いているため、コアの径を大きくすることで、燃料電池用電極中の空隙が大きくなるので、燃料電池の出力を向上させることができる。
また、樹脂製のコアの表面に貴金属触媒を担持させるため、電気化学反応に有効な貴金属触媒の表面積が広くなり、利用効率が向上した燃料電池用触媒を製造できる。
According to the present invention, since the resin core is used, the gap in the fuel cell electrode is increased by increasing the diameter of the core, so that the output of the fuel cell can be improved.
In addition, since the noble metal catalyst is supported on the surface of the resin core, the surface area of the noble metal catalyst effective for the electrochemical reaction is increased, and a fuel cell catalyst with improved utilization efficiency can be manufactured.

本発明の第1の実施の形態に係る燃料電池用触媒を示す模式図である。It is a schematic diagram which shows the catalyst for fuel cells which concerns on the 1st Embodiment of this invention. 燃料電池用触媒の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the catalyst for fuel cells. 図2の製造工程で得られた燃料電池用触媒を示す写真であり、(A)は燃料電池用触媒を倍率1万倍で示す写真であり、(B)は燃料電池用触媒を倍率3万倍で示す写真である。FIG. 3 is a photograph showing a fuel cell catalyst obtained in the production process of FIG. 2, (A) is a photograph showing the fuel cell catalyst at a magnification of 10,000 times, and (B) is a photograph showing the fuel cell catalyst at a magnification of 30,000. It is a photograph shown with a magnification. 水銀圧入法による燃料電池用触媒の細孔分布を示す図である。It is a figure which shows the pore distribution of the catalyst for fuel cells by a mercury intrusion method. 燃料電池用触媒を拡大して示す図であり、(A)は貴金属触媒にPtBを用いた燃料電池用触媒を倍率5万倍及び100万倍で示す写真であり、(B)は貴金属触媒にPtCを用いた燃料電池用触媒を倍率5万倍及び50万倍で示す写真である。It is a figure which expands and shows the catalyst for fuel cells, (A) is a photograph which shows the catalyst for fuel cells which used PtB for the noble metal catalyst at magnifications of 50,000 times and 1 million times, and (B) shows the noble metal catalyst. It is the photograph which shows the catalyst for fuel cells using PtC by magnification 50,000 times and 500,000 times. 本発明の第2の実施の形態に係る燃料電池用触媒を示す模式図である。It is a schematic diagram which shows the catalyst for fuel cells which concerns on the 2nd Embodiment of this invention. 燃料電池用触媒の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the catalyst for fuel cells. 図7の製造工程で得られた燃料電池用触媒を示す写真であり、(A)は燃料電池用触媒を倍率1万倍で示す写真であり、(B)は燃料電池用触媒を倍率3万倍で示す写真である。FIG. 8 is a photograph showing the fuel cell catalyst obtained in the manufacturing process of FIG. 7, (A) is a photograph showing the fuel cell catalyst at a magnification of 10,000 times, and (B) is a photograph showing the fuel cell catalyst at a magnification of 30,000. It is a photograph shown with a magnification. 本発明の第3の実施の形態に係る燃料電池用触媒の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the catalyst for fuel cells which concerns on the 3rd Embodiment of this invention. 図9の製造工程で得られた燃料電池用触媒を示す写真であり、(A)は燃料電池用触媒を倍率1万倍で示す写真であり、(B)は燃料電池用触媒を倍率3万倍で示す写真である。FIG. 10 is a photograph showing the fuel cell catalyst obtained in the manufacturing process of FIG. 9, (A) is a photograph showing the fuel cell catalyst at a magnification of 10,000 times, and (B) is a photograph showing the fuel cell catalyst at a magnification of 30,000. It is a photograph shown with a magnification.

以下、図面を参照して本発明の実施の形態について説明する。
<第1の実施の形態>
図1は、第1の実施の形態に係る燃料電池用触媒を示す模式図である。
燃料電池用触媒1は、複数の触媒粒子2を備えている。各触媒粒子2は、樹脂製のコア3の表面に貴金属触媒4を担持させた複合体である。コア3の形状としては、例えば球状やファイバー状が好適である。コア3の材料には、例えば、ポリメチルメタクリレート(polymethylmethacrylate:PMMA)等のアクリル樹脂を用いることができる。本実施の形態のコア3には、積水化成品工業社製のアクリル樹脂(球状、直径約0.8μm)が用いられている。
貴金属触媒4は、複数の1次粒子4Aが凝集して2次粒子(凝集体)4Bを形成してなる。2次粒子4B中には、1次粒子4A間に微空隙Aが形成されている。貴金属触媒4には、例えば白金黒(PtB)を用いることができる。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1 is a schematic diagram showing a fuel cell catalyst according to the first embodiment.
The fuel cell catalyst 1 includes a plurality of catalyst particles 2. Each catalyst particle 2 is a composite in which a noble metal catalyst 4 is supported on the surface of a resin core 3. As the shape of the core 3, for example, a spherical shape or a fiber shape is suitable. As the material of the core 3, for example, an acrylic resin such as polymethylmethacrylate (PMMA) can be used. Acrylic resin (spherical, about 0.8 μm in diameter) manufactured by Sekisui Plastics Co., Ltd. is used for the core 3 of the present embodiment.
The noble metal catalyst 4 is formed by agglomerating a plurality of primary particles 4A to form secondary particles (aggregates) 4B. In the secondary particles 4B, fine voids A are formed between the primary particles 4A. For the noble metal catalyst 4, for example, platinum black (PtB) can be used.

