JP2010162443A - Platinum black powder, platinum black colloid, and methods for producing them - Google Patents

Platinum black powder, platinum black colloid, and methods for producing them Download PDF

Info

Publication number
JP2010162443A
JP2010162443A JP2009005161A JP2009005161A JP2010162443A JP 2010162443 A JP2010162443 A JP 2010162443A JP 2009005161 A JP2009005161 A JP 2009005161A JP 2009005161 A JP2009005161 A JP 2009005161A JP 2010162443 A JP2010162443 A JP 2010162443A
Authority
JP
Japan
Prior art keywords
platinum
platinum black
colloid
nanocolloid
black powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009005161A
Other languages
Japanese (ja)
Other versions
JP5451083B2 (en
Inventor
Masaru Ito
賢 伊藤
Yoshiro Sugita
吉朗 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2009005161A priority Critical patent/JP5451083B2/en
Priority to PCT/JP2009/071740 priority patent/WO2010082443A1/en
Publication of JP2010162443A publication Critical patent/JP2010162443A/en
Application granted granted Critical
Publication of JP5451083B2 publication Critical patent/JP5451083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/23
    • B01J35/393
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain platinum black catalytic powder having high activity. <P>SOLUTION: A platinum black powder has ≥80 m<SP>2</SP>/g or further ≥90 m<SP>2</SP>/g BET specific surface area. The platinum black powder is produced by producing nanocolloid of hexahydroxoplatinic acid in a liquid phase, adding a reducing agent to the nanocolloid of hexahydroxoplatinic acid to reduce the nanocolloid and form platinum-containing colloid, filtering the formed platinum-containing colloid, washing the filtered platinum-containing colloid with purified water, and drying the washed platinum-containing colloid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高い触媒活性を有する高比表面積の白金ブラック粉末及び白金ブラックのコロイド並びにそれらの製造方法に関する。   The present invention relates to a high specific surface area platinum black powder having high catalytic activity, a colloid of platinum black, and a method for producing them.

白金ブラックは、ファィンケミカルの水素化用触媒又は酸化用触媒として古くから使用されてきた。また、近年、燃料電池、電解セル及び電気化学的センサの用途におけるガス拡散電極用触媒として使用されてきた。   Platinum black has long been used as a catalyst for hydrogenation or oxidation of fin chemicals. In recent years, it has been used as a catalyst for gas diffusion electrodes in applications of fuel cells, electrolytic cells, and electrochemical sensors.

カーボン又はアルミナ等担体に担持された担持白金触媒と比べて、白金ブラックには、担持白金触媒には無い次のようなメリットが指摘されていた。即ち、(1)活性種である白金ナノ粒子が担体の細孔内部に埋設しない為に白金の利用効率を高められること、(2)担持触媒は、反応条件によっては担体の腐食、劣化のおそれがあり、これが担持された白金ナノ粒子の凝集を促進する場合が有るが、白金ブラックには、これらのおそれが無いこと、(3)特に電極触媒の用途では、触媒層の厚さを担持触媒の場合と比べて大幅に薄く形成できることから物質輸送を良くし、且つ触媒層を電解質膜の近傍に局在化できるために高性能な電極を形成できること、などが挙げられる。   Compared to a supported platinum catalyst supported on a carrier such as carbon or alumina, platinum black has been pointed out as having the following merits that the supported platinum catalyst does not have. That is, (1) platinum utilization efficiency is improved because platinum nanoparticles as active species are not embedded in the pores of the support, and (2) the supported catalyst may corrode or deteriorate the support depending on the reaction conditions. This may promote the aggregation of the supported platinum nanoparticles, but platinum black does not have these fears, and (3) the catalyst layer thickness is particularly important for electrode catalyst applications. Since it can be formed much thinner than the above case, it is possible to improve material transport and to localize the catalyst layer in the vicinity of the electrolyte membrane, so that a high-performance electrode can be formed.

白金ブラックの製法とその製法で得られる白金ブラックのBET比表面積(以下、「比表面積」ともいう。)に関しては従来から多数の報告がある。例えば、HPtCl水溶液を濃KOH水溶液存在下、室温でホルマリン還元して比表面積8m/gの白金ブラックが得られている(例えば、非特許文献1を参照。)。また、塩化白金酸HPtCl・6HOのホルマリン水溶液と、予め核形成のために調製された塩化白金酸HPtCl・6HOと炭酸ナトリウムNaCOとホルマリンとの混合溶液とを90℃加熱中のNaOH水溶液に同時に添加して、比表面積22.2〜31.7m/gの白金ブラックを得たとの報告がある(例えば、非特許文献2を参照。)。また、HPtCl水溶液を40℃で10%ヒドラジン水溶液で処理して比表面積10m/gの白金ブラックを得ている(例えば、非特許文献3を参照。)。更に、ヘキサヒドロキソ白金(IV)酸の希硝酸溶液に過剰の脱イオン水を添加後、70℃に加熱し二酸化白金のオレンジ色の懸濁液を得、これに濃アンモニア水を添加してpH5に中和し、次いで蟻酸で還元し、結晶子サイズ5.3nmの白金ブラックを得たとの報告がある(例えば、特許文献1を参照。)。 There have been many reports on the production method of platinum black and the BET specific surface area (hereinafter also referred to as “specific surface area”) of platinum black obtained by the production method. For example, platinum black having a specific surface area of 8 m 2 / g is obtained by reducing formal solution of H 2 PtCl 6 aqueous solution at room temperature in the presence of concentrated KOH aqueous solution (see, for example, Non-Patent Document 1). The mixing of the aqueous formalin solution of chloroplatinic acid H 2 PtCl 6 · 6H 2 O, chloroplatinic acid H 2 PtCl 6 · 6H 2 O and sodium carbonate Na 2 CO 3 prepared for pre-nucleation formalin There is a report that platinum black having a specific surface area of 22.2 to 31.7 m 2 / g was obtained by simultaneously adding the solution to a NaOH aqueous solution being heated at 90 ° C. (see, for example, Non-Patent Document 2). In addition, H 2 PtCl 6 aqueous solution is treated with 10% hydrazine aqueous solution at 40 ° C. to obtain platinum black having a specific surface area of 10 m 2 / g (see, for example, Non-Patent Document 3). Further, after adding excess deionized water to a dilute nitric acid solution of hexahydroxoplatinum (IV) acid, the mixture was heated to 70 ° C. to obtain an orange suspension of platinum dioxide, and concentrated ammonia water was added thereto to adjust the pH to 5 And then reduced with formic acid to obtain platinum black having a crystallite size of 5.3 nm (for example, see Patent Document 1).

他方、溶融法では、(NHPtClとNaNOとを500℃で溶融し、水洗後、二酸化白金粉末PtOを得て、これを水に投入して分散後、Hバブリングで還元して、比表面積24〜29m/gの白金ブラックを得ている(例えば、非特許文献4を参照。)。また、KNOとLiNOの共融点混合物にヘキサヒドロキシ白金(IV)酸を加えて450℃で溶融し、洗浄後得られた二酸化白金粉末を水に分散し、3%NaOHと6%ヒドラジン水溶液で還元して比表面積47〜52m/gの白金ブラックを得る方法が報告されている(例えば、特許文献2を参照。)。特許文献2には、また上記と同様な溶融法で、比表面積84〜87m/gを有する、白金とルテニウムの原子比50:50の合金粉末が得られるとの記載がある。 On the other hand, in the melting method, (NH 4 ) 2 PtCl 6 and NaNO 3 are melted at 500 ° C., washed with water to obtain platinum dioxide powder PtO 2 , which is poured into water, dispersed, and then subjected to H 2 bubbling. Reduction to obtain platinum black having a specific surface area of 24 to 29 m 2 / g (see, for example, Non-Patent Document 4). In addition, hexahydroxyplatinum (IV) acid is added to the eutectic mixture of KNO 3 and LiNO 3 and melted at 450 ° C., and the platinum dioxide powder obtained after washing is dispersed in water. 3% NaOH and 6% hydrazine aqueous solution A method for obtaining platinum black having a specific surface area of 47 to 52 m 2 / g by reduction is reported (for example, see Patent Document 2). Patent Document 2 also describes that an alloy powder having a specific surface area of 84 to 87 m 2 / g and an atomic ratio of 50:50 of platinum and ruthenium can be obtained by the same melting method as described above.

特表2007−532288号公報Special table 2007-532288 gazette 米国特許6,814,777号明細書US Pat. No. 6,814,777 特開平07−025621号公報JP 07-025621 A 特開平07−097220号公報Japanese Patent Application Laid-Open No. 07-097220 特許2537239号公報Japanese Patent No. 2537239 特開平2−293048号公報JP-A-2-293048 特開2000−279811号公報JP 2000-279811 A

T.Baird et al.,J.C.S.Faraday I, 50−55,69(1973)T.A. Baird et al. , J .; C. S. Faraday I, 50-55, 69 (1973) J.Giner et al.,Advances in Chemistry Series,Fuel Cell Systems II,151−161,90,(1969)J. et al. Giner et al. , Advances in Chemistry Series, Fuel Cell Systems II, 151-161, 90, (1969). Z.Paal et al.,Phys.Chem.Chem.Phys.,2148−2155,3(2001)Z. Paal et al. Phys. Chem. Chem. Phys. , 2148-2155, 3 (2001) A.Mills,Bulletin of the Scientific Instrument Society,35−37、89,(2006)A. Mills, Bulletin of the Scientific Instrument Society, 35-37, 89, (2006)

担持白金触媒と比べて白金ブラックには前記のメリットが指摘されていたが、これまで高比表面積の白金ブラック触媒を製造することが難しいため、比表面積が低く、粒子の凝集した白金ブラックしか得られなかった。前記のとおり非特許文献1では比表面積が8m/gであり、非特許文献2では比表面積が22.2〜31.7m/gであり、非特許文献3では比表面積が10m/gである。また、特許文献2には比表面積が84〜87m/gの白金とルテニウムの合金粉末が記載されているが、70m/gを超える高比表面積の白金粉末の製造例は記載されていない。 The above-mentioned merits have been pointed out with platinum black compared to supported platinum catalysts. However, since it has been difficult to produce platinum black catalysts with a high specific surface area, only platinum black with a low specific surface area and aggregated particles can be obtained. I couldn't. As described above, non-patent document 1 has a specific surface area of 8 m 2 / g, non-patent document 2 has a specific surface area of 22.2 to 31.7 m 2 / g, and non-patent document 3 has a specific surface area of 10 m 2 / g. g. Further, although Patent Document 2 specific surface area are described alloy powder of platinum and ruthenium 84~87m 2 / g, Production Example of the platinum powder having a high specific surface area greater than 70m 2 / g is not described .