図2は、燃料電池用触媒1の製造工程を示す模式図である。
まず、コア3と、貴金属触媒4(図1)を含む貴金属触媒インク11を用意する。本実施の形態の貴金属触媒インク11は、例えば、水7.43gと、1−プロパノール(ノルマルプロピルアルコール:NPA)17.35gとを混合した液(溶媒)に、PtBの貴金属触媒4を43.61g混合し、この液を例えば湿式ジェットミルにて粉砕混合することで得られる。
FIG. 2 is a schematic diagram showing the manufacturing process of the fuel cell catalyst 1.
First, a noble metal catalyst ink 11 including a core 3 and a noble metal catalyst 4 (FIG. 1) is prepared. In the noble metal catalyst ink 11 of the present embodiment, for example, a PtB noble metal catalyst 4 is added to a liquid (solvent) obtained by mixing 7.43 g of water and 17.35 g of 1-propanol (normal propyl alcohol: NPA). It is obtained by mixing 61 g and pulverizing and mixing this liquid with, for example, a wet jet mill.

次いで、貴金属触媒インク11にコア3を投入する(図2(A))。本実施の形態では、例えば、貴金属触媒インク11にPMMAのコア3を2g投入することで、PMMAに対するPtBの重量比(PtB/PMMA)が約1.8である混合液12を得ている。
次に、混合液12を超音波分散処理する(図2(B))。本実施の形態では、例えばブランソン社製の超音波ホモジナイザーを用いて、混合液12に10分間超音波分散処理を行うものとする。混合液12中でコア3と貴金属触媒4を混合すると、ヘテロ凝集原理により、2次粒子4B(図1)がコア3の表面に凝集付着し、コア3と貴金属触媒4とが複合化した複合化インク13(燃料電池用触媒1)が得られる。なお、本実施の形態では、超音波を用いて分散処理を行ったが、分散処理を行わなくとも前記複合化は可能である。しかし、複合化を促進するためには分散処理を行うことが好ましい。
そして、図2(C)に示すように、得られた複合化インク13をポリエチレンテレフタレート(PET)や電解質膜等の基材5の両面に塗布した後乾燥することで、電極層(電極)6が形成される。電極層6の一方はアノード、他方はカソードとなり、アノードに還元剤(燃料)ガス(例えば、水素)が供給され、カソードには酸化剤ガス(例えば、酸素)が供給され、電極層6間で電気化学反応に基づいて発電されることとなる。
Next, the core 3 is put into the noble metal catalyst ink 11 (FIG. 2A). In the present embodiment, for example, 2 g of PMMA core 3 is added to the noble metal catalyst ink 11 to obtain a mixed liquid 12 having a PtB to PMMA weight ratio (PtB / PMMA) of about 1.8.
Next, the mixed liquid 12 is subjected to ultrasonic dispersion treatment (FIG. 2B). In this embodiment, for example, an ultrasonic dispersion process is performed on the mixed solution 12 for 10 minutes using an ultrasonic homogenizer manufactured by Branson. When the core 3 and the noble metal catalyst 4 are mixed in the mixed solution 12, the secondary particles 4B (FIG. 1) are aggregated and adhered to the surface of the core 3 due to the hetero-aggregation principle, and the core 3 and the noble metal catalyst 4 are combined. The ink 13 (fuel cell catalyst 1) is obtained. In this embodiment, the dispersion processing is performed using ultrasonic waves. However, the above-described combination is possible without performing the dispersion processing. However, it is preferable to perform a dispersion process in order to promote the composite.
And as shown in FIG.2 (C), the obtained composite ink 13 is apply | coated to both surfaces of base materials 5, such as a polyethylene terephthalate (PET) and an electrolyte film, Then, it is dried, The electrode layer (electrode) 6 Is formed. One of the electrode layers 6 is an anode, and the other is a cathode. A reducing agent (fuel) gas (for example, hydrogen) is supplied to the anode, and an oxidant gas (for example, oxygen) is supplied to the cathode. Electric power is generated based on the electrochemical reaction.

図3は、図2の製造工程で得られた燃料電池用触媒1を示す写真であり、図3(A)は燃料電池用触媒1を倍率1万倍で示す写真であり、図3(B)は燃料電池用触媒1を倍率3万倍で示す写真である。
この図に示すように、燃料電池用触媒1においては、コア3の表面に2次粒子4Bが隙間なく、かつ、均一に担持されており、燃料電池用触媒1の歩留まりが高く(100%に近く)、生産性が向上する。また、2次粒子4Bの構造は破壊されておらず、2次粒子4B中の微空隙A(図1)は閉塞することなく保たれている。さらに、径が比較的大きいコア3により、触媒粒子2間に広い空隙Bが形成される。
FIG. 3 is a photograph showing the fuel cell catalyst 1 obtained in the manufacturing process of FIG. 2, and FIG. 3A is a photograph showing the fuel cell catalyst 1 at a magnification of 10,000 times, and FIG. ) Is a photograph showing the fuel cell catalyst 1 at a magnification of 30,000 times.
As shown in this figure, in the fuel cell catalyst 1, the secondary particles 4B are uniformly supported on the surface of the core 3 without any gaps, and the yield of the fuel cell catalyst 1 is high (100%). Near), productivity is improved. Further, the structure of the secondary particles 4B is not destroyed, and the microvoids A (FIG. 1) in the secondary particles 4B are kept without being blocked. Furthermore, wide voids B are formed between the catalyst particles 2 by the core 3 having a relatively large diameter.

ここで、水銀圧入法による燃料電池用触媒1の細孔分布を図4に示す。なお、図4において、D0は従来のPtB触媒の細孔分布を、D1は燃料電池用触媒1の細孔分布を示す。また、P0はPtB触媒の細孔容積が最も多い細孔径を、P1は燃料電池用触媒1の細孔容積が最も多い細孔径を示す。
PtB触媒の細孔径P0と、燃料電池用触媒1の細孔径P1を比較すると、燃料電池用触媒1の方が細孔径が大きくなっている。
Here, the pore distribution of the fuel cell catalyst 1 by mercury porosimetry is shown in FIG. In FIG. 4, D0 represents the pore distribution of the conventional PtB catalyst, and D1 represents the pore distribution of the fuel cell catalyst 1. P0 represents the pore diameter with the largest pore volume of the PtB catalyst, and P1 represents the pore diameter with the largest pore volume of the fuel cell catalyst 1.
When the pore diameter P0 of the PtB catalyst and the pore diameter P1 of the fuel cell catalyst 1 are compared, the fuel cell catalyst 1 has a larger pore diameter.

このように、燃料電池用触媒1では、1次粒子4A間と、触媒粒子2間とに比較的大きな細孔(微空隙A、空隙B)が形成されるので、燃料電池用触媒1を用いて電極層6を形成すると、従来2次粒子の中心付近で反応に寄与していなかった1次粒子を少なくして貴金属触媒4の有効表面積を広くできるとともに、図1に矢印で示すように、例えば酸化剤ガスである酸素が1次粒子4A間及び触媒粒子2間を円滑に拡散する。したがって、本実施の形態では、従来のPtB触媒と同等の導電性を確保できる上、従来のPtB触媒に場合に比べて電極層6の触媒の利用効率を向上させることができる。また、従来のPtB触媒では空隙の大きさを制御できなかったが、本実施の形態では、コア3の大きさにより触媒粒子2間の空隙Bを制御できる。   As described above, in the fuel cell catalyst 1, relatively large pores (fine voids A and voids B) are formed between the primary particles 4 </ b> A and between the catalyst particles 2, so that the fuel cell catalyst 1 is used. When the electrode layer 6 is formed, it is possible to increase the effective surface area of the noble metal catalyst 4 by reducing the number of primary particles that have not conventionally contributed to the reaction in the vicinity of the center of the secondary particles, and as indicated by arrows in FIG. For example, oxygen, which is an oxidant gas, smoothly diffuses between the primary particles 4A and between the catalyst particles 2. Therefore, in this embodiment, the same conductivity as that of the conventional PtB catalyst can be ensured, and the utilization efficiency of the catalyst of the electrode layer 6 can be improved as compared with the case of the conventional PtB catalyst. In addition, the conventional PtB catalyst cannot control the size of the void, but in the present embodiment, the void B between the catalyst particles 2 can be controlled by the size of the core 3.

形成された電極層6は黒色度が高く、見た目からもPtBがPMMAに良好に被覆していることは明らかである。また、複合体インク33をそのまま基材5に塗布すれば電極層6が得られるので、電極層6を容易に形成できる。
これに加え、コア3と貴金属触媒4との超音波による複合化には、市販の超音波ホモジナイザーを用いたため、例えばメカノケミカル処理等の物理的衝撃を与える大掛かりな専用装置が必要なく、コア3と貴金属触媒4とを容易に複合化できる。
The formed electrode layer 6 has high blackness, and it is clear from the appearance that PtB is well coated with PMMA. Moreover, since the electrode layer 6 is obtained if the composite ink 33 is applied to the substrate 5 as it is, the electrode layer 6 can be easily formed.
In addition, since the commercially available ultrasonic homogenizer is used for the composite of the core 3 and the noble metal catalyst 4 by the ultrasonic wave, a large dedicated device for applying a physical impact such as mechanochemical treatment is not necessary. And the noble metal catalyst 4 can be easily combined.

以上説明したように、本実施の形態によれば、樹脂製のコア3の表面に貴金属触媒4を担持させる構成とした。樹脂製のコア3を用いているため、コア3の径を大きくすることで、貴金属触媒4の有効表面積が広くなるとともに、燃料電池用触媒1の空隙Bが大きくなるので、利用効率を向上できる。   As described above, according to the present embodiment, the noble metal catalyst 4 is supported on the surface of the resin core 3. Since the resin core 3 is used, increasing the diameter of the core 3 increases the effective surface area of the noble metal catalyst 4 and increases the void B of the fuel cell catalyst 1, thereby improving the utilization efficiency. .

また、本実施の形態によれば、樹脂製のコア3と貴金属触媒4とを溶媒中で混合して、コア3の表面に貴金属触媒4を担持させて燃料電池用触媒1を製造した。この製造方法により、樹脂製のコア3の表面に貴金属触媒4を担持させることができるため、利用効率が向上した燃料電池用触媒1を製造できる。   Further, according to the present embodiment, the resin core 3 and the noble metal catalyst 4 are mixed in a solvent, and the noble metal catalyst 4 is supported on the surface of the core 3 to manufacture the fuel cell catalyst 1. By this production method, the noble metal catalyst 4 can be supported on the surface of the resin core 3, and therefore the fuel cell catalyst 1 with improved utilization efficiency can be produced.

但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、燃料電池用触媒1を基材5に塗布して電極層6を形成したが、燃料電池用触媒1を乾燥させて粉末化してもよい。燃料電池用触媒1は、粉末状であってもPtBがPMMAに良好に被覆している。
However, the above embodiment is an aspect of the present invention, and it is needless to say that the embodiment can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the fuel cell catalyst 1 is applied to the base material 5 to form the electrode layer 6. However, the fuel cell catalyst 1 may be dried to be powdered. Even if the catalyst 1 for fuel cells is a powder form, PtB has coat | covered PMMA favorable.