そもそも、貴金属のナノ粒子の場合、1次粒子径をD,d(数1)とすると、貴金属ナノ粒子1個当たりの体積vは、(数2)となる。貴金属の密度をρ(g/cm)とすると、粒子1個の質量wは、(数3)と表わされる。
(数1)d(cm)=D(nm)×10‐7
(数2)v(cm)=(4π/3)(d/2)
= (4π/3)〔(D×10‐7)/2〕
(数3)w=ρ×v=ρ×(4π/3)〔(D×10‐7)/2〕
In the first place, in the case of noble metal nanoparticles, if the primary particle diameter is D and d (Equation 1), the volume v per noble metal nanoparticle is (Equation 2). When the density of the noble metal is ρ (g / cm 3 ), the mass w of one particle is expressed as (Equation 3).
(Equation 1) d (cm) = D (nm) × 10 −7
(Equation 2) v (cm 3 ) = (4π / 3) (d / 2) 3
= (4π / 3) [(D × 10 −7 ) / 2] 3
(Expression 3) w = ρ × v = ρ × (4π / 3) [(D × 10 −7 ) / 2] 3

他方、粒子1個当たりの表面積sは、(数4)と表され、したがって、比表面積Sは、(数5)であるから、比表面積Sと1次粒子径Dとの間には、(数6)なる関係式が成立する。
(数4)s(cm)=4π(d/2)=4π〔(D×10‐7)/2〕〕
(数5)S(m/g)=s×10‐4/w
(数6)S=s×10‐4/w=〔s×10‐4/(ρv)〕=10‐4{4π(d/2)/〔ρ(4π/3)(d/2)〕}=10‐4〔3/ρ(d/2)〕=10‐4〔6/ρ(D×10‐7)〕=6×10/ρD
On the other hand, the surface area s per particle is expressed by (Equation 4), and therefore the specific surface area S is (Equation 5). Therefore, between the specific surface area S and the primary particle diameter D, ( The relational expression (6) holds.
(Equation 4) s (cm 2 ) = 4π (d / 2) 2 = 4π [(D × 10 −7 ) / 2]] 2
(Expression 5) S (m 2 / g) = s × 10 −4 / w
(Formula 6) S = s × 10 −4 / w = [s × 10 −4 / (ρv)] = 10 −4 {4π (d / 2) 2 / [ρ (4π / 3) (d / 2) 3 ]} = 10 −4 [3 / ρ (d / 2)] = 10 −4 [6 / ρ (D × 10 −7 )] = 6 × 10 3 / ρD

白金の場合、ρ=21.45cm/gだから、(数7)なる関係が得られる。また、Ruの場合、ρ=12.1cm/gだから、(数8)なる関係が得られる。
(数7)S(m/g)=(6×10)/21.45/D=280/D(nm)
(数8)S(m/g)=(6×10)/12.1/D=496/D(nm)
In the case of platinum, since ρ = 21.45 cm 3 / g, the relationship of (Equation 7) is obtained. In the case of Ru, since ρ = 12.1 cm 3 / g, the relationship of (Equation 8) is obtained.
(Expression 7) S (m 2 / g) = (6 × 10 4 ) /2.45/D=280/D (nm)
(Equation 8) S (m 2 / g) = (6 × 10 4 ) /12.1/D=496/D (nm)

即ち、1次粒子径が同じくD=4.0nmであっても、白金の比表面積は高々S=70m/gであるのに対し、RuはS=124m/gもの高い比表面積を有する。1次粒子径D=4.0nmで原子比1:1のPt‐Ru合金ならば、1次粒子径D=4.0nm
であっても比表面積は概算S=97m/gと比較的高い値になると推算される。
That is, even when the primary particle diameter is D = 4.0 nm, the specific surface area of platinum is at most S = 70 m 2 / g, whereas Ru has a specific surface area as high as S = 124 m 2 / g. . For a Pt—Ru alloy with a primary particle size D = 4.0 nm and an atomic ratio of 1: 1, the primary particle size D = 4.0 nm
Even so, the specific surface area is estimated to be a relatively high value of approximately S = 97 m 2 / g.

特許文献2の請求項及び明細書には、形式的に高い比表面積の白金ブラックの記載が読み取れるが、Pt‐Ru合金が主要な発明であり、70m/gを超えるような高比表面積の白金ブラックの実施例は教示していない。 The claims and specifications of Patent Document 2 can read the description of platinum black with a high specific surface area formally, but Pt-Ru alloy is the main invention and has a high specific surface area exceeding 70 m 2 / g. Examples of platinum black are not taught.

上記のとおり、70m/gを超えるような高比表面積の白金ブラック及びそれを得るための製造方法については実用化された従来技術としてほとんど存在せず、したがって、白金ブラックが有する前記の潜在的メリットが十分生かされることはなかった。そこで、本発明の目的は、70m/gを超える高比表面積を有する高活性な白金ブラック触媒粉末、それを分散したコロイド、及びそれらの実用的な製造方法を提供することである。 As described above, platinum black having a high specific surface area exceeding 70 m 2 / g and a production method for obtaining the same have hardly existed as a prior art that has been put to practical use. The merit was not fully utilized. Accordingly, an object of the present invention is to provide a highly active platinum black catalyst powder having a high specific surface area exceeding 70 m 2 / g, a colloid in which it is dispersed, and a practical production method thereof.

本発明者らは、上記の課題を解決するために、鋭意検討した結果、製造中間体としてヘキサヒドロキソ白金酸のナノコロイドを用いることで高比表面積を有する白金ブラックができることを見出し、本発明を完成させた。すなわち、本発明に係る白金ブラック粉末は、80m/g以上の比表面積を有することを特徴とする。さらに本発明に係る白金ブラック粉末は、90m/g以上の比表面積を有することを特徴とする。また、本発明に係る白金ブラック粉末は、全細孔容積が0.038cm/g以上であることを特徴とする。 As a result of intensive investigations to solve the above problems, the present inventors have found that platinum black having a high specific surface area can be obtained by using a nanocolloid of hexahydroxoplatinic acid as a production intermediate. Completed. That is, the platinum black powder according to the present invention has a specific surface area of 80 m 2 / g or more. Furthermore, the platinum black powder according to the present invention is characterized by having a specific surface area of 90 m 2 / g or more. The platinum black powder according to the present invention is characterized in that the total pore volume is 0.038 cm 3 / g or more.

本発明に係る白金ブラック粉末では、元素分析による酸素の乾燥質量換算の含有率が3.5質量%以上7.0%質量以下であることが好ましい。   In the platinum black powder according to the present invention, it is preferable that the content of oxygen in terms of dry mass by elemental analysis is 3.5% by mass or more and 7.0% by mass or less.

本発明に係る白金ブラック粉末では、元素分析による不純物として含有される塩素及びアルカリ金属の乾燥質量換算の含有率が、いずれも500ppm以下であることが好ましい。   In the platinum black powder according to the present invention, it is preferable that the dry mass conversion contents of chlorine and alkali metal contained as impurities by elemental analysis are both 500 ppm or less.

本発明に係る白金ブラック粉末では、粉末法X線回折で検出される白金含有種が立方晶白金のみであり、そのPt(220)結晶子サイズが3.0nm以下であることが好ましい。   In the platinum black powder according to the present invention, it is preferable that the platinum-containing species detected by powder X-ray diffraction is only cubic platinum, and the Pt (220) crystallite size is 3.0 nm or less.

本発明に係る白金ブラックのコロイドは、本発明に係る白金ブラック粉末がプロトン性極性溶媒に分散させられた白金ブラックのコロイドであって、動的光散乱法で測定される粒子径0.1nm〜10000nmの領域の粒度分布において、単一ピークの粒度分布曲線を有し、平均粒子径が250nm以下で、且つ多分散度指数が0.15以下の粒度分布を有することを特徴とする。   The colloid of platinum black according to the present invention is a colloid of platinum black in which the platinum black powder according to the present invention is dispersed in a protic polar solvent, and the particle diameter measured by a dynamic light scattering method is 0.1 nm to The particle size distribution in the region of 10,000 nm has a particle size distribution curve having a single peak, an average particle size of 250 nm or less, and a polydispersity index of 0.15 or less.

本発明に係る白金ブラックのコロイドは、ゼータ電位がマイナス40mV以下であることが好ましい。   The colloid of platinum black according to the present invention preferably has a zeta potential of minus 40 mV or less.

本発明に係る白金ブラック粉末の製造方法は、液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、前記ナノコロイドに還元剤を添加して前記ナノコロイドを還元し、白金含有コロイドを形成する還元工程と、前記白金含有コロイドをろ過し純水洗浄する洗浄工程と、洗浄した白金含有コロイドを乾燥する乾燥工程と、
を有することを特徴とする。
The method for producing a platinum black powder according to the present invention includes a nanocolloid generation step of generating a nanocolloid of hexahydroxoplatinic acid in a liquid phase, a reducing agent added to the nanocolloid to reduce the nanocolloid, A reduction step of forming a colloid-containing colloid, a washing step of filtering the platinum-containing colloid and washing with pure water, a drying step of drying the washed platinum-containing colloid,
It is characterized by having.

本発明に係る白金ブラック粉末の製造方法では、前記還元工程の後に、前記白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することが好ましい。   The method for producing platinum black powder according to the present invention preferably further includes an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step.

本発明に係る白金ブラックコロイドの製造方法は、液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、前記ナノコロイドに還元剤を添加して前記ナノコロイドを還元し、白金含有コロイドを形成する還元工程と、前記白金含有コロイドをろ過し純水洗浄する洗浄工程と、洗浄した白金含有コロイドを溶媒に分散する分散工程と、を有することを特徴とする。   The method for producing a platinum black colloid according to the present invention includes a nanocolloid generating step of generating a nanocolloid of hexahydroxoplatinic acid in a liquid phase, a reducing agent added to the nanocolloid to reduce the nanocolloid, A reduction step of forming a colloid containing, a washing step of filtering the platinum-containing colloid and washing with pure water, and a dispersion step of dispersing the washed platinum-containing colloid in a solvent.

本発明に係る白金ブラックコロイドの製造方法では、前記還元工程の後に、前記白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することが好ましい。   The method for producing a platinum black colloid according to the present invention preferably further includes an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step.

本発明に係る白金ブラック粉末は、70m/gを超える高比表面積を有するため、高活性な白金ブラック触媒粉末として、前記の潜在的メリット、すなわち、(1)活性種である白金ナノ粒子が担体の細孔内部に埋設しない為に白金の利用効率を高められること、(2)担持触媒の担体が腐食、劣化するような反応条件においても、白金ブラックは腐食・劣化に対する耐久性が高いこと、(3)特に電極触媒の用途では、触媒層の厚さを担持触媒の場合と比べて大幅に薄く形成できることから物質輸送を良くし、且つ、触媒層を電解質膜の近傍に局在化できるために高性能な電極を形成できること、が実現可能である。本発明に係る白金ブラック粉末の製造方法によって、70m/gを超える高比表面積のものが提供できる。本発明に係る白金ブラックはプロトン性極性溶媒に分散しやすく、こうして得られる本発明の白金ブラックのコロイドは、ゼータ電位の絶対値が大きく粒度分布がシャープな為、コロイドとしての安定性が高い。 Since the platinum black powder according to the present invention has a high specific surface area exceeding 70 m 2 / g, as the highly active platinum black catalyst powder, the above-mentioned potential merit, that is, (1) platinum nanoparticles which are active species are The platinum utilization efficiency can be improved because it is not embedded in the pores of the support, and (2) platinum black has high resistance to corrosion and deterioration even under reaction conditions where the support of the supported catalyst corrodes and deteriorates. (3) Especially in the use of an electrocatalyst, the thickness of the catalyst layer can be significantly reduced compared to the case of the supported catalyst, so that mass transport is improved and the catalyst layer can be localized in the vicinity of the electrolyte membrane. Therefore, it is possible to form a high-performance electrode. The method for producing platinum black powder according to the present invention can provide a high specific surface area exceeding 70 m 2 / g. The platinum black according to the present invention is easily dispersed in a protic polar solvent, and the thus obtained platinum black colloid of the present invention has a high absolute value of zeta potential and a sharp particle size distribution, and therefore has high stability as a colloid.

実施例1のナノコロイド生成工程終了後に得られたヘキサヒドロキソ白金酸ナノコロイドの電界放出型走査電子顕微鏡による観察画像である。It is an observation image by the field emission type | mold scanning electron microscope of the hexahydroxo platinum acid nanocolloid obtained after completion | finish of the nanocolloid production | generation process of Example 1. FIG. 実施例1で得られた白金ブラックの透過電子顕微鏡TEMによる観察画像である。2 is an observation image of platinum black obtained in Example 1 with a transmission electron microscope TEM.

以下本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.