また、上記実施の形態では、貴金属触媒4にPtBを用いたが、貴金属触媒4の材料はこれに限定されるものではなく、例えば白金担持カーボン(PtC)を用いてもよい。図5は、燃料電池用触媒1を拡大して示す図であり、図5(A)は貴金属触媒4にPtBを用いた燃料電池用触媒1を倍率5万倍及び100万倍で示す写真であり、図5(B)は貴金属触媒4にPtCを用いた燃料電池用触媒1を倍率5万倍及び50万倍で示す写真である。この図に示すように、貴金属触媒4に白金担持カーボンを用いても、コア3と貴金属触媒4とを複合化できる。   Moreover, in the said embodiment, although PtB was used for the noble metal catalyst 4, the material of the noble metal catalyst 4 is not limited to this, For example, you may use platinum carrying | support carbon (PtC). FIG. 5 is an enlarged view of the fuel cell catalyst 1. FIG. 5A is a photograph showing the fuel cell catalyst 1 using PtB as the noble metal catalyst 4 at a magnification of 50,000 times and 1 million times. FIG. 5B is a photograph showing the fuel cell catalyst 1 using PtC as the noble metal catalyst 4 at a magnification of 50,000 times and 500,000 times. As shown in this figure, the core 3 and the noble metal catalyst 4 can be combined even if platinum-supported carbon is used for the noble metal catalyst 4.

<第2の実施の形態>
次に、本発明に係る第2の実施の形態を説明する。
図6は、第2の実施の形態に係る燃料電池用触媒を示す模式図である。なお、図6では、図1に示す燃料電池用触媒1と同一部分には同一の符号を付して説明を省略する。
燃料電池用触媒100の貴金属触媒4は、複数の1次粒子4Aが凝集して2次粒子(凝集体)104Bを形成してなる。2次粒子104Bは微空隙Aが閉塞した2次粒子4B(図7参照)であり、2次粒子104B中には1次粒子4A間に微空隙Aが形成されていない。
<Second Embodiment>
Next, a second embodiment according to the present invention will be described.
FIG. 6 is a schematic view showing a fuel cell catalyst according to the second embodiment. In FIG. 6, the same parts as those of the fuel cell catalyst 1 shown in FIG.
The noble metal catalyst 4 of the fuel cell catalyst 100 is formed by agglomerating a plurality of primary particles 4A to form secondary particles (aggregates) 104B. The secondary particles 104B are secondary particles 4B (see FIG. 7) in which the fine voids A are closed, and no fine voids A are formed between the primary particles 4A in the secondary particles 104B.

図7は、燃料電池用触媒100の製造工程を示す模式図である。
まず、図7(A)に示すように、コア3及び貴金属触媒4を用意する。このとき、貴金属触媒4の2次粒子4B中には、1次粒子4A間に微空隙Aが形成されている。
これらのコア3及び貴金属触媒4を混合し、混合したコア3及び貴金属触媒4を高速気流衝突装置120によって高速気流中で対向衝突させる。高速気流衝突装置120には、例えば奈良機械製作所社製のハイブリダイゼーションシステムを用いることができる。高速気流衝突装置120は、円筒状のステータ121と、ステータ121内に回転可能に配置されるロータ122と、ロータ122の外周部からロータ122の回転中心部に延出する再循環パイプ123と、再循環パイプ123に形成された材料供給口124とを備えており、ステータ121の内側及び再循環パイプ123が処理室125を構成している。
FIG. 7 is a schematic diagram showing a manufacturing process of the fuel cell catalyst 100.
First, as shown in FIG. 7A, a core 3 and a noble metal catalyst 4 are prepared. At this time, in the secondary particles 4B of the noble metal catalyst 4, fine voids A are formed between the primary particles 4A.
The core 3 and the noble metal catalyst 4 are mixed, and the mixed core 3 and the noble metal catalyst 4 are opposed to each other in a high speed air current by the high speed air current collision device 120. For example, a hybridization system manufactured by Nara Machinery Co., Ltd. can be used for the high-speed airflow collision device 120. The high-speed airflow collision device 120 includes a cylindrical stator 121, a rotor 122 that is rotatably disposed in the stator 121, a recirculation pipe 123 that extends from the outer periphery of the rotor 122 to the rotation center of the rotor 122, The material supply port 124 formed in the recirculation pipe 123 is provided, and the inside of the stator 121 and the recirculation pipe 123 constitute a processing chamber 125.

混合したコア3及び貴金属触媒4を材料供給口124から処理室125に投入し、ロータ102を所定の回転速度で回転させると、実線矢印で示すように高速気流が生じ、コア3及び貴金属触媒4が分散するとともに、コア3と貴金属触媒4とが衝突することで、コア3の表面に貴金属触媒4が付着して、コア3と貴金属触媒4とが複合化する。
ロータ122の回転数(回転速度)は、高回転の方が複合化能力が高く、コア3の表面に貴金属触媒4が隙間なく付着する。2次粒子が破壊されやすい材料等を用いる場合には、ロータ122の回転数を低回転とするのがよい。また、実験によれば、処理時間が約3分でコア3と貴金属触媒4との複合化がほぼ完了する。
When the mixed core 3 and noble metal catalyst 4 are introduced into the processing chamber 125 from the material supply port 124 and the rotor 102 is rotated at a predetermined rotational speed, a high-speed air current is generated as indicated by the solid line arrow, and the core 3 and the noble metal catalyst 4 Is dispersed, and the core 3 and the noble metal catalyst 4 collide with each other, so that the noble metal catalyst 4 adheres to the surface of the core 3 and the core 3 and the noble metal catalyst 4 are combined.
The rotational speed (rotational speed) of the rotor 122 is higher when the rotational speed is higher, and the noble metal catalyst 4 adheres to the surface of the core 3 without a gap. In the case of using a material that easily breaks secondary particles, it is preferable to set the rotational speed of the rotor 122 to a low speed. Further, according to the experiment, the combination of the core 3 and the noble metal catalyst 4 is almost completed in about 3 minutes.

本実施の形態では、例えば、PMMAのコア3を5g、及び、PtBの貴金属触媒4を9.01g混合し、PMMAに対するPtBの重量比(PtB/PMMA)を約1.8としている。そして、ロータ122の回転速度を約60−100メートル/秒とし、混合したコア3及び貴金属触媒4を窒素ガス中で約10分間処理を行うものとする。これにより、図6に示すように、2次粒子104Bがコア3の表面に凝集付着し、コア3と貴金属触媒4とが複合化した燃料電池用触媒100が得られる。
そして、この燃料電池用触媒100を所定の液に投入して複合化インク113を生成し、図7(B)に示すように、生成した複合化インク113をポリエチレンテレフタレート(PET)や電解質膜等の基材5に塗布した後乾燥することで、電極層6が形成される。
In this embodiment, for example, 5 g of PMMA core 3 and 9.01 g of PtB noble metal catalyst 4 are mixed, and the weight ratio of PtB to PMMA (PtB / PMMA) is about 1.8. Then, the rotational speed of the rotor 122 is set to about 60-100 meters / second, and the mixed core 3 and noble metal catalyst 4 are treated in nitrogen gas for about 10 minutes. As a result, as shown in FIG. 6, the secondary particles 104 </ b> B aggregate and adhere to the surface of the core 3, and the fuel cell catalyst 100 in which the core 3 and the noble metal catalyst 4 are combined is obtained.
Then, the fuel cell catalyst 100 is put into a predetermined liquid to generate a composite ink 113. As shown in FIG. 7B, the generated composite ink 113 is made of polyethylene terephthalate (PET), an electrolyte membrane, or the like. The electrode layer 6 is formed by applying to the substrate 5 and drying.

図8は、図7の製造工程で得られた燃料電池用触媒100を示す写真であり、図8(A)は燃料電池用触媒100を倍率1万倍で示す写真であり、図8(B)は燃料電池用触媒100を倍率3万倍で示す写真である。
この図に示すように、燃料電池用触媒100においては、2次粒子104B中の微空隙は閉塞し、コア3の表面に2次粒子104Bが隙間なく担持されている。また、径が比較的大きいコア3により、触媒粒子2間に広い空隙Bが形成される。
FIG. 8 is a photograph showing the fuel cell catalyst 100 obtained in the manufacturing process of FIG. 7, and FIG. 8A is a photograph showing the fuel cell catalyst 100 at a magnification of 10,000 times, and FIG. ) Is a photograph showing the fuel cell catalyst 100 at a magnification of 30,000 times.
As shown in this figure, in the fuel cell catalyst 100, the fine voids in the secondary particles 104B are closed, and the secondary particles 104B are supported on the surface of the core 3 without any gaps. Further, a wide void B is formed between the catalyst particles 2 by the core 3 having a relatively large diameter.

ここで、図4において、A2は燃料電池用触媒100の細孔分布を、P2は燃料電池用触媒100の細孔容積が最も多い細孔径を示す。PtB触媒の細孔径P0と、燃料電池用触媒100の細孔径P2を比較すると、燃料電池用触媒100の方が細孔径が大きくなっている。
このように、燃料電池用触媒100では、触媒粒子2間に比較的大きな細孔(空隙B)が形成されるので、燃料電池用触媒100を用いて電極層6を形成すると、従来2次粒子の中心付近で反応に寄与していなかった1次粒子を少なくして貴金属触媒4の有効表面積を広くできるとともに、図6に矢印で示すように、例えば酸化剤ガスである酸素が触媒粒子2間を円滑に拡散する。したがって、本実施の形態では、従来のPtB触媒と同等の導電性を確保できる上、従来のPtB触媒に場合に比べて電極層6の利用効率を向上させることができる。また、従来のPtB触媒では空隙の大きさを制御できなかったが、本実施の形態では、コア3の大きさにより触媒粒子2間の空隙Bを制御できる。
形成された電極層6は黒色度が高く、見た目からもPtBがPMMAに良好に被覆していることは明らかである。
Here, in FIG. 4, A2 represents the pore distribution of the fuel cell catalyst 100, and P2 represents the pore diameter with the largest pore volume of the fuel cell catalyst 100. When the pore diameter P0 of the PtB catalyst is compared with the pore diameter P2 of the fuel cell catalyst 100, the fuel cell catalyst 100 has a larger pore diameter.
In this way, in the fuel cell catalyst 100, relatively large pores (voids B) are formed between the catalyst particles 2, so that when the electrode layer 6 is formed using the fuel cell catalyst 100, the conventional secondary particles are formed. The primary particles that have not contributed to the reaction in the vicinity of the center of the catalyst can be reduced to increase the effective surface area of the noble metal catalyst 4 and, for example, oxygen as an oxidant gas is present between the catalyst particles 2 as indicated by arrows in FIG. To diffuse smoothly. Therefore, in the present embodiment, the same conductivity as that of the conventional PtB catalyst can be ensured, and the utilization efficiency of the electrode layer 6 can be improved as compared with the case of the conventional PtB catalyst. In addition, the conventional PtB catalyst cannot control the size of the void, but in the present embodiment, the void B between the catalyst particles 2 can be controlled by the size of the core 3.
The formed electrode layer 6 has high blackness, and it is clear from the appearance that PtB is well coated with PMMA.