まず、本実施形態に係る白金ブラック粉末の製造方法について説明する。本実施形態に係る白金ブラック粉末の製造方法(第一形態)は、液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、ナノコロイドに還元剤を添加してナノコロイドを還元し、白金含有コロイドを形成する還元工程と、白金含有コロイドをろ過し純水洗浄する洗浄工程と、洗浄した白金含有コロイドを乾燥する乾燥工程と、を有する。   First, a method for producing platinum black powder according to the present embodiment will be described. The method for producing platinum black powder according to the present embodiment (first form) includes a nanocolloid generation step of forming a nanocolloid of hexahydroxoplatinic acid in a liquid phase, and a nanocolloid obtained by adding a reducing agent to the nanocolloid. A reduction step of reducing and forming a platinum-containing colloid, a washing step of filtering the platinum-containing colloid and washing with pure water, and a drying step of drying the washed platinum-containing colloid.

(ナノコロイド生成工程)
本工程で使用するヘキサヒドロキソ白金酸は、公知の物質であり、ヘキサヒドロキソ白金酸の製法も特許文献3又は4に教示される通り公知である。また特許文献5、6又は7が教示する如く、ヘキサヒドロキソ白金酸をアミン溶液に溶解し、可溶化することも公知である。
(Nano colloid production process)
Hexahydroxoplatinic acid used in this step is a known substance, and a method for producing hexahydroxoplatinic acid is also known as taught in Patent Document 3 or 4. It is also known that hexahydroxoplatinic acid is dissolved in an amine solution and solubilized, as taught by Patent Document 5, 6 or 7.

ヘキサヒドロキソ白金酸のナノコロイドは、ヘキサヒドロキソ白金酸のアミン溶液又はヘキサヒドロキソ白金酸のナトリウム塩若しくはカリウム塩の希薄溶液を調製し、十分激しく攪拌しながらこれに中和剤の希薄溶液を滴下若しくは噴霧添加することによって得られる。好ましくは、ヘキサヒドロキソ白金酸のアミン溶液である。または、中和剤の希薄溶液を十分激しく攪拌しながらこれにヘキサヒドロキソ白金酸のアミン溶液又はヘキサヒドロキソ白金酸ナトリウムの塩若しくはカリウム塩の希薄溶液を滴下若しくは噴霧添加することによって得られる。好ましくは、ヘキサヒドロキソ白金酸のアミン溶液である。ここで、十分激しい攪拌とは、反応液の液面が激しく波打つ状態の攪拌であり、攪拌子又は攪拌羽根の回転速度は通常100rpm〜400rpm、好ましくは250rpm〜350rpmである。   The hexahydroxoplatinic acid nanocolloid is prepared by preparing an amine solution of hexahydroxoplatinic acid or a dilute solution of sodium or potassium salt of hexahydroxoplatinic acid and adding a dilute solution of the neutralizing agent dropwise or while stirring vigorously. Obtained by spray addition. An amine solution of hexahydroxoplatinic acid is preferable. Alternatively, it can be obtained by adding dropwise or spraying a dilute solution of hexahydroxoplatinic acid or a dilute solution of sodium salt or potassium salt of hexahydroxoplatinate to a dilute solution of the neutralizing agent sufficiently vigorously. An amine solution of hexahydroxoplatinic acid is preferable. Here, sufficiently vigorous stirring is stirring in a state where the liquid level of the reaction solution is undulating, and the rotational speed of the stirring bar or stirring blade is usually 100 rpm to 400 rpm, preferably 250 rpm to 350 rpm.

中和剤としては各種の酸が用いられるが、好適には、酢酸やプロピオン酸等のカルボン酸又は硝酸である。また、アミンとしては各種のアミンが用いられるが、好適には2エタノールアミンである。溶媒としては水、メタノール、エタノール等の各種溶媒が用いられるが、好適には水である。   Various acids are used as the neutralizing agent, and preferably a carboxylic acid such as acetic acid or propionic acid, or nitric acid. Various amines are used as the amine, and 2-ethanolamine is preferred. As the solvent, various solvents such as water, methanol and ethanol are used, and water is preferred.

滴下の条件は、15℃から30℃程度の室温で、滴下時間は通常10分から3時間程度、好ましくは20分〜1時間であり、ゆっくりと一滴ずつ滴下する。滴下の間隔は、液滴の径にもよるが通常1〜60秒おき、好適には5〜20秒おきである。滴下の代わりに、相当する流速で、噴霧ノズルから噴霧させて添加しても良い。攪拌される反応液中の基質の濃度は、通常0.1mmol/L〜50mmol/L、好ましくは1mmol/L〜20mmol/Lであり、滴下される他方の基質の濃度は、通常1mmol/L〜1mol/L、好ましくは10mmol/L〜200mmol/Lである。用いる中和剤の量は、滴下終了時のpHが略中性、即ち、通常5.3〜8.0、好ましくは5.7〜7.8となるように選択される。   The conditions for dropping are room temperature of about 15 ° C. to 30 ° C., and the dropping time is usually about 10 minutes to 3 hours, preferably 20 minutes to 1 hour. The interval of dropping is usually 1 to 60 seconds, preferably 5 to 20 seconds, depending on the diameter of the droplets. Instead of dropping, it may be added by spraying from a spray nozzle at a corresponding flow rate. The concentration of the substrate in the reaction solution to be stirred is usually 0.1 mmol / L to 50 mmol / L, preferably 1 mmol / L to 20 mmol / L, and the concentration of the other substrate added dropwise is usually 1 mmol / L to 1 mol / L, preferably 10 mmol / L to 200 mmol / L. The amount of the neutralizing agent to be used is selected so that the pH at the end of dropping is substantially neutral, that is, usually 5.3 to 8.0, preferably 5.7 to 7.8.

得られるヘキサヒドロキソ白金酸ナノコロイドの一次粒子径は、通常0.5nm〜3.0nmであり、好ましくは0.5nm〜2.0nmである。二次粒子径は通常50〜200nm、好ましくは50〜100nmである。なお、本明細書においては、コロイドの一次粒子径は、高分解能透過電子顕微鏡(TEM)又は電界放出型走査電子顕微鏡(FE‐SEM)による形態観察で求められる個数平均粒子径を指す。粉末法X回折で求められる結晶子径は、通常、これらの電子顕微鏡で観察される一次粒子径とほぼ同等である。またコロイドの二次粒子の粒度分布は、動的光散乱(DPS)法で測定され、その平均粒子径及び多分散度係数としては、光子相関法で求められるZ‐Average及びPDIを用いる。   The primary particle diameter of the resulting hexahydroxoplatinic acid nanocolloid is usually 0.5 nm to 3.0 nm, preferably 0.5 nm to 2.0 nm. The secondary particle size is usually 50 to 200 nm, preferably 50 to 100 nm. In the present specification, the primary particle diameter of the colloid refers to the number average particle diameter determined by morphological observation with a high-resolution transmission electron microscope (TEM) or a field emission scanning electron microscope (FE-SEM). The crystallite size determined by powder method X diffraction is usually almost the same as the primary particle size observed with these electron microscopes. In addition, the particle size distribution of the secondary particles of the colloid is measured by a dynamic light scattering (DPS) method, and Z-Average and PDI obtained by the photon correlation method are used as the average particle size and polydispersity coefficient.

(還元工程)
本工程では、ナノコロイド生成工程で得られたヘキサヒドロキソ白金酸ナノコロイドに還元剤を添加してIV価白金を0価へ還元する。
(Reduction process)
In this step, a reducing agent is added to the hexahydroxoplatinic acid nanocolloid obtained in the nanocolloid production step to reduce IV valent platinum to zero valence.

還元剤としては、ホルマリン、蟻酸、抱水ヒドラジン、クエン酸、アスコルビン酸等の従来から知られた液相還元剤や、コロイド中への水素含有ガスバブリングが用いられるが、好適には蟻酸である。還元反応の条件は、ナノコロイド生成工程で得られたヘキサヒドロキソ白金酸ナノコロイドが0価に還元され、且つ、生成した白金ナノコロイドが凝集しない条件を、用いる還元剤の種類と濃度に応じて選択する。還元剤が液相の場合は、還元剤溶液中の還元剤の濃度は、通常10mmol/L〜10mol/L、好ましくは100mmol/L〜1.0mol/Lである。液相還元剤を添加する際の雰囲気には限定されないが、大気開放系や、酸素含有ガス雰囲気下、例えば合成空気の流通下で行うことが好ましい。窒素やアルゴン等不活性ガス雰囲気下で液相還元を行うと比表面積が抑制されることがある。還元剤が水素含有ガスの場合は、水素濃度は通常1%〜100%、好ましくは10%〜50%であり、残部は窒素、アルゴン又はヘリウムであり、好ましくは窒素である。   As the reducing agent, conventionally known liquid phase reducing agents such as formalin, formic acid, hydrazine hydrate, citric acid, ascorbic acid and hydrogen-containing gas bubbling into the colloid are used, but formic acid is preferred. . The conditions for the reduction reaction are the conditions under which the hexahydroxoplatinic acid nanocolloid obtained in the nanocolloid production step is reduced to zero and the produced platinum nanocolloid does not aggregate depending on the type and concentration of the reducing agent used. select. When the reducing agent is in a liquid phase, the concentration of the reducing agent in the reducing agent solution is usually 10 mmol / L to 10 mol / L, preferably 100 mmol / L to 1.0 mol / L. Although it is not limited to the atmosphere at the time of adding a liquid phase reducing agent, it is preferable to carry out by the open air system or oxygen-containing gas atmosphere, for example, the circulation of synthetic air. When liquid phase reduction is performed in an inert gas atmosphere such as nitrogen or argon, the specific surface area may be suppressed. When the reducing agent is a hydrogen-containing gas, the hydrogen concentration is usually 1% to 100%, preferably 10% to 50%, and the balance is nitrogen, argon or helium, preferably nitrogen.

還元工程の反応温度は通常4℃〜100℃、好ましくは20℃〜98℃である。添加する還元剤の量はIV価の白金を0価へ還元するのに必要な化学量論量に対し通常0.5〜2.0当量であり、好ましくは0.7〜1.5当量である。還元剤の添加に要する時間は通常5分〜4時間、好ましくは20分〜2時間であり、滴下する場合は一滴ずつゆっくり滴下することが好ましい。滴下の間隔は液滴の径にも依るが通常1〜60秒おき、好適には5〜20秒おきである。滴下する代わりに噴霧ノズルを用いて、相当する添加速度で噴霧添加しても良い。添加後も一定温度で攪拌を保持する還元反応保持時間は、通常5分〜24時間、好ましくは20分〜8時間である。還元反応の進行度は、最初のヘキサヒドロキソ白金酸のナノコロイドの乳白色が、次第にグレー化し、最後は真黒なブラックへと変化する色調変化で追跡できる。   The reaction temperature in the reduction step is usually 4 ° C to 100 ° C, preferably 20 ° C to 98 ° C. The amount of the reducing agent to be added is usually 0.5 to 2.0 equivalents, preferably 0.7 to 1.5 equivalents, relative to the stoichiometric amount necessary to reduce IV valent platinum to zero valence. is there. The time required for the addition of the reducing agent is usually 5 minutes to 4 hours, preferably 20 minutes to 2 hours. The interval of dropping depends on the diameter of the droplet, but is usually every 1 to 60 seconds, preferably every 5 to 20 seconds. Instead of dripping, spray addition may be performed at a corresponding addition rate using a spray nozzle. The reduction reaction holding time for holding stirring at a constant temperature after the addition is usually 5 minutes to 24 hours, preferably 20 minutes to 8 hours. The degree of progress of the reduction reaction can be followed by a change in color tone, in which the milky white color of the first colloidal hexahydroxoplatinic acid gradually turns gray and finally turns to black black.