以上説明したように、本実施の形態によれば、樹脂製のコア3と貴金属触媒4を気流中で対向衝突させ、コア3の表面に貴金属触媒4を担持させて燃料電池用触媒100を製造した。この製造方法により、樹脂製のコア3の表面に貴金属触媒4を担持させることができるため、利用効率が向上した燃料電池用触媒100を製造できる。   As described above, according to the present embodiment, the resin core 3 and the noble metal catalyst 4 face each other in an air flow, and the noble metal catalyst 4 is supported on the surface of the core 3 to manufacture the fuel cell catalyst 100. did. With this manufacturing method, the noble metal catalyst 4 can be supported on the surface of the resin core 3, and therefore the fuel cell catalyst 100 with improved utilization efficiency can be manufactured.

<第3の実施の形態>
次に、本発明に係る第3の実施の形態を説明する。第3の実施の形態の燃料電池用触媒200は、図6に示す燃料電池用触媒100と同一の構成である。
図9は、第3の実施の形態の燃料電池用触媒200の製造工程を示す模式図である。
まず、コア3及び貴金属触媒4を用意し、コア3及び貴金属触媒4を混合して得た処理粉体212を、ミル装置220によって高速気流中で衝突させる。ミル装置220には、例えばホソカワミクロン社製のノビルタ(NOB-MINI)を用いることができる。ミル装置220は、円筒状のステータ221と、ステータ221内に回転可能に配置されるロータ222とを備えている。
<Third Embodiment>
Next, a third embodiment according to the present invention will be described. The fuel cell catalyst 200 of the third embodiment has the same configuration as the fuel cell catalyst 100 shown in FIG.
FIG. 9 is a schematic diagram illustrating a manufacturing process of the fuel cell catalyst 200 according to the third embodiment.
First, the core 3 and the noble metal catalyst 4 are prepared, and the treated powder 212 obtained by mixing the core 3 and the noble metal catalyst 4 is collided in the high-speed air current by the mill device 220. As the mill device 220, for example, NOB-MINI manufactured by Hosokawa Micron Corporation can be used. The mill device 220 includes a cylindrical stator 221 and a rotor 222 that is rotatably disposed in the stator 221.

処理粉体212をミル装置220に投入し、ロータ222を所定の回転速度で回転させると、ステータ221の壁面221Aとロータ222との間の剪断力によって分散するとともに、ステータ221の壁面221Aとロータ222との間でコア3と貴金属触媒4とが衝突することで、コア3の表面に貴金属触媒4が付着して、コア3と貴金属触媒4とが複合化する。   When the treated powder 212 is put into the mill device 220 and the rotor 222 is rotated at a predetermined rotational speed, the processed powder 212 is dispersed by the shearing force between the wall surface 221A of the stator 221 and the rotor 222, and the wall surface 221A of the stator 221 and the rotor When the core 3 and the noble metal catalyst 4 collide with 222, the noble metal catalyst 4 adheres to the surface of the core 3 and the core 3 and the noble metal catalyst 4 are combined.

本実施の形態では、例えば、PMMAのコア3を5g、及び、PtBの貴金属触媒4を9.01g混合することで、PMMAに対するPtBの重量比(PtB/PMMA)が約1.8である処理粉体212を得ている。そして、ロータ222の回転速度を約6000−9000rpmとし、処理粉体212を窒素ガス中で約10分間処理を行うものとする。これにより、図6に示すように、2次粒子104Bがコア3の表面に凝集付着し、コア3と貴金属触媒4とが複合化した燃料電池用触媒200が得られる。
そして、この燃料電池用触媒200を所定の液に投入して複合化インク213を生成し、図9(B)に示すように、生成した複合化インク213をポリエチレンテレフタレート(PET)や電解質膜等の基材5に塗布した後乾燥することで、電極層6が形成される。
In the present embodiment, for example, 5 g of PMMA core 3 and 9.01 g of PtB noble metal catalyst 4 are mixed, whereby the weight ratio of PtB to PMMA (PtB / PMMA) is about 1.8. A powder 212 is obtained. Then, the rotational speed of the rotor 222 is about 6000 to 9000 rpm, and the treated powder 212 is treated in nitrogen gas for about 10 minutes. As a result, as shown in FIG. 6, the secondary particles 104B aggregate and adhere to the surface of the core 3, and the fuel cell catalyst 200 in which the core 3 and the noble metal catalyst 4 are combined is obtained.
Then, the fuel cell catalyst 200 is put into a predetermined liquid to generate a composite ink 213. As shown in FIG. 9B, the generated composite ink 213 is made of polyethylene terephthalate (PET), an electrolyte membrane, or the like. The electrode layer 6 is formed by applying to the substrate 5 and drying.

図10は、図9の製造工程で得られた燃料電池用触媒200を示す写真であり、図10(A)は燃料電池用触媒200を倍率1万倍で示す写真であり、図10(B)は燃料電池用触媒200を倍率3万倍で示す写真である。
この図に示すように、燃料電池用触媒100においては、2次粒子104B中の微空隙は閉塞し、コア3の表面に2次粒子104Bが担持されている。しかしながら、コア3と貴金属触媒4との複合化にはばらつきがあり、図8に示す燃料電池用触媒200に比べて、複合化能力が低い。また、径が比較的大きいコア3により、触媒粒子2間に広い空隙Bが形成される。
FIG. 10 is a photograph showing the fuel cell catalyst 200 obtained in the manufacturing process of FIG. 9, and FIG. 10 (A) is a photograph showing the fuel cell catalyst 200 at a magnification of 10,000 times, and FIG. ) Is a photograph showing the fuel cell catalyst 200 at a magnification of 30,000 times.
As shown in this figure, in the fuel cell catalyst 100, the fine voids in the secondary particles 104 </ b> B are closed, and the secondary particles 104 </ b> B are supported on the surface of the core 3. However, the composite of the core 3 and the noble metal catalyst 4 varies, and the composite ability is low as compared with the fuel cell catalyst 200 shown in FIG. Further, a wide void B is formed between the catalyst particles 2 by the core 3 having a relatively large diameter.

このように、燃料電池用触媒200では、触媒粒子2間に比較的大きな細孔(空隙B)が形成されるので、燃料電池用触媒200を用いて電極層6を形成すると、従来2次粒子の中心付近で反応に寄与していなかった1次粒子を少なくして貴金属触媒4の有効表面積を広くできるとともに、図6に矢印で示すように、例えば酸化剤ガスである酸素が触媒粒子2間を円滑に拡散する。したがって、本実施の形態では、従来のPtB触媒と同等の導電性を確保できる上、従来のPtB触媒に場合に比べて電極層6の利用効率を向上させることができる。また、従来のPtB触媒では空隙の大きさを制御できなかったが、本実施の形態では、コア3の大きさにより触媒粒子2間の空隙Bを制御できる。
形成された電極層6は黒色度が高く、見た目からもPtBがPMMAに良好に被覆していることは明らかである。
Thus, in the fuel cell catalyst 200, relatively large pores (voids B) are formed between the catalyst particles 2. Therefore, when the electrode layer 6 is formed using the fuel cell catalyst 200, conventional secondary particles are formed. The primary particles that have not contributed to the reaction in the vicinity of the center of the catalyst can be reduced to increase the effective surface area of the noble metal catalyst 4 and, for example, oxygen as an oxidant gas is present between the catalyst particles 2 as indicated by arrows in FIG. To diffuse smoothly. Therefore, in the present embodiment, the same conductivity as that of the conventional PtB catalyst can be ensured, and the utilization efficiency of the electrode layer 6 can be improved as compared with the case of the conventional PtB catalyst. In addition, the conventional PtB catalyst cannot control the size of the void, but in the present embodiment, the void B between the catalyst particles 2 can be controlled by the size of the core 3.
The formed electrode layer 6 has high blackness, and it is clear from the appearance that PtB is well coated with PMMA.

また、上記実施の形態では、樹脂製のコア3と貴金属触媒4を気流中で対向衝突させ、コア3の表面に貴金属触媒4を担持させて燃料電池用触媒200を製造した。この製造方法により、樹脂製のコア3の表面に貴金属触媒4を担持させることができるため、耐食性に優れ利用効率が向上した燃料電池用触媒200を製造できる。   Further, in the above-described embodiment, the fuel core catalyst 200 is manufactured by causing the resin core 3 and the noble metal catalyst 4 to face each other in an air flow and supporting the noble metal catalyst 4 on the surface of the core 3. By this production method, the noble metal catalyst 4 can be supported on the surface of the resin core 3, so that the fuel cell catalyst 200 having excellent corrosion resistance and improved utilization efficiency can be produced.

1,100,200 燃料電池用触媒
3 コア
4 貴金属触媒
1,100,200 Fuel cell catalyst 3 Core 4 Noble metal catalyst

Claims (3)

樹脂製のコアの表面に貴金属触媒を担持させたことを特徴とする燃料電池用触媒。   A fuel cell catalyst characterized in that a noble metal catalyst is supported on the surface of a resin core. 樹脂製のコアと貴金属触媒を溶媒中で混合し、前記コアの表面に前記貴金属触媒を担持させることを特徴とする燃料電池用触媒の製造方法。   A method for producing a fuel cell catalyst, comprising mixing a resin-made core and a noble metal catalyst in a solvent, and supporting the noble metal catalyst on a surface of the core. 樹脂製のコアと貴金属触媒を気流中で対向衝突させ、前記コアの表面に前記貴金属触媒を担持させることを特徴とする燃料電池用触媒の製造方法。   A method for producing a catalyst for a fuel cell, comprising causing a resin-made core and a noble metal catalyst to collide against each other in an air stream, and supporting the noble metal catalyst on the surface of the core.
JP2011159502A 2011-07-21 2011-07-21 Catalyst for fuel cell and manufacturing method of catalyst for fuel cell Pending JP2013026014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159502A JP2013026014A (en) 2011-07-21 2011-07-21 Catalyst for fuel cell and manufacturing method of catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159502A JP2013026014A (en) 2011-07-21 2011-07-21 Catalyst for fuel cell and manufacturing method of catalyst for fuel cell

Publications (1)

Publication Number Publication Date
JP2013026014A true JP2013026014A (en) 2013-02-04