(洗浄工程)
本工程では、還元工程で得られた白金含有コロイドをろ過し、純水洗浄する。ろ過は、ナノ粒子のろ過漏れを防ぐために最大通過粒子サイズが0.1〜0.2μmのメンブレンフィルターを用いる。ろ過後ケークは電導度1μs/cm以下、好ましくは0.8μs/cm以下の、脱イオン水又は超純水、好ましくは同温水にて、濾液の電導度が2.0μs/cm以下、好ましくは1.0μs/cm以下となるまで洗浄する。
(Washing process)
In this step, the platinum-containing colloid obtained in the reduction step is filtered and washed with pure water. Filtration uses a membrane filter having a maximum passing particle size of 0.1 to 0.2 μm in order to prevent filtration leakage of the nanoparticles. The post-filtration cake has an electrical conductivity of 1 μs / cm or less, preferably 0.8 μs / cm or less, in deionized water or ultrapure water, preferably the same temperature water, and the filtrate has a conductivity of 2.0 μs / cm or less, preferably Wash until 1.0 μs / cm or less.

(乾燥工程)
本工程では、洗浄した白金含有コロイドを乾燥する。具体的には、洗浄後のろ過ケークを空気中で吸引風乾させ、水分率45%以下まで、好ましくは水分率42%〜35%まで、乾燥させる。水分率45%以下まで風乾すれば、濾紙から掻き取ったり薬匙で秤量したり粉末として取り扱うことが可能である。水分率が45%を超えて高いと粘稠な泥状物となり、取り扱いが困難となる可能性がある。本発明の高比表面積の白金ブラックは活性が高く、乾燥による発火の危険性を避けるには、このようなウェットケークで保存することが好ましい。その場合は保存容器を密閉し水分の揮散による水分率の経時変化を防ぐ必要がある。他方、風乾後の固体は、更に乾燥機やデシケーター中で水分率4%程度まで乾燥されてもよい。このような乾燥状態では、水分率の経時変化を殆ど無視でき、保存・取り扱いが容易であるが、乾燥条件の管理には注意を要する。乾燥の雰囲気には依存しないが、空気中の乾燥が好ましい。乾燥時の温度は、白金粒子の凝集を防ぐために、できるだけ低温で行う。好ましくは80℃以下、更に好ましくは60℃以下である。安全性の観点から、最終の水分率は、本発明の白金ブラックの全細孔容積相当の水分率未満にしないことが好ましい。例えば、全細孔容積0.04cm/gの白金ブラックの好ましい水分率の下限は4質量%である。これ以上に乾燥させると取り扱い中に発火する可能性がある。
(Drying process)
In this step, the washed platinum-containing colloid is dried. Specifically, the filter cake after washing is sucked and air-dried in the air, and dried to a moisture content of 45% or less, preferably 42 to 35%. If it is air-dried to a moisture content of 45% or less, it can be scraped off from filter paper, weighed with a medicine basket, or handled as a powder. If the moisture content is higher than 45%, it becomes a viscous mud and may be difficult to handle. The high specific surface area platinum black of the present invention has high activity, and it is preferable to store it in such a wet cake in order to avoid the risk of ignition due to drying. In that case, it is necessary to seal the storage container and prevent the moisture content from changing over time due to the evaporation of moisture. On the other hand, the solid after air drying may be further dried to a moisture content of about 4% in a dryer or desiccator. In such a dry state, a change in moisture content with time can be almost ignored, and storage and handling are easy, but care must be taken in managing the drying conditions. Although it does not depend on the drying atmosphere, drying in air is preferable. The drying temperature is as low as possible in order to prevent aggregation of platinum particles. Preferably it is 80 degrees C or less, More preferably, it is 60 degrees C or less. From the viewpoint of safety, the final moisture content is preferably not less than the moisture content equivalent to the total pore volume of the platinum black of the present invention. For example, the lower limit of the preferable moisture content of platinum black having a total pore volume of 0.04 cm 3 / g is 4% by mass. Drying more than this may cause fire during handling.

(酸素処理工程)
本実施形態に係る白金ブラック粉末の製造方法では、還元工程の後に、白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することが好ましい(第二形態)。本工程は、より好ましい製造方法とするための付加的工程であり、還元工程で得られる白金含有コロイドに空気乃至酸素ガスを吹き込み、白金ナノ粒子を高分散化処理する。還元工程で得られる白金ナノ粒子の分散液を攪拌しながら、液中に空気又は酸素ガスを、例えば流速100mL/min〜10L/min、好ましくは流速200mL/min〜2L/minで、例えば10分〜4時間、好ましくは20分〜2時間、吹き込む。その後、洗浄工程、乾燥工程へと進む。
(Oxygen treatment process)
In the method for producing platinum black powder according to this embodiment, it is preferable to further include an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step (second embodiment). This step is an additional step for obtaining a more preferable production method, and air or oxygen gas is blown into the platinum-containing colloid obtained in the reduction step to highly disperse the platinum nanoparticles. While stirring the dispersion of platinum nanoparticles obtained in the reduction step, air or oxygen gas is introduced into the liquid, for example, at a flow rate of 100 mL / min to 10 L / min, preferably at a flow rate of 200 mL / min to 2 L / min, for example, 10 minutes. Blow for ~ 4 hours, preferably 20 minutes to 2 hours. Then, it progresses to a washing process and a drying process.

空気又は酸素ガスの吹き込みは、例えば液温4℃〜100℃、好適には液温15℃〜60℃、更に好適には20℃〜40℃で行われる。酸素処理工程において、空気若しくは酸素ガスの代わりに窒素やアルゴンガス等の不活性ガスを用いると、本実施形態に係る高い比表面積の白金ブラックは得られ難い。水素ガスを吹き込むと、比表面積は却って大幅に減少することがある。白金含有コロイドの空気又は酸素ガスとの接触による白金ブラックの比表面積増大効果は、もともと、洗浄・風乾後の水分率40%程度のウェットケークの白金ブラックの比表面積が、1ヶ月から半年の空気中保存後、驚くべきことに1割〜2割も増大していることを本発明者等が見出したことに由来する。このような比表面積の増大は、乾燥状態で保存された白金ブラックや、ウェットケークでも不活性ガス置換状態で保存された白金ブラックには見られなかった。このような水分と酸素とが共存する条件で、白金ブラックの比表面積が増大する理由は目下不明ではあるが、酸素処理が白金ナノ粒子の表面に酸素含有種を吸着させることによって白金ナノ粒子の分散性の向上に寄与しているものと推察される。   The blowing of air or oxygen gas is performed, for example, at a liquid temperature of 4 ° C to 100 ° C, preferably at a liquid temperature of 15 ° C to 60 ° C, and more preferably at 20 ° C to 40 ° C. If an inert gas such as nitrogen or argon gas is used instead of air or oxygen gas in the oxygen treatment process, it is difficult to obtain platinum black having a high specific surface area according to this embodiment. When hydrogen gas is blown in, the specific surface area may be significantly reduced. The effect of increasing the specific surface area of platinum black by the contact of platinum-containing colloids with air or oxygen gas is that the specific surface area of wet black platinum black with a moisture content of about 40% after cleaning and air-drying is from 1 month to 6 months. This is because the present inventors have found that surprisingly 10 to 20% increase after storage in the middle. Such an increase in specific surface area was not observed in platinum black stored in a dry state or platinum black stored in an inert gas substitution state even in a wet cake. The reason why the specific surface area of platinum black increases under such conditions in which moisture and oxygen coexist is currently unknown, but oxygen treatment causes the adsorption of oxygen-containing species on the surface of the platinum nanoparticles, thereby allowing the platinum nanoparticles to adsorb. It is assumed that it contributes to the improvement of dispersibility.

上記の本実施形態に係る白金ブラック粉末の製造方法(第一形態)によれば、80m/g以上のBET比表面積を有する白金ブラック粉末が得られる。更に酸素処理工程を付加的に加えた製造方法(第二形態)によれば、90m/g以上のBET比表面積を有する白金ブラック粉末が得られ易い。中間体ヘキサヒドロキソ白金酸ナノコロイドの1次粒子径0.5nm〜2.0nmを、できる限り成長させずに還元して白金ブラックに転換することによって、本発明の製造方法の白金ブラックの比表面積は100m/g以上、例えば、140m/g、更には190m/g程度まで達成できる。また、本発明の製法に依れば全細孔容積が0.038cm/g以上である白金ブラック粉末が得られる。好ましくは全細孔容積が0.040cm/g以上である。また、元素分析による酸素の乾燥質量換算の含有率が3.5質量%以上7.0質量%以下であることが好ましい。更に好ましくは、4.0質量%以上6.5質量%以下である。ここで、白金ブラック中の元素Aの乾燥質量換算の含有率とは水分を全く含まない白金ブラックの質量を分母とする含有率であり、(数9)より求める。
(数9)
乾燥質量換算の含有率(%)=(白金ブラック中の元素Aの質量/水分を全く含まないとしたときの白金ブラックの質量)×100
According to the platinum black powder manufacturing method (first embodiment) according to the present embodiment, a platinum black powder having a BET specific surface area of 80 m 2 / g or more is obtained. Furthermore, according to the production method (second embodiment) in which an oxygen treatment step is additionally added, a platinum black powder having a BET specific surface area of 90 m 2 / g or more is easily obtained. The specific surface area of platinum black in the production method of the present invention is reduced by reducing the primary particle size of the intermediate hexahydroxoplatinate nanocolloid from 0.5 nm to 2.0 nm without growing as much as possible to platinum black. Can be achieved to 100 m 2 / g or more, for example, 140 m 2 / g, and further up to about 190 m 2 / g. Moreover, according to the manufacturing method of this invention, the platinum black powder whose total pore volume is 0.038 cm < 3 > / g or more is obtained. Preferably, the total pore volume is 0.040 cm 3 / g or more. Moreover, it is preferable that the content rate of the dry mass conversion of oxygen by elemental analysis is 3.5 mass% or more and 7.0 mass% or less. More preferably, it is 4.0 mass% or more and 6.5 mass% or less. Here, the content in terms of dry mass of element A in platinum black is a content with the mass of platinum black not containing any water as a denominator, and is obtained from (Equation 9).
(Equation 9)
Content (%) in terms of dry mass = (mass of element A in platinum black / mass of platinum black when no moisture is contained) × 100

白金ブラックの水分率は、10−2kPa以下の真空度にて60℃、2時間の真空乾燥処理の前後の質量変化から算出される。なお、白金ブラック粉末に含まれる酸素は、原子状酸素、吸着酸素分子、過酸化物、酸素ラジカル、窒素酸化物等色々な形態をとりえ、前記組成は酸素の元素分析値である。酸素含有率は酸素・窒素分析装置、例えばLECO・ジャパン製、TC−600等で分析される。更に、得られた白金ブラック粉末は、粉末法X線回折で検出される白金含有種が立方晶白金のみであり、そのPt(220)結晶子サイズが3.0nm以下であるような一次粒子径の小さい白金ブラック粉末である。 The moisture content of platinum black is calculated from the mass change before and after the vacuum drying treatment at 60 ° C. for 2 hours at a vacuum degree of 10 −2 kPa or less. The oxygen contained in the platinum black powder can take various forms such as atomic oxygen, adsorbed oxygen molecules, peroxides, oxygen radicals, nitrogen oxides, and the composition is an elemental analysis value of oxygen. The oxygen content is analyzed by an oxygen / nitrogen analyzer such as TC-600 manufactured by LECO Japan. Further, the obtained platinum black powder has a primary particle size such that the platinum-containing species detected by powder X-ray diffraction is only cubic platinum, and the Pt (220) crystallite size is 3.0 nm or less. Is a small platinum black powder.

本実施形態で得られた白金ブラック粉末は、不純物として含有される塩素及びアルカリ金属の乾燥質量換算の含有量が、いずれも500ppm以下であることが好ましい。塩素及びアルカリ金属はICP(高周波誘導結合プラズマ)発光分析装置で分析される。不純物として含有される塩素及びアルカリ金属を低下させるためには、塩素及びアルカリ金属の含有率がそれぞれ500ppm以下と低いヘキサヒドロキソ白金酸の結晶を出発原料としてそのアミン溶液を用いることが好ましい。塩素及びアルカリ金属の含有率がそれぞれ500ppm以下のヘキサヒドロキソ白金酸の結晶を得るには、例えば、特許文献3の実施例1の方法に従って製造し、不純物の含有率を抑制するために洗浄工程で、文献記載の方法よりも一層入念に、例えばろ過後ケークを電導度0.8μs/cm以下の純温水で濾液の電導度が1.0μs/cm以下となるまで、洗浄することによって得られる。このようなヘキサヒドロキソ白金酸のアミン溶液を出発原料とし、本発明の製造方法に従って、中和剤や還元剤としてハロゲン化物やアルカリ金属化合物を一切使用しなければ、不純物として含有される塩素及びアルカリ金属の乾燥質量換算の含有量が、いずれも500ppm以下の白金ブラックが得られる。塩素イオンやアルカリ金属イオンは、白金ブラックを触媒として使用する際に厄介な被毒物質となることがあり含有率はできるだけ低いことが望ましい。   The platinum black powder obtained in this embodiment preferably has a dry mass equivalent content of chlorine and alkali metals contained as impurities of 500 ppm or less. Chlorine and alkali metals are analyzed with an ICP (High Frequency Inductively Coupled Plasma) emission spectrometer. In order to reduce chlorine and alkali metal contained as impurities, it is preferable to use an amine solution starting from crystals of hexahydroxoplatinic acid having a chlorine and alkali metal content as low as 500 ppm or less, respectively. In order to obtain crystals of hexahydroxoplatinic acid having a chlorine and alkali metal content of 500 ppm or less, for example, it is produced according to the method of Example 1 of Patent Document 3, and the washing step is performed to suppress the impurity content. More carefully than the methods described in the literature, for example, the post-filter cake is obtained by washing with pure warm water having an electric conductivity of 0.8 μs / cm or less until the filtrate has an electric conductivity of 1.0 μs / cm or less. If such an amine solution of hexahydroxoplatinic acid is used as a starting material and no halide or alkali metal compound is used as a neutralizing agent or reducing agent in accordance with the production method of the present invention, chlorine and alkali contained as impurities A platinum black having a metal dry mass equivalent content of 500 ppm or less is obtained. Chlorine ions and alkali metal ions may become troublesome poisonous substances when using platinum black as a catalyst, and the content is desirably as low as possible.

次に本実施形態に係る白金ブラックコロイドの製造法について説明する。本実施形態に係る白金ブラックコロイドの製造方法(第一形態)は、液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、前記ナノコロイドに還元剤を添加して前記ナノコロイドを還元し、白金含有コロイドを形成する還元工程と、前記白金含有コロイドをろ過し純水洗浄する洗浄工程と、洗浄した白金含有コロイドを溶媒に分散する分散工程と、を有する。ナノコロイド生成工程、還元工程及び洗浄工程については、本実施形態に係る白金ブラック粉末の製造法と同じである。洗浄工程後の白金ブラックのウェットケークを、適当な溶媒に入れて、超音波や遊星ボールミル等で分散処理することによって、粒度分布測定において、粒子径0.1nm〜10000nmの領域に単一ピークの粒度分布曲線を有し、平均粒子径が250nm以下で且つ多分散度指数が0.15以下の、シャープな粒度分布を有する白金ブラックのコロイドが得られる。分散溶媒としては、通常、水、メタノール、エタノール、n−プロパノール、イソプロパノール或いはそれらの混合物からなるプロトン性極性溶媒が用いられ、好適には水である。分散処理の時間は通常、1分間〜2時間、好適には5分間〜1時間である。分散後の濃度は、例えばドライ換算白金ブラック0.01g/L〜10.0g/Lであり、好ましくは0.10g/L〜2.0g/Lである。このコロイドのゼータ電位を測定すると、マイナス40mV以下、好ましくはマイナス45mV以下である。一般に、コロイドのゼータ電位は絶対値が40mV以上で大きいほど、コロイドとしての安定性が高いとされている。本発明の白金ブラックのコロイドは、空気中室温で少なくとも数日間、好適には例えば1ヶ月に亘って、凝集を生じることなく安定である。   Next, a method for producing a platinum black colloid according to this embodiment will be described. The method for producing a platinum black colloid according to the present embodiment (first embodiment) includes a nanocolloid production step of producing a hexahydroxoplatinic acid nanocolloid in a liquid phase, and a reducing agent added to the nanocolloid to form the nanocolloid. A reduction step of reducing the colloid to form a platinum-containing colloid, a washing step of filtering the platinum-containing colloid and washing with pure water, and a dispersion step of dispersing the washed platinum-containing colloid in a solvent. The nanocolloid generation step, reduction step, and washing step are the same as in the method for producing platinum black powder according to this embodiment. The platinum black wet cake after the washing step is placed in an appropriate solvent and dispersed with an ultrasonic wave or a planetary ball mill, etc., and in the particle size distribution measurement, a single peak is observed in the region having a particle diameter of 0.1 nm to 10000 nm. A platinum black colloid having a particle size distribution curve, an average particle size of 250 nm or less, and a polydispersity index of 0.15 or less and having a sharp particle size distribution is obtained. As the dispersion solvent, a protic polar solvent composed of water, methanol, ethanol, n-propanol, isopropanol or a mixture thereof is usually used, and preferably water. The dispersion treatment time is usually 1 minute to 2 hours, preferably 5 minutes to 1 hour. The density | concentration after dispersion | distribution is 0.01 g / L-10.0 g / L of dry conversion platinum black, for example, Preferably it is 0.10 g / L-2.0 g / L. When the zeta potential of this colloid is measured, it is minus 40 mV or less, preferably minus 45 mV or less. In general, it is said that the higher the absolute value of the colloid zeta potential is 40 mV or higher, the higher the stability as a colloid. The colloid of platinum black of the present invention is stable without agglomeration at room temperature in air for at least several days, preferably for a month, for example.

白金ブラックコロイドの他の製造法として、本実施形態に係る白金ブラック粉末を得た後、白金ブラック粉末を、適当な溶媒に入れて、超音波や遊星ボールミル等で分散処理することによって、コロイド化しても良い。この場合においても、粒度分布測定において、粒子径0.1nm〜10000nmの領域に単一ピークの粒度分布曲線を有し、平均粒子径が250nm以下で且つ多分散度指数が0.15以下の、シャープな粒度分布を有する白金ブラックのコロイドが得られる。分散溶媒の種類、分散処理の時間、及び分散後の濃度は、前段落の記載内容と同じである。   As another method for producing a platinum black colloid, after obtaining the platinum black powder according to the present embodiment, the platinum black powder is put into an appropriate solvent and dispersed by an ultrasonic wave or a planetary ball mill, thereby colloidalizing. May be. Even in this case, in the particle size distribution measurement, it has a single peak particle size distribution curve in the region of the particle size of 0.1 nm to 10000 nm, the average particle size is 250 nm or less and the polydispersity index is 0.15 or less, A colloid of platinum black having a sharp particle size distribution is obtained. The type of the dispersion solvent, the dispersion treatment time, and the concentration after dispersion are the same as those described in the previous paragraph.

前記した本実施形態に係る白金ブラックコロイドの製造法及び白金ブラックコロイドの他の製造法において、還元工程の後に、白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することが好ましい(第二形態)。この処理によって白金ブラックのコロイド粒子の分散の程度がより高くなる。本発明の白金ブラックのコロイドには、溶媒と白金ブラックの他に、パーフルオロスルフォン酸系の高分子電解質のアイオノマー、例えば商標名ナフィオン(デユポン社製)や商標名フレミオン(旭硝子製)等、を添加してもよい。アイオノマーは、白金ブラックのコロイドを調製した後にこれに添加してもよいし、白金ブラックとアイオノマーを溶媒に添加して同時に分散処理してコロイド化してもよい。アイオノマーの添加比率は、白金ブラック1に対して、例えば質量比で1:0.01〜1:10、好ましくは1:0.05〜1:2の範囲である。このようなアイオノマー添加白金ブラックコロイドは電気化学的電極形成用触媒インクとして用いられる。   In the method for producing platinum black colloid and the other method for producing platinum black colloid according to the above-described embodiment, it is preferable that the method further includes an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step. Two forms). This treatment increases the degree of dispersion of the platinum black colloidal particles. The colloid of platinum black of the present invention includes, in addition to the solvent and platinum black, an ionomer of a perfluorosulfonic acid-based polymer electrolyte, for example, trade name Nafion (manufactured by Deyupon), trade name Flemion (manufactured by Asahi Glass) It may be added. The ionomer may be added to a platinum black colloid after it has been prepared, or platinum black and ionomer may be added to a solvent and simultaneously dispersed to be colloidalized. The addition ratio of the ionomer is, for example, in a mass ratio of 1: 0.01 to 1:10, preferably 1: 0.05 to 1: 2 with respect to platinum black 1. Such an ionomer-added platinum black colloid is used as a catalyst ink for electrochemical electrode formation.

以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not construed as being limited to the examples.

実施例で用いる純水は全てイオン交換を2回行ったpH6.0〜7.0、電気伝導度0.8μs/cm以下の超純水を用いた。反応に使用するフラスコやテフロン(登録商標)攪拌羽根は使用前に王水で洗浄し、その後純水で十分濯ぎ洗いして用いた。   The pure water used in the examples was ultrapure water having a pH of 6.0 to 7.0 and an electric conductivity of 0.8 μs / cm or less, in which ion exchange was performed twice. The flask and Teflon (registered trademark) stirring blade used in the reaction were washed with aqua regia before use and then rinsed thoroughly with pure water before use.