Family

ID=47784132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159502A Pending JP2013026014A (en) 2011-07-21 2011-07-21 Catalyst for fuel cell and manufacturing method of catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP2013026014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084476A (en) * 2015-10-23 2017-05-18 積水化学工業株式会社 Resin particle, electrode material and fuel cell electrode
JP2020140843A (en) * 2019-02-28 2020-09-03 正己 奥山 Electrode and method for manufacturing the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200845A (en) * 1985-03-05 1986-09-05 Shiseido Co Ltd Composite powder and its preparation
JPS6283029A (en) * 1985-10-07 1987-04-16 Nara Kikai Seisakusho:Kk Method and apparatus for surface modification of solid particle
JPS62140636A (en) * 1985-12-13 1987-06-24 Nara Kikai Seisakusho:Kk Method and device for reforming surface of solid grain
JPS62250942A (en) * 1986-04-23 1987-10-31 Nara Kikai Seisakusho:Kk Method for spreading and fixing metal to surface of solid particle
JPH09248464A (en) * 1996-03-12 1997-09-22 Toshiba Corp Production of catalyst
JPH11214013A (en) * 1997-11-18 1999-08-06 Fuji Electric Co Ltd Phosphoric acid type fuel cell
WO2004035860A1 (en) * 2002-10-21 2004-04-29 Kiyokawa Plating Industry Co., Ltd. Metal resin composite and process for producing the same
JP2006134802A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell
JP2008123941A (en) * 2006-11-15 2008-05-29 Sony Corp Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
JP2008270053A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Membrane-electrode assembly and its manufacturing method
JP2009004268A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Diffusion layer and fuel cell using it, and its manufacturing method
JP2009059694A (en) * 2007-08-07 2009-03-19 Toyota Motor Corp Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
JP2009170243A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Membrane electrode assembly
JP2010162443A (en) * 2009-01-13 2010-07-29 Furuya Kinzoku:Kk Platinum black powder, platinum black colloid, and methods for producing them
JP2011113799A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Membrane electrode assembly and fuel cell using the same
JP2011253788A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Membrane-electrode structure for polymer electrolyte fuel cell
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200845A (en) * 1985-03-05 1986-09-05 Shiseido Co Ltd Composite powder and its preparation
JPS6283029A (en) * 1985-10-07 1987-04-16 Nara Kikai Seisakusho:Kk Method and apparatus for surface modification of solid particle
JPS62140636A (en) * 1985-12-13 1987-06-24 Nara Kikai Seisakusho:Kk Method and device for reforming surface of solid grain
JPS62250942A (en) * 1986-04-23 1987-10-31 Nara Kikai Seisakusho:Kk Method for spreading and fixing metal to surface of solid particle
JPH09248464A (en) * 1996-03-12 1997-09-22 Toshiba Corp Production of catalyst
JPH11214013A (en) * 1997-11-18 1999-08-06 Fuji Electric Co Ltd Phosphoric acid type fuel cell
WO2004035860A1 (en) * 2002-10-21 2004-04-29 Kiyokawa Plating Industry Co., Ltd. Metal resin composite and process for producing the same
JP2006134802A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Fuel cell
JP2008123941A (en) * 2006-11-15 2008-05-29 Sony Corp Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
JP2008270053A (en) * 2007-04-23 2008-11-06 Toyota Motor Corp Membrane-electrode assembly and its manufacturing method
JP2009004268A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Diffusion layer and fuel cell using it, and its manufacturing method
JP2009059694A (en) * 2007-08-07 2009-03-19 Toyota Motor Corp Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
JP2009170243A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Membrane electrode assembly
JP2010162443A (en) * 2009-01-13 2010-07-29 Furuya Kinzoku:Kk Platinum black powder, platinum black colloid, and methods for producing them
JP2011113799A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Membrane electrode assembly and fuel cell using the same
JP2011253788A (en) * 2010-06-04 2011-12-15 Honda Motor Co Ltd Membrane-electrode structure for polymer electrolyte fuel cell
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084476A (en) * 2015-10-23 2017-05-18 積水化学工業株式会社 Resin particle, electrode material and fuel cell electrode
JP2020140843A (en) * 2019-02-28 2020-09-03 正己 奥山 Electrode and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Li et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction
Wenzel et al. Challenges in lithium‐ion‐battery slurry preparation and potential of modifying electrode structures by different mixing processes
Michel et al. High-Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layer-By-Layer Assembly of Carbon Nanocolloids We acknowledge the Fulbright/Alsace committee for financial support. PP thanks the Fannie and John Hertz Foundation for support of his research through a graduate fellowship. NAK thanks AFOSR for the support of this research. Supporting Information is available online from Wiley InterScience or form the author.
JP2011119217A (en) Electrode for polymer electrolyte fuel cell and manufacturing method of membrane/electrode assembly utilizing the same
Montanino et al. Gravure‐Printed Conversion/Alloying Anodes for Lithium‐Ion Batteries
JP2013026014A (en) Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
Aghasibeig et al. Fabrication of nickel electrode coatings by combination of atmospheric and suspension plasma spray processes
Bi et al. Multi‐Stage Porous Nickel–Iron Oxide Electrode for High Current Alkaline Water Electrolysis
JP4952008B2 (en) Electrode catalyst layer for solid polymer electrolyte fuel cell, method for producing the same, and solid polymer electrolyte fuel cell
Sui et al. MoS 2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting
CN101617068A (en) Make the method for Catalytic Layer
JP6043436B2 (en) Manufacturing process of membrane electrode assembly for fuel cell
JP2006286474A (en) Electrode structure for fuel cell and manufacturing method of electrode for fuel cell
JP2009289692A (en) Method of manufacturing electrode layer for fuel cell
Yuan et al. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation
KR101628491B1 (en) Carbon-platinum-iridium oxide complex, manufacturing method thereof and catalyst for fuel cell anode using the same
CN116060610A (en) Silver-coated copper powder and preparation method and application thereof
JP2009059694A (en) Catalyst ink for fuel cell, its manufacturing method, and fuel cell electrode using the same
WO2011152111A1 (en) Apparatus for production of catalyst layer for fuel cell, and method for production of catalyst layer for fuel cell
JP2006031951A (en) Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2006310216A (en) Manufacturing method of application liquid for catalyst electrode layer formation
JP2016110888A (en) Method of manufacturing electrode catalyst layer for fuel cell
JP5103922B2 (en) Electrode catalyst layer, production method thereof, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell using the same
JP2005116416A (en) Fuel cell and manufacturing method for membrane electrode assembly used for it
JP2012243520A (en) Fuel cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111