<参考例1>ヘキサヒドロキソ白金酸2‐アミノエタノール水溶液の製造
ヘキサヒドロキソ白金酸は、特許文献3の実施例1の方法に従って次のとおり製造した。但し、ヘキサヒドロキソ白金酸の結晶は、不純物の含有率を抑制するために上記文献記載の方法よりも一層入念に洗浄した。5LナスフラスコにNaOH75.2gを入れ純水1.8Lを添加して溶解させ、加熱し沸騰させた。これに白金200g/Lを含む塩化白金酸(HPtCl)水溶液200.8gと純水70mlを加え、16時間沸騰状態を保持した。室温まで放冷後、攪拌しながら50vol%の酢酸水溶液をゆっくり滴下しpHを5.0に調整した。生じた沈殿をろ過し、純温水で濾液の電導度が1.0μs/cm以下となるまで念入りに洗浄した。室温デシケーター中で乾燥し、ヘキサヒドロキソ白金酸(HPt(OH))の白色結晶を得た。この結晶を塩酸で溶解した溶液からアルカリ金属を、また硫酸水溶液に溶解後アルミニウム還元で白金を除去した後の濾液から塩素を、それぞれICP発光分析装置(理学電機製、CIROS120)によって分析した。このヘキサヒドロキソ白金酸中の塩素及びNa含有率は白金に対して各々300ppmと450ppmであった。Na以外のアルカリ金属の濃度はICP分析の検出限界以下であった。ヘキサヒドロキソ白金酸2‐アミノエタノール水溶液は特許文献7の実施例1の記載に従い次のように製造した。白金40g相当のヘキサヒドロキソ白金酸に純水348mlを加え、白金に対し2.5倍当量の2‐アミノエタノールを加え、室温にて2時間撹拌した。撹拌終了後、更に2‐アミノエタノール2.5倍当量を加え2時間攪拌保持して、淡黄色のヘキサヒドロキソ白金酸2‐アミノエタノール水溶液を得た。白金の濃度は8.5質量%、pH11であった。
Reference Example 1 Production of Aqueous Hexahydroxoplatinic Acid 2-Aminoethanol Hexahydroxoplatinic acid was produced as follows according to the method of Example 1 of Patent Document 3. However, the crystals of hexahydroxoplatinic acid were washed more carefully than the method described in the above document in order to suppress the impurity content. To a 5 L eggplant flask, 75.2 g of NaOH was added and dissolved by adding 1.8 L of pure water, followed by heating to boiling. 200.8 g of chloroplatinic acid (H 2 PtCl 6 ) aqueous solution containing 200 g / L of platinum and 70 ml of pure water were added thereto, and the boiling state was maintained for 16 hours. After cooling to room temperature, a 50 vol% aqueous acetic acid solution was slowly added dropwise with stirring to adjust the pH to 5.0. The resulting precipitate was filtered and washed thoroughly with pure warm water until the conductivity of the filtrate was 1.0 μs / cm or less. Drying in a room temperature desiccator gave white crystals of hexahydroxoplatinic acid (H 2 Pt (OH) 6 ). An alkali metal was analyzed from a solution in which the crystals were dissolved in hydrochloric acid, and chlorine was analyzed from an filtrate obtained by dissolving platinum in an aqueous sulfuric acid solution and then removing platinum by aluminum reduction, using an ICP emission spectrometer (CIROS 120, manufactured by Rigaku Corporation). The chlorine and Na contents in the hexahydroxoplatinic acid were 300 ppm and 450 ppm, respectively, with respect to platinum. The concentration of alkali metals other than Na was below the detection limit of ICP analysis. A hexahydroxoplatinic acid 2-aminoethanol aqueous solution was prepared as described in Example 1 of Patent Document 7 as follows. 348 ml of pure water was added to hexahydroxoplatinic acid equivalent to 40 g of platinum, 2.5-fold equivalent of 2-aminoethanol was added to platinum, and the mixture was stirred at room temperature for 2 hours. After completion of stirring, 2.5 equivalents of 2-aminoethanol was further added and the mixture was stirred and maintained for 2 hours to obtain a pale yellow hexahydroxoplatinic acid 2-aminoethanol aqueous solution. The concentration of platinum was 8.5% by mass and pH 11.

<実施例1>高比表面積白金ブラックの製造(酸素処理工程を経る製法)
(ナノコロイド生成工程)
3L四つ口フラスコに純水1.2Lを入れ、これに氷酢酸1.50gの20ml純水液溶を添加した。テフロン(登録商標)羽根付きテフロン(登録商標)攪拌棒をモーターに接続し液温25℃、320rpmで回転し十分攪拌した。フラスコ内部を合成空気(ゼロエアー)でパージした。白金1.50gを含むヘキサヒドロキソ白金酸2‐アミノエタノール水溶液(Pt濃度8.5質量%)17.65gを、純水15mlに希釈し、これを滴下ロートから40分かけてゆっくり滴下した。生成した薄い乳白色の半透明なコロイドの5mlをサンプリングし、電界放出型走査電子顕微鏡FE‐SEM(日本電子製、JSM‐7600F)で1次粒子の粒子径を観察し、動的光散乱(DPS)粒度分布計(マルバーン社製、ゼータサイザーナノ)でコロイド粒子径を測定した。FE‐SEMでは図1に示すように直径0.5〜1.5nm程度の微細な1次粒子が観察され、DPS粒度分布計ではコロイド平均粒子径Z‐Average110nm、多分散度指数PDI0.110が得られ、ヘキサヒドロキソ白金酸ナノコロイドの生成を確認した。
(還元工程)
上記ヘキサヒドロキソ白金酸ナノコロイドを、空気流通下攪拌しながらマントルヒータで加熱し40分で95℃へ昇温した。95℃にて0.92mlの98%蟻酸の25ml純水溶液を滴下ロートから40分間に亘って一定の滴下速度でゆっくり滴下した。滴下終了後も、液温95℃で攪拌を40分間保持した。滴下開始から30分後にコロイドの色調はグレーに変わり、数分後に濃いブラックに変化した。色調がブラックに変化した後も液温95℃で攪拌を約10分間保持し、その後加熱を止め室温まで攪拌しながら冷却した。
(酸素処理工程)
液温を30℃まで冷却した時点で、側管から合成空気を300mL/minの流量で吹き込みながらコロイドを攪拌し、30分間保持した。
(洗浄工程)
得られたブラックのスラリーを孔径200nmのメンブレンフィルターで吸引ろ過し、ろ過ケークを冷純水、次いで温純水で洗浄し、ろ液の電導度が2.0μs/cm以下となるまで十分洗浄した。
(乾燥工程)
洗浄工程の後、2時間吸引風乾し、得られたウェットケークを蒸発皿に広げ、空気中室温で水分率4質量%まで自然乾燥させ、白金ブラック粉末1.50gを得た。
(物性測定)
この白金ブラックの0.2gをサンプリングし、ガラス製の比表面積測定管に入れ、室温で1時間真空排気後60℃で2時間、10−2kPa以下の真空度で真空排気して前処理後、比表面積測定装置(日本ベル、BELSORP‐miniII)にて比表面積測定を行った。その結果、93m/gのBET比表面積、0.043cm/gの全細孔容積を得た。またX線回折装置(リガク製、RINT2500/PC)にて粉末法X線回折測定を行ったところ、fcc白金に固有な回折パターンを示しメインーピーク(111)の回折角2θ が38.8°、(220)回折ピークから結晶子径は2.0nmと計算された。この白金ブラックを透過電子顕微鏡TEM(日立製作所製、H‐800)で観察すると、図2に示すように粒子径2.0〜3.0nmの一次粒子からなる二次粒子径180nm〜250nm程度の凝集体が観察された。この白金ブラック中のドライ換算酸素含有率は、酸素・窒素分析装置(LECO・ジャパン製、TC−600)によって、5.6質量%と分析された。またICP分析によれば塩素およびNaのドライ換算含有率はそれぞれ250ppm、200ppmであった。Na以外のアルカリ金属の含有率はICP分析の検出下限以下であった。
<Example 1> Production of high specific surface area platinum black (production method through oxygen treatment step)
(Nano colloid production process)
1.2 L of pure water was placed in a 3 L four-necked flask, and 1.50 g of glacial acetic acid in 20 ml of pure water was added thereto. A Teflon (registered trademark) stirring rod with a Teflon (registered trademark) blade was connected to a motor, and the mixture was sufficiently stirred by rotating at a liquid temperature of 25 ° C. and 320 rpm. The inside of the flask was purged with synthetic air (zero air). 17.65 g of a hexahydroxoplatinic acid 2-aminoethanol aqueous solution (Pt concentration 8.5% by mass) containing 1.50 g of platinum was diluted in 15 ml of pure water, and this was slowly dropped from a dropping funnel over 40 minutes. Sample 5ml of the thin milky white translucent colloid produced, observe the particle size of the primary particles with a field emission scanning electron microscope FE-SEM (JSM-7600F, JEOL), and perform dynamic light scattering (DPS ) Colloid particle size was measured with a particle size distribution meter (Zetasizer Nano, manufactured by Malvern). In FE-SEM, fine primary particles having a diameter of about 0.5 to 1.5 nm are observed as shown in FIG. 1, and in the DPS particle size distribution meter, colloid average particle diameter Z-Average 110 nm, polydispersity index PDI 0.110 is obtained. Obtained and confirmed the formation of hexahydroxoplatinic acid nanocolloids.
(Reduction process)
The hexahydroxoplatinic acid nanocolloid was heated with a mantle heater while stirring under air flow, and the temperature was raised to 95 ° C. in 40 minutes. At 95 ° C., 0.92 ml of 25% pure aqueous solution of 98% formic acid was slowly dropped from the dropping funnel at a constant dropping rate over 40 minutes. Even after completion of the dropping, stirring was maintained at a liquid temperature of 95 ° C. for 40 minutes. The color of the colloid changed to gray 30 minutes after the start of dropping, and changed to dark black several minutes later. After the color changed to black, stirring was maintained at a liquid temperature of 95 ° C. for about 10 minutes, and then the heating was stopped and the mixture was cooled to room temperature while stirring.
(Oxygen treatment process)
When the liquid temperature was cooled to 30 ° C., the colloid was stirred while blowing synthetic air from the side tube at a flow rate of 300 mL / min, and held for 30 minutes.
(Washing process)
The obtained black slurry was suction filtered with a membrane filter having a pore size of 200 nm, and the filter cake was washed with cold pure water and then with hot pure water, and sufficiently washed until the electric conductivity of the filtrate was 2.0 μs / cm or less.
(Drying process)
After the washing step, suction air drying was performed for 2 hours, and the obtained wet cake was spread on an evaporating dish and naturally dried to a moisture content of 4% by mass at room temperature in air to obtain 1.50 g of platinum black powder.
(Physical property measurement)
0.2 g of this platinum black was sampled, put into a glass specific surface area measuring tube, evacuated at room temperature for 1 hour, then evacuated at 60 ° C. for 2 hours and at a vacuum degree of 10 −2 kPa or less, and after pretreatment The specific surface area was measured with a specific surface area measuring apparatus (Nippon Bell, BELSORP-mini II). As a result, a BET specific surface area of 93 m 2 / g and a total pore volume of 0.043 cm 3 / g were obtained. Further, when powder method X-ray diffraction measurement was performed with an X-ray diffractometer (RINT2500 / PC, manufactured by Rigaku), a diffraction pattern unique to fcc platinum was shown, and the diffraction angle 2θ of the main peak (111) was 38.8 ° ( 220) From the diffraction peak, the crystallite diameter was calculated to be 2.0 nm. When this platinum black is observed with a transmission electron microscope TEM (manufactured by Hitachi, Ltd., H-800), as shown in FIG. 2, a secondary particle diameter of about 180 nm to 250 nm consisting of primary particles having a particle diameter of 2.0 to 3.0 nm is obtained. Aggregates were observed. The dry conversion oxygen content in the platinum black was analyzed to be 5.6% by mass using an oxygen / nitrogen analyzer (LECO Japan, TC-600). According to ICP analysis, the dry conversion contents of chlorine and Na were 250 ppm and 200 ppm, respectively. The content of alkali metals other than Na was below the lower limit of detection by ICP analysis.

<実施例2>白金ブラックコロイドの製造
実施例1で得た白金ブラック0.10gを純水50mlに加え、15分間超音波分散処理して黒色コロイドを得た。動的光散乱粒度分布計でこのコロイド粒子の粒径を測定したところ平均粒径Z‐Average195nm、多分散度指数PDI0.15であった。また、このコロイドのゼータ電位を、ゼータ電位測定装置(マルバーン社製、ゼータサイザーナノ)で測定したところ、マイナス47mVであった。
<Example 2> Production of platinum black colloid 0.10 g of platinum black obtained in Example 1 was added to 50 ml of pure water and subjected to ultrasonic dispersion treatment for 15 minutes to obtain a black colloid. When the particle size of the colloidal particles was measured with a dynamic light scattering particle size distribution meter, the average particle size was Z-Average 195 nm and the polydispersity index PDI was 0.15. In addition, the zeta potential of this colloid was measured with a zeta potential measuring device (manufactured by Malvern, Zeta Sizer Nano) and found to be minus 47 mV.

<実施例3>高比表面積白金ブラックの製造(酸素処理工程を経ない製法)
(ナノコロイド生成工程)
純水1.2Lに、氷酢酸0.75gの10ml純水溶液を添加し、これに白金0.75gを含むヘキサヒドロキソ白金酸2‐エタノールアミン水溶液8.83gの純水7.5ml希釈水溶液を滴下した以外は、実施例1のナノコロイド生成工程と同様にして、乳白色のヘキサヒドロキソ白金酸ナノコロイドを得た。
(還元工程)
上記ヘキサヒドロキソ白金酸ナノコロイドを合成空気流通下、攪拌しながらマントルヒータで加熱し40分で90℃へ昇温した。90℃にて0.46mlの98%蟻酸の13ml純水溶液を滴下ロートから20分間に亘って一定の滴下速度で滴下した。滴下終了後なお空気流通下90℃で5時間攪拌を保持した。コロイドの色調は次第にグレー化したがブラックには変化しなかった。5時間後から、液温を90℃に保持したまま、0.23mlの98%蟻酸の6.5ml水溶液を10分間掛けて滴下した。滴下20分後にコロイドは濃いブラックに変化した。なお30分間攪拌を保持した後、加熱を止め室温まで攪拌しながら冷却した。
(洗浄工程・乾燥工程)
得られたブラックのスラリーを実施例1の洗浄工程及び乾燥工程と同様に処理し、白金ブラック粉末0.75gを得た。
(物性測定)
実施例1と同様に前処理後比表面積を測定して、BET比表面積82m/g、全細孔容積0.041cm/gを得た。また粉末法X線回折でfcc白金(111)の回折角2θ 38.9°、(220)結晶子径は2.2nmであった。元素分析の結果、白金ブラック中の酸素含有率は4.6%、塩素およびNaの含有率はそれぞれ、270ppm、200ppmであった。Na以外のアルカリ金属の含有率はICP分析の検出下限以下であった。
<Example 3> Production of high specific surface area platinum black (production method without passing through oxygen treatment step)
(Nano colloid production process)
Add 0.75 g of glacial acetic acid in 10 ml of pure water to 1.2 L of pure water, and add dropwise dropwise dilute 7.5 ml of pure water in 8.83 g of hexahydroxoplatinic acid 2-ethanolamine containing 0.75 g of platinum. Except that, milky white hexahydroxoplatinic acid nanocolloid was obtained in the same manner as in the nanocolloid production step of Example 1.
(Reduction process)
The hexahydroxoplatinic acid nanocolloid was heated with a mantle heater while stirring under a synthetic air flow, and the temperature was raised to 90 ° C. in 40 minutes. At 90 ° C., 0.46 ml of a 13 ml pure aqueous solution of 98% formic acid was dropped from the dropping funnel at a constant dropping rate over 20 minutes. After completion of dropping, stirring was maintained at 90 ° C. for 5 hours under air flow. The color of the colloid gradually became gray but did not change to black. After 5 hours, while maintaining the liquid temperature at 90 ° C., 0.23 ml of a 6.5% aqueous solution of 98% formic acid was added dropwise over 10 minutes. The colloid turned dark black 20 minutes after the dropping. In addition, after hold | maintaining stirring for 30 minutes, the heating was stopped and it cooled, stirring to room temperature.
(Washing process / drying process)
The obtained black slurry was treated in the same manner as in the washing step and the drying step of Example 1 to obtain 0.75 g of platinum black powder.
(Physical property measurement)
The specific surface area after the pretreatment was measured in the same manner as in Example 1 to obtain a BET specific surface area of 82 m 2 / g and a total pore volume of 0.041 cm 3 / g. Moreover, the powder method X-ray diffraction showed that the diffraction angle of fcc platinum (111) was 2θ 38.9 ° and the (220) crystallite diameter was 2.2 nm. As a result of elemental analysis, the oxygen content in platinum black was 4.6%, and the chlorine and Na contents were 270 ppm and 200 ppm, respectively. The content of alkali metals other than Na was below the lower limit of detection by ICP analysis.

<実施例4>高比表面積白金ブラックの製造(酸素処理工程を経る製法)
(ナノコロイド生成工程)
実施例1のナノコロイド生成工程と同様にして、白金1.50gを含むヘキサヒドロキソ白金酸の乳白色ナノコロイドを得た。
(還元工程)
上記コロイドを合成空気流通下、攪拌しながらマントルヒータで加熱し40分で90℃へ昇温した。90℃にて0.92mlの98%蟻酸の25ml純水溶液を滴下ロートから40分間に亘って一定の滴下速度で滴下した。滴下終了後も、液温90℃で攪拌を3時間保持した。滴下開始の1時間後からコロイドの色調は少しずつグレーに変わり以降グレーが次第に濃くなり、3時間後に濃いブラックに変化した。濃いブラックに変化してなお90℃で30分間攪拌保持した後、加熱を止め室温まで攪拌しながら冷却した。
(酸素処理工程)
液温30℃まで冷却した時点で、側管から合成空気を300mL/minの流量で吹き込みながら攪拌し30分保持した。
(洗浄工程・乾燥工程)
得られたブラックのスラリーを実施例1の洗浄工程・乾燥工程と同様に処理し、白金ブラック粉末1.50gを得た。
(物性測定)
実施例1と同様に前処理後比表面積を測定して、BET比表面積103m/g、細孔容積0.047cm/gを得た。また粉末法X線回折でfcc白金(111)の回折角2θ 38.7°、(220)結晶子径は1.9nmであった。元素分析の結果、白金ブラック中の酸素含有率は6.1%、塩素およびアルカリ金属の含有率はそれぞれ、200ppm、150ppmであった。Na以外のアルカリ金属の含有率はICP分析の検出下限以下であった。
<Example 4> Production of high specific surface area platinum black (production method through an oxygen treatment step)
(Nano colloid production process)
In the same manner as in the nanocolloid production step of Example 1, a milky white nanocolloid of hexahydroxoplatinic acid containing 1.50 g of platinum was obtained.
(Reduction process)
The colloid was heated with a mantle heater while stirring under a synthetic air flow, and the temperature was raised to 90 ° C. in 40 minutes. At 90 ° C., 0.92 ml of 25% pure aqueous solution of 98% formic acid was dropped from the dropping funnel over 40 minutes at a constant dropping rate. Even after completion of the dropwise addition, stirring was maintained at a liquid temperature of 90 ° C. for 3 hours. From 1 hour after the start of dropping, the color of the colloid gradually changed to gray. After that, the gray gradually became darker, and changed to dark black after 3 hours. After changing to dark black and maintaining stirring at 90 ° C. for 30 minutes, the heating was stopped and the mixture was cooled to room temperature with stirring.
(Oxygen treatment process)
When the liquid temperature was cooled to 30 ° C., the mixture was stirred for 30 minutes while blowing synthetic air from the side tube at a flow rate of 300 mL / min.
(Washing process / drying process)
The obtained black slurry was treated in the same manner as in the washing and drying steps of Example 1 to obtain 1.50 g of platinum black powder.
(Physical property measurement)
The specific surface area after pretreatment was measured in the same manner as in Example 1 to obtain a BET specific surface area of 103 m 2 / g and a pore volume of 0.047 cm 3 / g. Further, the powder method X-ray diffraction revealed that the diffraction angle of fcc platinum (111) was 2θ 38.7 ° and the (220) crystallite diameter was 1.9 nm. As a result of elemental analysis, the oxygen content in platinum black was 6.1%, and the chlorine and alkali metal contents were 200 ppm and 150 ppm, respectively. The content of alkali metals other than Na was below the lower limit of detection by ICP analysis.

<比較例1>従来の白金ブラックの製造
特許文献1に記載された実施例1の製法に従い、次のように処理した。白金1.50gに相当するヘキサヒドロキソ白金酸の白色結晶2.34gを31.4質量%の硝酸水溶液27.6gに溶解させた。500mlの四つ口フラスコにこのヘキサヒドロキソ白金酸の硝酸水溶液を入れ、これをテフロン(登録商標)攪拌羽根で十分良く攪拌しながら、側管の滴下ロートから純水126mlを1時間に亘ってゆっくり滴下した。滴下終了後なお30分攪拌保持し、次いでマントルヒータで加熱し2時間かけて70℃へ昇温し、70℃で1時間攪拌保持し、オレンジ色の懸濁液を得た。これを70℃で攪拌しながら、濃アンモニア水12mlを滴下し、懸濁液のpHが5.0になるまで中和した。次いで、マイクロフィーダーを用いて1.50mlの蟻酸1時間に亘り一定速度で添加した。懸濁液の色調がオレンジからブラックに変化した。滴下終了後、なお攪拌を1時間保持した後、室温まで放冷し、沈降した白金ブラックをろ過した。濾液の電導度が2.0μs/cm以下となるまで純水で洗浄し、風乾後、120℃において乾燥された。実施例1と同様に表面積を測定し、53m/gの比表面積、0.025cm/gの全細孔容積を得た。この白金ブラックの粉末法X線回折はfcc白金の(220)結晶子径が5.1nmであることを示した。
<Comparative Example 1> Production of Conventional Platinum Black According to the production method of Example 1 described in Patent Document 1, treatment was performed as follows. 2.34 g of hexahydroxoplatinic acid white crystals corresponding to 1.50 g of platinum were dissolved in 27.6 g of a 31.4 mass% nitric acid aqueous solution. Put the hexahydroxoplatinic acid aqueous solution of hexahydroxoplatinic acid into a 500 ml four-necked flask, and stir it well with a Teflon (registered trademark) stirring blade, and slowly add 126 ml of pure water from the dropping funnel of the side tube over 1 hour. It was dripped. After completion of dropping, the mixture was stirred and held for 30 minutes, then heated with a mantle heater, heated to 70 ° C. over 2 hours, and stirred and held at 70 ° C. for 1 hour to obtain an orange suspension. While stirring this at 70 ° C., 12 ml of concentrated aqueous ammonia was added dropwise to neutralize the suspension until the pH of the suspension was 5.0. Then, 1.50 ml of formic acid was added at a constant rate over 1 hour using a microfeeder. The color of the suspension changed from orange to black. After completion of the dropwise addition, the stirring was kept for 1 hour, and then allowed to cool to room temperature, and the precipitated platinum black was filtered. The filtrate was washed with pure water until the conductivity was 2.0 μs / cm or less, air-dried, and dried at 120 ° C. Similarly to measure the surface area as in Example 1 to obtain a specific surface area of 53m 2 / g, a total pore volume of 0.025 cm 3 / g. The powder method X-ray diffraction of this platinum black showed that the (220) crystallite diameter of fcc platinum was 5.1 nm.

本発明に係る白金ブラック粉末及び白金のブラックコロイドは、例えば、ファィンケミカルの水素化用触媒又は酸化用触媒、或いは、燃料電池、電解セル及び電気化学的センサの用途におけるガス拡散電極用触媒として利用できる。   The platinum black powder and the platinum black colloid according to the present invention are, for example, a fin chemical hydrogenation catalyst or oxidation catalyst, or a gas diffusion electrode catalyst for use in fuel cells, electrolysis cells and electrochemical sensors. Available as

Claims (12)

80m/g以上のBET比表面積を有することを特徴とする白金ブラック粉末。 A platinum black powder having a BET specific surface area of 80 m 2 / g or more. 90m/g以上のBET比表面積を有することを特徴とする白金ブラック粉末。 A platinum black powder having a BET specific surface area of 90 m 2 / g or more. 全細孔容積が0.038cm/g以上であることを特徴とする白金ブラック粉末。 A platinum black powder having a total pore volume of 0.038 cm 3 / g or more. 元素分析による酸素の乾燥質量換算の含有率が3.5質量%以上7.0質量%以下であることを特徴とする請求項1、2又は3に記載の白金ブラック粉末。   4. The platinum black powder according to claim 1, wherein the content of oxygen in terms of dry mass by elemental analysis is 3.5% by mass or more and 7.0% by mass or less. 元素分析による不純物として含有される塩素及びアルカリ金属の乾燥質量換算の含有率が、いずれも500ppm以下であることを特徴とする請求項1、2、3又は4に記載の白金ブラック粉末。   The platinum black powder according to claim 1, 2, 3, or 4, wherein the content of chlorine and alkali metal contained as impurities by elemental analysis is 500 ppm or less. 粉末法X線回折で検出される白金含有種が立方晶白金のみであり、そのPt(220)結晶子サイズが3.0nm以下であることを特徴とする請求項1、2、3、4又は5に記載の白金ブラック粉末。   The platinum-containing species detected by powder X-ray diffraction is only cubic platinum, and the Pt (220) crystallite size is 3.0 nm or less. 5. The platinum black powder according to 5. 請求項1、2、3、4、5又は6に記載の白金ブラック粉末が、プロトン性極性溶媒に分散させられた白金ブラックのコロイドであって、動的光散乱法で測定される粒子径0.1nm〜10000nmの領域の粒度分布において、単一ピークの粒度分布曲線を有し、平均粒子径が250nm以下で、且つ多分散度指数が0.15以下の粒度分布を有することを特徴とする白金ブラックのコロイド。   The platinum black powder according to claim 1, 2, 3, 4, 5 or 6, is a colloid of platinum black dispersed in a protic polar solvent, and has a particle size of 0 measured by a dynamic light scattering method. In the particle size distribution in the region of 1 nm to 10000 nm, the particle size distribution curve has a single peak, the average particle size is 250 nm or less, and the polydispersity index is 0.15 or less. Platinum black colloid. ゼータ電位がマイナス40mV以下であることを特徴とする請求項7に記載の白金ブラックのコロイド。   The colloid of platinum black according to claim 7, wherein the zeta potential is minus 40 mV or less. 液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、
前記ナノコロイドに還元剤を添加して前記ナノコロイドを還元し、白金含有コロイドを形成する還元工程と、
前記白金含有コロイドをろ過し純水洗浄する洗浄工程と、
洗浄した白金含有コロイドを乾燥する乾燥工程と、
を有することを特徴とする白金ブラック粉末の製造方法。
A nanocolloid production step of producing a hexahydroxoplatinic acid nanocolloid in the liquid phase;
A reducing step of adding a reducing agent to the nanocolloid to reduce the nanocolloid to form a platinum-containing colloid;
A washing step of filtering the platinum-containing colloid and washing with pure water;
A drying step of drying the washed platinum-containing colloid;
A method for producing platinum black powder, comprising:
前記還元工程の後に、前記白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することを特徴とする請求項9に記載の白金ブラック粉末の製造方法。   The method for producing a platinum black powder according to claim 9, further comprising an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step. 液相中にヘキサヒドロキソ白金酸のナノコロイドを生成させるナノコロイド生成工程と、
前記ナノコロイドに還元剤を添加して前記ナノコロイドを還元し、白金含有コロイドを形成する還元工程と、
前記白金含有コロイドをろ過し純水洗浄する洗浄工程と、
洗浄した白金含有コロイドを溶媒に分散する分散工程と、
を有することを特徴とする白金ブラックコロイドの製造方法。
A nanocolloid production step of producing a hexahydroxoplatinic acid nanocolloid in the liquid phase;
A reducing step of adding a reducing agent to the nanocolloid to reduce the nanocolloid to form a platinum-containing colloid;
A washing step of filtering the platinum-containing colloid and washing with pure water;
A dispersion step of dispersing the washed platinum-containing colloid in a solvent;
A method for producing a platinum black colloid characterized by comprising:
前記還元工程の後に、前記白金含有コロイドに空気乃至酸素ガスを吹き込む酸素処理工程をさらに有することを特徴とする請求項11に記載の白金ブラックコロイドの製造方法。   The method for producing a platinum black colloid according to claim 11, further comprising an oxygen treatment step of blowing air or oxygen gas into the platinum-containing colloid after the reduction step.
JP2009005161A 2009-01-13 2009-01-13 Platinum black powder, colloid of platinum black and process for producing them Active JP5451083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009005161A JP5451083B2 (en) 2009-01-13 2009-01-13 Platinum black powder, colloid of platinum black and process for producing them
PCT/JP2009/071740 WO2010082443A1 (en) 2009-01-13 2009-12-28 Platinum black powder, platinum black colloid, method for producing platinum black powder, and method for producing platinum black colloid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005161A JP5451083B2 (en) 2009-01-13 2009-01-13 Platinum black powder, colloid of platinum black and process for producing them

Publications (2)

Publication Number Publication Date
JP2010162443A true JP2010162443A (en) 2010-07-29
JP5451083B2 JP5451083B2 (en) 2014-03-26

Family

ID=42339698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005161A Active JP5451083B2 (en) 2009-01-13 2009-01-13 Platinum black powder, colloid of platinum black and process for producing them

Country Status (2)

Country Link
JP (1) JP5451083B2 (en)
WO (1) WO2010082443A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
JP2015085226A (en) * 2013-10-29 2015-05-07 石福金属興業株式会社 Composition for production of supported catalyst
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104416164B (en) * 2013-09-04 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 Platinum black and preparation method thereof
US10457583B2 (en) * 2016-03-31 2019-10-29 Hitachi-Ge Nuclear Energy, Ltd. Method for relieving corrosive environment of boiling water reactor, nuclear power plant, and method for injecting noble metal which is carried out in nuclear power plant
JP6899302B2 (en) * 2017-09-29 2021-07-07 日立Geニュークリア・エナジー株式会社 Method for producing platinum oxide colloidal solution
CN111745164B (en) * 2020-07-14 2022-12-23 昆明理工大学 Preparation method of superfine spherical platinum powder
CN113681023B (en) * 2021-08-18 2023-09-05 中国科学院城市环境研究所 Regular-morphology nano platinum black and preparation method and application thereof
WO2024042610A1 (en) * 2022-08-23 2024-02-29 株式会社Cepプロジェクト Method for producing platinum nano-particle solution, antibacterial agent, and antibacterial product

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157193A (en) * 1990-10-19 1992-05-29 Tome Sangyo Kk Production of superfine metal grain
JP2003034801A (en) * 2001-07-27 2003-02-07 Noritake Co Ltd Metal powder and manufacturing method therefor
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2003221601A (en) * 2002-01-31 2003-08-08 Japan Science & Technology Corp Porous body of noble metal and manufacturing method therefor
JP2004027346A (en) * 2002-06-28 2004-01-29 Japan Science & Technology Corp Hydrogen storage body
WO2004012884A1 (en) * 2002-08-01 2004-02-12 Daiken Chemical Co., Ltd. Metal nanoparticle and process for producing the same
JP2004263222A (en) * 2003-02-28 2004-09-24 Tanaka Kikinzoku Kogyo Kk Mono-component system or multicomponent system metal colloid, and method for manufacturing mono-component system or multicomponent system metal colloid
WO2006088194A1 (en) * 2005-02-21 2006-08-24 Nissan Motor Co., Ltd. Electrode catalyst and method for producing same
JP2006322051A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Metal powder, and method for producing the same
JP2007100117A (en) * 2005-09-30 2007-04-19 Kanto Chem Co Inc Metal nanoparticle, catalyst comprising the same and method for hydrogenating alkyne compound
JP2007123108A (en) * 2005-10-28 2007-05-17 Catalysts & Chem Ind Co Ltd Platinum colloid carried carbon and its manufacturing method
JP2008038206A (en) * 2006-08-07 2008-02-21 Mitsubishi Materials Corp Platinum powder for platinum clay, and platinum clay comprising the platinum powder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157193A (en) * 1990-10-19 1992-05-29 Tome Sangyo Kk Production of superfine metal grain
JP2003034801A (en) * 2001-07-27 2003-02-07 Noritake Co Ltd Metal powder and manufacturing method therefor
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2003221601A (en) * 2002-01-31 2003-08-08 Japan Science & Technology Corp Porous body of noble metal and manufacturing method therefor
JP2004027346A (en) * 2002-06-28 2004-01-29 Japan Science & Technology Corp Hydrogen storage body
WO2004012884A1 (en) * 2002-08-01 2004-02-12 Daiken Chemical Co., Ltd. Metal nanoparticle and process for producing the same
JP2004263222A (en) * 2003-02-28 2004-09-24 Tanaka Kikinzoku Kogyo Kk Mono-component system or multicomponent system metal colloid, and method for manufacturing mono-component system or multicomponent system metal colloid
WO2006088194A1 (en) * 2005-02-21 2006-08-24 Nissan Motor Co., Ltd. Electrode catalyst and method for producing same
JP2006322051A (en) * 2005-05-19 2006-11-30 Noritake Co Ltd Metal powder, and method for producing the same
JP2007100117A (en) * 2005-09-30 2007-04-19 Kanto Chem Co Inc Metal nanoparticle, catalyst comprising the same and method for hydrogenating alkyne compound
JP2007123108A (en) * 2005-10-28 2007-05-17 Catalysts & Chem Ind Co Ltd Platinum colloid carried carbon and its manufacturing method
JP2008038206A (en) * 2006-08-07 2008-02-21 Mitsubishi Materials Corp Platinum powder for platinum clay, and platinum clay comprising the platinum powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026014A (en) * 2011-07-21 2013-02-04 Honda Motor Co Ltd Catalyst for fuel cell and manufacturing method of catalyst for fuel cell
JP2016505193A (en) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Colloidal dispersions containing noble metal particles and acidic ionomer components and methods for their production and use
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
JP2015085226A (en) * 2013-10-29 2015-05-07 石福金属興業株式会社 Composition for production of supported catalyst
JP5701466B1 (en) * 2013-12-27 2015-04-15 昭和電工株式会社 Method for producing electrode catalyst for fuel cell
WO2015098181A1 (en) * 2013-12-27 2015-07-02 昭和電工株式会社 Method for producing electrode catalyst for fuel cells
US9947940B2 (en) 2013-12-27 2018-04-17 Showa Denko K.K. Method for producing fuel cell electrode catalyst

Also Published As

Publication number Publication date
WO2010082443A1 (en) 2010-07-22
JP5451083B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5451083B2 (en) Platinum black powder, colloid of platinum black and process for producing them
Shi et al. Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes
Yang et al. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction
Fu et al. Synthesis and electrocatalytic activity of Au@ Pd core-shell nanothorns for the oxygen reduction reaction
Ye et al. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction
Mohanta et al. Tin oxide nanostructured materials: an overview of recent developments in synthesis, modifications and potential applications
Wang et al. Controlled synthesis of dendritic Au@ Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst
Zheng et al. Popcorn-like PtAu nanoparticles supported on reduced graphene oxide: facile synthesis and catalytic applications
Fu et al. Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity
Hueso et al. Beyond gold: rediscovering tetrakis-(hydroxymethyl)-phosphonium chloride (THPC) as an effective agent for the synthesis of ultra-small noble metal nanoparticles and Pt-containing nanoalloys
Zhang et al. Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation
CN107249735A (en) Carbon supported catalyst comprising modifying agent and the method for preparing carbon supported catalyst
Ye et al. Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
Tang et al. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation
He et al. One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced oxygen reduction reaction electrocatalysts
Zhang et al. Facile assembly of silica gel/reduced graphene oxide/Ag nanoparticle composite with a core–shell structure and its excellent catalytic properties
Fu et al. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation
Zheng et al. Hollow titania spheres loaded with noble metal nanoparticles for photocatalytic water oxidation
Odoom-Wubah et al. Ascorbic acid assisted bio-synthesis of Pd-Pt nanoflowers with enhanced electrochemical properties.
Zhang et al. Polyaniline decorated MoO3 nanorods: synthesis, characterization and promoting effect to Pt electrocatalyst
JP5400924B2 (en) Method for producing gold-supported carbon catalyst
Liu et al. One-pot synthesis of flower-like Bi2WO6/BiOCOOH microspheres with enhanced visible light photocatalytic activity
Wu et al. Silver nanoparticles stabilized by bundled tungsten oxide nanowires with catalytic and antibacterial activities
WO2012127540A1 (en) Metal oxide-platinum compound catalyst and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5451083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250